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Objective

The tutorial will introduce the current state of the art in declarative
problem solving via answer set programming. The audience will walk
away with an understanding of the mathematical foundation of ASP,
algorithms and systems for computing answer sets, recent applications
of ASP including biomedical query answering and cognitive robotics.

The slides are available online at

http://peace.eas.asu.edu/aaai12tutorial

Disclaimer: the coverage of ASP is not extensive, and may reflect our
own biased view.
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Answer Set Programming (ASP)

Declarative programming paradigm.

Theoretical basis: answer set semantics (Gelfond & Lifschitz, 1988).

Expressive representation language: Defaults, recursive definitions,
aggregates, preferences, etc.

ASP solvers:

SMODELS (Helsinki University of Technology, 1996)
DLV (Vienna University of Technology, 1997)
CMODELS (University of Texas at Austin, 2002)
PBMODELS (University of Kentucky, 2005)
CLASP (University of Potsdam, 2006) – winning first places at
ASP’07/09/11/12, PB’09/11/12, and SAT’09/11/12
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Applications of ASP in AI

planning ([Lif02a], [DEF+03], [SPS09], [TSGM11], [GKS12])
theory update/revision ([IS95], [FGP07], [OC07], [EW08], [ZCRO10],
[Del10])
preferences ([SW01], [Bre07], [BNT08a])
diagnosis ([EFLP99], [BG03], [EBDT+09a])
learning ([Sak01], [Sak05], [SI09], [CSIR11])
description logics and semantic web ([EGRH06], [CEO09], [Sim09],
[PHE10], [SW11], [EKSX12])
probabilistic reasoning ([BH07], [BGR09a])
data integration and question answering ([AFL10], [LGI+05])
multi-agent systems ([VCP+05], [SPS09], [SS09], [BGSP10], [Sak11],
[PSBG12])
multi-context systems ([EBDT+09a], [BEF11], [EFS11], [BEFW11],
[DFS12])
natural language processing/understanding ([BDS08], [BGG12], [LS12])
argumentation ([EGW08], [WCG09], [EGW10], [Gag10])
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Applications of ASP in Other Areas
product configuration ([SN98], [TSNS03])
Linux package configuration ([Syr00], [GKS11])
wire routing ([ELW00], [ET01])
combinatorial auctions ([BU01])
game theory ([VV02], [VV04])
decision support systems ([NBG+01])
logic puzzles ([FMT02], [BD12])
bioinformatics ([BCD+08], [EY09], [EEB10], [EEEO11])
phylogenetics ([ELR06], [BEE+07], [Erd09], [EEEF09], [CEE11], [Erd11])
haplotype inference ([EET09], [TE08])
systems biology ([TB04], [GGI+10], [ST09], [TAL+10], [GSTV11])
automatic music composition ([BBVF09],[BBVF11])
assisted living ([MMB08], [MMB09], [MSMB11])
team building ([RGA+12])
robotics ([CHO+09a], [EHP+11], [AEEP11a], [EHPU12], [APE12])
software engineering ([EIO+11])
bounded model checking ([HN03], [TT07])
verification of cryptographic protocols ([DGH09])
e-tourism ([RDG+10])
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Workforce Management at Gioia Tauro Seaport

The Gioia Tauro seaport:

the largest transshipment terminal of the Mediterranean
recently become an automobile hub

Automobile Logistics by ICO BLG:

several ships of different size shore the port every day
transported vehicles are handled, warehoused, technically
processed and then delivered to their final destination.

Crucial management task: to build teams of employees to handle
incoming ships subject to many constraints (e.g., skills, fairness, legal
workload regulations).
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ASP-Based Workforce Management at Gioia Tauro
Seaport

In cooperation with Exeura Srl, a University of Calabria (UNiCaL) spin-off, and
ICO BLG, an Italian logistics company, Nicola Leone’s group at UNiCaL has
developed an ASP-based system for team building based on the DLV solver.

ASP rules describe the requirements that should be fulfilled regarding:
necessary skills of team members; availability of employees; fairness of
workload distribution; and distribution of “heavy” or “risky” tasks.

Since in practice not all requirements can be satisfied, the system has
an implicit conflict handling strategy that gives higher priority to more
important criteria.

The system, which has been adopted by ICO BLG for workforce
management, can generate shift plans for 130 employees within a few
minutes. In addition, the plan quality turned out to be considerably better
and overtime was decreased by 20%.
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Inferring Phylogenetic Trees

Phylogenetic trees of individual languages

help historical linguists to infer principles of language change; and
are also of interest to archaeologists, human geneticists, physical
anthropologists (e.g., evolutionary history of certain languages can
help us answer questions about human migrations).

Phylogenetic trees of parasites

give us information on where they come from and when they first
started infecting their hosts;
help understanding the changing dietary habits of a host species
and the structure and the history of ecosystems, and identifying the
history of animal and human diseases; and
allow identification of regions of evolutionary “hot spots”, and thus
can be useful to assess the importance of specific habitats,
geographic regions, areas of genealogical and ecological diversity.
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Inferring Phylogenetic Trees

After describing each taxonomic unit with a set of characters, and
determining the character states...

English German French Spanish Italian Russian
hand Hand main mano mano ruká

1 1 2 2 2 3

the goal is to reconstruct a phylogeny with the maximum number of
“compatible” characters.

Challenges: reachability checks, aggregates, constraints, weights, etc.
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PHYLO-ASP: Phylogenetic Systematics using ASP

We have developed an ASP-based phylogenetic system PHYLO-ASP that not
only infers (weighted) phylogenetic trees but also helps the experts analyze
and compare them (e.g., by generating similar/diverse phylogenetic trees).

In collaboration with zoologist Dan Brooks (U. of Toronto), historical linguists
Don Ringe (UPENN) and Feng Wang (Peking U.), and language engineer
James Minett (Chinese U. of Hong-Kong), we have reconstructed plausible
phylogenies for Alcataenia species (a tapeworm genus), Indo-European
languages, and Chinese dialects using PHYLO-ASP.

http://krr.sabanciuniv.edu/projects/Phylo-ASP/
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The Most Plausible Phylogeny for Indo-European
Languages
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ANTON: An ASP-based Music Composition System

ANTON is an automatic composition tool that can compose melodic and
harmonic music in the style of the “Palestrina Rules” for Renaissance music.

It uses an answer set solver as its core computational engine, CSOUND for
synthesis and can optionally output to LILYPOND.
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Declarative Problem Solving using ASP

The basic idea is

to represent the given problem by a set of rules,

to find answer sets for the program using an ASP solver, and

to extract the solutions from the answer sets.
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Programs

Programs consist of rules of the form

A0 ← A1, . . . ,Am,not Am+1, . . . ,not An

where each Ai is a propositional atom.

Intuitive meaning of a rule:

If you have generated A1, . . . ,Am, and

it is impossible to generate any of Am+1, . . . ,An,

then you may derive A0.
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Answer Sets (or Stable Models)

Program Answer sets
p ← not q {p}
p ← not q {p}, {q}
q ← not p
p ← not q
q ← not p {p, r}, {q, r}

r ← p
r ← q
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Answer Sets vs. Models

p ← s,not q s ∧ ¬q → p
q ← s,not r s ∧ ¬r → q
s ← not p ¬p → s

answer set: {q, s} models: {p}, {p,q},
{p, r}, {q, s}, {p,q, r},
{p,q, s}, {p, r , s},
{q, r , s}, {p,q, r , s}
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Answer Sets and Prolog

p ← not q
q ← not p

Prolog does not terminate on query p or q.

?- p.
ERROR: Out of local stack

Exception: (729,178)

SMODELS returns

Answer: 1
Stable Model: p
Answer: 2
Stable Model: q

Finite ASP programs are guaranteed to terminate.

19



More General Programs

Program Answer sets
1 ≤ {p,q, r} ≤ 2← {p}, {q}, {r}, {p,q}, {p, r}, {q, r}
1 ≤ {p,q, r} ≤ 2← {q}, {r}, {q, r}

← p
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ASP Programs presented to CLASP

The ASP program
1 ≤ {p,q} ≤ 1
r ← p
r ← q

is presented to CLASP as follows:

1 {p, q} 1.
r :- p.
r :- q.

The program
pi ← not pi+1 (1 ≤ i ≤ 7).

is presented to CLASP as follows:

index(1..7).
p(I) :- not p(I+1), index(I).
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ASP Example: Clique Problem

Given an undirected graph G = (V ,E) and a positive integer c, decide
whether a set of c vertices that are pairwise adjacent exists.

Generate a subset of V that have c vertices

c{clique(V) : vertex(V)}c.

Eliminate the subsets in which two vertices are not adjacent.

:- clique(V1), clique(V2), not edge(V1,V2),
V1 != V2.

A solution is computed using an ASP solver:

{clique(2), clique(7), . . .}
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Finding Answers and Generating Explanations for
Complex Biomedical Queries
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Motivation

Biomedical data is stored in various structured forms and at
different locations.
With the current Web technologies, reasoning over these data is
limited to answering simple queries by keyword search and by
some direction of humans.
Vital research, like drug discovery, requires high-level reasoning.
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A Simple Query

What are the genes that are targeted by the drug Epinephrine?
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A Simple Query
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Another Simple Query

What are the genes that interact with the gene DLG4?
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Another Simple Query

What are the genes that interact with the gene DLG4?
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Another Simple Query

What are the genes that interact with the gene DLG4?
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Complex Queries

What are the genes that are targeted by the drug Epinephrine and that
interact with the gene DLG4?
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Our goal is...

... to extract relevant parts of the knowledge resources, integrate them,
answer the queries efficiently, and generate explanations.
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Complex Queries

Q1 What are the genes that are targeted by the drug Epinephrine and
that interact with the gene DLG4?

Q2 What are the genes that are targeted by all the drugs that belong
to the category Hmg-coa reductase inhibitors?

Q3 What are the cliques of 5 genes, that contain the gene DLG4?
Q4 What are the genes that are related to the gene ADRB1 via a

gene-gene relation chain of length at most 3?
Q5 What are the most similar 3 genes that are targeted by the drug

Epinephrine?
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Challenges

1 It is hard to represent a query in a formal language.

Represent queries in a controlled natural language –
BIOQUERY-CNL* [EY09, EEO11].

2 Databases/ontologies are in different formats/locations.

Integration of knowledge via a rule layer in ASP [BCD+08, EEO11].

3 Complex queries require recursive definitions, aggregates, etc..

Represent queries as ASP programs [BCD+08, EEEO11].

4 Databases/ontologies are large.

Extract the relevant part for faster reasoning [EEEO11].

5 Experts may ask for further explanations.

Algorithm for generating shortest explanations [EEEO11].
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BIOQUERY-ASP: System Overview
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Representing Queries in ASP

Query Q2 in BIOQUERY-CNL*: What are the genes that are targeted
by all the drugs that belong to the category Hmg-coa reductase
inhibitors?

Query Q2 in ASP:

notcommon(gn1)← not drug gene(d2,gn1), condition1(d2)
condition1(d)← drug category(d , “Hmg − coa reductase inhibitors”)

what be genes(gn1)← not notcommon(gn1),notcommon exists
notcommon exists ← notcommon(x)

answer exists ← what be genes(gn)
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Extraction and Integration of Knowledge using ASP

Knowledge from RDF(S)/OWL ontologies can be extracted using
“external predicates” supported by the ASP solver DLVHEX [EGRH06]:

triple gene(x , y , z)← &rdf [“URIforGeneOntology”](x , y , z)
gene gene(g1,g2)← triple gene(x , “geneproperties : name”,g1),

triple gene(x , “geneproperties : related genes”,b), . . .

ASP rules integrate the extracted knowledge, or define new concepts:

gene reachable from(x ,1)← gene gene(x , y), start gene(y)
gene reachable from(x ,n + 1)← gene gene(x , z),

gene reachable from(z,n),max chain length(l) (0 < n,n < l)
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Query Answering in ASP

Generally, only a small part of the underlying databases and the
rule layer is related to the given query.
We introduce a method to identify the relevant part of the ASP
program for more efficient query answering.
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Relevant Part of a Program

Underlying databases as facts:
gene gene(G1,G2)← gene gene(G2,G3)←
drug drug(D1,D2)← drug drug(D2,D3)←

Rule layer:
gene gene(g1,g2)← gene gene(g2,g1)
gene related gene(g1,g2)← gene gene(g1,g2)
gene related gene(g1,g3)← gene related gene(g1,g2),gene gene(g2,g3)

drug drug(d1,g2)← drug drug(d2,d1)
drug related drug(g1,g2)← drug drug(d1,d2)
drug related drug(g1,g3)← drug related drug(d1,d2),drug drug(d2,d3)

Query: What are the genes that are related to gene G1?
what be genes(g)← gene related gene(g,G1)
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* Identifying the relevant part improves the computational time up to 7
times.
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Identifying the Relevant Part of a Program

Predicate Dependency Graph
It is a directed graph where the vertices represent the predicate
symbols and the edges 〈pi ,pj〉 denote the existence of a rule r , such
that pi ∈ HP(r) and pj ∈ BP(r).

Example:

gene related gene(g1,g3)← gene related gene(g1,g2),
gene gene(g2,g3)

gene related gene gene gene
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Identifying the Relevant Part of a Program

% Databases and Ontologies:
fact 1.
fact 2.
fact 3.
...

% Rule Layer:
rule 1.
rule 2.
rule 3.
...
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Identifying the Relevant Part of a Program

Theorem 1
Let Π be a stratified normal program, Q be a general program. Then
RelΠ,Q is the relevant part of Π with respect to Q.
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Experimental Results: Databases & Ontologies

Source Relation (number of ASP facts)
BIOGRID gene-gene (372.293)
DRUGBANK drug-drug (21.756)

drug-category (4.743)
SIDER drug-sideeffect (61.102)
PHARMGKB drug-disease (3.740)

drug-gene (15.805)
disease-gene (9.417)

CTD drug-disease (704.590)
drug-gene (259.048)
disease-gene (8.909.071)
Total : 10.3 M
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Experimental Results

Query Complete Relevant
Q1 271.39 13.08

Rules: 21059323 Rules: 1961789
Q2 266.06 14.34

Rules: 21059909 Rules: 2084579
Q3 266.62 9.85

Rules: 21059248 Rules: 1567401
Q4 273.93 321.11

Rules: 21059353 Rules: 19450525
Q5 265.91 9.93

Rules: 21061727 Rules: 1460831
Q6 269.69 320.56

Rules: 21111842 Rules: 19512500
Q7 270.05 6.07

Rules: 21062006 Rules: 1023061
Q8 275.19 7.02

Rules: 21079275 Rules: 1040406
Q9 272.48 3.48

Rules: 21059597 Rules: 547545
Q10 266.37 11.25

Rules: 21077252 Rules: 1594891
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BIOQUERY-ASP: System Overview
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Explanations

ASP program Π:
a← b, c
a← d
d ←
b ← c
c ←

An answer set X for Π: {a,b, c,d}
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Finding Explanations

The and-or explanation tree for atom a
with respect to Π and X :

a

a← b, c

b

b ← c

c

c ←

c

c ←

a← d

d

d ←

Π :
a← b, c
a← d
d ←
b ← c
c ←

X = {a,b, c,d}
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Shortest Explanations

W (a) = minc∈child(a)(W (c))
W (r) =

∑
c∈child(r) W (c) + 1

a

R1 R2

a11 a12 a21

R3 R4 R5 R6

a31

R71

1 1 1

1

1 1

2

2

1

3

2

〈R6,R2〉
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Explanation Generation

Theorem 2
Let Π be a normal ASP program, X be an answer set for Π and p be an
atom in X . Our algorithm generates a shortest explanation for p with
respect to Π and X .
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Example: Explanation Generation

Query in BIOQUERY-CNL*: What are the genes that are targeted by the drug Epinephrine and

that interact with the gene DLG4?

An Answer: ADRB1

Shortest Explanation in ASP:

what be genes(ADRB1)← drug gene(Epinephrine, ADRB1), gene gene(ADRB1, DLG4)

drug gene(Epinephrine, ADRB1)←
drug gene ctd(Epinephrine, ADRB1)

drug gene ctd(Epinephrine, ADRB1)←

gene gene(ADRB1, DLG4)←
gene gene(DLG4, ADRB1)

gene gene(DLG4, ADRB1)←
gene gene biogrid(DLG4, ADRB1)

gene gene biogrid(DLG4, ADRB1)←

Explanation in Natural Language:
The drug Epinephrine targets the gene ADRB1 according to CTD.
The gene DLG4 interacts with the gene ADRB1 according to BioGrid.
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BIOQUERY-ASP

http://krr.sabanciuniv.edu/projects/BioQuery-ASP/
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Positive Programs: Syntax

positive rule:
A0 ← A1 ∧ · · · ∧ Am

where A0, . . . ,Am are propositional atoms. We identify a positive rule
with an implication

A1 ∧ · · · ∧ Am → A0 .

Example

p
r ← p ∧ q

is a positive program, which can be identified with

p ∧ (p ∧ q → r).
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Stable Models of a Positive Program

We identify an interpretation with the set of atoms that are true in it.
An interpretation I of signature {p,q} such that I(p) = f and
I(q) = t is identified with {q}.

p
r ← p ∧ q

has three models: {p}, {p, r}, {p,q, r}.

Every positive program has a unique minimal model. That model is
called the stable model (a.k.a. answer set) of the program.
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Normal Logic Program

(Normal) rule with negation:

A0 ← A1 ∧ · · · ∧ Am ∧ ¬Am+1 ∧ · · · ∧ ¬An

(often written as A0 ← A1, . . . ,Am, not Am+1, . . . ,not An)
Informally,

If you have generated A1, . . . ,Am, and
it is impossible to generate any of Am+1, . . . ,An,
then you may generate A0.

A stable model of Π is a set of atoms that can be generated from Π.

How do we know it is impossible to generate negated atoms?
p ← ¬q
q ← ¬r

p ← ¬q
q ← ¬p
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Fixpoint Definition

The difficulty is overcome by employing a “fixpoint construct” called
reduct [GL88].

To find a set of atoms that can be generated from Π:
Guess a set X that you suspect to be the set of atoms that can be
generated from Π.

Transform Π into a positive program ΠX (reduct of Π relative to X )
by assuming that only atoms in X can be generated.

If the set of atoms that can be generated from ΠX is identical to X ,
then X is a good “guess.”

Π : p ← ¬q
q ← ¬r

Π{q} :
q ←
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Stable Models of a Normal Logic Program [GL88]

Let Π be a normal logic program and X a set of atoms. The reduct ΠX

is obtained from Π by replacing every occurrence of the form ¬A by
> if X |= ¬A (i.e., A 6∈ X ), and
⊥ otherwise.

Π :
p ← ¬q
q ← ¬r

Π{q} :
p ← ⊥
q ← >

X is a stable model (a.k.a. answer set) of Π if X is the minimal model
of ΠX .

To find a stable model of Π:
1 Guess X and form ΠX .
2 Find the minimal model Y of ΠX .
3 If Y = X , X is a stable model of Π.
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Examples

Π :
p ← ¬q
q ← ¬r

Π{q} :
p ← ⊥
q ← > Π{p} :

p ← >
q ← >

Π{p,q} :
p ← ⊥
q ← > Π∅ :

p ← >
q ← >

{q} is the only stable model of Π.

Theorem
If X is a stable model of Π, then every element of X appears in the
head of a rule in Π.
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Examples

A normal logic program may have none, one, or multiple stable models.

Program Stable models
p ← ¬q {p}, {q}
q ← ¬p

p ← ¬p none
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General Rule [LTT99, Fer05]

F ← G

where F and G are formulas that contain no connectives other than
{⊥,>,∧,∨,¬}.

The reduct ΠX is obtained from Π by replacing all maximal
subformulas of the form ¬H by

> if X |= ¬H, and
⊥ otherwise.

We say that X is a stable model of Π if X is a minimal model of ΠX .

(ΠX may have none, one, or multiple minimal models.)
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Examples

General program Stable models
p ∨ q {p}, {q}

p ∨ q {p,q}
p ← q
q ← p

p {p}

¬¬p none

p ∨ ¬p ∅, {p}

p ← ¬¬p ∅, {p}

Propositional logic is monotonic: if X satisfies F ∧G then X satisfies F .
Stable model semantics is nonmonotonic.
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ASP Idioms

Choice rules
Constraints
Cardinality expressions
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Choice Rules

By {p,q, r}c we denote the rule

(p ∨ ¬p) ∧ (q ∨ ¬q) ∧ (r ∨ ¬r)

It has 8 answer sets, each of which is a subset of {p,q, r}.

In general, if Z consists of n atoms then Z c has 2n answer sets.

Under the stable model semantics, Z c says: for every element of Z,
choose arbitrarily whether to include it in the answer set.
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Constraints

Constraint: A rule with the head ⊥.

Theorem
X is a stable model of Π ∪ {← F} iff X is a stable model of Π that does
not satisfy F .

Example

p ∨ q
← p

has only one answer set {q}.
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Embedding Propositional Logic in SM

By combining choice rules and constraints.

Proposition
For any propositional formula F and any set X of atoms occurring in F ,
X is a model of F iff X is a stable model of Z c ∧ (← ¬F ), where Z is
the set of all atoms occurring in F .

Propositional formula General program
{p,q}c

¬p ∨ q ← ¬(¬p ∨ q)

Model: ∅, {q}, {p,q} Stable Models: ∅, {q}, {p,q}

The theorem on strong equivalence tells us that Z c ∧ (← ¬F ) can be
replaced with Z c ∧ F .
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Cardinality Expressions

2{p,q, r} stands for

(p ∧ q) ∨ (p ∧ r) ∨ (q ∧ r).

X satisfies 2{p,q, r} iff |X ∩ {p,q, r}| ≥ 2.

{p,q, r}2 stands for ¬3{p,q, r}.

2{p,q, r}2 stands for 2{p,q, r} ∧ {p,q, r}2 .

63



ASP Programs with Variables

Variables in ASP are understood in terms of grounding. In other words,
a rule with variables is understood as a shorthand for the set of its
ground instantiations over the Herbrand Universe of the program.

p(a)
q(b)
r(x)← p(x) ∧ ¬q(x)

is shorthand for the formula

p(a)
q(b)
r(a)← p(a) ∧ ¬q(a)
r(b)← p(b) ∧ ¬q(b).
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In the Input Language of CLINGO

index(1..3).

{q(I,J) : index(J)} :- index(I).
:- {q(I,J) : index(J)} 0, index(I).
:- 2 {q(I,J) : index(J)}, index(I).

Here, I is a “global” variable and J is a “local” variable.

When I = 1, the second rule is grounded as

{q(1,1), q(1,2), q(1,3)}.

The program can be equivalently written as

index(1..3).
#domain index(I).

1 {q(I,J) : index(J)} 1.

which has 27 answer sets.
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System F2LP[LP09]

The input languages of ASP solvers do not allow complex formulas.

F2LP is a front-end to ASP solvers that turns first-order formulas into
logic program syntax.

f2lp [input-program] | clingo

p ← ¬¬p can be encoded in the language of F2LP as

p <- not not p.

The F2LP rule

t(X) <- v(X) & not ?[Y]:e(X,Y)

describes the set t of terminal vertices (the symbol ? represents the
existential quantifier).
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Various Extensions

Strong negation [GLR91]

Arbitrary aggregates
[SNS02, FLP04, Fer05, PDB07, LM09, FL10], . . .

Preferences [BNT08b]

Integration with CSP [Bal09a, GOS09a]

Integration with SMT [JLN11]

Integration with Description Logics [EIL+08, LP11]

Stable Model Semantics of formuals with generalized quantifiers
[LM12]

Probabilistic answer sets [BGR09b]

Intensional functions [Cab11, Lif12, BL12]

. . .
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GENERATE-(DEFINE)-TEST

A way to organize rules.

GENERATE part: generates a “search space” – a set of potential
solutions.
DEFINE part: defines new atoms in terms of other atoms.
TEST part: weed out the elements of the search space that do not
represent solutions.
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N-Queens Puzzle
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8-Queens Puzzle

“Each row has exactly one queen”

1 ≤ {qi,1, . . . ,qi,8} ≤ 1 (1 ≤ i ≤ 8).

“Two queens cannot stay on the same column”

⊥ ← qi,j ∧ qi′,j (1 ≤ i < i ′ ≤ 8; 1 ≤ j ≤ 8).

“Two queens cannot stay on the same diagonal”

⊥ ← qi,j ∧ qi′,j′ (1 ≤ i < i ′ ≤ 8; 1 ≤ j , j ′ ≤ 8; i ′ − i = |j ′ − j |).
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N-Queens Puzzle in ASP

In the language of GRINGO:

num(1..n).

1 {q(I,J): num(J)} 1 :- num(I).
:- q(I,J), q(I1,J), I<I1.
:- q(I,J), q(I1,J1), I<I1, I1-I==#abs(J1-J).
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Finding One Solution for the 8-Queens Puzzle

With command line

% gringo -c n=8 queens | clasp

we get the following output:

Solving...
Answer: 1
num(1) num(2) num(3) num(4) num(5) num(6) num(7) num(8)
q(8,4) q(7,2) q(6,8) q(5,5) q(4,7) q(3,1) q(2,3) q(1,6)
SATISFIABLE

Models : 1+
Time : 0.002s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)
CPU Time : 0.000s
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Finding All Solutions for the 8-Queens Puzzle

We can specify the number of solutions to return.

With the same program, but with the following command line

% gringo -c n=8 queens | clasp 0

CLASP computes and shows all 92 valid queen arrangements. For
instance, the last part is

Answer: 92
num(1) num(2) num(3) num(4) num(5) num(6) num(7) num(8)
q(8,1) q(7,7) q(6,4) q(5,6) q(4,8) q(3,2) q(2,5) q(1,3)
SATISFIABLE

Models : 92
Time : 0.695s (Solving: 0.69s 1st Model: 0.00s Unsat: 0.05s)
CPU Time : 0.000s
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Sudoku

(Pictures from http://www.cross-plus-a.com/sudoku.htm)
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Sudoku in ASP

Rules:

num(1..9).
border(1;4;7).

1 {a(R,C,N) : num(N)} 1 :- num(R;C).
1 {a(R,C,N) : num(R)} 1 :- num(C;N).
1 {a(R,C,N) : num(C)} 1 :- num(R;N).
1 {a(R,C,N) : num(R;C): X<=R: R<=X+2: Y<=C: C<=Y+2} 1

:- num(N), border(X;Y).

Instance:

a(1,1,9). a(1.5,8). a(1,7,3).
....
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Offset Sudoku

A region is represented by the same color. In addition to the
requirement of Sudoku, every region must contain all the digits 1
through 9.
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Offset Sudoku in ASP

Add to the basic program:

:- a(R,C,N), a(R1,C1,N),
R #mod 3 == R1 #mod 3, C #mod 3 == C1 #mod 3,
R != R1, C != C1.
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Anti-Knight Sudoku

Cells that are a chess knight’s move away from each other cannot hold
equal values:
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Anti-Knight Sudoku in ASP

Add to the basic program

:- a(R,C,N), a(R-2,C-1,N).
:- a(R,C,N), a(R-2,C+1,N).
:- a(R,C,N), a(R-1,C-2,N).
:- a(R,C,N), a(R-1,C+2,N).
:- a(R,C,N), a(R+1,C-2,N).
:- a(R,C,N), a(R+1,C+2,N).
:- a(R,C,N), a(R+2,C-1,N).
:- a(R,C,N), a(R+2,C+1,N).

or simply,

:- a(R,C,N), a(R1,C1,N), #abs(RR-R) + #abs(CC-C) == 3
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Greater-Than Sudoku

No numerical clues; Only greater-than relationships
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Greater-Than Sudoku in ASP

Let gt(R,C,R1,C1) represent that the number in (R,C) is greater
than the number in (R1,C1).

Add to the basic program

:- a(R,C,N), a(R1,C1,N1), gt(R,C,R1,C1), N <= N1.

together with input data:

gt(1,2,1,1). gt(1,3,1,2). gt(2,1,1,1).
...
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Killer Sudoku

Each cage (“dotted area”) is associated with a number. The sum of the
cells in a cage must be equal to the number given for the cage. Each
digit in the cage must be unique.
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Killer Sudoku in ASP

Add to the basic program

% Get values in each cage
cage_values(CA,N) :- a(R,C,N), cell_cage(R,C,CA).

% The values in the cage must add to the value of the cage
:- N1 = #sum[a(R,C,N)=N: cell_cage(R,C,CA): num(N)],

cage_sum(CA,N2), N1 != N2.

% There can only be one of each value per cage
:- a(R,C,N), a(R1,C1,N),

cell_cage(R,C,CA), cell_cage(R1,C1,CA),
R!=R1, C!=C1.

together with input data:

cage_sum(1,16). cage_sum(2,3). cage(3,8). ...
cell_cage(1,1,1). cell_cage(2,1,1).
cell_cage(3,1,2). cell_cage(4,1,2). ...
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Clique

A clique in a graph G is a subset of its vertices in which every two
elements are adjacent.

% File ’clique’: Find a clique of size >= n

n {in(X) : v(X)}.
:- in(X), in(Y), v(X), v(Y), X!=Y, not e(X,Y), not e(Y,X).
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Hamiltonian Cycles
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Hamiltonian Cycles in ASP

{in(U,V)} :- e(U,V).

:- in(U,V), in(U,W), V!=W.
:- in(U,W), in(V,W), U!=V.

reachable(U) :- in(v0,U).
reachable(V) :- reachable(U), in(U,V).

:- not reachable(U), v(U).
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Answer Set Planning [Lif02b]

Encode a planning problem as a logic program whose answer sets
correspond to solutions. Run ASP solvers to find the solutions.

Can be viewed as enhanced SAT planning [KS92].

easier to represent properties of actions
indirect effects
defeasible rules
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Blocks World in ASP: Declarations

step(0..maxstep).
astep(0..maxstep-1) :- maxstep > 0.

#domain step(ST). #domain astep(T).
#domain block(B). #domain block(B1).
#domain location(L). #domain location(L1).

% every block is a location
location(B) :- block(B).

% the table is a location
location(table).
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Blocks World in ASP: GENERATE, DEFINE

%% GENERATE
{on(B,L,0)}.

{move(B,L,T)}.

{on(B,L,T+1)} :- on(B,L,T).

%% DEFINE
% effect of moving a block
on(B,L,T+1) :- move(B,L,T).
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Blocks World in ASP: TEST

%% TEST
% uniqueness constraint: no blocks are on two locations
:- 2{on(B,LL,ST): location(LL)}.

% existence constraint: every block has a location
:- {on(B,LL,ST): location(LL)}0.

% two blocks can’t be on top of the same block
:- 2{on(BB,B,ST): block(BB)}.

% a block can’t be moved unless it is clear
:- move(B,L,T), on(B1,B,T).

% a block can’t be moved onto a block that is being moved also
:- move(B,B1,T), move(B1,L,T).
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A Solution to the Frame Problem in ASP

The frame problem: how to formalize that by default fluents do not
change their values.

{on(B,L,T+1)} :- on(B,L,T).

:- 2{on(B,LL,ST): location(LL)}.
:- {on(B,LL,ST): location(LL)}0.

on(B,L,T+1) :- move(B,L,T).

If on(B,L,T) then decide arbitrarily whether to assert
on(B,L,T+1).
In the absence of additional information asserting on(B,L,T+1)
is the only option, in view of the existence constraint.
If we are given conflicting information about the location of B at
time T+1, then not asserting on(B,L,T+1) is the only option, in
view of the uniqueness constraint.
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Action Languages

Transition systems can be more succinctly described in a high level
language on top of ASP.

Action languages are formal models of parts of natural language for
representing and reasoning about transition systems.

Move(b, l) causes Loc(b)= l

Action language C+ [GLL+04] is an expressive formalism that can
represent actions with conditional and indirect effects, nondeterministic
actions, and concurrently executed actions.

The semantics of C+ can be defined by a modular translation into ASP.
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Blocks World in C+

Causal laws:

constraint ¬(On(b1)=b ∧On(b2)=b) for b1 6= b2

Move(b, l) causes On(b)= l
nonexecutable Move(b, l) if On(b1)=b
nonexecutable Move(b,b1) ∧Move(b1, l)

exogenous Move(b, l)

inertial On(b)
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Translating C+ to ASP [CL11]

C+ ASP

Move(b, l) causes On(b)= l {On(b, l , t + 1)} ← Move(b, l , t)

nonexecutable Move(b, l) ← Move(b, l , t) ∧On(b1,b, t)
if On(b1)=b

exogenous Move(b, l) {Move(b, l , t)}

inertial On(b) {On(b, l , t + 1)} ← On(b, l , t)

constraint ← (On(b1,b, t) ∧On(b2,b, t))
¬(On(b1)=b ∧On(b2)=b)
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System CPLUS2ASP

http://reasoning.eas.asu.edu/cplus2asp/
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Housekeeping with Multiple Autonomous Robots:
Representation, Reasoning and Execution
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Housekeeping Domain
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Challenges

Commonsense knowledge (e.g., expected locations of objects in the
house) is required for intelligent behavior of robots

Geometric constraints are required to find feasible plans (e.g., to avoid
collisions)

In case of a plan execution failure (e.g., due to heavy objects that cannot
be lifted by a single robot), recovery is required depending on the cause
of failure

Collaboration of robots is required to complete some tasks (e.g.,
carrying heavy objects)

Temporal constraints (e.g., on the total duration of execution, or the
order of actions) are required to complete all the tasks by a given time,
and for intelligent replanning
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Classical Approach [ACF+98, BBE+07]
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Our Approach

Intervention?
Collision?
Failure?

No

Yes

Commonsense Knowledge Planning ProblemDomain Description

Obtain a Continuous Trajectory
for each Task

Compute an Optimal Task Plan

Check for a
Discrepancy

Diagnose the Cause of the Failure

Execute the Plan

Modify the Planning Problem
and/or Geometric Models

Modify the 
Planning Problem

Se
ns

or
 In

fo
rm

at
io

n
G

eo
m

et
ric

 M
od

el
s 

&
Ki

ne
m

at
ic

 R
el

at
io

ns

Trajectory 
Exists? No

Yes

TASK PLANNING

EXECUTION & MONITORING

MOTION PLANNING

102



Our Approach

We implement the proposed framework by utilizing

the expressive action description language C+ and the automated
causal reasoner CCALC, and

the expressive knowledge representation formalism and efficient solvers
of ASP,

like in [CHO+09a, CHO+09b, HPU+10, EHP+11, AEEP11b, AEEP11a,
AEEP11c, EP12, EHPU12, APE12].

http://cogrobo.sabanciuniv.edu/
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Representing Housekeeping Domain in ASP
Fluents and Actions

We view each room as a grid.

Fluents:

at(th, x , y , t)
connected(r ,ep, t)

Actions:

goto(r , x , y , t)
detach(r , t)
attach(r , t) with an attribute attach point(r ,ep, t)
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Representing Housekeeping Domain in ASP
Actions and Change

Direct effects:
at(r , x , y , t + 1)← goto(r , x , y , t)

Preconditions:
← goto(r , x , y , t),at(r , x , y , t)

Ramifications:

at(ep, x , y , t)← connected(r ,ep, t),at(r , x , y , t)

Constraints:

← at(ep, x , y , t),at(ep1, x , y , t) (ep 6= ep1)

Inertia:

at(ep, x , y , t + 1)← at(ep, x , y , t),not ∼at(ep, x , y , t + 1)
∼at(ep, x , y , t + 1)← ∼at(ep, x , y , t),not at(ep, x , y , t + 1)
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Embedding Commonsense Knowledge in Planning
Commonsense Knowledge in Housekeeping Domain

The robots need to know that books are expected to be in the bookcase,
dirty dishes in the dishwasher, and pillows in the closet.

Moreover, a bookcase is normally in the living-room, dishwasher in the
kitchen, and the closet in the bedroom.

In addition, the robots should have an understanding of a “tidy” house to
be able to clean a house autonomously: tidying a house means that the
objects are at their desired locations.

Also, while cleaning a house, robots should pay more attention while
carrying fragile objects; for that they should have an understanding of
what a fragile object is.

Such commonsense knowledge is formally represented already in
commonsense knowledge bases, such as ConceptNet [LS04].
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Embedding Commonsense Knowledge in Planning
Expected Locations of Objects

The object ep is at its desired location if it is at some “appropriate” position
(x , y) in the right room.

at desired location(ep, t)← at(ep, x , y , t), in place(ep, x , y)

Normally the movable objects in an untidy house are not at their desired
locations.

∼at desired location(ep, t)← not at desired location(ep, t)

Here in place is not a fluent, but an external predicate (defined in Prolog) that
acquires the related commonsense knowledge about expected locations of
objects from ConceptNet via its Python API.

in place(EP, X, Y) :- part of(EP, Obj), type of(Obj, Type),
expected location(Type, Room), expected area(Room, X, Y).
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Embedding Commonsense Knowledge in Planning
Tidiness of a House

The house is tidy normally.

tidy(t)← not ∼tidy(t)

When an object is not at its expected location, the house is untidy.

∼tidy(t)← ∼at desired location(ep, t)
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Embedding Geometric Reasoning in Planning
Collision Check

We embed continuous geometric reasoning (e.g., to avoid robot-robot,
robot-stationary object and robot-moveable object collisions) in the high-level
discrete representation of robots actions in ASP, utilizing external predicates.

The robot r cannot go from (x1, y1) to (x , y) if there is no collision-free path
between them:

← goto(r , x , y , t),at(r , x1, y1, t),@path exists(x1, y1, x , y) == 0.

Here the external predicate path exists(x , y , x1, y1) (implemented in C++
utilizing Rapidly exploring Random Trees [Lav98]) returns 1 (resp. 0) if there
is a (resp. there is no) collision-free path between (x , y) and (x1, y1).
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Embedding Temporal Reasoning in Planning
Durative Actions

The default value for the duration of an action is 0:

robot time(r ,0, t)← not ∼robot time(r ,0, t)

The duration of attaching to an object can be defined as 3 units of time:

robot time(r ,3, t + 1)← attach(r , t)

The duration of moving from an initial position (x1, y1) to a final position
(x2, y2) can be estimated utilizing a motion planner via an external function
time estimate(x1, y1, x2, y2):

robot time(r ,@time estimate(x1, y1, x2, y2), t + 1)←
goto(r , x1, y1, t),at(r , x2, y2, t)
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Hybrid Planning in ASP

Once the housekeeping domain is represented, and both the
background/commonsense knowledge and geometric/temporal reasoning are
embedded in the high-level representation, we can solve planning problems
using ASP.

Since geometric reasoning and temporal reasoning (via a motion planner) are
embedded in the computation, the calculated plans can be seen as hybrid
plans integrating discrete ASP planning and continuous motion planning.

Hybrid plans help computation of plans that are geometrically feasible as well
as temporally feasible.
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Example: Hybrid Planning in ASP

Without geometric feasibility checks, the ASP solver iClingo [GKK+08a]
computes the following geometrically infeasible plan:

〈goto(R1,1,2),attach(R1),goto(R1,5,1),detach(R1)〉
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ASP Systems

answer

setsASP Solver
program

logic

program

grounded
Grounder

Grounding — task of instantiating variables
GRINGO (Potsdam), DLV (Calabria), LPARSE (Helsinki)

Answer set solving – task of finding answer sets (decision problem
is NP-complete):

SMODELS (Helsinki),
DLV (Vienna, Calabria),
CMODELS (Austin),
CLASP (Potsdam)
LP2X (Helsinki) . . .
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Grounding

answer

setsASP Solver
program

logic

program

grounded
Grounder

Grounding — task of instantiating variables

Π ground(Π) intelligent instantiation(Π)

{a(1),a(2),a(3)} {a(1),a(2),a(3)} {a(1),a(2),a(3)}
{b(1)} {b(1)} {b(1)}
c(X )← a(X ),b(X ) c(1)← a(1),b(1) c(1)← a(1),b(1)

c(2)← a(2),b(2)
c(3)← a(3),b(3)
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Issues in Grounding

Ground programs maybe huge (even infinite)
Intelligent grounding [CCIL08]

database techniques
Function symbols lead to infinite programs

classes of programs whose intelligent instantiation is finite

Intermixing solving and grounding
Development of mixed languages that delegate solving over large
domains to other computational
methods [MGZ08], [GOS09b], [Bal09b]
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Solving Backtrack Search, SAT

ASP Solving: backtrack search through exponential size search
space
Propositional Satisfiability (SAT) — task of finding satisfying truth
assignments for propositional formulas
Classic backtrack search SAT algorithm:
Davis-Putnam-Logemann-Loveland (DPLL)
SAT solvers: MINISAT, SATZILLA, PLINGELING . . .

performance boost⇒ success story in automated reasoning
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SAT: Basics

a ∨ b
c

8 interpretations: consistent and complete sets of literals over
a,b, c
3 satisfying interpretations – models: An interpretation satisfies a
clause if at least one of its literals is True in it

{a,b, c} {¬a,¬b, . . . }
{¬a,b, c} {¬c, . . . }
{a,¬b, c}
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SAT Solving: Basics

Enumerate all interpretations and Test if satisfying
DPLL: classic backtrack search approach

UnitPropagate

a

=⇒ =⇒¬a ∨ b b
¬b ∨ c ∨ d ¬b ∨ c ∨ d c ∨ d
¬c ∨ d ¬c ∨ d ¬c ∨ d

Decide
pick arbitrary the value of c or d: ¬d

c ∨ d
=⇒ c

=⇒¬c ∨ d ¬c ∅

Backtrack
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Davis-Putnam-Logemann-Loveland

DPLL(F , ρ)
begin

(F , ρ)← UnitPropagate(F , ρ)
if F contains the empty clause then return UNSAT
if F has no clauses left then

Output ρ
return SAT

l ← a literal such that its atom occurs in F
if DPLL(F |l , ρ ∪ {l}) = SAT then return SAT

return DPLL(F |l , ρ ∪ {l})
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Modern SAT Solvers

MODERNSAT:
Lookahead techniques
Intelligent backtracking – backjumping
Clause learning
Clever restarts
Watched literals
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Answer Sets: Basics

a← c, not b
c

8 interpretations
1 answer set {a, c} identified with interpretation {a, c,¬b}

Π Πcl

a← c, not b a ∨ ¬c ∨ b
c c

X is an answer set of Π iff
1 X is a model of Πcl and
2 X is unfounded-free on Π

{a, c,b} is a model of Πcl but not unfounded-free
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ASP Solving: Basics

Π : a← c, not b
c

Backtrack search approach similar to DPLL
UnfoundedPropagate: ¬b
UnitPropagate on Πcl using ¬b

a ∨ ¬c ∨ b
=⇒ a

=⇒ ∅c

=⇒ Π is solved by propagation
Decide
Backtrack
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DPLL-ASP

DPLL-ASP(Π,Πcl , ρ)
begin

while ρ changes do
(Πcl , ρ)← UnitPropagate(Πcl , ρ)
ρ← UnfoundedPropagate(Π, ρ)

if inconsistency detected then return UNSAT
if ρ is complete then

Output ρ
return SAT

l ← a literal such that its atom occurs in Π

if DPLL-ASP(Π,Πcl |l , ρ ∪ {l}) = SAT then return SAT

return DPLL-ASP(Π,Πcl |l , ρ ∪ {l})

Answer set solvers SMODELS and DLV implement DPLL-ASP extended with
additional ASP-specific propagates
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Modern SAT Solving Methods for ASP

Modern SAT solvers offer great improvements over DPLL

From DPLL-ASP to Modern SAT technology for ASP
SAT-based answer set solvers

Translation-based: LP2SAT, LP2DIFFZ3 . . .
loop-formula based
employ (incremental) SAT solvers iteratively
ASSAT, CMODELS

MODERNSAT-ASP: CLASP
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Completion

Any logic program corresponds to propositional formula —
completion [Cla78]
Any answer set→ a model of completion

Π Comp(Π)

a← c, not b a ≡ (c ∧ ¬b) ∨ b
a← b b ≡ ⊥
c c ≡ >
{a, c} {a, c,¬b}

Special class of tight programs:
any model of completion→ an answer set
For tight programs, any SAT solver can be used as is on
program’s completion
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Generic “Completion”-based SAT Approach

Generate and test approach:

logic

program

completion
Translator Test

models of

completion

answer

sets

SAT−based ASP SolverGeneric

SAT Solver

Possibly exponential number of models and 0 answer sets.
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Completion + Loop Formulas

For a nontight program, its answer sets coincide with models of
completion extended with loop formulas [LZ02]
Intuition: loop formulas allow to capture UnfoundedPropagate via
UnitPropagate
Possibly exponential number of loop formulas
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ASSAT

ASSAT [LZ02] implements lazy approach to utilizing loop formulas
in using SAT for ASP

enumerates loop formulas on demand
invokes a SAT solver over and over

logic

program

answer
SAT Solver

completion
Translator Test

loop formula

ASSAT

sets
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CMODELS

Clause learning
add conflict clauses to original set of clauses
help a solver to disregard the irrelevant search tree branches
may exponentially improve performance

CMODELS incorporates learning into generate and test approach
Test component [GLM04] is extended with loop formulas-based
conflict clause computation
incremental SAT solving for adding these conflict clause

logic

program

answer
SAT Solver

completion
Translator Test

sets

CMODELS

loop formula
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CLASP

CLASP
[GKNS07] computes completion of a program

UnitPropagate – native DPLL propagate on the completion
UnfoundedPropagate – ASP-based propagate on the program

implements backjumping, clause learning, restarts, watched
literals
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ASP Competitions

Second ASP System Competition, 2009: 16 systems

Place Decision Problem Decision Problem in NP
1 CLASP-FOLIO CLASP-FOLIO
2 CMODELS(MINISAT) CMODELS(MINISAT)
3 DLV IDP

Third ASP System Competition, 2011: 10 systems

Place Decision Problems in NP
1 CLASP-FOLIO
2 CLASP
3 IDP
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Questions to Raise

As search procedures behind systems become more complex:
How to analyze their correctness?
How to compare and relate systems?
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Abstract DPLL

Usually, pseudocode is used to describe algorithms including
backtrack search DPLL-like algorithms.

Nieuwenhuis, Oliveras, and Tinelli [NOT06] described the DPLL and its
enhancements using transitions systems — graphs — instead of
pseudocode.
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The DPLL Graph

DPLLF graph for a set of clauses F :

Its nodes – states of computation:
ordered sets of literals with some members annotated as decision
literals, e.g.,

a ¬b c∆

where value true is assigned to literals a, ¬b and tentatively to c
FailState

Its edges are described by transition rules . . .
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Transition Rules of DPLLF

Notation: l is the complement of l ; C = {l : l ∈ C}.

UnitPropagate: M =⇒ M l if C ∨ l ∈ F and C ⊆ M

Decide: M =⇒ M l∆ if l is unassigned by M

Fail : M =⇒ FailState if
{

M is inconsistent, and
M contains no decision literals

Backtrack : P l∆ Q =⇒ P l if
{

P l∆ Q is inconsistent, and
Q contains no decision literals
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Properties of DPLLF

Proposition on DPLLF For any F ,
(a) graph DPLLF is finite and acyclic,
(b) any terminal state of DPLLF other than FailState is a model of F ,
(c) FailState is reachable from ∅ in DPLLF iff F is unsatisfiable.

DPLLF can be used for deciding whether F has a model by
constructing a path from ∅ to a terminal node:

Termination (a), Correctness (b), (c)
DPLLF — an abstract description of a class of DPLL-like algorithms.
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DPLLF : Example

UnitPropagate: M =⇒ M l if C ∨ l ∈ F and C ⊆ M

Decide: M =⇒ M l∆ if l is unassigned by M

F is a CNF formula a ∨ b ∧ ¬a ∨ c.
A path in DPLLF :

∅ =⇒ (Decide)
a∆ =⇒ (UnitPropagate)
a∆ c =⇒ (Decide)
a∆ c b∆

The state a∆ c b∆ is terminal⇒ {a, c,b} is a model of F
This path corresponds to an execution of DPLL.
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DPLL by means of DPLLF

DPLLF captures DPLL by assigning priorities to its transition rules:

UnitPropagate >> Backtrack,Fail >> Decide

DPLL(F , ρ)
begin

(F , ρ)← UnitPropagate(F , ρ)
if F contains the empty clause then return UNSAT
if F has no clauses left then

Output ρ
return SAT

l ← a literal such that its atom occurs in F
if DPLL(F |l , ρ ∪ {l}) = SAT then return SAT

return DPLL(F |l , ρ ∪ {l})
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Abstract SMODELS

Classic ASP solver SMODELS [SNS02]

SMODELSΠ [Lie08]:

Decide, Backtrack, Fail
UnitPropagateΠ, BackchainTrueΠ,
BackchainFalseΠ, AllRulesCancelledΠ

UnfoundedΠ

Proposition on SMODELSΠ for correctness and termination
Priorities of SMODELS:

UnitPropagateΠ,BackchainTrueΠ>>
BackchainFalseΠ,AllRulesCancelledΠ>>
UnfoundedΠ>>
Backtrack,Fail >> Decide
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Relation: DPLL and SMODELS

Recall:
Logic program — propositional formula completion
For tight programs answer sets correspond to the models of
completion

Comp(Π) — “Straightforward Clausified” Completion

For tight programs:

DPLLComp(Π) = SMODELSΠ

DPLLF SMODELSΠ

UnitPropagateF UnitPropagateΠ, BackchainTrueΠ

UnfoundedΠ, BackchainFalseΠ, AllRulesCancelledΠ

Decide, Backtrack, Fail
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Abstract ASP-SAT with Learning: CMODELS, CLASP

CC(Π) — Clausified Completion

MODERNSAT-ASPΠ [Lie11]:

UnitPropagateCC(Π), UnfoundedΠ, Decide, Fail ,
Backjump, LearnΠ,CC(Π), Forget

CMODELS and CLASP differ by priorities
CMODELS:
UnitPropagateCC(Π)>>Backjump,Fail>>Decide>>UnfoundedΠ

CLASP:
UnitPropagateCC(Π)>>Backjump,Fail>>UnfoundedΠ>>Decide
IDP: implements the same rules and priorities as CLASP
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Summary on Abstract Transition Systems Framework

Transition systems
provide birds eye view on the DPLL-like algorithms and
methodology for proving their correctness
promote development of new solvers
clear picture on the relation between the systems

major ASP solvers: SMODELS, SMODELScc , SUP, SAG, CMODELS,
CLASP, IDP
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Disjunctive Answer Set Programming

Allows programs with a disjunction of atoms in the head
Deciding whether a disjunctive logic program has an answer set is
ΣP

2 -complete
DLV, CMODELS, CLASPD
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Incremental Answer Set Programming

CMODELS allows adding constraints on the fly via API
similar to how clauses may be added in incremental SAT

ICLINGO implements elaborate approach to incremental
ASP [GKK+08b]

extends the ASP language to describe 3 parts of the program
base, cumulative, volatile

parameter k
base – independent of k ,
cumulative and volatile – k specific
well-suited for domains such as planning or model checking
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Constraint Answer Set Programming

Similar Direction to Satisfiability Modulo Theories (SMT)
Development of mixed declarative languages that delegate parts
of solving to other specialized computational methods

takes advantage of different automated reasoning tools under one
roof

Integration of ASP and Constraint Logic Programming/Constraint
Satisfaction Processing [MGZ08], [GOS09b], [Bal09b]
CLINGCON, EZCSP

“On the Relation of Constraint Answer Set Programming Languages
and Algorithms” (Tuesday 2:25-2:45 PM)
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Answer Set Programming and Multi-Context Systems

HEX-programs [EBDT+09b] extend logic programs under answer
set semantics towards integration of external computation sources
via external atoms
Combining distributed knowledge based systems under one
semantics (multi-context systems)
System DLVHEX allows defining plug-ins for inference on external
atoms
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Integrated Development Environments for ASP

ASP processing tools are under continuous development for large
scale practical applications.

ASPIDE [FRR11] (https://www.mat.unical.it/ricca/aspide/),
SEALION [OPT11] (http://sourceforge.net/projects/mmdasp/ ):
Integrated development environments that support debugging,
testing and annotating ASP programs.
JASP [FLGR12]: A hybrid language that supports interaction
between ASP and JAVA.
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Resources

ASP Solvers
LPARSE, SMODELS:
http://www.tcs.hut.fi/Software/smodels/

CMODELS:
http://www.cs.utexas.edu/users/tag/cmodels

GRINGO, CLASP, CLASP+FOLIO, ICLINGO, CLINGCON:
http://potassco.sourceforge.net/

DLV: http://www.dbai.tuwien.ac.at/proj/dlv/
IDP: http://dtai.cs.kuleuven.be/krr/software/idp
EZCSP: http://marcy.cjb.net/ezcsp/index.html
DLVHEX: http:
//www.kr.tuwien.ac.at/research/systems/dlvhex/

F2LP: http://reasoning.eas.asu.edu/f2lp/
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Loop Formulas

First-Order stable model semantics

Relation to Other KR Formalisms.
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Embedding ASP in Propositional Logic

Embedding propositional logic into the stable model semantics is
straightforward.

The other direction is a bit more involved.

Completion: for tight programs only.
Loop formulas: general case
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Stable Models vs. Models

p ← s,not q s ∧ ¬q → p
q ← s,not r s ∧ ¬r → q
s ← not p ¬p → s

stable model: {q, s} models: {p}, {p,q},
{p, r}, {q, s}, {p,q, r},
{p,q, s}, {p, r , s},
{q, r , s}, {p,q, r , s}

p ← q q → p
q ← p p → q
p ← not r ¬r → p
r ← not p ¬p → r
stable models: {p,q}, {r} models: {p,q}, {r},

{p,q, r}
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Theorem on Loop Formulas [LZ04]

Some answer set solvers (e.g., ASSAT, CMODELS, SAG) use SAT
solvers as search engines, based on the theorem on loop formulas.

The theorem shows how to turn answer set programs into
propositional logic by means of loop formulas.

Allows to combine an expressive representation language (ASP
language) with efficient reasoning engines (SAT solvers).
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External Support Formula

Consider a program whose rules have the form:

a ← a1, . . . ,am︸ ︷︷ ︸
P

,not am+1, . . . ,not an︸ ︷︷ ︸
N

.

Given a program Π, for any set Y of atoms, the external support
formula for Y , ESY , is the disjunction of

P ∧ N

for all rules a← P,N of Π such that a ∈ Y and P ∩ Y = ∅.

Π1: p ← q ES{p} = q ∨ ¬r
q ← p ES{q} = p
p ← not r ES{p,q} = ¬r
r ← not p
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Theorem on Loop Formulas

A model X of Π is stable iff its every nonempty subset of X is
“externally supported.”

Loop formula of Y :

LF (Y ) =

( ∧
a∈Y

Y

)
→ ES(Y )

Theorem : A model X of Π is stable iff it satisfies LF (Y ) for all
nonempty sets Y of atoms occurring in Π.
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Example

Theorem : A model X of Π is stable iff it satisfies LF (Y ) for all
nonempty sets Y of atoms occurring in Π.

Π Π ∪ {LF (Y ) : Y is a set of atoms}
p ← q q → p p → (q ∨ ¬r)
q ← p p → q q → p
p ← not r ¬r → p r → ¬p
r ← not p ¬p → r (p ∧ q)→ ¬r

(p ∧ r)→ (q ∨ ¬r ∨ ¬p)
(q ∧ r)→ (p ∨ ¬p)
(p ∧ q ∧ r)→ (¬r ∨ ¬p)

stable not stable
models {p,q}, {r} {p,q, r}

We can reduce the number of loop formulas by considering loops.
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Positive Dependency Graph

Consider a normal logic program

a ← a1, . . . ,am︸ ︷︷ ︸
P

,not am+1, . . . ,not an︸ ︷︷ ︸
N

.

The positive dependency graph of Π is the directed graph such that
its vertices are the atoms occurring in Π, and
for each a← P,N in Π, its edges go from a to each atom in P.

Π1 : p ← q
q ← p
p ← not r
r ← not p
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Definition of a Loop

A nonempty set L of atoms is called a loop of Π if, for every pair a, b of
atoms in L, there exists a path from a to b in the positive dependency
graph of Π such that all vertices in this path belong to L.

Π1 has four loops. {p}, {q}, {r}, {p,q}.
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Theorem on Loop Formulas

Theorem
Theorem on Loop Formulas A model X of Π is stable iff it satisfies
LF (Y ) for all loops Y of Π.

Π Π ∪ {LF (Y ) : Y is a loop of Π}
p ← q q → p p → (q ∨ ¬r)
q ← p p → q q → p
p ← not r ¬r → p r → ¬p
r ← not p ¬p → r (p ∧ q)→ ¬r

(p ∧ r)→ (q ∨ ¬r ∨ ¬p)
(q ∧ r)→ (p ∨ ¬p)
(p ∧ q ∧ r)→ (¬r ∨ ¬p)

stable not stable
models {p,q}, {r} {p,q, r}

We still get exponentially many loop formulas in the worst case.
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Why Are There So Many Loop Formulas?

Theorem
Any equivalent translation from logic programs to propositional
formulas involves a significant increase in size assuming a plausible
conjecture (P 6⊆ NC1/poly) [LR06] (“Why are there so many loop
formulas?”)

How succinctly can the formalism express the set of models
that it can? . . . [W]e consider formalism A to be stronger than
formalism B if and only if any knowledge base in B has an
equivalent knowledge base in A that is only polynomially
longer, while there is a knowledge base in A that can be
translated to B only with an exponential blowup. [GKPS95]
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More Work on Loop Formulas

Loop formulas for disjunctive logic programs [LL03]
Loop formulas for circumscription [LL04, LL06]
Loop formulas for nonmonotonic causal logic [Lee04]
Completion is a special case of loop formulas [Lee05]
Generalization to arbitrary propositional formulas under the stable
model semantics [FLL06]
Refinement of loops [GS05, GLL06, GLL11]
Led to First-Order Stable Model Semantics [FLL07, FLL11]
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First-Order Stable Model Semantics [FLL07, FLL11]

Generalizes Gelfond and Lifschitz’s 1988 definition of a stable model to
first order sentences.

Does not refer to grounding; not restricted to Herbrand models.
Does not refer to reduct.
Defined by a translation into second-order classical logic.

Idea 1: Treat logic programs as alternative notation for first-order
formulas.
Logic program FOL-representation
p(a) p(a)
q(x)← p(x),not r(x) ∧ ∀x(p(x) ∧ ¬r(x)→ q(x))

Idea 2: Define the stable models of F as the models of

SM[F ; p] = F ∧ (2nd-order formula that enforces p to be stable)

Similar to circumscription. (c.f. stability vs. minimality)
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Translation vs. Fixpoint Traditions
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Circumscription

The models of CIRC[F ; p] are the models of F that are minimal on p.
Formally,

CIRC[F ; p] = F ∧ ¬∃u(u < p ∧ F (u))

u: a list of distinct predicate variables similar to p;
u < p: a formula that expresses that u is strictly stronger than p;
F (u) is obtained from F by replacing all occurrences of p with u.
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First-Order Stable Model Semantics

The stable models of a first-order sentence F relative to a list p of
predicate constants are the models of the second-order formula

SM[F ; p] = F ∧ ¬∃u(u < p ∧ F ∗(u))

F ∗(u) is defined as:
pi (t)∗ = ui (t) if pi ∈ p
for other atomic formula F , F ∗ = F
(G � H)∗ = (G∗ � H∗) (� ∈ {∧,∨})
(G→ H)∗ = (G∗ → H∗)∧(G→ H)

(QxG)∗ = QxG∗ (Q ∈ {∀,∃})
(¬F is shorthand for F → ⊥.)

If we drop “∧(G→ H)” then it becomes the definition of circumscription
[McC80].
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Relation to Reduct-Based Semantics

Proposition
The stable models of a logic program Π according to the 1988
definition are precisely the Herbrand models of SM[Π; pr(Π)].

Example
{p(a),q(a)} is the unique

stable model of

{
p(a)

q(x)← p(x),not r(x)
under the 1988 definition

Herbrand model of SM[p(a) ∧ ∀x(p(x) ∧ ¬r(x)→ q(x)); p,q, r ].
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Reductive Semantics [LLP08]

A simple, alternative approach to understanding the meaning of
counting and choice in answer set programming by reducing them
to first order formulas.

The syntax of RASPL-1 (Reductive Answer Set Programming
Language - Version 1) extends the syntax of disjunctive logic
programs by allowing constructs for counting and choice.

The semantics is defined by turning RASPL-1 programs to
first-order sentences under the stable model semantics.

{q(x)} ← p(x) ⇒ ∀x(p(x)→ (q(x) ∨ ¬q(x)))

r ← #count{x : p(x)} ≥ 2

⇒ (∃xy(p(x) ∧ p(y) ∧ ¬(x = y)))→ r
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Stable Models and Circumscription

Neither is stronger than the other.

CIRC[∀x(p(x) ∨ ¬p(x)); p] ⇔ ∀x¬p(x)
SM[∀x(p(x) ∨ ¬p(x)); p] ⇔ >

CIRC[∀x(¬p(x)→ q(x)); p,q] ⇔ ∀x(¬p(x)↔ q(x))
SM[∀x(¬p(x)→ q(x)); p,q] ⇔ ∀x(¬p(x) ∧ q(x))
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Stable Models and Circumscription

Theorem
The stable model semantics and circumscription coincide on the class
of “canonical” formulas [LP12b].

In other words, minimal models and stable models coincide on
canonical formulas.

The theorem allows us to reformulate the Event Calculus, Situation
Calculus, and Temporal Action Logics in ASP, and use ASP solvers to
compute them [KLP09, LP10, LP12b, LP12a]

“Reformulating Temporal Action Logics in Answer Set Programming”,
(Tuesday 2:45-3:05 PM)
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Turning Event Calculus Description to ASP

(HoldsAt(f , t) ∧ ¬ReleasedAt(f , t +1)∧
¬∃e(Happens(e, t) ∧ Terminates(e, f , t)))→ HoldsAt(f , t +1).

is turned into the conjunction of

(HoldsAt(f , t) ∧ ¬ReleasedAt(f , t + 1)∧
¬q(f , t))→ HoldsAt(f , t + 1)

Happens(e, t) ∧ Terminates(e, f , t)→ q(f , t)

and then turned into rules

HoldsAt(f , t +1)← HoldsAt(f , t),not ReleasedAt(f , t +1),
not q(f , t))

q(f , t)← Happens(e, t), Terminates(e, f , t)
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ECASP vs. DEC reasoner

http://reasoning.eas.asu.edu/ecasp

http://decreasoner.sourceforge.net/csr/ecas/
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ASP-based vs. SAT-based Approach

DEC reasoner is based on the reduction of circumscription to
completion. Able to solve 11 out of 14 benchmark problems.
ECASP can handle the full version of the event calculus (modulo
grounding). Able to solve all 14 problems.
For example, the following axiom cannot be handled by the DEC

reasoner, but can be done by the ASP approach.

HoldsAt(HasBananas, t)
∧Initiates(e,At(Monkey , l), t)→ Initiates(e,At(Bananas, l), t)

ECASP computes faster.
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Experiments (I)

Problem DEC ECASP w/ ECASP w/ ECASP W/
(max. time) reasoner LPARSE + CMODELS GRINGO + CLASP CLINGO

BusRide — 0.48 0.04 —
(15) (0.42+0.06) (0.03+0.01)

A:156/R:7899/C:188 A:733/R:3428
Commuter — 498.11 44.42 28.79
(15) (447.50+50.61) (37.86 + 6.56)

A:4913/R:7383943/C:4952 A:24698/R:5381620
Kitchen 71.10 43.17 2.47 2.03
Sink (25) (70.70+0.40) (37.17+6.00) (1.72+0.75)

A:1014/C:12109 A:123452/R:482018/C:0 A:114968/R:179195
Thielscher 13.9 0.42 0.07 0.05
Circuit (20) (13.6+0.3) (0.38+0.04) (0.05+0.02)

A:5138/C:16122 A:3160/R:9131/C:0 A:1686/R:6510
Walking — 0.05 0.04 0.01
Turkey (15) (0.04+0.01) (0.01+0.03)

A:556/R:701/C:0 A:364/R:503
A: number of atoms, C: number of clauses, R: number of ground rules

DEC reasoner and CMODELS used the same SAT solver RELSAT.
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Experiments (II)

Problem DEC ECASP w/ ECASP w/ ECASP W/
(max. time) reasoner LPARSE + CMODELS GRINGO + CLASP CLINGO

Falling w/ 270.2 0.74 0.10 0.08
AntiTraj (15) (269.3+0.9) (0.66+0.08) (0.08+0.02)

A:416/C:3056 A:5757/R:10480/C:0 A:4121/R:7820
Falling w/ 107.70 34.77 2.90 2.32
Events (25) (107.50+0.20) (30.99+3.78) (2.01+0.89)

A:1092/C:12351 A:1197/R:390319/C:1393 A:139995/R:208282
HotAir 61.10 0.19 0.04 0.03
Balloon (15) (61.10+0.00) (0.16+0.03) (0.03+0.01)

A:288/C:1163 A:489/R:2958/C:678 A:1137/R:1909
Telephone1 18.00 1.70 0.31 0.25
(40) (17.50+0.50) (1.51+0.19) (0.26+0.05)

A:5419/C:41750 A:23978/R:30005/C:0 A:21333/R:27201
A: number of atoms, C: number of clauses, R: number of ground rules

176



Summary

Answer Set Programming is a declarative programming paradigm
oriented towards knowledge intensive and combinatorial search
problems.
ASP processing tools are under continuous development for large
scale practical applications.
ASP = LP+KR+SAT+DB

Pointers are available at

http://peace.eas.asu.edu/aaai12tutorial

You’re welcome to contact us for more questions.
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Haplo-asp: Haplotype inference using answer set programming.
In Proc. of LPNMR, pages 573–578, 2009.

T. Eiter, W. Faber, N. Leone, and G. Pfeifer.
The diagnosis frontend of the dlv system.
AI Communications, 12(1-2):99–111, 1999.

Thomas Eiter, Michael Fink, and Peter Schüller.
Approximations for explanations of inconsistency in partially known multi-context systems.
In Proc. of LPNMR, pages 107–119, 2011.

178



Thomas Eiter, G.Ianni, R.Schindlauer, and H.Tompits.
Effective integration of declarative rules with external evaluations for Semantic-Web reasoning.
In Proc. of ESWC, pages 273–287, 2006.

Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran.
Aspartix: Implementing argumentation frameworks using answer-set programming.
In Proc. of ICLP, pages 734–738, 2008.

Uwe Egly, Sarah Alice Gaggl, and Stefan Woltran.
Answer-set programming encodings for argumentation frameworks.
Argument and Computation, 1(2):147–177, 2010.

Esra Erdem, Kadir Haspalamutgil, Can Palaz, Volkan Patoglu, and Tansel Uras.
Combining high-level causal reasoning with low-level geometric reasoning and motion planning for robotic manipulation.
In Proc. of the 2011 IEEE International Conference on Robotics and Automation (ICRA 2011), pages 4575–4581, 2011.

Esra Erdem, Kadir Haspalamutgil, Volkan Patoglu, and Tansel Uras.
Causality-based planning and diagnostic reasoning for cognitive factories.
In Proc. of the 17’th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 2012.

Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits.
Combining answer set programming with description logics for the semantic web.
Artificial Intelligence, 172(12-13):1495–1539, 2008.

Esra Erdem, Katsumi Inoue, Johannes Oetsch, Joerg Puehrer, Hans Tompits, and Cemal Yilmaz.
Answer-set programming as a new approach to event-sequence testing.
In Proc. of the 3rd International Conference on Advances in System Testing and Validation Lifecycle (VALID’11), 2011.

Thomas Eiter, Thomas Krennwallner, Patrik Schneider, and Guohui Xiao.
Uniform evaluation of nonmonotonic dl-programs.
In Proc. of FoIKS, pages 1–22, 2012.

E. Erdem, V. Lifschitz, and D. Ringe.
Temporal phylogenetic networks and logic programming.

178



Theory and Practice of Logic Programming, 6(5):539–558, 2006.

E. Erdem, V. Lifschitz, and M. F. Wong.
Wire routing and satisfiability planning.
In In Proceedings CL-2000, pages 822–836. Springer-Verlag. LNCS, 2000.

Esra Erdem and Volkan Patoglu.
Applications of action languages in cognitive robotics.
In Correct Reasoning, pages 229–246, 2012.

E. Erdem.
Phylo-asp: Phylogenetic systematics with answer set programming.
In Proc. of LPNMR, pages 567–572, 2009.

Esra Erdem.
Applications of answer set programming in phylogenetic systematics.
In Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning, pages 415–431, 2011.

D. East and M. Truszczynski.
More on wire routing with asp.
In Proc. of ASP, 2001.

Thomas Eiter and Kewen Wang.
Semantic forgetting in answer set programming.
Artif. Intell., 172(14):1644–1672, 2008.

Esra Erdem and Reyyan Yeniterzi.
Transforming controlled natural language biomedical queries into answer set programs.
In Proc. of BioNLP, pages 117–124, 2009.

Paolo Ferraris.
Answer sets for propositional theories.
In Proceedings of International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pages
119–131, 2005.

178



Fernando Zacarias Flores, Mauricio Javier Osorio Galindo, and Edgar Fernandez Plascencia.
Updates under pstable.
Engineering Letters, 15(2):311–315, 2007.

Paolo Ferraris and Vladimir Lifschitz.
On the stable model semantics of first-order formulas with aggregates.
In Proceedings of the 2010 Workshop on Nonmonotonic Reasoning, 2010.

Onofrio Febbraro, Nicola Leone, Giovanni Grasso, and Francesco Ricca.
Jasp: A framework for integrating answer set programming with java.
In Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR), 2012.

Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz.
A generalization of the Lin-Zhao theorem.
Annals of Mathematics and Artificial Intelligence, 47:79–101, 2006.

Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz.
A new perspective on stable models.
In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pages 372–379. AAAI Press, 2007.

Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz.
Stable models and circumscription.
Artificial Intelligence, 175:236–263, 2011.

Wolfgang Faber, Nicola Leone, and Gerald Pfeifer.
Recursive aggregates in disjunctive logic programs: Semantics and complexity.
In Proceedings of European Conference on Logics in Artificial Intelligence (JELIA), 2004.

R. Finkel, V. W. Marek, and M. Truszczynski.
Constraint lingo: A program for solving logic puzzles and other tabular constraint problems, 2002.

Onofrio Febbraro, Kristian Reale, and Francesco Ricca.
Aspide: Integrated development environment for answer set programming.

178



In Procedings of International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pages
317–330, 2011.

Sarah Alice Gaggl.
Towards a general argumentation system based on answer-set programming.
In ICLP (Technical Communications), pages 265–269, 2010.

M. Gebser, C. Guziolowski, M. Ivanchev, T. Schaub, A. Siegel, S. Thiele, and P. Veber.
Repair and prediction (under inconsistency) in large biological networks with answer set programming.
In Proc. of KR, 2010.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub, and Sven Thiele.
Engineering an incremental asp solver.
In Proc. of ICLP, pages 190–205, 2008.

Martin Gebser, Roland Kaminski, Benjamin Kaufmann, Max Ostrowski, Torsten Schaub, and Sven Thiele.
Engineering an incremental asp solver.
In ICLP, pages 190–205, 2008.

Martin Gebser, Benjamin Kaufmann, Andre Neumann, and Torsten Schaub.
Conflict-driven answer set solving.
In Proceedings of 20th International Joint Conference on Artificial Intelligence (IJCAI’07), pages 386–392. MIT Press,
2007.

Goran Gogic, Henry Kautz, Christos Papadimitriou, and Bart Selman.
The comparative linguistics of knowledge representation.
In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pages 862–869, 1995.

M. Gebser, R. Kaminski, and T. Schaub.
aspcud: A Linux package configuration tool based on answer set programming.
In Proc. of LoCoCo, pages 12–25, 2011.

Martin Gebser, Roland Kaufmann, and Torsten Schaub.
Gearing up for effective asp planning.
In Correct Reasoning, pages 296–310, 2012.

178



Michael Gelfond and Vladimir Lifschitz.
The stable model semantics for logic programming.
In Robert Kowalski and Kenneth Bowen, editors, Proceedings of International Logic Programming Conference and
Symposium, pages 1070–1080. MIT Press, 1988.

Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson Turner.
Nonmonotonic causal theories.
Artificial Intelligence, 153(1–2):49–104, 2004.

Martin Gebser, Joohyung Lee, and Yuliya Lierler.
Elementary sets for logic programs.
In Proceedings of National Conference on Artificial Intelligence (AAAI), 2006.

Martin Gebser, Joohyung Lee, and Yuliya Lierler.
On elementary loops of logic programs.
Theory and Practice of Logic Programming, 11(6):953–988, 2011.

Enrico Giunchiglia, Yuliya Lierler, and Marco Maratea.
SAT-based answer set programming.
In Proceedings of National Conference on Artificial Intelligence (AAAI), pages 61–66, 2004.

Michael Gelfond, Vladimir Lifschitz, and Arkady Rabinov.
What are the limitations of the situation calculus?
In Robert Boyer, editor, Automated Reasoning: Essays in Honor of Woody Bledsoe, pages 167–179. Kluwer, 1991.

M. Gebser, M. Ostrowski, and T. Schaub.
Constraint answer set solving.
In Proceedings of International Conference on Logic Programming (ICLP), pages 235–249, 2009.

Martin Gebser, Max Ostrowski, and Torsten Schaub.
Constraint answer set solving.
In Proceedings of 25th International Conference on Logic Programming (ICLP), pages 235–249. Springer, 2009.

Martin Gebser and Torsten Schaub.

178



Loops: Relevant or redundant?
In Proceedings of the Eighth International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’05),
pages 53–65, 2005.

M. Gebser, T. Schaub, S. Thiele, and P. Veber.
Detecting inconsistencies in large biological networks with answer set programming.
Theory and Practice of Logic Programming, 11(2):1–38, 2011.

K. Heljanko and I. Niemela.
Bounded LTL model checking with stable models.
In Proc. of LPNMR, pages 200–212, 2003.

Kadir Haspalamutgil, Can Palaz, Tansel Uras, Esra Erdem, and Volkan Patoglu.
A tight integration of task and motion planning in an execution monitoring framework.
In Proc. of the AAAI 2010 Workshop on Bridging The Gap Between Task And Motion Planning (BTAMP), 2010.

K. Inoue and C. Sakama.
Abductive framework for nonmonotonic theory change.
In IJCAI, pages 204–210, 1995.

Tomi Janhunen, Guohua Liu, and Ilkka Niemel.
Tight integration of non-ground answer set programming and satisfiability modulo theories.
In Working notes of the 1st Workshop on Grounding and Transformations for Theories with Variables, 2011.

Tae-Won Kim, Joohyung Lee, and Ravi Palla.
Circumscriptive event calculus as answer set programming.
In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pages 823–829, 2009.

Henry Kautz and Bart Selman.
Planning as satisfiability.
In Proceedings of European Conference on Artificial Intelligence (ECAI), pages 359–363, 1992.

Steven M. Lavalle.
Rapidly-exploring random trees: A new tool for path planning.
Technical report, 1998.

178



Joohyung Lee.
Nondefinite vs. definite causal theories.
In Proceedings 7th Int’l Conference on Logic Programming and Nonmonotonic Reasoning, pages 141–153, 2004.

Joohyung Lee.
A model-theoretic counterpart of loop formulas.
In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), pages 503–508. Professional Book
Center, 2005.

N. Leone, G. Greco, G. Ianni, V. Lio, G. Terracina, T. Eiter, W. Faber, M. Fink, G. Gottlob, R. Rosati, D. Lembo,
M. Lenzerini, M. Ruzzi, E. Kalka, B. Nowicki, and W. Staniszkis.
The infomix system for advanced integration of incomplete and inconsistent data.
In Proc. of SIGMOD, pages 915–917, 2005.

Yuliya Lierler.
Abstract answer set solvers.
In Proceedings of International Conference on Logic Programming (ICLP), pages 377–391. Springer, 2008.

Yuliya Lierler.
Abstract answer set solvers with backjumping and learning.
Theory and Practice of Logic Programming, 11:135–169, 2011.

V. Lifschitz.
Answer set programming and plan generation.
Artif. Intell., 138(1-2):39–54, 2002.

Vladimir Lifschitz.
Answer set programming and plan generation.
Artificial Intelligence, 138:39–54, 2002.

Vladimir Lifschitz.
Logic programs with intensional functions.
In Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR), 2012.
This volume.

178



Joohyung Lee and Vladimir Lifschitz.
Loop formulas for disjunctive logic programs.
In Proceedings of International Conference on Logic Programming (ICLP), pages 451–465, 2003.

Joohyung Lee and Fangzhen Lin.
Loop formulas for circumscription.
In Proceedings of National Conference on Artificial Intelligence (AAAI), pages 281–286, 2004.

Joohyung Lee and Fangzhen Lin.
Loop formulas for circumscription.
Artificial Intelligence, 170(2):160–185, 2006.

Joohyung Lee, Vladimir Lifschitz, and Ravi Palla.
A reductive semantics for counting and choice in answer set programming.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages 472–479. AAAI Press, 2008.

Joohyung Lee and Yunsong Meng.
On reductive semantics of aggregates in answer set programming.
In Procedings of International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pages
182–195, 2009.

Joohyung Lee and Yunsong Meng.
Stable models of formulas with generalized quantifiers (preliminary report).
In Technical Communications of the 28th International Conference on Logic Programming, 2012.

Joohyung Lee and Ravi Palla.
System F2LP – computing answer sets of first-order formulas.
In Procedings of International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pages
515–521, 2009.

Joohyung Lee and Ravi Palla.
Situation calculus as answer set programming.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pages 309–314, 2010.

Joohyung Lee and Ravi Palla.

178



Integrating rules and ontologies in the first-order stable model semantics (preliminary report).
In Proceedings of International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pages
248–253, 2011.

Joohyung Lee and Ravi Palla.
Reformulating temporal action logics in answer set programming.
In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), 2012.

Joohyung Lee and Ravi Palla.
Reformulating the situation calculus and the event calculus in the general theory of stable models and in answer set
programming.
Journal of Artificial Inteligence Research (JAIR), 43:571–620, 2012.

Vladimir Lifschitz and Alexander Razborov.
Why are there so many loop formulas?
ACM Transactions on Computational Logic, 7:261–268, 2006.

H. Liu and P. Singh.
ConceptNet: A practical commonsense reasoning toolkit.
BT Technology Journal, 22, 2004.

Yuliya Lierler and Peter Schüller.
Parsing combinatory categorial grammar via planning in answer set programming.
In Correct Reasoning, pages 436–453, 2012.

Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner.
Nested expressions in logic programs.
Annals of Mathematics and Artificial Intelligence, 25:369–389, 1999.

Fangzhen Lin and Yuting Zhao.
ASSAT: Computing answer sets of a logic program by SAT solvers.
In Proceedings of National Conference on Artificial Intelligence (AAAI), pages 112–117. MIT Press, 2002.

Fangzhen Lin and Yuting Zhao.
ASSAT: Computing answer sets of a logic program by SAT solvers.

178



Artificial Intelligence, 157:115–137, 2004.

John McCarthy.
Circumscription—a form of non-monotonic reasoning.
Artificial Intelligence, 13:27–39,171–172, 1980.

Veena S. Mellarkod, Michael Gelfond, and Yuanlin Zhang.
Integrating answer set programming and constraint logic programming.
Annals of Mathematics and Artificial Intelligence, 2008.

A. Mileo, D. Merico, and R. Bisiani.
Wireless sensor networks supporting context-aware reasoning in assisted living.
In Proc. of PETRA, pages 1–2, 2008.

A. Mileo, D. Merico, and R. Bisiani.
Non-monotonic reasoning supporting wireless sensor networks for intelligent monitoring: The sindi system.
In Proc. of LPNMR, pages 585–590, 2009.

A. Mileo, T. Schaub, D. Merico, and R. Bisiani.
Knowledge-based multi-criteria optimization to support indoor positioning.
AMAI, 62(3–4):345–370, 2011.

M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry.
An a-prolog decision support system for the space shuttle.
In Proc. of PADL, pages 169–183. Springer, 2001.

Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli.
Solving SAT and SAT modulo theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to DPLL(T).
Journal of the ACM, 53(6):937–977, 2006.

Mauricio Osorio and Victor Cuevas.
Updates in answer set programming: An approach based on basic structural properties.
TPLP, 7(4):451–479, 2007.

Johannes Oetsch, Jörg Pührer, and Hans Tompits.

178



The sealion has landed: An ide for answer-set programming—preliminary report.
INFSYS Research Report, 1843-11-06, 2011.

Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe.
Well-founded and stable semantics of logic programs with aggregates.
TPLP, 7(3):301–353, 2007.

Jörg Pührer, Stijn Heymans, and Thomas Eiter.
Dealing with inconsistency when combining ontologies and rules using dl-programs.
In Proc. of ESWC (1), pages 183–197, 2010.

Enrico Pontelli, Tran Cao Son, Chitta Baral, and Gregory Gelfond.
Answer set programming and planning with knowledge and world-altering actions in multiple agent domains.
In Correct Reasoning, pages 509–526, 2012.

Francesco Ricca, Antonella Dimasi, Giovanni Grasso, Salvatore Maria Ielpa, Salvatore Iiritano, Marco Manna, and Nicola
Leone.
A logic-based system for e-tourism.
Fundam. Inform., 105(1–2):35–55, 2010.

Francesco Ricca, Giovanni Grasso, Mario Alviano, Marco Manna, Vincenzino Lio, Salvatore Iiritano, and Nicola Leone.
Team-building with answer set programming in the gioia-tauro seaport.
Theory and Practice of Logic Programming, 12:361–381, 2012.

C. Sakama.
Learning by answer sets.
In Proc. of AAAI Spring Symposium:Answer Set Programming, 2001.

Chiaki Sakama.
Induction from answer sets in nonmonotonic logic programs.
ACM Trans. Comput. Log., 6(2):203–231, 2005.

Chiaki Sakama.
Dishonest reasoning by abduction.
In Proc. of IJCAI, pages 1063–1064, 2011.

178



Chiaki Sakama and Katsumi Inoue.
Brave induction: a logical framework for learning from incomplete information.
Machine Learning, 76(1):3–35, 2009.

Mantas Simkus.
Fusion of logic programming and description logics.
In Proc. of ICLP, pages 551–552, 2009.

T. Soininen and I. Niemelä.
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