
Answer Set Programming Modulo Theories

Joohyung Lee

Automated Reasoning Group
Arizona State University, USA

AAAI 2016 Tutorial

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 1 / 128

The slides are available at

http://peace.eas.asu.edu/aaai16tutorial

Joint work with Michael Bartholomew, Joseph Babb, and Nikhil Loney

The project was sponsored by NSF IIS-1319794

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 2 / 128

Abstract

Answer set programming (ASP) is a successful declarative programming method
oriented towards solving combinatorial and knowledge intensive problems. It has
well-developed foundations, efficient reasoning systems, and a methodology of use tested
on a number of industrial applications. The relationship between ASP and propositional
satisfiability (SAT) has led to a method of computing answer sets using SAT solvers and
techniques adapted from SAT.

Some recent extensions of ASP are to overcome the propositional setting of ASP by
extending its mathematical foundation and integrating ASP with other computing
paradigms. The tutorial will cover Answer Set Programming Modulo Theories, which
tightly integrates ASP with Satisfiability Modulo Theories (SMT), thereby overcoming
some of the computational limitations of ASP and some of the modeling limitations of
SMT. A high level action language based on ASPMT allows for succinct representation
of hybrid transition systems, where discrete changes and continuous changes coexist. In
a broader sense, ASPMT covers an extension of ASP combined with any external
computation sources.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 3 / 128

General Messages

ASP provides an elegant knowledge specification language,

allowing for various high level knowledge to be represented, while

computation can be carried out by different solvers/engines.

First-order stable model semantics, taking into account default
functions, provides a solid foundation for integrating ASP with other
declarative paradigms.

It also presents a simpler representation method in comparison with
traditional ASP.

In particular, high level action languages can be defined based on it in
a simpler way.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 4 / 128

Contents

General introduction to ASP

Motivation for ASPMT

Language of ASPMT

Multi-valued propositional formulas

First-order formulas

Implementations: MVSM and ASPMT2SMT

High level action language based on ASPMT

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 5 / 128

Introduction

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 6 / 128

Problem Solving

“What is the problem?” versus “How to solve the problem?”

Problem

Computer

Solution

Output
?

-

6

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 7 / 128

Traditional Programming

“What is the problem?” versus “How to solve the problem?”

Problem

Program

Solution

Output
?

-

6

Programming Interpreting

Executing

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 7 / 128

Declarative Problem Solving

“What is the problem?” versus “How to solve the problem?”

Problem

Representation

Solution

Output
?

-

6

Modeling Interpreting

Solving

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 7 / 128

What is Answer Set Programming (ASP)

Declarative programming paradigm suitable for knowledge intensive
and combinatorial search problems.

Theoretical basis: answer set semantics [GL88].

Expressive representation language: defaults, recursive definitions,
aggregates, preferences, etc.

ASP has roots in

deductive database

logic programming

knowledge representation

constraint solving (in particular SAT)

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 8 / 128

What is Answer Set Programming (ASP)

ASP solvers:

smodels (Helsinki University of Technology, 1996)
dlv (Vienna University of Technology, 1997)
cmodels (University of Texas at Austin, 2002)
pbmodels (University of Kentucky, 2005)
clasp (University of Potsdam, 2006) – winning several first places at
ASP, SAT, Max-SAT, PB, CADE competitions
dlv-hex for computing HEX programs.
oClingo for reactive answer set programming.

ASP Core 2: standard language

Annual ASP Competition

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 9 / 128

Declarative Problem Solving using ASP

The basic idea is

to represent the given problem by a set of rules,

to find answer sets for the program using an ASP solver, and

to extract the solutions from the answer sets.

Problem

ASP Program

Solution

Output
?

-

6

Modeling Interpreting

Solving

using ASP Solver

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 10 / 128

N-Queens Puzzle in the Language of clingo

num(1..n).

% Each column has exactly one queen

1{q(I,J) : num(I)}1 :- num(J).

% Two queens cannot stay on the same row

:- q(I,J), q(I,J1), J<J1.

% Two queens cannot stay on the same diagonal

:- q(I,J), q(I1,J1), J<J1, |I1-I|==J1-J.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 11 / 128

Finding One solution for the 8-Queens Problem

With command line

% clingo queens -c n=8

The output:

Answer: 1

q(4,1) q(6,2) q(8,3) q(2,4) q(7,5) q(1,6) q(3,7) q(5,8)

SATISFIABLE

Models : 1+

Calls : 1

Time : 0.003s (Solving: 0.00s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 12 / 128

Finding All Solutions for the 8-Queens Problem

With the command line

% clingo queens -c n=8 0

clingo computes and shows all 92 valid queen arrangements. For
instance, the last one is

Answer: 92

q(1,2) q(5,1) q(8,3) q(4,4) q(2,5) q(7,6) q(3,7) q(6,8)

SATISFIABLE

Models : 92

Calls : 1

Time : 0.009s (Solving: 0.01s 1st Model: 0.00s Unsat: 0.00s)

CPU Time : 0.000s

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 13 / 128

Answer Set Planning [Lif02]

Encode a planning problem as a logic program whose answer sets
correspond to solutions. Run ASP solvers to find the solutions.

Can be viewed as enhanced SAT planning [KS92].

presents an elegant solution to the frame problem

on(B,L,T+1) :- on(B,L,T), not -on(B,L,T+1).

indirect effects

above(B,L,T) :- on(B,L,T).

above(B,L,T) :- on(B,B1,T), above(B1,L,T).

defeasible rules
Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 14 / 128

Applications of ASP

information integration

constraint satisfaction

planning, routing

robotics

diagnosis

security analysis

configuration

computer-aided verification

biology / biomedicine

knowledge management

. . .

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 15 / 128

What Led to the Success of ASP?

A simple, mathematically elegant semantics, based on the concept of
a stable model

nonmonotonic reasoning, causal reasoning, commonsense reasoning

Intelligent grounding—the process that replaces first-order variables
with corresponding ground instances

Efficient search methods that originated from propositional
satisfiability solvers (SAT solvers)

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 16 / 128

Various Extensions

Starting from the Prolog syntax, the language of ASP has evolved:

Strong negation [GLR91]

Choice rules [SNS02]

Aggregates [SNS02, FLP04, Fer05, PDB07, LM09, FL10], . . .

Preferences [BNT08]

Integration with CSP [Bal09, GOS09]

Integration with SMT [JLN11]

Integration with Description Logics [EIL+08, LP11]

Integration with fuzzy logics [Luk06, LW14]

Probabilistic answer sets [BGR09]

Markov Logic style weighted rules [LW16]

. . .
Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 17 / 128

ASP as an Interface Language

ASP language serves as a specification language for AI.

Computation is carried out by compilation to different engines.

ASP Language

ASP Solver

SAT Solver ASP + CP
Solver

ASP + SMT
Solver

Markov Logic
Solver

...

Problem

c.f. Annual workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP)
since 2008

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 18 / 128

HEX Programs

Higher-order logic programs with EXternal atoms (HEX-programs)
[EIL+08]

The program can interface with multiple external sources of knowledge via
so called external atoms implemented as “plugins”.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 19 / 128

Example: HEX Programs

triple(X ,Y ,Z)← &rdf [uri1](X ,Y ,Z)
triple(X ,Y ,Z)← &rdf [uri2](X ,Y ,Z)
proposition(P)← triple(P, rdf:type, rdf:Statement)

&rdf is an external predicate intended to extract knowledge from a given
URI.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 20 / 128

Contents

General introduction to ASP

Motivation for ASPMT

Language of ASPMT

Multi-valued propositional formulas

First-order formulas

Implementations: MVSM and ASPMT2SMT

High level action language based on ASPMT

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 21 / 128

ASPMT Motivation

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 22 / 128

Variables and Grounding

In almost all extensions of ASP language, variables are understood in
terms of grounding.

p(a)
q(b)
r(X)← p(X), not q(X)

is shorthand for the formula

p(a)
q(b)
r(a)← p(a), not q(a)
r(b)← p(b), not q(b).

Grounding is required for applying fixpoint definition.

Grounding approach is widely used: PDDL, inductive logic programming,
probabilistic reasoning, etc.

ASP solvers implement intelligent grounding (utilizing minimality of stable
models), which produces much less ground instances than the naive way.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 23 / 128

Two Sides of Grounding

(+) Allows for efficient propositional reasoning.

Can utilize effective SAT solving methods (CDCL, DPLL).

(-) Limited to Herbrand models only

(-) Grounding in the presence of Herbrand functions may not
terminate. e.g., {a, f (a), f (f (a)), f (f (f (a))), . . . }

(-) “Grounding bottleneck problem”: cannot effectively handle a large
integer domain, and cannot handle real numbers.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 24 / 128

Language Extension: Constraint Answer Set Programs
(CASP)

Grounding is often the bottleneck. Solving is not applied until grounding is
finished.

To alleviate the grounding bottleneck, integration of ASP with CSP/SMT
solvers has been considered.

Clingcon [GOS09]: Clasp + CSP solver Gecode

1 ≤ amt(T) ≤ 3← pour(T)
amt(T) = 0← not pour(T)
vol(T + 1) = vol(T) + amt(T)

EZCSP [Bal11]: Gringo + constraint solver SICStus Prolog or
BProlog

Dingo [JLN11]: Gringo + SMT solver Barcelogic

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 25 / 128

Fundamental Limitation Due to Lack of General Functions

(Basic) ASP lacks general functions.

Functional fluents in ASP are represented by predicates:

WaterLevel(t+1, tank, l)←
WaterLevel(t, tank, l), not ∼WaterLevel(t+1, tank, l).

Grounding generates a large number of instances as the domain gets
large.

Using functions (e.g., WaterLevel(t, tank) = l) instead does not work
because

Answer sets are Herbrand models:
WaterLevel(t+1, tank) = WaterLevel(t, tank) is always false.

Nonmonotonicity of ASP has to do with minimizing the predicates but
has nothing to do with functions.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 26 / 128

Fundamental Limitation Due to Lack of General Functions

Even the constraint answer set sovers don’t help. In clingcon this
rule does not affect stable models.

WaterLevel(t+1, tank) =$ l ←
WaterLevel(t, tank) =$ l , not WaterLevel(t+1, tank) 6=$ l .

Lack of general functions in ASP is not only a disadvantage in comparison
with other declarative formalisms, but also a hurdle to cross over in
integrating ASP with other declarative paradigms where functions are
primitive constructs.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 27 / 128

Extensions of SAT

We can classify the formalisms based on the two directions the formalisms
extend SAT — through extension to first-order reasoning, and through
extension to nonmonotonic reasoning

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 28 / 128

Satisfiability Modulo Theories (SMT)

SAT is often too restrictive.

FOL is too general and undecidable.

Many applications require satisfiability respect to some (decidable)
background theory, which fixes the interpretation of certain symbols.
⇒ Satisfiability modulo background theory

Some background theories:

Difference logic: ((x = y) ∧ (y − z ≤ 4))→ (x − z ≤ 6)

Linear arithmetic over rationals:
(k → (s1 = s0 + 3.4 · t − 3.7 · t0)) ∧ (¬k → (s1 = s0))

Non-linear arithmetic over reals:
((c = a · b) ∧ (a1 = a− 1) ∧ (b1 = b + 1))→ (c = a1 · b1 + 1)

Theory of arrays:
(b + 2 = c) ∧ f (read(write(a, b, 3), c − 2)) 6= f (c − b + 1)

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 29 / 128

SMT-Solvers, SMT-Lib, SMT-Comp

SMT-Solves: Ario, Barcelogic, CVC, CVC Lite, CVC3, ExtSAT,
Harvey, HTP, ICS (SRI), Jat, MathSAT, Sateen, Simplify, STeP, STP,
SVC, TSAT, UCLID, Yices (SRI), Zap (Microsoft), Z3 (Microsoft),
iSAT

SMT-Lib: library of benchmarks http://goedel.cs.uiowa.edu/smtlib/

SMT-Comp: annual SMT-Solver competition

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 30 / 128

From Wikipedia Article on SMT

By comparison, answer set programming is also based on predicates (more
precisely, on atomic sentences created from atomic formula). Unlike SMT,
answer-set programs do not have quantifiers, and cannot easily express
constraints such as linear arithmetic or difference logic–ASP is at best
suitable for boolean problems that reduce to the free theory of
uninterpreted functions.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 31 / 128

ASP vs. SMT

ASP is a successful nonmonotonic declarative programming paradigm,
but is limited in handling first-order reasoning involving functions due
to its propositional setting.

SMT is a successful approach to solving some specialized first-order
reasoning, but is limited in handling expressive nonmonotonic
reasoning.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 32 / 128

Answer Set Programming Modulo Theories (ASPMT)
[Bartholomew and Lee, IJCAI 2013]

ASPMT tightly integrates ASP and SMT.

ASPMT is defined as formulas under the functional stable model semantics
(FSM) with the fixed interpretation for the background signature.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 33 / 128

ASPMT vs. SMT

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 34 / 128

Related Approaches

First-Order Stable Model Semantics (FOSM)

In [FLL11], the stable model semantics was extended to the first-order
level.

Allows non-Herbrand functions.

Many useful theoretical and practical results established.

Does not allow nonmonotonic reasoning on functions.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 35 / 128

Related Approaches

Intensional Function Proposals [Cabalar, 2011; Lifschitz, 2012;
Balduccini, 2012]:

Roughly build upon FOSM

Perform nonmonotonic reasoning and have expressive functions.

Formalism in [Lifschitz, 2012] exhibits some unintuitive behavior.

Formalisms in [Cabalar, 2011; Balduccini, 2012] are defined in a
complex notation of partial satisfaction.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 36 / 128

Related Approaches

These fit into the graph from before as follows.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 37 / 128

Related Approaches Summary

The strengths and weaknesses of approaches are summarized in the
following table:

ASP SMT CASP ASPMT
Non-
Herbrand
Functions

X
√ √ √

Non-
Monotonic
Reasoning

√
X 4 √

Alleviates
Grounding
Bottleneck

X
√ √ √

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 38 / 128

Examples of ASPMT Domains

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 39 / 128

Planning with Continuous Time

[Vladimir Lifschitz, TAG Discussion]

If the accelerator of a car is activated, the car will speed up with constant
acceleration A until the accelerator is released or the car reaches its
maximum speed MS, whichever comes first. If the brake is activated, the
car will slow down with acceleration −A until the brake is released or the
car stops, whichever comes first. Otherwise, the speed of the car remains
constant. The problem asks to find a plan satisfying the following
condition: at time 0, the car is at rest at one end of the road; at time K,
it should be at rest at the other end.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 40 / 128

Reasoning about Natural Actions

Dropping the ball causes the height of the ball
to change continuously with time as defined
by Newton’s laws of motion.

As the ball accelerates towards the ground it
gains velocity. If the ball hits the ground with
speed s, it bounces up with speed r×s where
r = .95 is the rebound coefficient.

The bouncing ball reaches a certain height
and falls back towards the ground due to grav-
ity.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 41 / 128

Reasoning about Cumulative Effects on Continuous
Changes

A spacecraft has two jets and the force that can be applied by each jet
along each axis is at most 4k . The initial position of the rocket is (0,0,0)
and its initial velocity is (0,1,1). How can it get to (0,3k ,2k) within 2
seconds?

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 42 / 128

Reasoning about Processes

Consider the kitchen sink with two taps. When a tap is turned on, it starts
to fill up. The level of water increases continuously until either both taps
are turned off or an outlet is reached.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 43 / 128

Nonmonotonic Qualitative Spatial Reasoning

RCC relations between two circular regions:

Polynomial encoding of RCC relation:

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 44 / 128

Nonmonotonic Qualitative Spatial Reasoning

Interval Algebra (Allen, 1983), RCC-5, Cardinal Direction Calculus (Frank,
1991) can be defined in ASPMT [WBS15].

Nonmonotonically inferring actions and qualitative spatial relations

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 45 / 128

Contents

General introduction to ASP

Motivation for ASPMT

Language of ASPMT

Multi-valued propositional formulas

First-order formulas

Implementations: MVSM and ASPMT2SMT

High level action language based on ASPMT

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 46 / 128

Language of ASPMT

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 47 / 128

Multi-Valued Propositional Formulas

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 48 / 128

Language of ASPMT

It is apparent that one of the main obstacles encountered in the current
work of ASP is due to an insufficient level of generality regarding
functions. Solving this problem requires a transformative idea on the
concept of a stable model.

We define stable model semantics for

Multi-valued propositional formulas

First-order formulas

The former is a special case of the latter. It is simpler to understand.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 49 / 128

Syntax: Multi-Valued Propositional Formulas

signature σ : a set of symbols called constants

σ = {Has,Buy}
Dom(c) : a nonempty finite set assigned to each constant c

Dom(Has) = {0, 1, . . . , 100}
Dom(Buy) = {false,true}

atom : c =v where c ∈ σ and v ∈ Dom(c)

Has =0, Has =1, . . . , Has =100
Buy =true, Buy =false

formula : propositional combination of atoms

Buy =true→ Has =2

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 50 / 128

Models of Multi-Valued Propositional Formulas

An interpretation of σ is a function that maps each c ∈ σ to a value
in Dom(c).

An interpretation I satisfies c =v (symbolically, I |= c =v) if
I (c) = v .
The satisfaction relation is extended to arbitrary formulas according
to the usual truth tables for the propositional connectives.

I is a model of F if it satisfies F .

Some tautologies:

c =1 ∨ ¬(c =1)

c =1→ (c =1 ∨ d =2)

(c =1 ∧ d =2)→ c =1

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 51 / 128

Stable Models of Multi-Valued Propositional Formulas

The stable models of F are defined as the models of F that satisfy the
“stability” condition, which is formally defined using the notion of a reduct.

The reduct of F relative to I , denoted by F I , is the formula obtained from
F by replacing each (maximal) subformula that is not satisfied by I with ⊥.

Example

σ = {c}, Dom(c) = {1, 2, 3}.
F is c =1 ∨ ¬(c =1).
Ik is an interpretation that maps c to k (k = 1, 2, 3).

F I1 = (c =1 ∨ ¬(c =1))I1 = (c =1 ∨ ⊥) ⇔ c =1

F I2 = (c =1 ∨ ¬(c =1))I2 = (⊥ ∨ ¬⊥) ⇔ >

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 52 / 128

Stable Models of Multi-Valued Propositional Formulas

I is a stable model of F if I is the unique model of the reduct F I .

Equivalently, I is a stable model of F if

I satisfies F and

no other interpretation J satisfies the reduct F I

(J disputes the “stability” of I).

In other words, a model of F is stable if it has no witness to dispute the
stability for F .

(Closely related to Pearl’s causal models and McCain-Turner causal logic)

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 53 / 128

Example

Example

σ = {c}, Dom(c) = {1, 2, 3}.
F is c =1 ∨ ¬(c =1).
Ik is an interpretation that maps c to k (k = 1, 2, 3).

I1 is a stable model of F .
F I1 = (c =1 ∨ ¬(c =1))I1 = (c =1 ∨ ⊥) ⇔ c =1

I2 is not a stable model of F .
F I2 = (c =1 ∨ ¬(c =1))I2 = (⊥ ∨ ¬⊥) ⇔ >

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 54 / 128

Default Formulas

{F} stands for F ∨ ¬F .

{F}I =

{
F if I |= F

> otherwise.

This construct is useful for expressing defaults.

{c =1} represents that by default c has the value 1.

{c =1} ∧ c =2 : default is overridden.

({c =1} ∧ c =2)I1 is equivalent to c =1∧⊥, so I1 is not a stable model
of the formula.

({c =1} ∧ c =2)I2 is equivalent to > ∧ c =2, so I2 is a stable model of
the formula.

This example illustrates nonmonotonicity of the stable model semantics.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 55 / 128

Default Formulas and Commonsense Law of Inertia

Default formulas provides a simple and elegant solution to the frame
problem.

(Loc0 =L → {Loc1 =L}) ∧

(Move(L′) → Loc1 =L′)

If the location at time 0 is L, by default, the location at time 1 is L.

The default is overridden in the presence of Move.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 56 / 128

System MVSM

The language can be turned into the language of ASP solvers [BL12].

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 57 / 128

Blocks World in MVSM (I)

:- sorts

step; astep;

location >> block.

:- objects

0..maxstep :: step;

0..maxstep-1 :: astep;

1..6 :: block;

table :: location.

:- variables

ST :: step;

T :: astep;

Bool :: boolean;

B,B1 :: block;

L :: location.

:- constants

loc(block,step) :: location;

move(block,location,astep) :: boolean.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 58 / 128

Blocks World in MVSM (II)

% two blocks can’t be on the same block at the same time

<- loc(B1,ST)=B & loc(B2,ST)=B & B1!=B2.

% effect of moving a block

loc(B,T+1)=L <- move(B,L,T).

% a block can be moved only when it is clear

<- move(B,L,T) & loc(B1,T)=B.

% a block can’t be moved onto a block that is being moved also

<- move(B,B1,T) & move(B1,L,T).

% initial location is exogenous

{loc(B,0)=L}.

% actions are exogenous

{move(B,L,T)=Bool}.

% fluents are inertial

{loc(B,T+1)=L} <- loc(B,T)=L.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 59 / 128

http://reasoning.eas.asu.edu/mvsm

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 60 / 128

http://reasoning.eas.asu.edu/mvsm

Demo: MVSM

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 61 / 128

Stable Models of Formulas with
Intensional Functions

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 62 / 128

Functional Stable Model Semantics (FSM) [Bartholomew
and Lee, 2012]

The stable model semantics for multi-valued formulas can be generalized
to arbitrary first-order formulas by grounding the latter to the former.

The main difference is that since the universe (domain) may be infinite,
grounding a first-order sentence F relative to an interpretation I (denoted
grI [F]) may introduce infinite conjunctions and disjunctions.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 63 / 128

Leaking Container Example

Describe a water tank that has a leak but that can be refilled to the
maximum amount, say 10, with the action FillUp.

{Amount1 =x} ← Amount0 =x+1
Amount1 =10 ← FillUp .

{F} is a choice rule standing for F ∨ ¬F

I1 = {FillUp =false,Amount0 =6,Amount1 =5}:
I1 is a stable model of F (relative to Amount1) as well as a model.

I2 = {FillUp =false,Amount0 =6,Amount1 =8}:
I2 is a model of F but not a stable model.

I3 = {FillUp =true,Amount0 =6,Amount1 =10}:
I3 is a model of F as well as a stable model of F .

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 64 / 128

Infinitary Ground Formula w.r.t. an Interpretation

Since the universe may be infinite, grounding a first-order sentence F
relative to an interpretation I (denoted grI [F]) may introduce infinite
conjunctions and disjunctions.

Leaking Container Example. grI [F] is

{Amount1 =0} ← Amount0 =0+1
{Amount1 =1} ← Amount0 =1+1

. . .
Amount1 =10 ← FillUp

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 65 / 128

Reduct-based Definition of FSM

For any two interpretations I , J of the same signature and any list c of
distinct predicate and function constants, we write J 6=c I if

J and I have the same universe and agree on all constants not in c,
and

J and I do not agree on c.

The reduct F I of an infinitary ground formula F relative to an
interpretation I is the formula obtained from F by replacing every maximal
subformula that is not satisfied by I with ⊥.

I is a stable model of F relative to c (denoted I |= SM[F ; c]) if

I satisfies F , and

every interpretation J such that J 6=c I does not satisfy (grI [F])I .

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 66 / 128

Leaking Container Example

I1 = {FillUp =false,Amount0 =6,Amount1 =5} |= SM[F ; Amount1]

grI1(F) : Amount1 =0 ∨ ¬(Amount1 =0) ← Amount0 =0+1
. . .

Amount1 =5 ∨ ¬(Amount1 =5) ← Amount0 =5+1
. . .

Amount1 =10 ← FillUp

(grI1 [F])I1 : ⊥ ∨ ¬⊥ ← ⊥
. . .

Amount1 =5 ∨ ⊥ ← Amount0 =5+1
. . .

⊥ ← ⊥

No J such that J 6=Amount1 I1 satisfies the reduct.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 67 / 128

Leaking Container Example

I2 = {FillUp =false,Amount0 =6,Amount1 =8} 6|= SM[F ; Amount1]

grI2(F) : Amount1 =0 ∨ ¬(Amount1 =0) ← Amount0 =0+1
. . .

Amount1 =5 ∨ ¬(Amount1 =5) ← Amount0 =5+1
. . .

Amount1 =10 ← FillUp

(grI2 [F])I2 : ⊥ ∨ ¬⊥ ← ⊥
. . .

⊥ ∨ ¬⊥ ← Amount0 =5+1
. . .

⊥ ← ⊥

I2 satisfies the reduct, but there are also other interpretations J such that
J 6=Amount1 I2 that satisfy the reduct.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 68 / 128

Leaking Container Example

I3 = {FillUp =true,Amount0 =6,Amount1 =10} |= SM[F ; Amount1]

grI3(F) : Amount1 =0 ∨ ¬(Amount1 =0) ← Amount0 =0+1
. . .

Amount1 =5 ∨ ¬(Amount1 =5) ← Amount0 =5+1
. . .

Amount1 =10 ← FillUp

(grI3 [F])I3 : ⊥ ∨ ¬⊥ ← ⊥
. . .

⊥ ∨ ¬⊥ ← Amount0 =5+1
. . .

Amount1 =10 ← FillUp

No J such that J <Amount1 I3 satisfies the reduct.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 69 / 128

FSM in Terms of SOL

c is a list of predicate and function constants called intensional.

u is a list of predicate and function variables corresponding to c.

SM[F ; c] is defined as

F ∧ ¬∃u(u < c ∧ F ∗(u))

For predicate symbols (variables or constants) u and c

u ≤ c is defined as ∀x(u(x)→ c(x))
u = c is defined as ∀x(u(x)↔ c(x))

For function symbols u and c ,

u = c is defined as ∀x(u(x) = c(x))

u < c is defined as (upred ≤ cpred) ∧ ¬(u = c)

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 70 / 128

FSM in Terms of SOL

The stable models of a first-order sentence F relative to a list of distinct
predicate and function constants c are the models of the second-order
formula

SM[F ; c] = F ∧ ¬∃u(u < c ∧ F ∗(u))

where F ∗(u) is defined as:

when F is an atomic formula, F ∗ is F (u) ∧ F ;

(G ∧ H)∗ = G ∗ ∧ H∗; (G ∨ H)∗ = G ∗ ∨ H∗;
(G → H)∗ = (G ∗ → H∗) ∧ (G → H);

(∀xG)∗ = ∀xG ∗; (∃xF)∗ = ∃xF ∗.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 71 / 128

Blocks World in FSM

⊥ ← Loc(b1, t)=b ∧ Loc(b2, t)=b ∧ (b1 6= b2)
Loc(b, t+1)= l ← Move(b, l , t)

⊥ ← Move(b, l , t) ∧ Loc(b1, t)=b
⊥ ← Move(b, b1, t) ∧Move(b1, l , t)

{Loc(b, 0)= l}
{Move(b, l , t)}

{Loc(b, t+1)= l} ← Loc(b, t)= l .

The last rule is a default formula that describes the commonsense law of
inertia.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 72 / 128

Blocks World : Eliminating Function Loc

For the class of c-plain formulas, intensional functions can be eliminated in
favor of intensional predicates.

⊥ ← Loc(b1, b, t) ∧ Loc(b2, b, t) ∧ ¬(b1 = b2)
Loc(b, l , t + 1) ← Move(b, l , t)

⊥ ← Move(b, l , t) ∧ Loc(b1, b, t)
⊥ ← Move(b, b1, t) ∧Move(b1, l , t)

{Loc(b, l , 0)}
{Move(b, l , t)}
{Loc(b, l , t + 1)} ← Loc(b, l , t)

⊥ ← Loc(b, l , t) ∧ Loc(b, l1, t) ∧ ¬(l = l1)
⊥ ← ¬∃l Loc(b, l , t)

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 73 / 128

Answer Set Programming Modulo Theories (ASPMT)

Defined as a special case of FSM by restricting the attention to
interpretations conforming to the background theory.

Let σbg be the (many-sorted) signature of a background theory T , and let
σ be an extension of σbg .

An interpretation of σ is called a T -interpretation if it agrees with the
fixed background interpretation of σbg according to T .

A T -interpretation I is a T -stable model of F relative to c if

I |= F and

there is no T -interpretation J such that J 6=c I and J |= F I .

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 74 / 128

Completion: Turning ASPMT into SMT

Theorem

For any sentence F in Clark normal form that is tight on c, an
interpretation I that satisfies ∃xy(x 6= y) is a stable model F iff I is a
model of the completion of F .

A formula F is in Clark normal form (relative to c) if it is a conjunction of
sentences of the form

∀xy(G → f (x)=y) (1)

one for each function constant f in c, where G is a formula that has no
free object variables other than those in x and y .

We say f depends on g in (1) if g occurs in G but not in the antecedent
of any implication in G .

We say that F is tight (on c) if the dependency graph of F (relative to c)
is acyclic.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 75 / 128

Example

Leaking Container Example, Continued.

{Amount1 =x} ← Amount0 =x+1
Amount1 =10 ← FillUp .

can be rewritten as

Amount1 =x ← (¬¬(Amount1 =x) ∧ Amount0 =x+1) ∨ (x =10 ∧ FillUp)

and completion turns it into

Amount1 =x ↔ (¬¬(Amount1 =x) ∧ Amount0 =x+1) ∨ (x =10 ∧ FillUp).

The formula can be written without mentioning the variable x :(
(Amount0 =Amount1+1)∨(Amount1 =10∧FillUp)

)
∧(FillUp → Amount1 = 10) .

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 76 / 128

In the language of SMT solver iSAT, this formula can be represented as

(Amt’ + 1 = Amt) or (Amt’ = 10 and FillUp);

FillUp -> Amt’ = 10;

In the language of SMT solver Z3, this formula can be represented as

(assert (or (= (+ Amt1 1) Amt0) (and (= Amt1 10) FillUp)))

(assert (=> FillUp0 (= Amt1 10)))

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 77 / 128

Comparison with Constraint Answer Set Solving

clingcon programs [GOS09] can be viewed as a special case of
ASPMT instances, which allows non-Herbrand functions, but does
not allow them to be intensional.

ASP(LC) programs by [LJN12] can be viewed similarly.

In fact, they can be viewed even as a special case of the language
from [FLL11], which FSM properly generalizes.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 78 / 128

Reasoning about Continuous Changes

in ASPMT

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 79 / 128

Planning with Continuous Time

Example: give a formal representation of the domain to generate a plan

Solution:

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 80 / 128

Planning with Continuous Time

Transition System:

We distinguish between steps and real clock times. We assume the Theory
of Reals as the background theory, and introduce

Time: fluent with value sort R≥0, which denotes real clock time.

Dur : action with value sort R≥0, which denotes the time elapsed
between the two consecutive states.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 81 / 128

Car Example in ASPMT

Intensional constants: Domains:
i :Speed , i :Distance (0 ≤ i ≤ maxstep) R≥0

Nonintensional constants:
i :Time (0 ≤ i ≤ maxstep) R≥0

i :Accelerate, i :Decelerate (0 ≤ i < maxstep) Boolean
i :Dur (0 ≤ i < maxstep) R≥0

Axioms:
i+1:Speed =v+A×t ← i : (Accelerate ∧ Speed =v ∧ Dur = t)
i+1:Speed =v−A×t ← i : (Decelerate ∧ Speed =v ∧ Dur = t)
{i+1:Speed =v} ← i :Speed =v
i+1:Distance =d+0.5×(v+v ′)×t

← i+1:Speed =v ′ ∧ i : (Distance =d ∧ Speed =v ∧ Dur = t)
i+1:Time = t+t ′ ← i : (Time = t ∧ Dur = t ′)

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 82 / 128

Turning ASPMT into SMT

ASPMT
completion−−−−−−→ SMT

eliminating variables−−−−−−−−−−−−→ SMT solvers

In ASPMT:

i+1:Speed =x ← (x = v+A×t) ∧ i : (Accelerate ∧ Speed =v ∧ Dur = t)
i+1:Speed =x ← (x = v−A×t) ∧ i : (Decelerate ∧ Speed =v ∧ Dur = t)
i+1:Speed =x ← ¬¬(i+1:Speed =x) ∧ i :Speed =x

In SMT: The completion on i+1:Speed yields:

i+1:Speed =x ↔
(
x = (i :Speed +A×i :Dur) ∧ i :Accelerate

)
∨
(
x = (i :Speed−A×i :Dur) ∧ i :Decelerate

)
∨
(
i+1:Speed =x ∧ i :Speed =x

)

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 83 / 128

In the Language of SMT Solvers

i+1:Speed =x ↔
(
x = (i :Speed +A×i :Dur) ∧ i :Accelerate

)
∨
(
x = (i :Speed−A×i :Dur) ∧ i :Decelerate

)
∨
(
i+1:Speed =x ∧ i :Speed =x

)
.

Variable x can be eliminated:

i :Accelerate → i+1:Speed =(i :Speed +A×i :Dur)

i :Decelerate → i+1:Speed =(i :Speed−A×i :Dur)

(i+1 : Speed = (i :Speed +A×i :Dur) ∧ i :Accelerate)
∨ (i+1 : Speed = (i :Speed−A×i :Dur) ∧ i :Decelerate)
∨ (i :Speed = i+1:Speed)

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 84 / 128

System ASPMT2SMT

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 85 / 128

System aspmt2smt

Tight ASPMT programs can be turned into SMT instances, thereby
allowing SMT solvers to compute ASPMT programs.

We implemented this translation in system aspmt2smt, which uses
ASP grounder gringo and SMT solver z3. The system can
effectively handle real number computation, and compute plans with
continuous changes.

1 Turn formulas into logic program rules.
2 Partially ground the program by replacing ASP variables with ground

terms.
3 Apply functional completion.
4 Eliminate SMT variables and invokes a SMT solver.

http://reasoning.eas.asu.edu/aspmt

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 86 / 128

f2lp: Existing tool that turns formulas into logic programming
syntax.

gringo: Existing tool to ground the remaining variables.

z3: Existing SMT solver
Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 87 / 128

ASPMT Benchmark: Planning with Continuous Time

Find a plan satisfying the following condition: at step 0, the car is at rest
at one end of the road; at step k, it should be at rest at the other end.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 88 / 128

Transition System

The problem is asking to find this path in the transition system:

We distinguish between steps and real clock times. We assume the Theory
of Reals as the background theory, and introduce

Time: fluent with value sort R≥0, which denotes real clock time.

Dur : action with value sort R≥0, which denotes the time elapsed
between the two consecutive states.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 89 / 128

Car Example in the Language of ASPMT2SMT (I)

:- sorts

step; astep.

:- objects

0..st :: step;

0..st-1 :: astep.

:- constants

time(step) :: real[0..t];

duration(astep) :: real[0..t];

accel(astep) :: boolean;

decel(astep) :: boolean;

speed(step) :: real[0..ms];

location(step) :: real[0..l].

:- variables

S :: astep;

B :: boolean.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 90 / 128

Car Example in the Language of ASPMT2SMT (II)

% Actions and durations are exogenous

{accel(S)=B}. {decel(S)=B}. {dur(S)=X}.

% effects of accel and decel

speed(S+1)=Y <- accel(S)=true & speed(S)=X & dur(S)=D & Y = X+ar*D.

speed(S+1)=Y <- decel(S)=true & speed(S)=X & dur(S)=D & Y = X-ar*D.

% preconditions of accel and decel

<- accel(S)=true & speed(S)=X & dur(S)=D & Y = X+ar*D & Y > ms.

<- decel(S)=true & speed(S)=X & dur(S)=D & Y = X-ar*D & Y < 0.

% inertia of speed

{speed(S+1)=X} <- speed(S)=X.

location(S+1)=Y <- location(S)=X & speed(S)=A &

speed(S+1)=C & dur(S)=D & Y = X+(A+C)/2*D.

time(S+1)=Y <- time(S)=X & dur(S)=D & Y=X+D.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 91 / 128

The Input to Z3 Translated by ASPMT2SMT (Part)

(assert (= time_S + 1_ (+ time_S_ duration_S_)))

(assert (= time_0_ 0))

(assert (or (or (and (= accel_S_ true) (= speed_S + 1_ (+ speed_S_ (* 3 duration_S_)))) (and (= decel_S_ true) (= speed_S + 1_ (- speed_S_ (* 3 duration_S_))))) (= speed_S + 1_ speed_S_)))

(assert (=> (= accel_S_ true) (= speed_S + 1_ (+ speed_S_ (* 3 duration_S_)))))

(assert (=> (= decel_S_ true) (= speed_S + 1_ (- speed_S_ (* 3 duration_S_)))))

(assert (= speed_0_ 0))

(assert (= location_S + 1_ (+ location_S_ (* (/ (+ speed_S_ speed_S + 1_) 2) duration_S_))))

(assert (= location_0_ 0))

(assert (not (!= time_3_ 4)))

(assert (not (!= speed_3_ 0)))

(assert (not (!= location_3_ 10)))

(assert (not (and (= decel_S_ true) (< (- speed_S_ (* 3 duration_S_)) 0))))

(assert (not (and (= accel_S_ true) (> (+ speed_S_ (* 3 duration_S_)) 4))))

(assert (not (and (= accel_S_ true) (= decel_S_ true))))

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 92 / 128

Output

This description can be run by the command

$aspmt2smt car -c st=3 -c t=4 -c ms=4 -c ar=3 -c l=10

which yields the output

accel(0) = true accel(1) = false accel(2) = false

decel(0) = false decel(1) = false decel(2) = true

dur(0) = 1.1835034190 dur(1) = 1.6329931618 dur(2) = 1.1835034190

location(0) = 0.0 location(1) = 2.1010205144

location(2) = 7.8989794855 location(3) = 10.0

speed(0) = 0.0 speed(1) = 3.5505102572 speed(2) = 3.5505102572

speed(3) = 0.0

time(0) = 0.0 time(1) = 1.1835034190 time(2) = 2.8164965809

time(3) = 4.0

z3 time in milliseconds: 30

Total time in milliseconds: 71

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 93 / 128

Experiment: Car Example

L = 10k , A = 3k , MS = 4k, T = 4k , which yields solutions with irrational
values and so cannot be solved by system clingo.

k clingo v3.0.5 aspmt2smt v0.9
Run Time Run Time

(Grounding + Solving) (Preprocessing + solving)

1 n/a .084s (.054s + .03s)

5 n/a .085s (.055s + .03s)

10 n/a .085s (.055s + .03s)

50 n/a .087s (.047s + .04s)

100 n/a .088s (.048s + .04s)

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 94 / 128

Experiment: Car Example

L = 4k , A = k , MS = 4k, T = 4k , which yields solutions with integral
values and so can be solved by system clingo.

k clingo v3.0.5 aspmt2smt v0.9
Run Time Run Time

(Grounding + Solving) (Preprocessing + solving)

1 .61s (.6s + .01s) .060s (.050s + .01s)
2 48.81s (48.73s + .08s) .07s (.050s + .02s)
3 > 30 minutes .072s (.052s + .02s)
5 > 30 minutes .068s (.048s + .02s)

10 > 30 minutes .068s (.048s + .02s)
50 > 30 minutes .068s (.048s + .02s)

100 > 30 minutes .072s (.052s + .02s)

In this example, only the SMT variables have increasing domains but the
ASP variable domain remains the same. Consequently, the aspmt2smt
system scales very well compared to the ASP system which can only
complete the two smallest size domains.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 95 / 128

Experiment: Space Shuttle

k clingo v3.0.5 aspmt2smt v0.9
Run Time Run Time

(Grounding + Solving) (Preprocessing + solving)

1 0s (0s + 0s) .048s (.038s + .01s)

5 .03s (.02s + .01s) .047s (.037s + .01s)

10 .14s (.9s + .5s) .053s (.043s + .01s)

50 7.83s (3.36s + 4.47s) .050s (.040s + .01s)

100 39.65s (16.14s + 23.51s) .051s (.041s + .01s)

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 96 / 128

Experiments: Bouncing Ball

k clingo v3.0.5 aspmt2smt v0.9
Run Time Run Time

(Grounding + Solving) (Preprocessing + solving)

1 n/a .072s (.062s + .01s)

10 n/a .072s (.062s + .01s)

100 n/a .071s (.061s + .01s)

1000 n/a .075s (.065s + .01s)

10000 n/a .082s (.062s + .02s)

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 97 / 128

http://reasoning.eas.asu.edu/aspmt

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 98 / 128

http://reasoning.eas.asu.edu/aspmt

Demo: ASPMT2SMT

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 99 / 128

Contents

General introduction to ASP

Motivation for ASPMT

Language of ASPMT

Multi-valued propositional formulas

First-order formulas

Implementations: MVSM and ASPMT2SMT

High level action language based on ASPMT

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 100 / 128

High Level Action Language

Based on ASPMT

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 101 / 128

Action Languages

Action languages are high level languages that allow us to represent
knowledge about actions concisely.

Action description contains a set of causal laws, such as

Move(x , y) causes Loc(x) = y

which defines a transition system.

A transition system is a directed graph. Its vertices represent states of
world. Its edges represent execution of actions.

Many action languages are defined as high level notations of
nonmonotonic logics.

A, B, BC, AL, K, . . . : in terms of logic programs under the stable
model semantics.

C and C+: in terms of nonmonotonic causal theories.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 102 / 128

Action Language C+ [GLL+04]

C+ is a formal model of parts of natural language for representing
and reasoning about transition systems.

Can represent actions with conditional and indirect effects,
nondeterministic actions, and concurrently executed actions.

Can represent multi-valued fluents, defined fluents, additive fluents,
and rigid constants.

Can represent defeasible causal laws and action attributes.

Implemented in systems CCalc, Cplus2ASP, coala.

New generations: BC [LLY13], BC+ [BL14].

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 103 / 128

Action Language BC+ [BL14]

Successor of C+ and BC [Lee, Lifschitz and Yang, IJCAI 2013].
Generalizes both B and C+.

The main idea is to define the semantics of BC+ in terms of formulas
under the stable model semantics [Ferraris, 2005].

Modern ASP language constructs, such as choice rules and
aggregates, can be viewed as an abbreviation of formulas under the
stable model semantics.

Enhancements in ASP are readily applied in the setting of action
languages: online answer set solving, ASPMT, interface with external
evaluation.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 104 / 128

Syntax of BC+

We consider propositional formulas whose signature consists of atoms of
the form c =v , where c is called a constant and is associated with a finite
set called the domain. Constants are either fluents or actions.

{c =v} stands for (c =v) ∨ ¬(c =v).

Intuitive reading: “by default, c has the value v .”

Static law: caused F if G (F , G are fluent formulas)

“The light is usually on while the switch is on”:
caused {Light =On} if Switch =On

Alternatively: default Light =On if Switch =On

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 105 / 128

Syntax of BC+

Action dynamic law: caused F if G (F is an action formula)

”The agent may move to arbitrary locations”:
caused {Move = l} if > (for all l ∈ Locations)

Alternatively: exogenous Move

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 106 / 128

Syntax of BC+

Fluent dynamic law: caused F if G after H (F , G : fluent formulas)

The effect of Move:
caused Loc = l if > after Move =true

Alternatively: Move causes Loc = l

“The agent’s location is inertial”:
caused {Loc = l} if > after Loc = l (for all l ∈ Locations)

Alternatively:
inertial Loc

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 107 / 128

Semantics of BC+

For every action description D in BC+ we define a sequence of
formulas PF0(D),PF1(D), . . . so that the stable models of PFm(D)
represent paths of length m in the transition system.

The signature of PFm(D) consists of the pairs i :c such that

i ∈ {0, . . . ,m} and c is a fluent constant of D, and
i ∈ {0, . . . ,m−1} and c is an action constant of D.

D PFm(D)

caused F if G i :F ← i :G

caused F if G after H i+1:F ← (i+1:G) ∧ (i :H)

{0:c =v}
for every regular fluent c and every v

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 108 / 128

Transition System Described by D

A state is an interpretation s of fluent constants such that 0 :s is a
stable model of PF0(D).

A transition is a triple 〈s, e, s ′〉 such that s and s ′ are interpretations
of fluent constants and e is an interpretation of action constants such
that 0 :s ∪ 0:e ∪ 1:s ′ is a stable model of PF1(D).

Theorem

The stable models of PFm(D) are in a 1-1 correspondence with the paths
of length m in the transition system D.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 109 / 128

Useful Abbreviations

a causes F if G 7→ caused F after a ∧ G

nonexecutable F if G 7→ caused ⊥ if > after F ∧ G

default c =v 7→ caused {c =v}
exogenous c 7→ default c =v (for all v ∈ Dom(c))

inertial c 7→ default c =v after c =v (for all v ∈ Dom(c))

constraint F 7→ caused ⊥ if ¬F

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 110 / 128

A Simple Transition System in BC+

D PFm(D) (i = 0, . . . ,m−1)

a causes p i+1:p=true ← i :a=true
exogenous a {i :a=Bool}
inertial p {i+1:p=Bool} ← i :p=Bool

{0:p=Bool}

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 111 / 128

Blocks World in BC+ (I)

The definition of InTower(B):

caused InTower(B) if Loc(B)=Table
caused InTower(B) if Loc(B)=B1 ∧ InTower(B1)
default InTower(B)=false

Blocks don’t float in the air:

constraint InTower(B)

No two blocks are on the same block:

constraint Loc(B1)=B ∧ Loc(B2)=B (B1 6= B2)

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 112 / 128

Blocks World in BC+ (II)

The effect of moving a block:

Move(B, L) causes Loc(B)=L.

A block cannot be moved unless it is clear:

nonexecutable Move(B, L) if Loc(B1)=B.

The commonsense law of inertia:

inertial Loc(B).

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 113 / 128

Implementation

Homepage: http://reasoning.eas.asu.edu/cplus2asp

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 114 / 128

High Level Action Language

Based on ASPMT

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 115 / 128

Representing Continuous Changes in BC+

We distinguish between steps and real clock times. We assume the Theory
of Reals as the background theory, and introduce

Time: a simple fluent constant with value sort R≥0 (clock time);

Dur : an action constant with value sort R≥0, which denotes the time
elapsed between the two consecutive states.

We postulate:

caused Time = t if Time = t
caused Dur = t if Dur = t
caused ⊥ if ¬(Time = t + t ′) after Time = t ∧ Dur = t ′

Continuous changes can be described as a function of duration using
fluent dynamic laws

caused c = f (x, x′, t) if c′=x′ after (c=x) ∧ (Dur = t) ∧ G

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 116 / 128

Planning with Continuous Time

Example: give a formal representation of the domain to generate a plan.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 117 / 128

Car Example in BC+

Notation: d , v , v ′, t, t ′ are variables of sort R≥0; A, MS are real numbers.

Simple fluent constants: Domains:
Speed , Distance, Time R≥0

Action constants: Domains:
Accelerate, Decelerate Boolean
Dur R≥0

Causal laws:
caused Speed =v+A×t after Accelerate ∧ Speed =v ∧ Dur = t
caused Speed =v−A×t after Decelerate ∧ Speed =v ∧ Dur = t
caused Distance =d+0.5×(v+v ′)×t if Speed =v ′

after Distance =d ∧ Speed =v ∧ Dur = t
constraint Time = t+t ′ after Time = t ∧ Dur = t ′

constraint Speed ≤ MS

inertial Speed
exogenous Time
exogenous c for every action constant c

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 118 / 128

Turning BC+ into ASPMT and SMT

BC+
semantics−−−−−−→ ASPMT

completion−−−−−−→ SMT
eliminating variables−−−−−−−−−−−−→ SMT solvers

In BC+:
caused Speed =v+A×t after Accelerate ∧ Speed =v ∧ Dur = t
caused Speed =v−A×t after Decelerate ∧ Speed =v ∧ Dur = t
caused Speed =v ifSpeed =v after Speed =v

In ASPMT:
i+1:Speed =x ← (x = v+A×t) ∧ i : (Accelerate ∧ Speed =v ∧ Dur = t)
i+1:Speed =x ← (x = v−A×t) ∧ i : (Decelerate ∧ Speed =v ∧ Dur = t)
i+1:Speed =x ← ¬¬(i+1:Speed =x) ∧ i :Speed =x

In SMT: The completion on i+1:Speed yields a formula that is equivalent to

i+1:Speed =x ↔
(
x = (i :Speed+A×i :Dur) ∧ i :Accelerate

)
∨

(
x = (i :Speed−A×i :Dur) ∧ i :Decelerate

)
∨

(
i+1:Speed =x ∧ i :Speed =x

)
.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 119 / 128

Reasoning about Indirect Effects

Indirect effects can be represented in static causal laws in BC+:

For example, Accelerating and decelerating not only affect the speed
and the distance of the car, but also indirectly affect the speed and
the distance of the bag in the car.

caused Speed(Bag)= x if Speed =x ∧ In(Bag ,Car)
caused Distance(Bag)=x if Distance =x ∧ In(Bag ,Car) .

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 120 / 128

Reasoning about Additive Fluents

Describe the cumulative effects of firing multiple jets:

In the language of CCalc:
Fire(j) increments Vel(ax) by n/Mass if Force(j , ax)=n
limited to integer arithmetic.

In BC+:
Fire(j) increments Vel(ax) by n/Mass×t if Force(j , ax)=n∧Dur = t.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 121 / 128

Reasoning about Processes

The enhanced BC+ is flexible enough to represent the start-process-end
model, where instantaneous actions may initiate or terminate processes.

Example: Two Taps Water Tank with Leak
TurnOn(x) causes On(x) ∧ Dur =0
TurnOff (x) causes On(x)=false ∧ Dur =0

On(x) increments Level by W(x)×t if Dur = t
Leaking increments Level by −(V×t) if Dur = t

constraint (Low≤Level) ∧ (Level≤High)
inertial On(x), Leaking
exogenous c for every action constant c

exogenous Time
constraint Time = t + t ′ after Time = t ∧ Dur = t ′

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 122 / 128

Reasoning about Natural Actions

HitGround, ReachedTop are natural actions

Drop, Catch are agent’s actions

Height =
50m

Height = 50m,
Falling,

Proj(HitGround) =
3.19s

Height = 0
Rising,

Proj(ReachedTop) =
3.03s

Height = 0
Falling,

Poss(HitGround)

Height = 19.6m
Rising,

Interrupted(ReachedTop)

Height =
19.6m

Height =
19.6m

Dur = 0

Drop

Dur = 3.19s Dur = 0

HitGround

Dur = 2s

Dur = 0

Catch

Dur = 10s

Assuming elastic coefficient for the falling object is 0.9.
This is shown in the difference of values between Proj(HitGround)

and Proj(ReachedTop).

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 123 / 128

Conclusion

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 124 / 128

Conclusion

ASPMT is a natural formalism that combines the advantages of ASP
and SMT. Enhancements in ASP and SMT can be carried over to
ASPMT.

The language of ASPMT is based on functional stable model
semantics, which can express default value assigned to functions.
This feature makes possible a tight integration of ASP and other
languages where functions are primitive constructs.

We expect that many results known between ASP and SAT can be
carried over to the relationship between ASPMT and SMT.
Completion is one such example.

The action language BC+ defined by a reduction to ASPMT allows
us to handle reasoning about hybrid systems, where discrete state
changes and continuous changes coexist.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 125 / 128

ASP as an Interface Language

ASP language serve as a specification language for AI.

Computation is carried out by compilation to different engines.

ASP Language

ASP Solver

SAT Solver ASP + CP
Solver

ASP + SMT
Solver

Markov Logic
Solver

...

Problem

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 126 / 128

Recent Work: Weighted Rules in ASP

LPMLN [LW16] is an extension of ASP with weighted rules, similar to
how Markov Logic [RD06] extends SAT/FOL.

The weight of a “soft” stable model is determined by the weight of
the rules that derive the stable model.

LPMLN provides a way to comput ASP using statistical inference
methods.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 127 / 128

Conclusion

ASP is an elegant knowledge specification language

allowing for various high level knowledge to be represented, while

computation can be carried out by different solvers/engines.

First-order stable model semantics, taking into account default
functions, provides a good ground for integrating ASP with other
declarative paradigms.

It also presents a simpler representation method in comparison with
traditional ASP.

In particular, high level action languages can be simply defined based
on it.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 128 / 128

Bibliography
Marcello Balduccini.

Representing constraint satisfaction problems in answer set programming.
In Working Notes of the Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP), 2009.

Marcello Balduccini.

Industrial-size scheduling with asp+cp.
In Proceedings of the 11th international conference on Logic programming and nonmonotonic reasoning, pages 284–296,
2011.

Chitta Baral, Michael Gelfond, and J. Nelson Rushton.

Probabilistic reasoning with answer sets.
TPLP, 9(1):57–144, 2009.

Michael Bartholomew and Joohyung Lee.

Stable models of formulas with intensional functions.
In Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR), pages 2–12,
2012.

Joseph Babb and Joohyung Lee.

Action language bc+: Preliminary report.
In Working Notes of the 7th Workshop on Answer Set Programming and Other Computing Paradigms (ASPOCP), 2014.

Gerhard Brewka, Ilkka Niemelä, and Miroslaw Truszczynski.

Preferences and nonmonotonic reasoning.
AI Magazine, 29(4):69–78, 2008.

Thomas Eiter, Giovambattista Ianni, Thomas Lukasiewicz, Roman Schindlauer, and Hans Tompits.

Combining answer set programming with description logics for the semantic web.
Artificial Intelligence, 172(12-13):1495–1539, 2008.

Paolo Ferraris.

Answer sets for propositional theories.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 128 / 128

In Proceedings of International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pages
119–131, 2005.

Paolo Ferraris and Vladimir Lifschitz.

On the stable model semantics of first-order formulas with aggregates.
In Proceedings of the 2010 Workshop on Nonmonotonic Reasoning, 2010.

Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz.

Stable models and circumscription.
Artificial Intelligence, 175:236–263, 2011.

Wolfgang Faber, Nicola Leone, and Gerald Pfeifer.

Recursive aggregates in disjunctive logic programs: Semantics and complexity.
In Proceedings of European Conference on Logics in Artificial Intelligence (JELIA), 2004.

Michael Gelfond and Vladimir Lifschitz.

The stable model semantics for logic programming.
In Robert Kowalski and Kenneth Bowen, editors, Proceedings of International Logic Programming Conference and
Symposium, pages 1070–1080. MIT Press, 1988.

Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson Turner.

Nonmonotonic causal theories.
Artificial Intelligence, 153(1–2):49–104, 2004.

Michael Gelfond, Vladimir Lifschitz, and Arkady Rabinov.

What are the limitations of the situation calculus?
In Robert Boyer, editor, Automated Reasoning: Essays in Honor of Woody Bledsoe, pages 167–179. Kluwer, 1991.

M. Gebser, M. Ostrowski, and T. Schaub.

Constraint answer set solving.
In Proceedings of International Conference on Logic Programming (ICLP), pages 235–249, 2009.

Tomi Janhunen, Guohua Liu, and Ilkka Niemelä.

Tight integration of non-ground answer set programming and satisfiability modulo theories.
In Working notes of the 1st Workshop on Grounding and Transformations for Theories with Variables, 2011.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 128 / 128

Henry Kautz and Bart Selman.

Planning as satisfiability.
In Proceedings of European Conference on Artificial Intelligence (ECAI), pages 359–363, 1992.

Vladimir Lifschitz.

Answer set programming and plan generation.
Artificial Intelligence, 138:39–54, 2002.

Guohua Liu, Tomi Janhunen, and Ilkka Niemelä.

Answer set programming via mixed integer programming.
In Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR), pages 32–42,
2012.

Joohyung Lee, Vladimir Lifschitz, and Fangkai Yang.

Action language BC: Preliminary report.
In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI), 2013.

Joohyung Lee and Yunsong Meng.

On reductive semantics of aggregates in answer set programming.
In Procedings of International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pages
182–195, 2009.

Joohyung Lee and Ravi Palla.

Integrating rules and ontologies in the first-order stable model semantics (preliminary report).
In Proceedings of International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR), pages
248–253, 2011.

Thomas Lukasiewicz.

Fuzzy description logic programs under the answer set semantics for the semantic web.
In Thomas Eiter, Enrico Franconi, Ralph Hodgson, and Susie Stephens, editors, RuleML, pages 89–96. IEEE Computer
Society, 2006.

Joohyung Lee and Yi Wang.

Stable models of fuzzy propositional formulas.
In Proceedings of European Conference on Logics in Artificial Intelligence (JELIA), pages 326–339, 2014.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 128 / 128

Joohyung Lee and Yi Wang.

Weighted rules under the stable model semantics.
In Proceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR), 2016.

Nikolay Pelov, Marc Denecker, and Maurice Bruynooghe.

Well-founded and stable semantics of logic programs with aggregates.
TPLP, 7(3):301–353, 2007.

Matthew Richardson and Pedro Domingos.

Markov logic networks.
Machine Learning, 62(1-2):107–136, 2006.

Patrik Simons, Ilkka Niemelä, and Timo Soininen.

Extending and implementing the stable model semantics.
Artificial Intelligence, 138:181–234, 2002.

Przemys law Andrzej Wa lega, Mehul Bhatt, and Carl Schultz.

Aspmt (qs): non-monotonic spatial reasoning with answer set programming modulo theories.
In Logic Programming and Nonmonotonic Reasoning, pages 488–501. Springer, 2015.

Joohyung Lee (ASU) Answer Set Programming Modulo Theories AAAI 2016 Tutorial 128 / 128

	General Introduction
	ASPMT Motivation
	Examples of ASPMT Domain
	Language of ASPMT
	High Level Action Description Language for ASPMT
	Conclusion

