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8. Answer Set Programming with MVPF

Answer Set Programming

Beyond the study of proofs in mathematics, logic has been applied to de-
signing and reasoning about computer hardware and software. One of the
prominent applications of logic in computer science is the use of logic as
a programming language. Logic programming specifies what is to be com-
puted, but not necessarily how it is computed.

A logic program is a set of axioms, or rules, defining relations
between objects. A computation of a logic program is a deduc-
tion of consequences of the program. A program defines a set of
consequences, which is its meaning. The art of logic program-
ming is constructing concise and elegant programs that have the
desired meaning. (From The Art of Prolog, page 9.)

In this handout, we will study “Answer Set Programming (ASP),” a form
of declarative programming oriented towards difficult combinatorial search
problems. It has been applied, for instance, to knowledge representation,
planning, and product configuration problems in artificial intelligence and to
graph-theoretic problems arising in VLSI design, historical linguistics, and
bioinformatics.

The idea of ASP is to represent the search problem we are interested in
as the problem of finding the stable models (a.k.a. answer sets) of a formula,
and then find the solutions using answer set solvers, such as the systems
smodels, clingo, dlv, assat, cmodels, and clasp.

System mvsm

System mvsm is an implementation of multi-valued propositional formulas
under the stable model semantics. It is in fact a script that invokes sev-
eral software, such as mvpf2lpCompiler, f2lp, gringo, claspD, and
as2transition. For this class, you’ll be using the one that is already in-
stalled in a server maintained by the Automated Reasoning Group. You can
log into your account in the server by typing

ssh -l [asurit-id] reasoning-server.fulton.ad.asu.edu
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and type in your asurite password.
Multi-valued propositional formulas can be encoded in the language of

mvsm using the following ASCII characters.

Symbol ¬ ∧ ∨ ⊥ > → ←
ASCII - & | false true -> <-

A very simple example. The example program in Problem 6.6 can be
encoded in the language of mvsm as follows:

1 % File ’ex1’

2

3 :- sorts

4 num.

5

6 :- objects

7 1..3 :: num.

8

9 :- constants

10 c :: num.

11

12 {c=1}.

13 {c=2}.

Any line starting with % is a comment. Lines 3–4 declare a domain
named num. The domain consists of three numbers as declared in lines 6–7.
Lines 9–10 declare a constant whose domain is num. Lines 12–13 are default
formulas, which can be also written as

c=1 | -(c=1).

c=2 | -(c=2).

Let’s call the file ex1. We invoke mvsm as follows:

$ mvsm ex1 0

The zero at the end indicates that we want to compute all stable models; a
positive number k would tell mvsm to terminate after computing k stable
models. The default value of k is 1.

For the command, the mvsm output is as follows.
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claspD version 1.1.1. Reading...done

Solution: 1

c=2

Solution: 2

c=1

Models : 2

Time : 0.000 (Parsing: 0.000)

Schematic variables. A group of rules that follow a pattern can be often
described concisely in the input language of mvsm using schematic variables,
which must be capitalized.

1 % File ’ex2’

2

3 #const max=3.

4

5 :- sorts

6 num.

7

8 :- objects

9 1..max :: num.

10

11 :- variables

12 X,X1,Y :: num.

13

14 :- constants

15 c(num) :: num.

16

17 {c(X)=Y}.

18 <- c(X)=Y & c(X1)=Y & X!=X1.

Line 3 declares a symbolic name for a specific value. Lines 11–12 intro-
duce three variables of sort num. Line 17 is a schematic formula where X

and Y range over all values of num; it expresses that c is a function that
maps num to num. The last line expresses that this function is 1–1.

8.1e How many stable models are there?
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Model checking with propositional logic. Recall that propositional
formulas are a special case of multi-valued formulas. According to Problem
6.7, we can compute models of propositional logic using mvsm. The following
program represents the train example we discussed earlier. boolean is a
built-in sort containing true and false as the elements.

1 % File ’train’

2

3 :- constants

4 tl, taxi, jl :: boolean.

5

6 :- variables

7 B :: boolean.

8

9 {tl=B}.

10 {taxi=B}.

11 {jl=B}.

12

13 tl & -taxi -> jl.

14 -jl.

15 tl.

To check whether lines 13–15 entail taxi under propositional logic, we
compute all stable models of lines 9–15.

$ mvsm train 0

claspD version 1.1.1. Reading...done

Solution: 1

taxi

tl

Models : 1

Time : 0.000 (Parsing: 0.000)

System mvsm, by default, does not show Boolean constants that are
mapped to false. So this output means that there is only one model of
propositional formulas in lines 13–15 where taxi and tl are mapped true
and jl is mapped to false.

Another way to check the entailment is to add -taxi at the end of the
file, and check whether the program has no stable models in accordance with
Problem 3.17.
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Reasoning about States

Example: Graph Coloring. An n-coloring of a graph G is a function f
from its set of vertices to {1, . . . , n} such that f(x) 6= f(y) for every pair of
adjacent vertices x, y. The stable models of the following program are in a
1–1 correspondence with the n-colorings of G.

The following file color is an mvsm encoding of the n coloring problem.

1 % File ’color’

2 % Find a 3-coloring of the given graph

3

4 :- sorts

5 node;

6 color.

7

8 :- objects

9 0..4 :: node;

10 r,g,b :: color.

11

12 :- constants

13 col(node) :: color.

14

15 :- variables
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16 X,Y :: node;

17 C :: color.

18

19 :- constants

20 e(node,node) :: boolean;

21 col(node) :: color.

22

23 e(0,1). e(1,2). e(2,3). e(3,4). e(4,0). e(0,2).

24

25 {col(X)=C}.

26 {e(X,Y)=false}.

27

28 <- col(X)=C & col(Y)=C & e(X,Y).

One can find all 3-colorings using the following command:

$ mvsm color 0

N Queens. The goal is to place n queens on an n× n chessboard so that
no two queens would be placed on the same row, column or diagonal. A
solution can be described by a set of atoms of the form q(i, j) (1 ≤ i, j ≤ n);
including q(i, j) in the set indicates that there is a queen at position (i, j).

The following is a representation of 8-Queens puzzle in the input lan-
guage of mvsm:
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1 #const n=8.

2

3 :- sorts

4 num.

5

6 :- objects

7 1..n :: num.

8

9 :- variables

10 I, I1, J, J1 :: num;

11 B :: boolean.

12

13 :- constants

14 non_empty_row(num) :: boolean;

15 q(num,num) :: boolean.

16

17 {q(I,J)=B}.

18 <- q(I,J) & q(I1,J) & I!=I1.

19 <- q(I,J) & q(I,J1) & J!=J1.

20 <- q(I,J) & q(I1,J1) & I!=I1 & #abs(I1-I)==J1-J.

21 non_empty_row(I) <- q(I,J).

22 <- not non_empty_row(I).

Line 17 expresses that q is a function that maps each position to {t, f}.
Lines 18–20 express that no two queens are on the same column, row, and
diagonal. Lines 21–22 express that every row has at least one queen placed.

Reasoning about Dynamic Systems

Simple Transition System. The simple transition system in Handout 7
can be represented in the input language of mvsm as follows.

1 % File ’sd’

2

3 :- sorts

4 step;

5 astep.

6

7 :- objects

8 0..maxstep :: step;

9 0..maxstep-1 :: astep.

10
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11 :- variables

12 B :: boolean;

13 ST :: step;

14 T :: astep.

15

16 :- constants

17 p(step) :: boolean;

18 a(astep) :: boolean.

19

20 % direct effect

21 p(T+1) <- a(T).

22

23 % initial states are exogenous

24 {p(0)=B}.

25

26 % actions are exogenous

27 {a(T)=B}.

28

29 % p is inertial

30 {p(T+1)=B} <- p(T)=B.

Lines 3–5 declare two sorts required for describing transition systems,
and lines 7–9 introduce the elements that belong to the each sort. Lines
11–14 declare schematic variables for each sort. Line 17 declares boolean
constants p(0), p(1), ..., p(maxstep) and line 18 declares boolean con-
stants a(0), a(1), ..., a(maxstep-1). Lines 20–30 represent formu-
las (5) in Handout 7.

Let’s call this file sd. One can compute all states of the transition system
by the command:

mvsm sd 0 0

The first 0 instructs the system to find all states and the second 0 sets
maxstep to 0.1

Similarly, the following command instructs the system to find all transi-
tions.

$ mvsm sd 0 1

claspD version 1.1.1. Reading...done

Solution: 1

1You cannot specify maxstep without specifying the number of stable models to be
returned.
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Solution: 2

a(0)

p(1)

Solution: 3

p(0)

p(1)

Solution: 4

a(0)

p(0)

p(1)

Models : 4

Time : 0.000 (Parsing: 0.000)

MB in the Language of ASP

The following file describes the monkey and bananas domain in the language
of mvsm.

1 % File ’mb’

2

3 :- sorts

4 step;

5 astep;

6 thing;

7 location.

8

9

10 :- objects

11 0..maxstep :: step;

12 0..maxstep-1 :: astep;

13 monkey,bananas,box :: thing;

14 l1,l2,l3 :: location.

15

16 :- variables

17 ST :: step;

18 T :: astep;

19 B :: boolean;

20 Th :: thing;
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21 L :: location.

22

23 :- constants

24 loc(thing,step) :: location;

25 hasBananas(step),onBox(step) :: boolean;

26

27 walk(location,astep),

28 pushBox(location,astep),

29 climbOn(astep),

30 climbOff(astep),

31 graspBananas(astep) :: boolean.

32

33 {loc(Th,T+1)=L} <- loc(Th,T)=L.

34 {hasBananas(T+1)=B} <- hasBananas(T)=B.

35 {onBox(T+1)=B} <- onBox(T)=B.

36

37 {walk(L,T)=B}.

38 {pushBox(L,T)=B}.

39 {climbOn(T)=B}.

40 {climbOff(T)=B}.

41 {graspBananas(T)=B}.

42

43 loc(bananas,ST)=L <- hasBananas(ST) & loc(monkey,ST)=L.

44 loc(monkey,ST)=L <- onBox(ST) & loc(box,ST)=L.

45

46 loc(monkey,T+1)=L <- walk(L,T).

47 <- walk(L,T) & loc(monkey,T)=L.

48 <- walk(L,T) & onBox(T).

49

50 loc(box,T+1)=L <- pushBox(L,T).

51 loc(monkey,T+1)=L <- pushBox(L,T).

52 <- pushBox(L,T) & loc(monkey,T)=L.

53 <- pushBox(L,T) & onBox(T).

54 <- pushBox(L,T) & loc(monkey,T)=L1 & loc(box,T)=L2 & L1 != L2.

55

56 onBox(T+1) <- climbOn(T).

57 <- climbOn(T) & onBox(T).

58 <- climbOn(T) & loc(monkey,T)=L1 & loc(box,T)=L2 & L1 != L2.

59

60 onBox(T+1) = false <- climbOff(T).

61 <- climbOff(T) & -onBox(T).

62

63 hasBananas(T+1) <- graspBananas(T).

64 <- graspBananas(T) & hasBananas(T).

65 <- graspBananas(T) & -onBox(T).
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66

67 <- graspBananas(T) & loc(monkey,T)=L1 & loc(bananas,T)=L2 & L1 != L2.

68

69 <- walk(L,T) & pushBox(L,T).

70 <- walk(L,T) & climbOn(T).

71 <- pushBox(L,T) & climbOn(T).

72 <- climbOff(T) & graspBananas(T).

73

74 % initial states are exogenous

75 {loc(Th,0)=L}.

76 {onBox(0)=B}.

77 {hasBananas(0)=B}.

In order to solve the planning problem, one can append the following
lines.

% planning query

--(loc(monkey,0)=l1 & loc(bananas,0)=l2 & loc(box,0)=l3

& hasBananas(0)=false & onBox(0)=false).

--(hasBananas(maxstep)).

The following execution shows that the shortest step solution takes 4
steps.

$ mvsm mb 1 3

claspD version 1.1.1. Reading...done

Models : 0

Time : 0.000 (Parsing: 0.000)

No solution.

jlee89@reasoning-server:~/459-f13$ mvsm mb 1 4

claspD version 1.1.1. Reading...done

Solution: 1

climbOn(2)

graspBananas(3)

hasBananas(4)

loc(bananas,0)=l2

loc(bananas,1)=l2

loc(bananas,2)=l2

loc(bananas,3)=l2

loc(bananas,4)=l2
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loc(box,0)=l3

loc(box,1)=l3

loc(box,2)=l2

loc(box,3)=l2

loc(box,4)=l2

loc(monkey,0)=l1

loc(monkey,1)=l3

loc(monkey,2)=l2

loc(monkey,3)=l2

loc(monkey,4)=l2

onBox(3)

onBox(4)

pushBox(l2,1)

walk(l3,0)

Models : 1

Time : 0.000 (Parsing: 0.000)
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