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ABSTRACT

Modeling dynamic systems is an interesting problem in Knowledge Representation

(KR) due to their usefulness in reasoning about real-world environments. In order to

effectively do this, a number of different formalisms have been considered ranging from

low-level languages, such as Answer Set Programming (ASP), to high-level action

languages, such as C+ and BC.

These languages show a lot of promise over many traditional approaches as they

allow a developer to automate many tasks which require reasoning within dynamic

environments in a succinct and elaboration tolerant manner. However, despite their

strengths, they are still insufficient for modeling many systems, especially those of

non-trivial scale or that require the ability to cope with exceptions which occur during

execution, such as unexpected events or unintended consequences to actions which

have been performed.

In order to address these challenges, a theoretical framework is created which fo-

cuses on improving the feasibility of applying KR techniques to such problems. The

framework is centered on the action language BC+, which integrates many of the

strengths of existing KR formalisms, and provides the ability to perform efficient

reasoning in an incremental fashion while handling exceptions which occur during ex-

ecution. The result is a developer friendly formalism suitable for performing reasoning

in an online environment.

Finally, the newly enhanced Cplus2ASP 2 is introduced, which provides a num-

ber of improvements over the original version. These improvements include imple-

menting BC+ among several additional languages, providing enhanced developer sup-

port, and exhibiting a significant performance increase over its predecessors and sim-

ilar systems.
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Chapter 1

INTRODUCTION

Dynamic systems are systems which evolve over time due to actions performed by

agents, such as pushing a ball, or non-inertial changes in the environment, such as

the ball continuing to roll down a slope. Naturally, dynamic systems make up a large

portion of systems considered in the field of Knowledge Representation (KR) due to

their usefulness in modeling the evolution of real-world environments over time.

Many KR formalisms have been considered for modeling dynamic systems with

varying strengths and weaknesses. While low level languages, such as Answer Set

Programming (ASP) (Gelfond and Lifschitz (1988)), provide an extremely expressive

environment capable of representing many interesting properties of systems, they

are seen colloquially as “logical assembly languages” which have a steep learning

curve and provide little-to-no opportunity for developmental support. Meanwhile,

high-level action languages (Gelfond and Lifschitz (1998)) provide a more structured

representation of dynamic systems, leading to a succinct and intuitive syntax and

semantics and creating a dramatically more developer friendly formalism. However,

this structure often comes at the cost of expressivity.

Using these languages, a developer is able to automate many tasks which require

non-trivial reasoning within dynamic environments in a succinct and elaboration tol-

erant manner. This is accomplished by allowing the developer to specify the proper-

ties of the system and pushing the burden of reasoning a bout the system from the

developer to an automated solver.

These formalisms have, traditionally, been considered in an offline environment

where agents within each system are assumed to have complete knowledge of the
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system’s current state and the results of executing each action within the system.

This is a very strong assumption in practice as real-world environments do not always

behave in a predictable manner. Recently, attempts have been made to create fault-

tolerant reasoning and execution systems at a meta-level by throwing out the previous

results and restarting from scratch when an exception occurs (Erdem et al. (2011)).

Unfortunately, this approach is not sufficient, especially when considering large-scale

or time-sensitive problems, due to the intractable nature of modeling and reasoning

with respect to dynamic systems.

How can we provide a knowledge representation system

suitable for dynamic reasoning which is easily accessible to

developers and users while providing the scalability and flexibility

required to be feasible in a greater range of problems?

In this thesis we consider these challenges and propose an integrated approach to

mitigate them. Our specific contributes are as follows:

� we design the online action language BC+, a high-level language whose offline

specialization generalizes several existing action languages and closes the ex-

pressivity gap between these languages and Answer Set Programming;

� we provide a generalization of the Module Theorem (Oikarinen and Janhunen

(2006); Janhunen et al. (2009)) to allow for the modular decomposition and

evaluation of first-order formulas under the Stable Model Semantics (Ferraris

et al. (2009a));

� we then apply this generalized module theorem to encapsulate online BC+

within the online ASP theories behind iClingo (Gebser et al. (2008)) and

oClingo (Gebser et al. (2011a)), which yields a unified framework for model-

ing dynamic systems and providing fault tolerant plan execution in an efficient

manner;

2



� finally, we show the efficacy of our approach by supplying a new version of the

system Cplus2ASP (Casolary and Lee (2011)) which enhances the original

version in a number of ways, including providing an implementation of online

BC+.

The document is structured as follows: in Chapter 2 we give a brief overview of

related research; in Chapter 3 we provide an in-depth technical review of Answer

Set Programming and several action languages of interest; following this, Chapter

4 defines a new language BC+ designed to take advantage of the strengths of each

of these existing formalisms; Chapter 5 discusses and extends the existing efforts for

evaluating ASP programs in a compositional manner; afterward, Chapter 6 uses these

results to define an online extension of BC+ to allow for more efficient fault tolerant

reasoning; finally, Chapter 7 showcases system Cplus2ASP 2.0, which has many

improvements over its predecessor including support for BC+.
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Chapter 2

A BRIEF REVIEW OF BACKGROUND TOPICS

In this chapter, we briefly review the history of the works which our contributions

are built from. For brevity we exclude the technical details of each work and instead

summarize the results. Instead, technical reviews of select topics are included in later

chapters.

2.1 Answer Set Programming and the Stable Model Semantics

Answer Set Programming is a logical programming language which is well suited

for solving NP-complete combinatorial problems. Its syntax consists of rules which are

evaluated based on non-monotonic fixpoint semantics. A rule in traditional Answer

Set Programming is an expression of the form

a0 ← a1, . . . , an, not an+1, . . . , not am, (2.1)

where each ai (0 ≤ i ≤ m) is a Boolean atomic proposition, also known as an atom,

or the 0-place connected ⊥. We call a0 the head of the rule, the remainder of the rule

is the body.

Each rule (2.1) may also be viewed syntactically as the propositional logic impli-

cation

¬am ∧ · · · ∧ ¬an+1 ∧ an ∧ · · · ∧ a1 → a0. (2.2)

Intuitively, each ASP rule is read as “a0 holds if each ai (1 ≤ i ≤ n) has been

shown to hold and it is consistent to assume that each aj (n + 1 ≤ j ≤ m) does not

hold. This notion is captured by checking if each potential solution against a fixpoint

construction, known as the reduct.

4



∼on0 ← not on0 . Dswitch,1

on0 ← not ∼on0 . Dswitch,2

on1 ← on0 , not flip. Dswitch,3

on1 ← flip, not on0 . Dswitch,4

∼flip ← not flip. Dswitch,5

flip ← not ∼flip. Dswitch,6

⊥ ← not on1 . Dswitch,7

Figure 2.1: A basic toggle switch in ASP

Example 1 As an example, consider the ASP program shown in Figure 2.1 which

describes a simple toggle switch. Intuitively, on0 and on1 characterize the initial and

final states of the switch, respectively, and flip describes the act of toggling the switch.

Rules 1 and 2 use an auxiliary atom, ∼on0 , in order to allow for the initial state

of the switch to be chose arbitrarily. Intuitively, these rules interact to provide the

program with a choice as to which of on0 and ∼on0 are asserted. Rules 5 and 6 do

the same for flip, allowing it to be executed arbitrarily.

Rules 3 and 4 provide the effect of executing toggle on the switch; specifically, rule

3 states that if toggle is not executed and the switch was on it should stay that way,

while rule 4 states that if toggle is executed and the switch was off it should turn on.

It is not necessary to explicitly state when the switch turns off as the semantics of

ASP cause on1 to be false when not forced to be true.

Finally, rule 7 provides a constraint on the final state of the toggle switch by

intuitively stating that it should not be the case that on1 is false.

This program has two solutions, or answer sets:

{∼on0 ,flip, on1}, and {on0 , ∼flip, on1}.
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In the first solution, the switch is initially off and the agent flips it on. Meanwhile, in

the second solution the switch is initially on and the agent performs no action which

causes the switch to remain on by inertia.

More recently, ASP has been generalized to allow for rules of the form

a0| . . . |ak ← ak+1, . . . , an, not an+1, . . . , not am, (2.3)

where there is a disjunction of atoms in the consequent of each rule (Gelfond and Lif-

schitz (1991)), to allow for the full syntax of nested propositional formulas (Ferraris

(2005)), to be applicable to first-order formulas with intensional predicates under

the Stable Model (SM) Semantics (Ferraris et al. (2009a)), allow for more expres-

sive generalized quantifiers (Lee and Meng (2012)), and allow for intensional func-

tions (Bartholomew and Lee (2012)). These generalizations have vastly increased

the potential expressivity and succinctness of ASP programs as well as the academic

community’s understanding of their properties.

Answer Set Programming is a powerful formalism and has garnered a lot of at-

tention since its inception. Since then, several efficient implementations for ASP

solvers, including Gringo (Gebser et al. (2007b, 2009, 2011b)) / Clasp (Gebser et al.

(2007a)) as well as the DLV system (Leone and et al. (2005); Leone et al. (2006a,b))

have been created. The presence of these systems, as well as the ability to succinctly

encode NP-complete reasoning problems, has lead to the exploration of numerous

applications.

Despite this, ASP has a number of drawbacks which must be addressed before

the formalism can see a wider spread adoption. The syntax of ASP is low-level and

is often thought of colloquially as a “logical assembly language”, rather than a fully

developed programming language. This, combined with the difficulty in mastering its

semantics and the lack of development tools, provides for a steep learning curve for

6



creating and debugging ASP programs. In addition to this, the intractable nature of

solving ASP programs restricts the size of the problems which ASP must be applied

to.

2.1.1 Partial Evaluation and Composition of Answer Set Programs

The intractability of Answer Set Programming has proven to be a difficult prob-

lem to work around. There are certain classes of ASP programs which can be solved

efficiently, such as Horn programs, which contain only ASP rules of the form (2.1)

where n = m (i.e. contains no occurrences of “not a” where a is an atom). Unfor-

tunately, these classes of programs are not capable of expressing many interesting

properties. For example, the toggling behavior shown in Example 1 is not expressible

using a Horn program due to their inability to represent choice.

An alternative approach to addressing the scalability issues with ASP is to divide

the problem into parts and solve each one independently. The Splitting Theorem

(Lifschitz and Turner (1994); Ferraris et al. (2009a)) is one method capable of doing

just this. It provides a method of decomposing a first-order formula under the Stable

Model Semantics into smaller formulas, of the same signature, which are independent

of one another. Determining if a specific interpretation is a solution to the monolithic

formula can then be done by checking if it is a solution for each of the sub-formulas.

The Module Theorem (Oikarinen and Janhunen (2006); Janhunen et al. (2007))

takes the opposite approach. It views a program as being composed of a series of small

disjunctive ASP modules, each with their own signature and input/output interface,

and provides a formal method of composing the solutions of each sub-module to

generate the solutions of the whole program.

While the Splitting Theorem can be applied to decompose an ASP program for the

purposes of solution checking, it cannot be directly applied in order to generate solu-
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tions of the larger problem given its components. Although this problem is addressed

in the Module Theorem, the Module Theorem is not applicable to the general case

of first-order formulas under the Stable Model Semantics, which provides for many

useful features including arbitrary nested formulas, aggregates used for cardinality

counting and finding the minimum and maximum values in a set, and quantifiers.

Despite this limitation, the Module Theorem has been applied in practice in order

to accelerate solving problems with ASP which involve an iterative deepening search

or those in which complete knowledge cannot be assumed ahead of time.

Typically, an iterative deepening search, such as finding the minimum length plan

to achieve a goal, consists of restarting the grounding1/solving process repeatedly

while varying the maximum step parameter. This process involves the entire program

being re-grounded and re-solved from scratch a number of times, resulting in a lot

of repeated work. This problem is handled by the system iClingo (Gebser et al.

(2008)).

iClingo applies the Module Theorem in order to allow programs to be incremen-

tally instantiated from a template incremental ASP program and composed together

during an iterative solving process. In practice, this results in a significant speedup

to problems which lend themselves to an iterative deepening search as re-grounding

previous steps is avoided and heuristics may be saved and used across solver calls.

Similarly, accounting for incomplete knowledge in a system has traditionally been

handled by restarting the grounding/solving process with any new information that

has been acquired during execution. The system oClingo (Gebser et al. (2011a,

1 In practice ASP programs are specified in a pseudo-first-order manner by using

schematic variables in each rule which are replaced with all possible values the variable

can take in a process called grounding. The result is a propositional ASP program

which can be reasoned over.

8



2012)), which builds on the iClingo system prevents this by allowing for simple

online ASP modules containing this information to be dynamically added to the

incremental program.

iClingo and oClingo have shown promise in enabling the use of ASP in systems

of non-trivial scale. The primary purpose of both systems is to prevent multiple

unnecessary restarts of the grounding/solving process which cause much of the work

to be redone. However, the conditions which they impose on programs compound the

complexity of developing ASP programs by placing additional burdens on the user to

check the correctness of their programs.

2.2 Action Languages

Action languages are “formal models of parts of the natural language that are

used to talk about the effects of actions” (Gelfond and Lifschitz (1998)). Essentially,

they provide a formal semantics for some fragment of natural language which may

then be reasoned about. This distinguishes them from other logical formalisms, such

as ASP, which model formal logics. The additional structure provided by action

languages results in them being more accessible to the community at large; however,

as a side effect, they also tend to be more restricted in terms of expressivity than

their lower-level counterparts.

Gelfond and Lifschitz (1998) provide definitions for two particular action languages

of interest, B and C (Giunchiglia and Lifschitz (1998)), and give their semantics in

terms of transition systems which can be generated from provided action descrip-

tions, or programs, within each language. Although the two languages share many

commonalities, neither of them subsumes the other in terms of expressivity (Gelfond

and Lifschitz (2012)). C was initially implemented in the Causal Calculator (CCalc)

(McCain (1997)) via a reduction into propositional satisfiability checking.
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The action language C was enhanced by Giunchiglia et al. (2004) to create the

action language C+. C+ enhances C in a number of ways including providing for

non-exogenous actions and complex dependencies between atoms. The semantics

of C+ were formalized in terms of non-monotonic causal logic (Giunchiglia et al.

(2004)) as well as transition systems. The definite propositional fragment of C+ was

implemented in Causal Calculator version 2 (CCalc 2) (Lee (2005)).

Eventually, a translation from the languages C and B to ASP was proposed by

Lifschitz and Turner (1999) and Son et al. (2002), respectively, was implemented in

the system coala (Gebser et al. (2010)). Shortly after, Casolary and Lee (2011)

leveraged a translation from definite causal logic to formulas under the Stable Model

Semantics (Ferraris (2007); Ferraris et al. (2012)), which could then be further reduced

into traditional ASP when the domain of consideration is fixed and finite (Lee and

Palla (2009)), in order to reduce C+ to ASP in the system Cplus2ASP. Both of

these systems show a significant performance increase over their predecessors as they

are able to leverage highly-optimized ASP solvers (Casolary and Lee (2011)).

Finally, many of the strengths, both syntactic and semantic, of B and C by Gelfond

and Lifschitz (1998), were built on in order to create a the language BC by Lee

et al. (2013). BC generalizes B with a number of features found in C, which provides

a significant improvement in the flexibility of the language. Lee et al. (2013) described

the semantics of BC in terms of a reduction to several variants of ASP.

Action languages have a major advantage over Answer Set Programming in that

they do not fall prey to the cryptic nature of ASP. In addition, the structure imposed

by many action languages allows for systems to provide additional support for devel-

opers via techniques such as enhanced static semantic checking as well as transition

system visualization tools.
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However, finding the balance between structured syntax and expressivity is diffi-

cult. As we’ll see in Chapter 3, many of these action languages are too restrictive to

express many concepts easily.
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Chapter 3

REVIEW OF ANSWER SET PROGRAMMING AND ACTION LANGUAGES

In this chapter we provide a technical review for the formalisms which our work is

based on. We first begin by briefly reviewing the syntax and semantics of propositional

and first-order logic. Following this, we review the Stable Model Semantics proposed

by Ferraris et al. (2011), and, as a special case, the semantics of propositional ASP.

Finally, we introduce and compare the action languages B, C, C+ and BC and describe

their semantics in terms of a reduction into multi-valued formulas under the stable

model semantics.

In the following chapters we will use these formalism as a starting point to define

the action language BC+, which seeks to take advantage of the strengths of each of

them.

3.1 A Brief Note on First-Order Logic

A first-order signature σ is a set of predicate and function symbols, each with

an associated non-negative arity. We will commonly refer to predicates and function

symbols with 0 arity as atoms and object symbols, respectively.

In addition to a signature, we assume the presence of an infinite set of variable

symbols {x1, x2, . . . }.

A first-order formula of signature σ is constructed from predicate and formula

symbols in σ, the nullary connective ⊥, binary connectives ∧, ∨, and →, variables,

and quantifiers ∀ and ∃.

A first-order formula is defined recursively as follows:

� a variable is a term;
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� given a function symbol f ∈ σ of arity n and terms t1, . . . , tn, f(t1, . . . , tn) is a

term;

� ⊥ is a first-order formula;

� given a predicate symbol p ∈ σ of arity n and terms t1, . . . , tn, p(t1, . . . , tn) is a

first-order formula;

� given first-order formulas F and G, F �G is a first-order formula where � is a

binary connective; and,

� given a first-order formula F , ∀xF (x) and ∃xF (x) are first-order formulas.

Following Ferraris et al. (2011), we view ¬F and > as shorthand for F → ⊥ and

¬⊥, respectively. Finally, we call each given a formula F of the form

F1 ∧ F2 ∧ · · · ∧ Fn,

we call each Fi (1 ≤ i ≤ n) a rule of F .

As an example, given a signature σEX = {p, q, r, a, b} where p, q, r are unary pred-

icate symbols and a, b are object symbols,

p(a) ∧ q(b) ∧ ∀x((¬q(x) ∧ p(x))→ r(x)) (3.1)

is a first-order formula, whereas “p(a) ∧ a” and “p(q(b))” are not. The rules of (3.1)

are p(a), q(b) and ∀x((¬q(x) ∧ p(x))→ r(x)).

The semantics of a first-order logic are stated in terms of the satisfaction of first-

order interpretations. A first order interpretation I consists of a universe of symbols

|I| and a function cI for each c ∈ σ of arity n such that cI : |I|n 7→ |I| if c is a

function symbol and cI : |I|n 7→ {t, f} otherwise.

We say that a formula F is a sentence if, for every occurrence of a variable x

within F , the occurrence is within some subformula QxG(x) such that Q ∈ {∀,∃}.

Additionally, we say term or formula is ground if it does not contain any variables.
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Given an interpretation I of signature σ, by σI we denote the signature obtained

by adding a new object symbol ξ∗ to σ for each ξ ∈ |I|. Additionally, it is assumed

that I is extended with each such ξ∗ by letting ξ∗I = ξ.

As an example, given the previous signature σEX and an interpretation such that

|I| is {0, 1, 2, 3}, σIEX is {p, q, r, a, b, 0∗, 1∗, 2∗, 3∗}.

Given a first order sentence F and first-order interpretation I of the same signature

σ, the evaluation of F with respect to I (denoted F I) is defined recursively as:

� ⊥I is f;

� c(t1, . . . , tn)I is cI(tI1, . . . , t
I
n) for any constant symbol c of arity n and ground

terms t1, . . . , tn;

� (F ∧ G)I is F I and GI ;

� (F ∨ G)I is F I or GI ;

� (F → G)I is F I implies GI ;1

� ∀xF (x) is t iff, for each ξ ∈ |I|, F (ξ?)I is t;

� ∃xF (x) is t iff, for some ξ ∈ |I|, F (ξ?)I is t.

We say an interpretation I satisfies a first-order sentence F (denoted I |= F ) if

F I = t.

Example 2 As an example, Let I and J be first-order interpretations of the signature

σEX such that

|I| = {a, b}, pI = {a}, 2 qI = {b}, rI = {a}, aI = a, and bI = b.

and

|J | = {1, 2, 3}, pJ = {2, 3}, qJ = {1, 2}, rJ = ∅, aJ = 2, and bJ = 2.

1 Equivalently, GI or not F I .
2 Here we identify each function with the set of tuples that it maps to t.
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I satisfies (3.1), however J does not as ¬q(3∗) ∧ p(3∗)→ r(3∗) is not satisfied by

J . However, if were to let rJ = {3} then J would satisfy (3.1).

Finally, in the event the signature is propositional (i.e. only contains atoms), we

sometimes will identify an interpretation I with the set of atoms mapped to t.

Second-order logic adopts a similar structure and definition, except that it allows

for quantification over predicate variables, which range over all possible functions from

a power set of Cartesian products of the universe to t and f.

3.2 The General Theory of Stable Models

The Stable Model (SM) Semantics were proposed by Ferraris et al. (2011) as a first-

order extension of Answer Set Programming. Rather than define their semantics using

a fixpoint construct as has been done traditionally for ASP, they instead introduce

the SM operator, which characterizes the stable models of a first-order formula F

using a second order formula constructed from F with respect to a set of intensional

predicates fully characterized by F .

Moving forward, we assume that the underlying signature σ has a finite number

of predicate symbols.

Given lists p and u of distinct predicate symbols p1, . . . , pn and predicate variables

u1, . . . , un, respectively. We define u ≤ p to be the conjunction of formulas

∀xi(ui(xi)→ pi(xi))

such that xi is a list of object variables of the same length as the arity of pi. Addi-

tionally, we define u < p to be the formula (u ≤ p) ∧ ¬(p ≤ u).3

3 The definition of p ≤ u mirrors that of u ≤ p.

15



Example 3 For example, if p and q are unary predicate constants then (u, v) < (p, q)

is

∀x(u(x)→ p(x)) ∧ ∀x(v(x)→ q(x)) ∧ ¬
(
∀x(p(x)→ u(x)) ∧ ∀x(q(x)→ v(x))

)
.

For any first-order formula F , Ferraris et al. (2011) define SM[F ; p] to be

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where F ∗(u) is defined recursively as follows:

� pi(t)∗ = ui(t) for any list t of terms;

� F ∗ = F for any atomic formula F (including ⊥ and equality) that does not

contain members of p;

� (F ∧G)∗ = F ∗ ∧G∗;

� (F ∨G)∗ = F ∗ ∨G∗;

� (F → G)∗ = (F ∗ → G∗) ∧ (F → G);

� (∀xF )∗ = ∀xF ∗;

� (∃xF )∗ = ∃xF ∗.

When F is a sentence, the models of SM[F ; p] are called the p-stable models of F .

Intuitively, they are the models of F that are “stable” on p. We will often simply

write SM[F ] in place of SM[F ; p] when p is the list of all predicate constants within

the signature.

Proposition 1 (ASP within the SM Semantics) (Ferraris et al. (2011)) Given

an Answer Set Program F , the stable models of SM[F ] correspond to the answer sets

of F .
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Example 4 As an example, consider the program F shown in Figure 2.1, which may

also be viewed as the propositional logic formula

¬on → ∼on

∧ ¬on → ∼on

∧ ¬flip ∧ on0 → on1

∧ ¬on0 ∧ flip → on1

∧ ¬flip → ∼flip

∧ ¬∼flip → flip

∧ ¬on1 → >

of signature σ = {on0 , ∼on0 ,flip, ∼flip, on1}.

F ∗(u) is

¬on0 → ∼on0 ∧ ¬on0 ∧ ¬uon0 → u∼on0

∧ ¬∼on0 → on0 ∧ ¬∼on0 ∧ ¬u∼on0 → uon0

∧ ¬flip ∧ on0 → on1 ∧ ¬flip ∧ ¬uflip ∧ uon0 → uon1

∧ ¬on0 ∧ flip → on1 ∧ ¬on0 ∧ ¬uon0 ∧ uflip → uon1

∧ ¬flip → ∼flip ∧ ¬flip ∧ ¬uflip → u∼flip

∧ ¬∼flip → flip ∧ ¬∼flip ∧ ¬u∼flip → uflip

∧ ¬on1 → > ∧ ¬on1 ∧ ¬uon1 → >

where each uc is a predicate variable corresponding to c. Note that the rules on the

left correspond exactly to F .

As uc ≤ c for each c ∈ σ, it holds that ¬c→ ¬uc. Due to this, we can replace all

occurrences of ¬c ∧ ¬uc with ¬c in each rule body to obtain F ∧ F ∗′(u) where F ∗′(u)

is
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¬on0 → u∼on0

∧ ¬∼on0 → uon0

∧ ¬flip ∧ uon0 → uon1

∧ ¬on0 ∧ uflip → uon1

∧ ¬flip → u∼flip

∧ ¬∼flip → uflip

∧ ¬on1 → >

It then follows that an interpretation I is a stable model of F if it is a model of

F ∧ ¬∃u((u < p) ∧ F ∧ F ∗′(u)),

or, equivalently,

F ∧ ¬∃u((u < p) ∧ F ∗′(u))

If I = {∼on0 ,flip, on1} it is clear that I |= F and that u∼on0 , uflip, uon1 must

be asserted in order to satisfy F ∗′(u). It then follows that I is a stable model of F .

Similarly, it can be shown that {on0 , ∼flip, on1} is also a stable model of F .

Furthermore, J = {on0 , ∼flip, on1} also satisfies F . However, it is easy to see

that asserting uon0 and u∼flip is sufficient in order to satisfy F ∗′(u), which violates

the condition that ¬∃u((u < p) ∧ F ∗′(u)).

This agrees with our analysis of the program in Example 1.

Using the SM semantics it is trivial to generalize answer set programming to

be applicable to arbitrary propositional logic programs4. Due to this, given any

propositional logic formula F , we will often refer to F as an (extended) answer set

program and the propositional models of SM [F ] as answer sets.

4 In fact, as shown by Cabalar and Ferraris (2007), it is possible to reduce arbitrary

propositional formulas under the Stable Model Semantics to disjunctive Answer Set

Programs.
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3.3 A Note on Multi-Valued Formulas and the SM Semantics

Multi-valued (MV) formulas (Bartholomew and Lee (2012)) extend the traditional

notion of propositional formulas with a syntax convenient for representing functions

and can also be used under the Stable Model Semantics. Here we provide a brief

review of the syntax of multi-valued propositional formulas and their meaning under

the SM Semantics.

An MV signature σ is a finite set of constants such that each constant c has an

associated finite domain Dom(c) of at least two distinct symbols where σ∩Dom(c) =

∅.

An MV formula is defined similar to a propositional formula except that it contains

multi-valued atoms of the form c = v, such that c is a constant in σ and v is in the

domain of c, in place of propositional atoms.

An MV interpretation A of the MV signature σ is a set of multi-valued atoms

which contains exactly one such atom for each constant in σ. Satisfaction of MV

formulas is defined identically to that of propositional formulas.

Given a constant c ∈ σ we define the uniqueness and existence constraints for c

(denoted UEC (c)) to be the propositional formula

(¬(
∨

v∈Dom(c)

c = v)→ ⊥) ∧ (
∧

v1,v2∈Dom(c) such that v1 6=v2

(c = v1 ∧ c = v2 → ⊥)).

Given a multi-valued signature σ we define UEC (σ) to be
∧
c∈σ UEC (c).

Intuitively, the uniqueness and existence constraints for a given signature simply

state that each constant within the signature must have exactly one value assigned

to it.

Definition 1 (Multi-Valued ASP Programs in Propositional ASP) Given

some MV signature σ, MV formula F of σ, and MV interpretation A, A is an answer

set of F if it is a model of SM[F ∧ UEC (σ)].
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Example 5 As an example, consider the multi-valued signature σ = {p, q} such that

Dom(p) = {1, 2} and Dom(q) = {1, 2, 3} and multi-valued formula

p = 1 ∧ (p = 1 ∧ ¬q = 1→ (q = 2 ∨ ¬q = 2)).

UEC (σ) is the conjunction of formulas

¬(p = 1 ∨ p = 2)→ ⊥
p = 1 ∧ p = 2→ ⊥
¬(q = 1 ∨ q = 2 ∨ q = 3)→ ⊥ (3.2)

q = 1 ∧ q = 2→ ⊥
q = 2 ∧ q = 3→ ⊥
q = 1 ∧ q = 3→ ⊥

It holds that the only answer set of F ∧ UEC (σ) is then {p = 1, q = 2}. {p = 1}

is not an answer set as it does not satisfy (3.2).

3.4 Action Languages

Action languages are formal models of natural language specializing in describing

the effects of actions on a dynamic system (Gelfond and Lifschitz (1998)). This

is done by providing a high level notation for specifying a state transition system

representing the potential states of the system, the actions which may be executed,

and the changes imposed by executing these actions.

Action languages differentiate themselves from formalisms such as ASP and the

SM Semantics by focusing on providing enhanced usability via an intuitive, high-level

language at the cost of expressivity. In practice, this is achieved by allowing the user

to provide their program in the form of structured axioms that are closer to natural

language than the logical statements seen in other formalisms. This, in turn, allows

for use of the language without formal knowledge of the underlying semantics. In
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addition, the more structured language allows for additional developer support in

the form of static semantic correctness checking, such as what is seen in the system

CCalc 2, which, to date, has not been adopted in ASP solving systems.

Among the existing action languages are B (Gelfond and Lifschitz (1998)), which

allows for complex interactions between fluents within a single state; C (Giunchiglia

and Lifschitz (1998)) which allows for richer representation of transitions between

states; C+ which extends C with multi-valued constants and action-dynamic laws

allowing for complex interaction between simultaneous actions; and BC (Lee et al.

(2013)), which integrates languages in order to allow for complex state definitions

and indirect action effects.

Unfortunately, the trade off in expressivity is often stifling and prevents many

useful problems from being adequately represented within each language. We consider

four separate examples in order to illustrate this:

� The light switch problem described previously, which acts as a simple control

example.

� A many linked switch problem in which there are a number of switches with

several of them linked together. If switch 3 is on, switches 1 and 2 must assume

opposite states (when one is on, the other must be off, and vice-versa). This

problem evaluates the language’s ability to represent recursive definitions.

� A simple pendulum problem (Giunchiglia et al. (2004)) in which a single pendu-

lum moves back in forth between positions unless it is held by an agent, which

demonstrates the language’s ability to represent non-inertial fluents.

� The paper publishing problem described by Giunchiglia et al. (2004) in which

an author may publish a paper with various attributes, including the length

of the paper and the type of the paper (journal, conference, workshop) in an
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elaboration tolerant fashion. This domain demonstrates a language’s ability to

handle complex relationships between actions.

None of the four languages previously mentioned are capable of adequately ex-

pressing all four domains. While B is able to represent recursive definitions, such as

the one required in the many switches problem, it fails at representing the non-inertial

state attributes and rich concurrent actions required for the pendulum and publishing

problems, respectively. Conversely, C and C+ are able to represent the pendulum and

publishing problems, but cannot represent recursive definitions and so are unable to

handle the many switches problem. Finally, BC is able to handle the many switches

and pendulum problems, but, despite its ability to represent concurrent actions, is

unable to describe the relationships between these actions required for the publishing

problem.

In this section, we provide definitions for each of these languages as well as discuss

their ability, or inability, to represent each of the examples previously mentioned.

In each case, we assume the presence of an MV signature consisting of disjoint sets

of fluent and action symbols, denoted σF and σA, respectively. A fluent symbol can

be viewed as a state attribute within a transition system, whereas an action symbol

can be viewed as label for the transitions.

3.4.1 The Action Language B

Given a multi-valued signature as previously described, we assume that each action

within the signature has a domain of the Boolean values {t, f}.

The action language B was described by Gelfond and Lifschitz (1998) as having

two types of laws: static laws of the form

F if G (3.3)
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where F is a fluent atom (a multi-valued atom c = v such that c is a fluent) and G

is a conjunction of fluent atoms; and dynamic laws of the form

a causes F if H (3.4)

where a is an action symbol, F is a fluent atom, and H is a conjunction of fluent

atoms.

Intuitively, a static law (3.3) states that if G holds in the current state, then F

must also hold in the current state. Similarly a dynamic law (3.4) states that if H

holds in the current state and action is executed, then F must hold in the next state.

In all cases, we call F the head of the law and G and H (where applicable) the

body. Additionally, in the event that G is > we may drop the appropriate clause for

that law. As an example, the law

a1 causes p = t if >

may be equivalently represented as

a1 causes p = t.

We adopt a similar notation for each of the other action languages.

A B action description D is a set of static laws (3.3) and dynamic laws (3.4).

Given a formula F and time stamp t, by t :F we denote the formula resulting

from inserting t:in front of each fluent or action symbol occurring in F . This nota-

tion is similarly extended to sets of formulas and sets of symbols. As an example,

i:(p = 1 ∧ q = 1) is i:p = 1 ∧ i:q = 1

Given a multi-valued atom c = v, multi-valued constant c, or set of multi-valued

constants σ, we define Choice(c = v), Choice(c), and Choice(σ) to be

c = v ∨ ¬c = v,
∧

v∈Dom(c)

Choice(c = v), and
∧
c∈σ

Choice(c),
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respectively.

The semantics of B was originally defined in terms of finding the minimal conse-

quences of executing each action which satisfy the set of static laws. Alternatively,

this process can be captured by an MV formula under the SM semantics as follows:

Definition 2 (B in Answer Set Programming) Given a B action description D

and some k ≥ 0, we define the corresponding propositional formula Dk to be the

conjunction of rules:

0:Choice(f) for each fluent f

(i−1):f = v → i:Choice(f = v) for each fluent atom f = v (0 ≤ i ≤ k) (3.5)

i:G→ i:F for each static law (0 ≤ i ≤ k)

(i−1):Choice(a) for each action a (1 ≤ i ≤ k) (3.6)

(i−1):a = t ∧ (i−1):a′ = t→ ⊥ for actions a, a′, a 6= a′ (1 ≤ i ≤ k) (3.7)∧
action a

(i−1):a = f→ ⊥ (1 ≤ i ≤ k) (3.8)

(i−1):a = t ∧ (i−1):H → i:F for each dynamic law (1 ≤ i ≤ k)

Notice the inclusion of rules (3.5) and (3.6), which enforce B’s assumption that all

fluents are inertial, i.e. they stay the same unless caused to change, and actions are

exogenous, allowing any action to be executed each step, respectively. In addition,

the constraints (3.7) and (3.8) ensure that exactly one action is executed each step.

The transition system T (D) generated by D is the transition system T (D) such

that

� An MV interpretation S of σF is a state of T (D) if 0:S is an answer set of D0,

and

� Given MV interpretations S, S ′, and A of signatures σF, σF, and σA, re-

spectively, 〈S,A,S ′〉 is a transition of T (D) from S to S ′ labeled with A if

0:S ∪ 0:A ∪ 1:S ′ is an answer set of D1.
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Named Sets: Value:
Location {left, right}
Boolean {t, f}

Constants: Type: Domain:
Arm Fluent Location
Wait Action Boolean
Hold Action Boolean

Wait causes Arm = left if Arm = right. DBpendulum,1

Wait causes Arm = right if Arm = left. DBpendulum,2

Figure 3.1: The Pendulum Problem in B

Of the four examples that we discussed previously, B is able to handle the light

switch problem (Figure A.1), and the many switch problem (Figure A.2).

As mentioned previously, B enforces a built-in inertial assumption for each fluent in

the signature. Due to this, each change in the state of the system has to be an direct or

indirect effect of an action being executed. This prevents us from directly representing

the swinging pendulum problem within B. Instead, we must use a dummy Wait action

which provides cause for the change of pendulum as is shown in Figure 3.1. However,

we find this approach inadequate as it is not representative of the physical system and

is not elaboration tolerant. In the event we wish to add additional actions which do

not affect the movement of the pendulum, we would have to duplicate laws DBpendulum,1

and DBpendulum,2 for each such action.

Finally, B is unable to represent concurrent action execution. Due to this, all

actions must be represented in a monolithic fashion as is shown in Figure 3.2. Unfor-

tunately, this is not a desirable solution as if, for example, we wished to add a location

attribute to each published paper, we would have to alter our actions to include a

third tuple element as well as update each law it was referenced in.
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Named Sets: Value:
Len {1, 2, . . . }
Type {journal, conference, workshop}
Boolean {t, f}

Constants: Type: Domain:
HasPub,HasLongPub Fluent Boolean
HasJournalPub Fluent Boolean
Pub(l, t),Wait Action (l, t) ∈ Len × Type Boolean

Pub(l, t) causes HasPub = t. (l, t) ∈ Len × Type DBpublish,1

Pub(l, t) causes HasLongPub = t. (l, t) ∈ Len × Type
l > 30 DBpublish,2

Pub(l, journal) causes HasJournalPub = t. l ∈ Len DBpublish,3

HasPub = t if HasJournalPub = t. DBpublish,4

HasPub = t if HasLongPub = t. DBpublish,4

Figure 3.2: The Publishing Problem in B

3.4.2 The Action Language C

The action language C was original described by Giunchiglia and Lifschitz (1998).

As observed by Gelfond and Lifschitz, it is more general than B in many ways,

including allowing for the representation of non-inertial fluents and concurrent action

execution. It is also capable of representing concepts more succinctly by allowing for

arbitrary propositional formulas in rules. However, it is not a strict generalization of

B due to its inability to represent recursive definitions.

Giunchiglia and Lifschitz originally described C in terms of causal explanation of

transitions within the transition system. More recently, a reduction has been shown

from the definite fragment of C to propositional formulas under the SM semantics

(Lifschitz and Yang (2010)). In this section, we review a multi-valued extension of

the syntax of this fragment of C along with its ASP based semantics.

26



In C, a static law is an expression of the form

caused F if G (3.9)

such that F is a fluent atom or ⊥ and G is a fluent formula, an MV formula which

contains no action atoms. A C dynamic law is an expression of the form

caused F if G after H (3.10)

where F is a fluent atom or ⊥, G is a fluent formula, and H is an MV formula.

Similar to in B, a C action description D is a set of static and action dynamic

laws.

Definition 3 (C in Answer Set Programming) Given a C action description D

and some k ≥ 0, we define the corresponding propositional formula Dk to be the

conjunction of rules:

0:Choice(f) for each fluent f

¬¬i:G→ i:F for each static law (3.9) (0 ≤ i ≤ k)

(i−1):Choice(a) for each action a (1 ≤ i ≤ k) (3.11)

(i−1):H ∧ ¬¬i:G→ i:F for each dynamic law (3.10) (1 ≤ i ≤ k)

As an example, the light switch problem may be represented in C as is shown in

Figure A.3.

The ASP reductions of B and C share many similarities, although they have several

important differences that reveal the fundamental differences in the semantics of each

language. The most obvious of which is that C has no built in assumption of inertia,

like the one provided by (3.5). Instead, the semantics of C allow for the action

description to define which, if any, of the fluents are inertial.

This is done by including laws of the form

caused f = v if f = v after f = v v ∈ Dom(f) (3.12)
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for each inertial fluent f . When reduced to ASP, this rule becomes

(i−1):f = v ∧ ¬¬i:f = v → i:f = v,

which is strongly equivalent to

(i−1):f = v∧ → Choice(i:f = v).

For convenience, we will refer to the set of laws of the form (3.12) by the shorthand

“inertial f.”

These rules exhibit this behavior primarily because of the other significant differ-

ence in the ASP reductions of B and C: in C the static body of each law is encased in

double negation. This allows for default reasoning, which laws in B are not capable

of. However, the use of double negation in this way also has a drawback in that it

makes recursive definitions impossible to adequately represent.

Example 6 For example, if we wanted to represent the many switch problem pre-

viously described, we might attempt to use an action description such as the one

provided in Figure 3.3.

However, this encoding breaks down as there is a recursive relationship between the

state of switch 1 and switch 2. In C, this will result in the state of these switches being

chosen arbitrarily as long as laws DCswitch2,4 and DCswitch2,5 are applicable (i.e. switch 3

is on).

As C does not have a built-in assumption of inertia, it is possible to easily represent

the pendulum problem using by defining default laws for the position of the pendulum

arm which cause the pendulum to move from right to left each step, an action such

as holding the pendulum can then be defined to override this default in a straight

forward and extensible manner. This is shown in Figure A.4.
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Named Sets: Value:
Status {on, off}
Switch {s1, s2, . . . }
Boolean {t, f}

Constants: Type: Domain:
Sw(x) Fluent x ∈ Switch Status
Flip(x) Action x ∈ Switch Boolean

inertial Sw(x). x ∈ Switch DCswitch2,1

caused Sw(x) = on
after Flip(x) = t ∧ Sw(x) = off. x ∈ Switch DCswitch2,2

caused Sw(x) = off
after Flip(x) = t ∧ Sw(x) = on. x ∈ Switch DCswitch2,3

caused Sw(x) = off if
Sw(y) = on ∧ Sw(s3) = on. x, y ∈ {s1, s2}, x 6= y DCswitch2,4

caused Sw(x) = on if
Sw(y) = off ∧ Sw(s3) = on. x, y ∈ {s1, s2}, x 6= y DCswitch2,5

Figure 3.3: Attempting to Express the Many Switches Problem in C

Finally, it is possible to exploit C’s ability to represent concurrent actions in order

to achieve an extensible formalization of the publishing problem as is shown in Figure

3.4. This approach, similar to the one shown for C+ by Giunchiglia et al. (2004), uses

additional actions, PubType and PubLen, to describe attributes of the Publish action.

When the Publish does not occur, these attributes are constrained to take the value

of none by laws DCpublish,4 and DCpublish,5. However, when Publish does occur, these

attributes may take other values which can be reasoned on individually. If we wished

to extend such a description with additional attributes, such as the location the paper

was published at, it would only be necessary to add similar constraints for the new

attribute and any laws that may reason about it.
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Named Sets: Value:
Len {1, 2, . . . , none}
Type {journal, conference, workshop, none}
Boolean {t, f}

Constants: Type: Domain:
HasPub,HasLongPub Fluent Boolean
HasJournalPub Fluent Boolean
Publish Action Boolean
PubType Action Type
PubLen Action Len

inertial HasPub. DCpublish,1

inertial HasLongPub. DCpublish,2

inertial HasJournalPub. DCpublish,3

caused ⊥ after ¬(PubType = none↔ Publish = f). DCpublish,4

caused ⊥ after ¬(PubLen = none↔ Publish = f). DCpublish,5

caused HasPub = t after Publish = t. DCpublish,6

caused HasLongPub = t after PubLen = x. x ∈ Len, x > 30 DCpublish,7

caused HasJournalPub = t after PubType = journal. DCpublish,8

caused ⊥ if HasPub = f ∧ HasLongPub = t. DCpublish,9

caused ⊥ if HasPub = f ∧ HasJournalPub = t. DCpublish,10

Figure 3.4: The Publishing Problem in C

3.4.3 The Action Language C+

The action language C+ extends C with the ability to represent complex non-

monotonic relationships between actions by allowing for non-exogenous actions and

providing a new type of law in order to represent these relationships. C+ was originally

introduced by Giunchiglia et al. (2004) who described its semantics in terms of multi-

valued non-monotonic causal theories. Later, a reduction from definite non-monotonic

causal theories to first-order formulas under the SM semantics (Lifschitz and Yang

(2010)) allowed for the semantics of the definite fragment C+ to be restated directly in
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terms of ASP (Lee (2012)) and gave rise to Cplus2ASP (Casolary and Lee (2011)),

which provides an efficient implementation of C+ using this translation.

In this section we review the definite fragment of C+ which has been implemented

in the systems CCalc 2 and Cplus2ASP.

Given a multi-valued signature divided into sets of fluent and action symbols, we

further divide the fluents into disjoint sets sets of symbols σSF, σSD of simple fluents

and statically-determined (SD) fluents, respectively.

Intuitively, a simple fluent is similar to the fluents of B and C, whereas a statically-

determined fluent is one which is fully characterized by the current state of other

fluents.

A C+ static law is an expression of the form (3.9) such that F is a fluent atom or

⊥ and G is a fluent formula. Similarly, an action dynamic law is an expression (3.9)

such that F is an action atom and G is an MV formula.

A C+ fluent dynamic law is an expression of the form (3.10) such that F a fluent

atom c = v such that c is a simple fluent or ⊥, G is a fluent formula, and H is an

MV formula.

In addition, Giunchiglia et al. (2004) define a number of shorthand laws, several

of which are enumerated below:5

� “G causes F if H” stands for “caused F after G ∧H” where G is an action

formula;

� “constraint G after H” stands for “caused ⊥ if ¬G after H”;

� “nonexecutable G if H” stands for “caused ⊥ after G ∧H” where G is an

action formula;

� “default f = v if G after H” is “caused f = v if f = v ∧G after H” given

a fluent atom f = v;
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� similarly, “default a = v if G” stands for “caused a = v if a = v ∧G” given

an action atom a = v;

� “inertial f if G” stands for “default f = v if G after f = v” for each v ∈

Dom(f) where f is a fluent; and,

� “exogenous c if G” stands for “default c = v if G” for each v ∈ Dom(c)

where c is a constant.

A C+ action description D is a set of C+ static, action dynamic, and fluent

dynamic laws.

Definition 4 (Definite C+ in Answer Set Programming) Given a definite C+

action description D and some k ≥ 0, we define the corresponding propositional

formula Dk to be the conjunction of rules:

0:Choice(f) for each simple fluent f

¬¬i:G→ i:F for each static law (3.9) (0 ≤ i ≤ k)

¬¬(i−1):G→ (i−1):F for each action dynamic law (3.9) (0 ≤ i ≤ k)

(i−1):H ∧ ¬¬i:G→ i:F for each dynamic law (3.10) (1 ≤ i ≤ k)

The reduction to ASP is similar to the one for C, except that only statically

determined fluents are assumed to be exogenous at the initial step and no assumption

is made as to the exogeneity of actions. This, combined with the addition of action

dynamic laws, allows for additional flexibility when formalizing a problem.

C+, like C, is able to easily represent non-inertial state changes, as is required

by the pendulum problem (Figure A.6), as well as formalize non-trivial concurrent

actions as are seen in the publishing problem (Figure A.7).

Unfortunately, despite the flexibility garnered by the generalizations over C, C+

still suffers from many of the same drawbacks as its predecessor C. For example, C+
5 We refer to the reader to Appendix B of (Giunchiglia et al. (2004)) for the

complete list of abbreviations.
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runs into the same difficulties as C when attempting to formalize the many switches

domain.

3.4.4 The Action Language BC

Lee et al. (2013) define the action language BC to be an extension of languages

B meant to encapsulate many of the features of C, such as representing non-inertial

fluents, while allowing for complex interactions between fluents within the same state.

As in Section 3.4.3, we assume the presence of a signature σ partitioned into sets

of simple fluents, statically-determined fluents, and actions. Furthermore, we assume

that all action symbols in σ have a domain of {t, f}.

In BC, a static law is an expression of the form

F if G1 ifcons G2 (3.13)

where F is a fluent atom, and G1 and G2 are conjunctions of fluent atoms. A BC

dynamic law is an expression of the form

F if G1 ifcons G2 after H (3.14)

where F is a fluent atom, G1 and G2 are conjunctions of fluent atoms, and H is a

conjunction of fluent atoms and action symbols.

Intuitively, (3.13) is read “If G1 is satisfied in the current state and it is consistent

to assume that G2 is satisfied, then F must also be satisfied in the current state”.

Similarly, (3.14) states “If the fluent atoms in H were satisfied in the last state and

the action symbols occurred in the transition, G1 is satisfied in the current state, and

it is consistent to assume that G2 is satisfied in the current state, then F must also

be satisfied in the current state.

In addition, Lee et al. provide a number of shorthand laws as follows:

33



� “a causes F if H” stands for “F after a ∧H” where a is an action symbol;

� “impossible G” stands for the laws

f = v if G, and

f = w if G

for some fluent f and v, w ∈ Dom(f) such that v 6= w;

� given a conjunction of action symbols G, “nonexecutable G if H” stands for

f = v after G ∧H, and

f = w after G ∧H

for some fluent f and v, w ∈ Dom(f) such that v 6= w;

� “default f = v if G after H” stands for “f = v if G ifcons f = v after H”;

and

� “inertial f” stands for “default f = v after f = v” for each v ∈ Dom(f)

where f is a fluent.

A BC action description D is a set of BC static and fluent dynamic laws.

Lee et al. defined BC in terms of a reduction to formulas under the stable model

semantics as follows:

Definition 5 (BC in Answer Set Programming) Given a BC action description

D and some k ≥ 0, we define the corresponding propositional formula Dk to be the

conjunction of rules:

0:Choice(f) for each simple fluent f

i:G1 ∧ ¬¬i:G2 → i:F for each static law (3.13) (0 ≤ i ≤ k)

(i−1):Choice(a) for each action a (1 ≤ i ≤ k)

(i−1):H ∧ i:G1 ∧ ¬¬i:G2 → i:F for each dynamic law (3.14) (1 ≤ i ≤ k)
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Named Sets: Value:
Location {left, right}
Boolean {t, f}

Constants: Type: Domain:
Arm Fluent Location
Hold Action Boolean

default Arm = left after Arm = right DBCpendulum,1

default Arm = right after Arm = left DBCpendulum,2

Hold causes Arm = right if Arm = right. DBCpendulum,3

Hold causes Arm = left if Arm = left. DBCpendulum,4

Figure 3.5: The Pendulum Problem in BC

where each action symbol a is understood as shorthand for the atom a = t.

The translation is similar to that of B, with several key differences:

� no equivalent to (3.5) is generated, allowing for non-inertial fluents;

� similarly, no equivalent to (3.7) is generated, allowing for concurrent action

execution; and

� each law has a new “ifcons” clause which is placed in the scope of double

negation, similar to the “if” clauses within C and C+.

As it turns out, the C style “ifcons” clause within BC is crucial to the representation

of non-inertial fluents, as it provides a way to represent the concept of inertia within

an action description, which the strong assumption that all fluents are inertial to be

dropped from the semantics of the language.

BC, like B, is able to easily represent the recursive relationships showcased in the

many switches problem. In fact, the encodings of the light switch and many switches

problems (Figure A.8 and A.9) are unremarkably similar to their B counterparts, with

the only difference being the explicit representation of inertia.
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Additionally, unlike B, BC is able to represent non-inertial changes to the state

using default rules as was showcased by C and C+. This allows BC to easily represent

problems such as the swinging pendulum problem, as is shown in Figure 3.5.

Although BC is able to represent concurrent actions, its ability to represent com-

plex relationships between these actions is extremely limited. In fact, the only re-

lationships that can be represented is combinations of actions that should not be

executed in each state. Unfortunately, this is not expressive enough for elaboration

tolerant action attributes, as are showcased in the publishing problem. Due to this,

BC must approach the publishing problem in the same was as B and use a single

monolithic action for each combination of attributes.
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Chapter 4

THE ACTION LANGUAGE BC+: INTEGRATING ASP, C+, AND BC

As we observed previously, of the four action languages we have reviewed, none

have been able to adequately represent recursive relationships, non-inertial/default

state changes, and rich concurrent action relationships. However, each of these con-

cepts can be represented in ASP.

On the other hand, although ASP provides an extremely expressive formalism it

lacks much of the structure and support present in modern programming languages

and integrated development environments. Instead, ASP is more of a “logical as-

sembly language”, capable of providing a unified backbone for execution, yet largely

unsuitable for crafting problem descriptions of significant size.

In order to attempt to remedy these deficiencies, we propose a new action lan-

guage, BC+, which provides a proper generalization for definite C+ and BC by lever-

aging the full expressivity of modern ASP, all the while providing a traditional action

language structure in order to enhance the accessibility of the formalism in terms of

readability and supportability.

4.1 Defining the Action Language BC+

We assume the presence of a signature σ divided into distinct sets of simple fluents,

statically determined fluents, and actions, as in Section 3.4.3.

A BC+ static law is a law of the form

F if G (4.1)

such that F is a fluent atom, ⊥, or fluent formula of the form Choice(c = v), and

G is a fluent formula (MV formula). Similarly, a BC+ action dynamic law is a law
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of the form (4.1) such that F is an action atom, ⊥, or action formula of the form

Choice(c = v), and G is an MV formula.

A BC+ fluent dynamic law is a law of the form

F if G after H (4.2)

such that F is a fluent atom c = v or fluent formula of the form Choice(c = v) where

c is a simple fluent or ⊥, G is a fluent formula, and H is an MV formula.

Similar to in C+, we define the following shorthand laws:

a = v causes F if H 7→ F after a = v ∧ H

impossible G after H 7→ ⊥ if G after H

nonexecutable a = v if H 7→ ⊥ if a = v ∧H
default c = v if G after H 7→ Choice(c = v) if G after H

inertial f if G 7→ default f = v if G after f = v (v ∈ Dom(f))

exogenous c if G after H 7→ default c = v if G after H (v ∈ Dom(c))

where f is a fluent constant, c is a constant, and a is an action constant.

A BC+ action description D = DS ∪ DAD ∪ DFD consists of a finite set of static

laws DS, action dynamic laws DAD, and fluent dynamic laws DFD.

As an example, the toggle switch problem previously discussed may be represented

in BC+ as is shown in Figure 4.1.
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Named Sets: Value:
Status {on, off}
Boolean {t, f}

Constants: Type: Domain:
Sw Simple Fluent Status
Light SD Fluent Status
Flip Action Boolean

inertial Sw . DBC+switch,1

exogenous Flip. DBC+switch,2

Flip = t causes Sw = on if Sw = off. DBC+switch,3

Flip = t causes Sw = off if Sw = on. DBC+switch,4

default Light = s if Sw = s. s ∈ Status DBC+switch,5

Figure 4.1: Toggle Switch Domain in BC+.

4.2 A Transition System Based Semantics

Given a BC+ action description D, we divide the process of transition system

construction into three parts: we first determine the states of D, afterward, for each

state, we find the set of potential transition labels leaving the state, finally, we char-

acterize the final state (or states), if one exists, resulting from following each label

from its originating state.

Given a problem description D, we say an MV interpretation S of σF is a state of

D if S is an answer set of

∧
(4.1)∈DS

(G→ F ) ∧ Choice(σSF). (4.3)

Given a state S, we say an MV interpretation A of σA is a candidate transition

label leaving S if S ∪ A is an answer set of

∧
(4.1)∈DAD

(G→ F ) ∧ Choice(σF). (4.4)
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Figure 4.2: The transition system of Dswitch

Given states S and S ′ and a candidate transition label A leaving S, we say T =

〈S,A,S ′〉 is a transition of D if 0:S ∪ 0:A ∪ 1:S ′ is an answer set of

∧
(4.2)∈DFD

0:M ∧ 1:G→ 1:F ∧
∧

(4.1)∈DS

(1:G→ 1:F ) ∧ Choice(0:σF ∪ 0:σA). (4.5)

Example 7 Consider the Dswitch problem description provided in Figure 4.1. The

only static law present is Dswitch,5, the only action dynamic law is Dswitch,2, while the

remaining laws are fluent dynamic.

The states of the transition system are then answer sets of signature {Sw ,Light}

of

(Sw = off→ Light = off) ∧ Choice(Sw).

There are two such interpretations:

S0 = {Sw = off,Light = off}, and S1 = {Sw = on,Light = on}.

As Dswitch,2 is the only action dynamic law and contains no fluent constants, it

is clear that all states have the same set of candidate transition labels which are the

answer sets of ∧
b∈{true,false}

Choice(Flip = b).
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This means that there are two possible transition labels leaving each state:

A0 = {Flip = true}, and A1 = {Flip = false}.

Finally, the transitions of D are tuples 〈S,A,S ′〉 of states and candidate action

labels such that 0:S ∪ 0:A ∪ 1:S ′ is an answer set of

∧
s∈{on,off}

(0:Sw = s→ Choice(1:Sw = s)) Dswitch,1

∧ (0:Flip = true ∧ 0:Sw = on→ 1:Sw = off) Dswitch,3

∧ (0:Flip = true ∧ 0:Sw = off→ 1:Sw = on) Dswitch,4

∧ ((1:Sw = on→ 1:Choice(Light = on))) Dswitch,5

∧ Choice({0:Sw , 0:Light , 0:Flip})

In this case, there is exactly one successor state S ′ for each initial state S and candi-

date transition label A combination, creating 4 transitions. Each of these transitions

are displayed in the final transition system provided in Figure 4.2.

Definition 6 (BC+ Histories) A history Hk of D is a path of length k through the

transition system T (D). We may also identify Hk with the MV interpretation

0:S0 ∪ 0:A0 ∪ 1:S1 ∪ 1:A1 ∪ · · · ∪ k:Sk

where each Si (0 ≤ i ≤ k) is the ith state visited and each Aj (0 ≤ j < k) is the jth

transition label taken in the history.

4.3 An ASP Based Semantics

Similar to many other actions languages, a BC+ action description may also repre-

sented in terms of its reduction into an MV formula under the Stable Model Semantics.
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Definition 7 (Capturing BC+ in ASP) Given a BC+ action description D and

some k ≥ 0, we define Dk to be the conjunction of rules

0:Choice(f) for each simple fluent f (4.6)

i:G→ i:F for each static law (4.1) (0 ≤ i ≤ k)

(i−1):G→ (i−1):F for each action dynamic law (4.1) (1 ≤ i ≤ k) (4.7)

(i−1):H ∧ i:G→ i:F for each fluent dynamic law (4.2) (1 ≤ i ≤ k)

As it turns out, this approach is equivalent to the construction of the transition

system T (D) presented in the previous section. This is stated formally in Proposition

2.

Proposition 2 (Equivalence of Semantics) Given a BC+ action description D

and any k ≥ 0 it holds that the histories of length k of T (D) correspond exactly to

the answer sets of Dk.

As a special case, we can then derive a definition of our BC+ transition system

similar to those provided for each of the other action languages.

Corollary 1 Given a BC+ action description D, it holds that the answer sets D0

and D1 correspond to the states and transition of T (D), respectively.

Example 8 As an example, given the BC+ toggle switch action description Dswitch,

Dswitch,1 is
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∧
s∈{on,off}

Choice(0:Sw = s)

∧
∧

s∈{on,off}

(0:Sw = s→ Choice(0:Light = s)) Dswitch,5

∧
∧

b∈{true,false}

0:Choice(Flip = b) Dswitch,2

∧
∧

s∈{on,off}

(1:Sw = s→ Choice(1:Light = s)) Dswitch,5

∧
∧

s∈{on,off}

(0:Sw = s→ Choice(1:Sw = s)) Dswitch,1

∧ (0:Flip = true ∧ 0:Sw = off→ 1:Sw = on) Dswitch,3

∧ (0:Flip = true ∧ 0:Sw = on→ 1:Sw = off) Dswitch,4

Which has 4 answer sets

A0 ={0:Sw = off, 0:Light = off, 0:Flip = false, 1:Sw = off, 1:Light = off},

A1 ={0:Sw = off, 0:Light = off, 0:Flip = true, 1:Sw = on, 1:Light = on},

A2 ={0:Sw = on, 0:Light = on, 0:Flip = false, 1:Sw = on, 1:Light = on}, and

A3 ={0:Sw = on, 0:Light = on, 0:Flip = true, 1:Sw = off, 1:Light = off}.

These correspond exactly to the transitions described in Example 7.

4.4 Relation to Existing Formalisms

Like B and BC, BC+ is able to represent recursive relationships, such as those

exhibited in the many switch problem, a formalization of which is shown in Figure

A.11. In addition, BC+ is able to match the expressivity of C and C+ in regards to

representing non-inertial fluents and complex concurrent actions, which is exhibited

by the implementations of the pendulum and publishing problems shown in Figures

A.12 and A.13.
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In fact, BC+ is a proper generalization of each of the languages reviewed in Section

3.4. In this section, we provide the mapping from definite C+ and BC to BC+. Given

these mappings, the mappings for C and B then follow immediately as special cases.

Given a definite C+ action description D, we define the corresponding BC+ action

description cp2bcp(D) to be the description obtained by replacing each static and

action dynamic law (3.9) with the law

F if ¬¬G

and each fluent dynamic law (3.10) with the law

F if ¬¬G after H.

The intuition behind this mapping is quite clear. By examining the reduction of

both C+ and BC+ into ASP, we can easily see that the only difference in them is the

presence of the implicit double negation in front of the static bodies (G) of each of the

laws. Therefore, adding this double negation makes the two resulting ASP programs

equivalent. This is stated formally in Proposition 3.

Proposition 3 Given a definite C+ action description D, it holds that the transition

system corresponding to D is exactly T (cp2bcp(D)).

Given a BC action description D, we define the corresponding BC+ action de-

scription bc2bcp(D) to be the description obtained by understanding “ ifcons G2” as

shorthand for appending “¬¬G2” to the law’s if clause and adding the action dynamic

law “Choice(a)” for each action a ∈ σ.

Proposition 4 Given a BC action description D, it holds that the transition system

corresponding to D is exactly T (bc2bcp(D)).
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Not only is BC+ a generalization of each of the action languages reviewed in

Section 3.4, it can also be trivially observed that it is as expressive as propositional

answer set programs. This can be done by understanding each constant in the ASP

program as a Boolean statically determined fluent constant, expressing each ASP rule

G→ F

as the static law

F if G,

and adding the law

default c = f

for each constant c.

The states of the resulting action description are then exactly the answer sets of

the initial ASP program.
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Chapter 5

MODULAR AND ONLINE ANSWER SET PROGRAMS

Traditionally, KR formalisms have largely ignored the execution phase of problem

solving and instead focused exclusively on providing tools to assist planning, rather

than execution, assuming that the system will behave exactly as expected. However,

what if an unexpected event occurs? Or an action performed by the agent has un-

intended consequences? An agent operating in most real world environments has to

respond to external input and events which are not known a priori.

One approach to handling this is to treat each of these events as an exception

which causes the agent to create a new plan based on the current state of the system

and the new information. In the past, this has been done by completely throwing out

the previous results and restarting the planning process from scratch. Unfortunately,

while this works in small examples, it is not feasible in large or time sensitive problems

as it exasperates the inherent intractability of solving ASP programs.

To make matters worse, planning problems often involve attempting to find the

minimum length plan to achieve the goal. In order to do this, an iterative deepening

search is employed in which the system first checks for a plan of length 0, followed by

one of length 1, and so on and so forth. Similar to handling execution exceptions, each

of these iterations historically requires the grounding/solving process to be completely

restarted. This means that, in the event the event the minimum plan is of length k,

the ASP program is re-grounded and resolved k times each time new information is

acquired during execution.

Recently, the systems iClingo (Gebser et al. (2008)) and oClingo (Gebser et al.

(2011a)) have been introduced in order to attempt to solve these issues. iClingo
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allows the user to specify a program template consisting of three components: the base

component, which contains static information, such as the initial state of a system; the

incremental component, which contains step variant knowledge, such as how a system

will evolve over time; and the volatile component, which contains information about

the final step, such as the goal that should be reached (i.e. desirable attributes of the

final state). iClingo uses the Module Theorem (Janhunen et al. (2007);Oikarinen

and Janhunen (2006)) to perform an iterative deepening search, such as the one

required for finding the minimum length plan to achieve a goal, without requiring

a restart for the grounding/solving process. Instead, the new step is grounded and

composed to the existing program and solving continues using previously learned

heuristic information. oClingo takes the work done by iClingo a step further by

extending their theory to allow for online information to be dynamically added to the

system as a substitute to restarting the process when an execution exception occurs.

In practice, these improvements result in a drastic performance increase when

considering problems which require an iterative deepening approach and/or desire

fault tolerant execution. Although this approach shows a lot of promise for improving

the scalability of ASP systems, iClingo and oClingo assume their input programs

are modular and mutually revisable, and do not verify them to ensure compliance.

These conditions require intimate knowledge of the theory behind these systems and

impose additional difficulties for a potential developed. The result is a drastic increase

in developmental complexity which makes the systems undesirable.

In this chapter we review the background theories behind these systems in prepa-

ration for extending them in order to formalize an online extension to the proposed

BC+ language which helps to abstract the design complexity involved in creating an

online ASP program.
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We begin by reviewing the Splitting Theorem (Ferraris et al. (2009a)) and the

Module Theorem. These theorems both allow for larger problems to be divided

into smaller ones and considered individually. Although similar in nature, neither

subsume the other in terms of generality, and, until recently, their relationship has

not been formalized. Following this review, we present a first-order generalization

of the Module Theorem which also fully subsumes the Splitting Theorem. Following

this, we provide a review of the online ASP theory behind system oClingo, which

generalizes iClingo’s incremental theory.

5.1 The Symmetric Splitting Theorem

Initially, the Splitting Theorem was defined by Lifschitz and Turner (1994) as a

means to consider disjunctive ASP programs consisting of rules of the form (2.3) by

splitting it along asymmetric splitting sets. Later, Ferraris et al. (2009a) introduced a

symmetric extension to this theorem to be applicable for first-order formulas under the

Stable Model Semantics. This generalized version examines the predicate dependency

graph of a program, which represents the positive relationships between each of the

predicate symbols in the formula, in order to identify strongly connected components.

According to Ferraris et al., each of these strongly connected components may then

be separated out and considered independently.

The following review follows Ferraris et al.’s definition.

Formally, we identify an occurrence of a subformula as positive if the number of

implications1 containing the occurrence in the antecedent is even. Furthermore, we

say the subformula is strictly positive if that number is 0. Finally, we say a formula F

is negative on a list of predicate symbols p if there is no strictly positive occurrence

of any p ∈ p within F .

1 Recall that we treat the formula ¬F as F → ⊥.
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As an example, consider the formula

p(a) ∧ q(b) ∧ ∀x((¬s ∧ ¬q(x) ∧ p(x))→ r(x)). (5.1)

Both occurrences of q in (5.1) are positive, however only first is strictly positive. In

addition, (5.1) is negative on {s}.

Definition 8 (Predicate Dependency Graph, Ferraris et al. (2009a))

The predicate dependency graph of F relative to a list of predicate symbols p, de-

noted DG[F ; p], is the directed graph that

� has all members of p as its vertices, and

� has an edge from p to q if, for some rule G→ H of F ,

– p has a strictly positive occurrence in H, and

– q has a positive occurrence in G that does not belong to any subformula of

G that is negative on p.

As mentioned previously, the predicate dependency graph is essentially used to

model the positive relationships of predicates within a formula. The intuition behind

this is that, as we saw in Example 4, an occurrence of a subformula R which is

negative on the intensional predicates will not be replaced by R∗(u) while calculating

F ∗(u), which serves to fix its interpretation when considering if the model is minimal.

Due to this, an edge exists from p to q in the dependency graph only if the occurrence

of q is not in such a subformula.

For example, DG[(5.1); pqr] has the vertices p, q, and r, and a single edge from r

to p.

Theorem 1 (The Splitting Theorem, Ferraris et al. (2009a)) Let F and G

be first-order sentences, and let p and q be finite disjoint lists of distinct predicate

constants. If
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(a) each strongly connected component of the predicate dependency graph of F ∧G

relative to p, q is either a subset of p or a subset of q,

(b) F is negative on q, and

(c) G is negative on p

then

SM[F ∧G; p ∪ q]↔ SM[F ; p] ∧ SM[G; q]

is logically valid.

Theorem 1 tells us that SM[(5.1)] is equivalent to

SM[p(a); p] ∧ SM[q(b); q] ∧ SM[∀x(¬s ∧ p(x) ∧ ¬q(x)→ r(x)); r].

Which allows us to evaluate the stable models of p(a), q(b) and

∀x(¬s ∧ p(x) ∧ ¬q(x)→ r(x))

independently. In the event an interpretation is a stable model of all three, the

Splitting Theorem tells us that it must be a stable model of (5.1).

5.2 The Module Theorem for Disjunctive Answer Set Programs

The Module Theorem was introduced by Oikarinen and Janhunen (2006) as an

extension to Lifschitz and Turner (1994)’s Splitting Theorem. It acts as a means

to allow solutions of smaller problems to be composed to create solutions to the

problem at large. The Module Theorem primarily distinguishes itself from Ferraris

et al. (2009a)’s Splitting Theorem in two ways: like the original splitting theorem,

it is limited to disjunctive answer set programs; and, each submodule is described

in a module with subsets of the overarching signature which allows for solutions

of each module to be composed to generate solutions for the final program. (This
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differentiates itself from the Splitting Theorem which only allows solutions to be

checked against each sub-problem).

Given a formula F we define Pred(F ) to be the set of predicates which F . Note

that in the event F is propositional Pred(F ) is the set propositional atoms within F .

A DLP-module is a triple 〈F, I, O〉 where F is a disjunctive logic program, and I

and O are finite, disjoint sets of propositional atoms such that Pred(F ) ⊆ I ∪O.

Definition 9 (Module Answer Sets, Janhunen et al. (2009)) We say that a

set X of atoms is a (module) answer set of a DLP-module 〈F, I, O〉 if X is an answer

set of F ∧ Choice(I).

Intuitively, for any DLP-module 〈F, I, O〉, its output atoms are those that are

characterized by the module, while input atoms are external in the sense that it is

expected to be characterized by a separate module. Thus, when we interpret 〈F, I, O〉

we allow the input atoms to be asserted arbitrarily (as we have no additional regarding

these atoms) while minimizing the occurrences of output atoms.

Given two or more of these DLP-modules, it is possible to compose them into a

larger DLP-module which characterizes each of the atoms originally characterized by

its progenitors. This process, known as joining the modules, imposes a precondition

very similar to the splitting theorem by examining the predicate dependency graph

for strongly connected components which span each of the modules. This is defined

formally in Definition 10.

Definition 10 (Join of Modules) Two DLP-modules F1 = (F1, I1, O1) and F2 =

(F2, I2, O2) are called joinable if

� each strongly connected component of DG[F1 ∧ F2; O1 ∪ O2] is either a subset

of O1 or a subset of O2,
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� any rule in F1 with a head atom in O2 also occurs in F2, and symmetrically

� any rule in F2 with any head atom in O1 also occurs in F1.

Given two such DLP-modules, the join of F1 and F2, denoted by F1 t F2, is defined

as the DLP-module

〈F1 ∧ F2, (I1 ∪ I2) \ (O1 ∪O2), O1 ∪O2〉

The notable difference between the preconditions for the joining modules and that

imposed by the Splitting Theorem is that the Module Theorem allows certain rules

to overlap between modules. As an example, consider the DLP-modules

〈(p ∨ q) ∧ (p→ r) ∧ s, {q}, {p, r, s}〉, and (5.2)

〈(p ∨ q) ∧ (¬r ∨ ¬p), {p, r}, {q}〉. (5.3)

(5.2) and (5.3) are joinable and result in the DLP-module

〈(p ∨ q) ∧ (p→ r) ∧ s ∧ (¬r ∨ ¬p), ∅, {p, q, r, s}〉 (5.4)

which has a single answer set {q, s}. However, SM [(p ∨ q) ∧ (p → r); prs] and

SM [(p ∨ q) ∧ (¬r ∨ ¬p); q] cannot be composed via the Splitting Theorem.

Given sets of atoms X1, X2, and A, we say that X1 and X2 are A-compatible if

they agree on the set of atoms A, that is X1 ∩ A = X2 ∩ A.

Theorem 2 (The Module Theorem for Disjunctive Answer Set Programs)

Let F1 = (F1, I1, O1) and F2 = (F2, I2, O2) be DLP-modules such that F1 and F2 are

joinable and let X1 and X2 be ((I1 ∪ O1) ∩ (I2 ∪ O2))-compatible sets of atoms. The

set X1∪X2 is a module answer set of F1tF2 iff X1 is a module answer set of F1 and

X2 is a module answer set of F2.
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As an example, (5.2) has the answer sets {q, s}, {p, r, s} and {p, q, r, s}, while (5.2)

has the answer sets {p}, {q}, and {q, r} and {q}. Between these, the only {p, q, r}

compatible pair is {q, s} and {q}, therefore the Module Theorem states that the only

answer set of (5.2)t (5.3) is {q, s}∪{q} = {q, s}. This matches our previous analysis.

5.3 The Module Theorem for General Theory of Stable Models

As previously observed, the Splitting Theorem by Ferraris et al. and the Module

Theorem by Janhunen et al. share a number of similarities both in form and function,

however neither fully subsumes the other in terms of generality. In addition, despite

their common ancestor, no effort has been made in order to relate these theorems.

We consider a first-order extension of the Module Theorem, which, when consid-

ering module components whose signatures are fixed to be the same, can be viewed

as a generalization of Ferraris et al.’s Splitting Theorem.

In order to do this, we first consider a partial interpretation which fixes the eval-

uation of some subset of the signature. Formally, an interpretation of some signature

c is a partial interpretation of the overarching signature σ if c ⊆ σ.

We extend the notion of compatibility as follows: Given two partial interpretations

I1 and I2 of signatures c1 and c2, respectively, we say I1 and I2 are compatible if, for

each symbol c ∈ (c1∩c2) cI1 = cI2 . Given two such compatible partial interpretations,

we define their union I1 ∪ I2 to be the interpretation of signature c1 ∪ c2 such that,

for each symbol c ∈ c1 ∪ c2

� cI1 = cI1∪I2 if c ∈ c1, and

� cI2 = cI1∪I2 if c ∈ c2.

In the event that c1 and c2 are propositional, the definitions of compatibility

between, and the union of, I1 and I2 correspond exactly to Janhunen et al.’s definition

of compatibility and set union, respectively.
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A (first-order) module F is a triple 〈F, I, O〉 where F is a first order sentence of σ

and I and O are disjoint lists of predicate symbols of σ such that Pred(F ) ⊆ (I ∪O).

Similar to Janhunen et al.’s modules, a first-order module is essentially a formula

which characterizes the behavior each of the predicates within its output given the

value of each of the predicates in its input. Formally, this is characterized by treating

each input predicate as non-intensional, which exempts it from minimality checking

by the SM operator and essentially corresponds to choice rules (Ferraris et al. (2011)).

Definition 11 (Module Stable Models) We say that some interpretation I is a

(module) stable model of a first-order module F = 〈F, I, O〉 if I |= SM[F ;O]. Addi-

tionally, we understand SM[F] as shorthand for SM[F ;O].

We define the join of two first-order modules in the same way as the join between

DLP-modules.

Definition 12 (Join of First-order Modules) Given two first-order modules

F1 = 〈F1, I1, O1〉 and F2 = 〈F2, I2, O2〉, they are called joinable if

� each strongly connected component of DG[F1 ∧ F2; O1 ∪ O2] is either a subset

of O1 or a subset of O2,

� any rule in F1 with a strictly positive occurrence of a predicate in O2 also occurs

in F2, and symmetrically

� any rule in F2 with any strictly positive occurrence of a predicate in O1 also

occurs in F1.

Given two such first-order modules, the join of F1 and F2, denoted by F1 t F2, is

defined as the first-order module

〈F1 ∧ F2, (I1 ∪ I2) \ (O1 ∪O2), O1 ∪O2〉
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The following theorem is an extension of Theorem 2 to the general theory of Stable

Models. Given a formula F , by c(F ) we denote the set of all function and predicate

constants occurring in F .

Theorem 3 (The Module Theorem for General Theory of Stable Models)

Let F1 = 〈F1, I1, O1〉 and F2 = 〈F2, I2, O2〉 be first-order modules that are joinable with

interpretations A1 and A2 of c1 ⊇ c(F1) ∪ O1 and c2 ⊇ c(F2) ∪ O2, respectively. If

A1 and A2 are compatible with each other,

A1 ∪ A2 |= SM[F1 t F2] iff A1 |= SM[F1] and A2 |= SM[F2] .

In the event σ = c1 = c2 and that F1 and F2 are negative on O2 and O2, respec-

tively, Theorem 3 reduces to Theorem 1.

Furthermore, in the event that c1 and c2 are propositional, Theorem 3 reduces to

Theorem 2 and can be used to trivially extend it to the case of arbitrary propositional

formulas under the Stable Model Semantics.

5.4 Online Theories for Traditional Answer Set Programming

The systems iClingo (Gebser et al. (2008)) and oClingo (Gebser et al. (2011a))

extend the traditional answer set solving process by allowing the incremental instan-

tiation and evaluation of an ASP program allowing for an efficient iterative deep-

ening search without requiring multiple expensive restarts of the grounding/solving

process. They divide a program into three template components used during the

instantiation process: the base component, incremental component, and volatile com-

ponent. oClingo takes this concept even further by allowing for online information

to be dynamically added to the program during execution using an online incremental

component and online volatile component.
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
(t→ n)
∧(q ∧ t→ p)
∧(r ∧ ¬s→ q)
∧(m→ r)

 7→I={l,t}
〈

(t→ n)
∧(q ∧ t→ p)

, {l, t}, {n, p}
〉

Figure 5.1: Module Instantiation of a Simple Traditional ASP Program

Intuitively, the base component contains static information, such as the initial state

of a system; the incremental component contains step variant knowledge, such as how

a system will evolve over time; and the volatile component contains information about

the final step, such as the goal that should be reach (i.e. desirable attributes of the

final state). In oClingo, the online incremental component contains information ac-

quired during execution, while the online volatile component contains dynamic query

information which can be used to provide temporary goals and similar information.

In this section, we review the background theories of oClingo.

Given a traditional ASP program F , the projection of F to a set of propositional

atoms X, denoted F |X , is defined to be the program obtained from F by removing

all rules (2.1) in F that contain some ai not in X such that i > n, and removing all

occurrences of ¬aj (1 ≤ j ≤ n) such that aj is not in X from the remaining rules.

Definition 13 (Module Instantiation) Given a traditional ASP program F , Geb-

ser et al. (2011b) defined the module instantiation of F w.r.t. a set of propositional

input atoms I, denoted DLM (F, I), to be the module (F |I∪O, I, O) where O is the set

of all atoms occurring in the heads of rules in F |X and X is the set of all atoms in I

or the heads of rules in F .

The process of instantiating a module essentially models the simplification process

that is performed by modern answer set solvers while they are grounding a program.

As an example, Figure 5.1 shows a simple program and the module which results

from instantiating it with respect to {l, t}.
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An incrementally parametrized formula F [t] is a propositional formula which may

contain incrementally parametrized atoms of the form g(t):a where g(t) is a meta-level

function which maps N to Z and a is an atom.

Given any k ∈ N and incrementally parametrized formula F [t], the incremental

instantiation F [t/k] is the formula which is obtained by replacing each incrementally

parametrized atom g(t):a with an atom v:a, where v is the result of evaluating g(k).

We adopt a similar notation for sets of incrementally parametrized atoms.

Example 9 (Incremental instantiation) Consider the incremental parametrized

formula

((t−1):p ∧ ¬(t−1):q → t:p ∨ ¬t:p) ∧ ((t−1):q → t:r) (5.5)

(5.5)[t/1] is then the formula

(0:p ∧ ¬0:q → 1:p ∨ ¬1:p) ∧ (0:q → 1:r)

Gebser et al. defined a (traditional ASP) incremental theory to be a triple

〈B,P [t], Q[t]〉 such that B is a traditional ASP program and P [t] and Q[t] are incre-

mentally parametrized traditional ASP program. Informally, B is the base component,

which describes static knowledge; P [t] is the cumulative component, which contains

information regarding every step that should be accumulated during execution; and

Q[t] is the volatile component, which contains constraints or other information re-

garding the final step.

A (traditional ASP) online progression 〈E,F 〉≥1 is a stream of pairs (Ei[ei], Fi[fi])

(i ≥ 1) of traditional ASP programs with associated non-negative integers ei, fi s.t.

fi ≥ ei
2 . Intuitively, each Ei[ei] and Fi[fi] corresponds to stable and volatile knowl-

2 Gebser et al. does not restrict the values of fi and ei, however we find this

assumption simplifies the formalization without loss of generality as fi can always be

increased to match ei without affecting the results.

57



edge acquired during execution, respectively. For each (Ei[ei], Fi[fi]), ei and fi denote

the step for which they are relevant allowing knowledge to be acquired out of order.3

Given a traditional ASP incremental theory 〈B,P [t], Q[t]〉, online progression

〈E,F 〉≥1, and any j, k ≥ 0 such that e1, . . . , ej, fj ≤ k the incremental components of

the theory are

{B,P [t/1], . . . , P [t/k], E1[e1], . . . , Ej[ej], Q[t/k], Fj[fj]}4 (5.6)

We assume the presence of a set of atoms I(F ) for each F ∈ (5.6) such that I(F )

does not contain any atoms within the head of any rule in F .

In addition, Gebser et al. defined the k-expansion to be the traditional ASP

program Rj,k =
∧
F∈(5.6) F .

Definition 14 (Modular Traditional ASP Theories) Given a traditional ASP

incremental theory 〈F, P [t], Q[t]〉 and traditional ASP online progression 〈E,F 〉≥1,

they are modular if the following modules are well defined for all j, k ≥ 0 such that

j, k ≥ 0 where e1, . . . , ej, fj ≤ k 5:

P0 = DLM (B, I(B)), E0 = 〈>, ∅, ∅〉,

Pi = Pi−1 t DLM (P [t/i], O(Pi−1) ∪ I(P [t/i])), (1 ≤ i ≤ k)

Ei = Ei−1 t DLM (Ei[ei], O(Pei) ∪O(Ei−1) ∪ I(Ei[ei])) (1 ≤ i ≤ j)

Rj,k = Pk t Ej t DLM (Q[k/t], O(Pk) ∪ I(Q[t/k]))

t DLM (Fj[fj], O(Pfj) ∪O(Ej) ∪ I(Fj[fj]))

3 As an example, E4[3] is the 4th piece of online input and contains information

relevant to step 3.
4 For notational simplicity, we define E0[e0] and F0[f0] to be >, e0, f0 to be 0, and

I(E0[e0]) and I(F0[f0]) to be ∅.
5 Given a module F = 〈F, I, O〉, O(F) refers to O and I(F) refers to I.
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We commonly refer to Rj,k as the incremental composition of the incremental

theory and online progression.

Gebser et al. demonstrated that, given a modular traditional ASP incremental

theory and online progression and some j, k ≥ 0, we are able to evaluate each in-

cremental component and compose the results in order to obtain the answer sets

of the complete incremental composition Rj,k by applying Janhunen et al.’s Module

Theorem repeatedly.

Proposition 5 (Composition of Solutions, Gebser et al. (2011b))

Given a modular traditional ASP incremental theory 〈B,P [t], Q[t]〉 and online pro-

gression 〈E,F 〉≥1 and any j, k ≥ 0 such that e1, . . . , ej, fj ≤ k, an interpretation I is

an answer set of Rj,k iff there are compatible interpretations

IB, IP [t/1], . . . , IP [t/k], IE1[e1], . . . , IEj [ej ], IQ[t/k], IFj [fj ] (5.7)

such that I =
⋃
X∈(5.7)X where

� IB is an answer set of DLM (B, I(B)),

� each IP [t/i] is an answer set of DLM (P [t/i], O(Pi−1) ∪ I(P [t/i])),

� each IEi[ei] is an answer set of DLM (Ei[ei], O(Pei) ∪O(Ei−1) ∪ I(Ei[ei])),

� IQ[t/k] is an answer set of DLM (Q[k/t], O(Pk) ∪ I(Q[t/k])), and

� IFj [fj ] is an answer set of DLM (Fj[fj], O(Pfj) ∪O(Ej) ∪ I(Fj[fj])).

Given an incremental theory 〈B,P [t], Q[t]〉, online progression 〈E,F 〉≥1, we as-

sume a precedence relationship ≺ on the elements in

{B,P [t/1], P [t/2], . . . , E1[e1], E2[e2], . . . , Q[t/0], Q[t/1], . . . , F1[f1], F2[f2], . . . } (5.8)
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Figure 5.2: Precedence graph of component formulas

as the transitive closure of the following rules:

B ≺ P [t/1] ≺ · · · ≺ P [t/k], P [t/i] ≺ Q[t/i], (i ≥ 1)

E1[e1] ≺ · · · ≺ Ej[ej], Ei[ei] ≺ Fi[fi], (i ≥ 1)

P [t/ei] ≺ Ei[ei], and P [t/fi] ≺ Fi[fi]. (1 ≥ 1).

Additionally, we say that two formulas F,G ∈ (5.8) coexist if there is some j, k ∈ N

where e1, . . . , ej, fj ≤ k such that F,G ∈ (5.6).

Intuitively, F,G coexist if they must eventually be composed together into some

Rj,k. For example, P [t/1] and Q[t/3] coexist as they are both present in R0,3, whereas

Q[t/1] and Q[t/3] do not.

Definition 15 We say that an incremental theory 〈B,P [t], Q[t]〉 and online progres-

sion 〈E,F 〉≥1 are mutually revisable if, for each pair of distinct coexisting formulas

F,G ∈ (5.8) such that F 6≺ G, it holds that each atom occurring in G which also

occurs in the head of some rule in F is in I(G).
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Technically, this definition is not as general as the one provided by Gebser et al.

as they enforce that inputs of the instantiated module must be disjoint from the

simplified formula’s head atoms. We enforce this on the unsimplified formula as it

provides a clearer definition. The cases which are affected by this change are those

in which a rule initially contains a occurrence of an input atom in the head and is

simplified out during the instantiation process.

For example, the incremental theory

〈p← q,>,>〉

such that I(B) = {p} and I(P [t/i]) = I(Q[t/i]) = ∅ is mutually revisable by the

original definition, but not by our altered definition.

Proposition 6 (Correctness, Gebser et al. (2011b)) Given a traditional ASP

incremental theory 〈B,P [t], Q[t]〉 and online progression 〈E,F 〉≥1 which are modular

and mutually revisable, j, k ≥ 0 such that e1, . . . , ej, fj ≤ k. Let Rj,k and Rj,k =

〈G, I,O〉 be the k-expansion and incremental composition, respectively. It holds that

the answer sets of Rj,k and G coincide.

Using Proposition 6 it is possible to incrementally ground, simplify, and solve a

traditional ASP incremental theory in order to find the minimum k such that R0,k has

an answer set without repeating previous work performed. In practice, this allows

for a significant speedup when performing an iterative deepening search, such as

when searching for a minimum length plan to accomplish a goal. In addition, the

system is able to account for specific forms of online input in an equally efficient

manner by allowing external information to be asserted in the online progression

during execution.
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Example 10 (Online ASP Solving) Given an incremental theory

〈>,¬(t−1):q ∧ ¬(t−1):p→ t:p,¬t:p→ ⊥〉

such that I(B) = ∅, I(P [t/i]) = {(i−1):q}, and I(Q[t/i]) = ∅ and online progression

〈E,F 〉≥1.

Initially, R0,0 is constructed such that

P0 = 〈>, ∅, ∅〉, (trivially)

Q[0] = DLM (Q[t/0], O(P0) ∪ I(Q[t/0]))

= 〈> → ⊥, ∅, ∅〉, (¬0:p is simplified to >)

R0,0 = P0 tQ[0]

= 〈> → ⊥, ∅, ∅〉.

It is easy to see that R0,0 has no answer sets as > → ⊥ is a contradiction.

As a result, R0,1 is attempted as follows:

P1 = P0 t DLM (P [t/1], O(P0) ∪ I(P [t/1]))

= P0 t 〈¬0:q → 1:p, {0:q}, {1:p}〉 (¬0:p is simplified to >)

= 〈¬0:q → 1:p, {0:q}, {1:p}〉,

Q[1] = DLM (Q[t/1], O(P1) ∪ I(Q[t/1]))

= 〈¬1:p→ ⊥, {1:p}, ∅〉,

R0,1 = P1 tQ[1]

= 〈(¬0:q → 1:p) ∧ (¬1:p→ ⊥), {0:q}, {1:p}〉.

Solving is then halted as this has one answer set {1:p}. However, in the event that

E1[0] = 0:q, and

F1[0] = >
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such that I(E1[0]) = I(F1[0]) = ∅ is later asserted (i.e. 0:q must be true), we then

must consider the construction of R1,k, rather than R0,k.

R1,1 is constructed such that

E1 = 〈>, ∅, ∅〉 t DLM (E1[0], O(Pe0) ∪ I(E1[0])) (e0 is 0)

= 〈>, ∅, ∅〉 t 〈0:q, ∅, {0:q}〉

= 〈0:q, ∅, {0:q}〉,

F[1] = DLM (F1[0], O(Pf0) ∪O(E1) ∪ I(F1[0])) (f1 is 0)

= 〈>, {0:q, 1:p}, ∅〉,

R1,1 = P1 t E1 tQ[1] t F[1]

= 〈(¬0:q → 1:p) ∧ 0:q ∧ (¬1:p→ ⊥), {0:q, 1:p}〉.

Once again, there are no answer sets, so the search is deepened to R1,2 as follows:

P2 = P1 t DLM (P [t/2], O(P1) ∪ I(P [t/2]))

= P1 t 〈¬1:q ∧ ¬1:p→ 2:p, {1:q, 1:p}, {2:p}〉

= 〈(¬0:q → 1:p) ∧ (¬1:q ∧ ¬1:p→ 2:p), {0:q, 1:q}, {1:p, 2:p}〉,

Q[2] = DLM (Q[t/2], O(P2) ∪ I(Q[t/2]))

= 〈¬2:p→ ⊥, {1:p, 2:p}, ∅〉,

R1,2 = P2 t E1 tQ[2] t F[1]

= 〈(¬0:q → 1:p) ∧ (¬1:q ∧ ¬1:p→ 2:p) ∧ 0:q ∧ (¬2:p→ ⊥), {1:q}, {0:q, 1:p, 2:p}〉.

This has a single answer set {0:q, 2:p}.

The background theory of the system iClingo can be viewed as a special case

of the oClingo theory such that the online progression 〈E,F 〉≥1 is trivial and, for

each incremental component F ∈ (5.6), the explicit inputs I(F ) are empty.
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Chapter 6

REVISITING LANGUAGE BC+ WITH ONLINE EXECUTION

Solving online planning problems consists of two major steps:

1. generate an optimal solution based on the current system state and known

input, and

2. respond to new orders and other unexpected events during execution.

Traditionally, KR solutions to this involve attempting to solve a problem parametrized

with a maximum step value k for each assignment 0, 1, . . . of k until a solution is found.

Then, if an unexpected event occurs during execution, this information regarding the

event is added to the program and the process is repeated once again.

With this approach, if the minimum plan length is 10 steps, the system will re-

evaluate the same program 10 times in order to generate the initial plan. If an event

were to occur causing the minimum length of a plan to increase to 12, the system will

then have re-evaluated the program 22 times in total. It is clear that this approach is

not scalable and is therefore not appropriate for problems of non-trivial size or those

which are time sensitive.

It is possible to use an incremental solver, such as oClingo to provide a more

efficient alternative to this process, however Gebser et al.’s online ASP formalization

relies on the conditions of modularity and mutual revisability, which are difficult to

verify in practice. To make matters worse, the systems push the burden of checking

these conditions to the developer, rather than performing automatic verification capa-

ble of detecting a violation of these conditions. This results in a prohibitive increase

in developmental complexity.
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Instead, we wish to be able to use a high-level language, such as BC+, within

their incremental theory in order to hide this complexity from the developer while

taking advantageous of the sizable performance increase when considering planning

problems.

In order to do this, we first present an extension of Gebser et al.’s online ASP

formalization to allow for arbitrary propositional formulas under the Stable Model

Semantics. Following this, we consider an extension to the syntax and semantics of

BC+ which allows for fault tolerant online execution under this framework. Finally,

we observe that as a special case of these semantics, we can evaluate offline BC+

programs incrementally, resulting in a significant improvement in performance when

searching for minimum length plans.

6.1 Online Theories for Propositional ASP Formulas

We extend the notions of incremental theories and online progressions presented

in Section 5.4 in a straight forward manner. That is, we define an incremental theory

to be a triple 〈B,P [t], Q[t]〉 such that B is a propositional formula, and P [t] and Q[t]

are incrementally parametrized formulas. An online progression 〈E,F 〉≥1 is a stream

of pairs (Ei[ei], Fi[fi]) (i ≥ 1) of propositional formulas with associated non-negative

integers ei, fi.

Similar to in Section 5.4, we assume the presence of a set of atoms I(F ) for each

F ∈ (5.6) such that I(F ) does not contain any atoms within the head of any rule

in F .

Given a propositional formula F and set of atoms A, we define the projection

of F onto A (denoted F |A) to be the formula obtained by replacing all occurrences

of atoms p in F such that p 6∈ A with ⊥ and performing the following syntactic
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transformations recursively until no further transformations are possible:

¬⊥ 7→ > ¬> 7→ ⊥

⊥ ∧ F 7→ ⊥ F ∧ ⊥ 7→ ⊥ > ∧ F 7→ F F ∧ > 7→ F

⊥ ∨ F 7→ F F ∨ ⊥ 7→ F > ∨ F 7→ > F ∨ > 7→ >

⊥ → F 7→ > F → > 7→ > > → F 7→ F

Formally, given a propositional formula F and some set of atoms A, we define

Simple(F,A) to be the results of recursively projecting F onto the set of atoms in A

and the heads of rules within F until a fixpoint is reached.

Example 11 As an example, take the propositional formula

F = (p→ q) ∧ (q → r) ∧ ((¬q ∧ t)→ s).

The process of calculating Simple(F, {t,m}) results in the following transformations

on F :

(p→ q) ∧ (q → r) ∧ ((¬q ∧ t)→ s) initially

⇒ (q → r) ∧ ((¬q ∧ t)→ s) first iteration

⇒ ((¬q ∧ t)→ s) second iteration

⇒ t→ s third iteration

⇒ t→ s. final iteration

In addition, we define the modular instantiation of F with respect to A, denoted

PM (F,A), to be the module

〈Simple(F,A), A,Pred(Simple(F,A)) \ A〉.

When considering the common syntax, our modular instantiation and Gebser

et al.’s are similar, except that we perform the projection simplification recursively

to a fixpoint whereas they limit themselves to two iterations.
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Definition 16 (Modular Incremental Theories and Online Progression)

Given an incremental theory 〈B,P [t], Q[t]〉 and online progression 〈E,F 〉≥1 we say

they are modular if the following modules are defined for every j, k ∈ N such that

e1, . . . , ej, fj ≤ k:1

P0 = PM (B, I(B)), E0 = 〈>, ∅, ∅〉,

Pi = Pi−1 t PM (P [t/i], O(Pi−1) ∪ I(P [t/i])), (1 ≤ i ≤ k)

Ei = Ei−1 t PM (Ei[ei], O(Pei) ∪O(Ei−1) ∪ I(Ei[ei])) (1 ≤ i ≤ j)

Rj,k = Pk t Ej t PM (Q[k/t], O(Pk) ∪ I(Q[t/k]))

t PM (Fj[fj], O(Pfj) ∪O(Ej) ∪ I(Fj[fj]))

Definition 16 is essentially the same as Definition 14, with the previously noted

difference regarding the simplification performed during module instantiation. Due

to this alternate simplification scheme, Definition 16 is a strict generalization of its

counterpart, even when considering the common syntax.

As an example, consider the traditional ASP incremental theory and online pro-

gression

〈r → p,>, (r ∨ ¬r) ∧ (r → p)〉

E1[0] = >, and

F1[0] = >

such that I(B) = {r}, I(Q[t/i]) = {p}, and I(P [t/i]) = I(E1[1]) = I(F1[1]) = ∅. It

holds that this is modular according to Definition 16, but not according to Definition

14.

1 As in Section 5.4, we define E0[e0] and F0[f0] to be >, e0, f0 to be 0, and I(E0[e0])

and I(F0[f0]) to be ∅.
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We extend the notion of mutually revisable incremental theories and online pro-

gressions provided in Section 5.4 in a straight-forward manner.

Proposition 7 (Composition of Solutions) Given a modular incremental theory

〈B,P [t], Q[t]〉 and online progression 〈E,F 〉≥1 and any j, k ≥ 0 such that

e1, . . . , ej, fj ≤ k, an interpretation I is an answer set of Rj,k iff there are compatible

interpretations

IB, IP [t/1], . . . , IP [t/k], IE1[e1], . . . , IEj [ej ], IQ[t/k], IFj [fj ] (6.1)

such that I =
⋃
X∈(6.1)X where

� IB is an answer set of PM (B, I(B)),

� each IP [t/i] is an answer set of PM (P [t/i], O(Pi−1) ∪ I(P [t/i])),

� each IEi[ei] is an answer set of PM (Ei[ei], O(Pei) ∪O(Ei−1) ∪ I(Ei[ei])),

� IQ[t/k] is an answer set of PM (Q[k/t], O(Pk) ∪ I(Q[t/k])), and

� IFj [fj ] is an answer set of PM (Fj[fj], O(Pfj) ∪O(Ej) ∪ I(Fj[fj])).

Proposition 8 (Correctness of Incremental Composition) Given a modular

and mutually revisable incremental theory 〈B,P [t], Q[t]〉 and online progression

〈E,F 〉≥1 and some j, k ∈ N such that e1, . . . , ej, fj ≤ k and let Rj,k and Rj,k =

〈G, I,O〉 be the k-expansion and incremental composition of the incremental theory

and online progression. The answer sets of Rj,k and G coincide.

As it happens, in the event that all explicit inputs are empty (i.e. the offline case)

mutually revisability is a stronger condition than modularity. This means that in

offline environments it’s sufficient to just check that an incremental theory is mutually

revisable.

In practice, these conditions are quite difficult to check as they require consid-

ering complex relationships between all current and future incremental components
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and their modular instantiations. As it turns out, it is possible to strengthen these

conditions to simplify them greatly. Definition 17 provides such a strengthening in

the form of acyclic incremental theories and online progressions. Meanwhile, Lemma

1 provides that this condition is sufficient to check for modularity and mutual revis-

ability.

Definition 17 (Acyclic Incremental Theories and Online Progressions)

Given an incremental theory 〈B,P [t], Q[t]〉 and online progression 〈E,F 〉≥1, we say

they are acyclic if:

� for each distinct coexisting F,G ∈ (5.8) such that F 6≺ G, each occurrence of an

atom within Pred(G) \ I(G) in F is within a subformula of the form ¬H, and

� for each F ∈ (5.8), each occurrence of an atom within I(F ) in F is within a

subformula of the form ¬H.

Lemma 1 (Acyclic Modularity and Mutual Revisability) Given an acyclic

incremental theory 〈B,P [t], Q[t]〉 and online progression 〈E,F 〉≥1, it holds that they

are modular and mutually revisable.

Although the acyclic condition loses some generality over modularity and mutual

revisability, it provides several practical advantages over them in that it avoids refer-

ring to the module instantiation process and dependency graphs, and instead provides

a simple syntactic condition to consider.

6.1.1 Reducing Online Propositional ASP Theories to Disjunctive Logic Theories

Given an incremental ASP theory and online progression, we have shown how

the theory may be considered incrementally in a manner similar to that provided by

the systems iClingo and oClingo for traditional incremental ASP theories. Our
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incremental ASP theory and those used by these systems correspond for the common

syntax. In this section, we show how a larger subset of our incremental ASP theories

can be computed using these systems by applying the translation provided by Lee

and Palla (2007) which is used as the basis of system f2lp (Lee and Palla (2009)).

Given any propositional formula F , the disjunctive logic formula prop2dlf (F )

obtained by recursively performing the following strongly equivalent transformations

on subformulas of F in the order they appear:2

¬> 7→ ⊥ (6.2)

¬⊥ 7→ > (6.3)

¬¬¬G 7→ ¬G (6.4)

¬(G1 ∨G2) 7→ ¬G1 ∧ ¬G2 (6.5)

¬(G1 ∧G2) 7→ ¬G1 ∨ ¬G2 (6.6)

¬(G→ H) 7→ ¬¬G ∧ ¬H (6.7)

> ∧G 7→ G (6.8)

⊥ ∧G 7→ ⊥ (6.9)

> ∨G 7→ > (6.10)

⊥ ∨G 7→ G (6.11)

> → G 7→ G (6.12)

⊥ → G 7→ > (6.13)

¬¬G1 ∧G2 → H 7→ G2 → ¬G1 ∨H (6.14)

(G1 ∨G2) ∧G3 → H 7→
∧{

G1 ∧G3 → H
G2 ∧G3 → H

(6.15)

(G1 → G2) ∧G3 → H 7→
∧{ ¬G1 ∧G3 → H

G2 ∧G3 → H
G3 → G1 ∨ ¬G2 ∨H

(6.16)

2 For clarity, we treat implication and negation separately here.
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G→ >∨H 7→ > (6.17)

G→ ⊥∨H 7→ ⊥ (6.18)

G→ ¬¬H1 ∨H2 7→ G ∧ ¬H1 → H2 (6.19)

G→ (H1 ∧H2) ∨H3 7→
∧{

G→ H1 ∨H3

G→ H2 ∨H3
(6.20)

G→ (H1 → H2) ∨H3 7→
∧{

G ∧H1 → H2

G ∧ ¬H2 → ¬H1 ∨H3
(6.21)

As an example, consider the propositional formula

((p→ q) ∧ ¬¬r) ∨ ¬¬¬s→ t, (6.22)

it is reduced to a disjunctive logic formula using the following transformations:

((p→ q) ∧ ¬¬r) ∨ ¬¬¬s→ t initially

((p→ q) ∧ ¬¬r) ∨ ¬s→ t (6.4)∧{
(p→ q) ∧ ¬¬r → t
¬s→ t

(6.15)∧{
(p→ q)→ ¬r ∨ t
¬s→ t

(6.14)

∧
¬p→ ¬r ∨ t
q → ¬r ∨ t
p ∨ ¬q ∨ ¬r ∨ t
¬s→ t

(6.16) (6.23)

The result is a disjunctive logic formula which may have negation in the head of

its rules. Alternatively, negated formulas in the head of a rule may be shifted into

the body under double negation.

As an example, (6.23) may be equivalently represented as

¬p ∧ ¬¬r → t

q ∧ ¬¬r → t

¬¬q ∧ ¬¬r → p ∨ t
¬s→ t.
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In the event the input formula is definite and each occurrence of implication is

� does not occur within the antecedent of another implication

� of the form ¬H, or

� occurs within a subformula ¬H,

the resulting formula is then a traditional ASP formula with double negation3.

Although this transformation produces a disjunctive logic formula (or traditional

ASP formula) that is strongly equivalent to the original, it does not preserve the

dependency graph or strictly positive occurrences of atoms within the formula. For

example, (6.22) is negative on p while prop2dlf ((6.22)) is not.

We extend the notion of prop2dlp to be applicable to incrementally parametrized

formulas in a straight forward manner.

Definition 18 (Compiling Incremental Theories into Disjunctive Logic)

Given an incremental theory 〈B,P [t], Q[t]〉 and online progression 〈E,F 〉≥1, we define

the disjunctive logic compilations prop2dlf (〈B,P [t], Q[t]〉) and prop2dlf (〈E,F 〉≥1) to

be the incremental theory and online progression obtained by applying prop2dlf to B,

P [t], Q[t], and each Ei[ei] and Fi[fi] (i ≥ 1).

It is quite clear that this transformation does not preserve the modularity and

mutual revisability of the incremental theory and online progression. As an example,

consider the incremental theory

〈p,>, p→ q → r〉.

3 Double negation can then be simulated by introducing additional constants in

the signature.
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such that the online progression and all explicit inputs are empty. It holds that

this incremental theory and online progression are modular and mutually revisable.

However, prop2dlf (〈B,P [t], Q[t]〉) is

〈p,>, (¬p→ r) ∧ (q → r) ∧ (p ∨ ¬q ∨ r)〉

which is neither mutually revisable nor modular.

However, as is shown by Proposition 9, it turns out that acyclicity is preserved

by the transformation. This allows us to capture a large class of propositional incre-

mental theories within Gebser et al.’s disjunctive logic theories.

Proposition 9 (Compiling Acyclic Incremental Theories) Given some incre-

mental theory 〈B,P [t], Q[t]〉 and online progression 〈E,F 〉≥1 which are acyclic. The

disjunctive logic compilation of 〈B,P [t], Q[t]〉 and 〈E,F 〉≥1 are also acyclic.

Ultimately, proposition 9 allows us to compute a sizable fragment of modular

and mutually revisable incremental theories using the existing systems iClingo and

oClingo.

6.2 Defining the Online Action Language BC+

Given the generalized form of Gebser et al. (2011a)’s online ASP theory, it then

becomes possible to embed the semantics of BC+ directly within it in order to take

advantage of the incremental computational of systems such as iClingo. However,

this still does not address the problem of handling exceptions which may occur dur-

ing plan execution. In order to do this, we propose a proper extension BC+ which

leverages our online ASP theory in order to allow for knowledge to be passed into the

program during plan execution in the form of external constants.

We assume the presence of a multi-valued signature σ partitioned similar to the

signature described in Chapter 4 except with additional sets σEF and σEA of external
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Figure 6.1: Hierarchy of symbols within a BC+ signature

fluents and external actions such that σEF ⊆ σF is disjoint from both σSF and σSD

and σEA ⊆ σA. We recognize any fluent which is not an external fluent as an internal

fluent, and likewise, any action which is not an external action is an internal action.

The final result is a signature partitioned as in Figure 6.1.

In addition, we assume that the domain of each external fluent and each external

action contains a special element u. Which, intuitively, corresponds to an unknown

value.

We define an Online BC+ (oBC+) D action description to be a BC+ action de-

scription which may contain external fluents and actions in the bodies of any law and

does not contain these constant in the head of any law.

An observation is an expression of the form

observed c = v at m (6.24)

where c= v is a multi-valued atom such that c is an external fluent or external action,

v 6= u, and m ∈ N.

A (observational) constraint is an expression of the form

constraint F at m (6.25)

where F is a multi-valued propositional formula containing no external constants and

m ∈ N.

We say an observation (6.24) or observational constraint (6.25) is dynamic if it

contains some action constant a ∈ σ, otherwise we say it is static.
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We define an observation stream On,m̃ to be a list

[(O1,m1), . . . , (On,mn)]

such that

� for each (1 ≤ i ≤ n) Oi is a finite set of observations (6.24) and observa-

tional constraints (6.25), and mi is the maximum of each m among the static

observations and constraints and m + 1 among the dynamic observations and

constraints,

� m̃ is the maximum of each mi (1 ≤ i ≤ n), and

� for each external constant c ∈ σ and each (1 ≤ m ≤ m̃) it holds that there is

at most one (6.24) in O1 ∪ · · · ∪On.

Intuitively, observations are non-monotonic observations the agent has made re-

garding the defined external actions and fluents. Meanwhile, the observational con-

straints serve to further limit past histories according to what the agent knows, such

as what actions the agent has executed.

Example 12 As a simple example, consider an elaboration to the light switch problem

considered in Chapter 3 where the light bulb may be burnt out. In the event this is

the case, the light will not turn on until the bulb is replaced. This problem can be

formalized in oBC+ as is shown in Figure 6.2. Intuitively, Fault is the agent’s internal

model of whether the light is burnt out, while ExtFault represents the agent’s external

observations. Typically, Fault is ruled by inertia. However, in the event the agent

gains additional information (i.e. observes whether there has been a fault) Fault is

updated to reflect this. Performing ReplaceBulb will then reset the agent’s internal

model and the agent once again assumes that the fault has been fixed.
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Named Sets: Value:
Status {on, off}
Boolean {t, f}
ExtBoolean {t, f, u}

Constants: Type: Domain:
Sw Simple Fluent Status
Light SD Fluent Status
Flip Action Boolean

Fault Simple Fluent ExtBoolean
ExtFault External Fluent ExtBoolean
ReplaceBulb Action Boolean

inertial Sw . DoBC+switch,1

exogenous Flip. DoBC+switch,2

Flip = t causes Sw = on if Sw = off. DoBC+switch,3

Flip = t causes Sw = off if Sw = on. DoBC+switch,4

default Light = s if Sw = s. s ∈ Status DoBC+switch,5

inertial Fault after ReplaceBulb = f. DoBC+switch,6

exogenous ReplaceBulb. DoBC+switch,7

nonexecutable ReplaceBulb = t if Flip = t. DoBC+switch,8

Fault = v if ExtFault = v . v ∈ Boolean DoBC+switch,9

Light = off if Fault = t. DoBC+switch,10

ReplaceBulb = t causes Choice(Fault = u). DoBC+switch,11

Figure 6.2: Online Faulty Switch Elaboration in oBC+.

6.3 Transition Systems for oBC+

We extend the notion of BC+ transition systems as follows: Given an Online BC+

action description D we construct the transition system T (D) corresponding to the

action description similar to the process described in Section 4.2. Formally,

� a state of a T (D) is an interpretation of σF which is an answer set of

(4.3) ∧ Choice(σEF);
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� given such a state S, a candidate transition label of T (D) leaving S is an inter-

pretation of σA such that S ∪ A is an answer set of

(4.4) ∧ Choice(σEA);

� given states S and S ′ and a candidate transition label A, 〈S,A,S ′〉 is a transi-

tion of T (D) if S ∪ A ∪ S ′ is an answer set of

(4.5) ∧ Choice(1:σEF).

It is clear that in the event that there are no external fluents or external actions

in σ this definition is equivalent to the one provided in Section 4.1.

Given an observation stream On,m̃ and history Hk such that k ≥ m̃, we say that

Hk observes On,m̃ if, for each observation (6.24) in On,m̃, it holds that Hk |= m:c = v,

and, for each constraint (6.25) in On,m̃, it holds that Hk |= m:F .

Typically, given a action description D and online progression On,m̃ we assume

that any future external constants can take any value arbitrarily. Often, it is useful

to minimize a set A of these external constants, such as if they represent abnormal

behavior in the system. In order to do this, we refer to a history which is A-normal

with respect to On,m̃. Intuitively, an A-normal history is one which we enforce that

in the absence of knowledge regarding the value of any c ∈ A, c is u.

Formally, given a set of external constants A and online progression On,m̃, we say

that a history Hk is A-normal with respect to On,m̃, if, for each c ∈ A and each

i ∈ {0, . . . , k} such that i 6= k if c is an action, it holds that if c does not occur in

some observation

observed c = v at m (6.24)

in On,m̃ such that m = i, then Hk |= (i:c = u).
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Figure 6.3: A Partial Transition System of DoBC+switch

Example 13 (Online BC+ Transition Systems) Consider the transition system

corresponding to the toggle switch elaboration. The minimum length history from

S0 = {Switch = off,Light = off,Fault = u,ExtFault = u}

to a state S such that S |= Light = on are H1,1 = [S0,A0,S1], and H1,2 = [S0,A0,S2]

where

S1 = {Switch = on,Light = on,Fault = u,ExtFault = u},

S2 = {Switch = on,Light = on,Fault = f,ExtFault = f}, and

A0 = {Flip = t,ReplaceBulb = f}.

Intuitively, the difference between S1 and S2 is that in S1 the agent has no knowledge

as to whether a fault has occurred (i.e. the bulb has burnt out) whereas in S2 the

agent knows that the light is fine.

Of the two, only H1,1 is {ExtFault}-normal with respect to the online progression

O0,0 = [].
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If, following the execution of Flip, the agent observes that a fault did occur the

knowledge can be added to the online progression producing

O1,1 = [({observed ExtFault = t at 1, constraint Flip = t at 0}, 1)].

(The addition of the constraint enforces that the agent has executed Flip = t and

prevents that action from being revised.) The new minimum length history which is

{ExtFault}-normal to O1,1 is H2 = [S0,A0,S3,A1,S1] where

S3 = {Switch = on,Light = off,Fault = t,ExtFault = t}, and

A1 = {Flip = f,ReplaceBulb = t}.

This history essentially prescribes that the agent should replace the light bulb in order

to attempt to fix the fault.

A partial specification of the transition system T (DoBC+switch) is shown in Figure 6.3.

The dashed edges (in red) depend on the assertion of an external constant and there-

fore are not considered for future transitions in {ExtFault}-normal histories.

6.4 Incremental Assembly of Online BC+ Descriptions

Given a problem formalized in oBC+, we are able to evaluate it using our online

ASP theory with systems such as oClingo. This is advantageous over providing a

native problem specification in a number of ways. First, as in offline BC+, online

BC+ allows for a higher-level specification for problems which is intuitive without

direct knowledge of the semantics. Second, the language is homogenous regardless of

the execution platform being used and does not require any additional knowledge to

take advantageous of the considerable performance increase garnered from using an

incremental solving technique (even in an offline environment). Finally, as we will see

in this section, the reduction into our online ASP theory is guaranteed to produce an
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incremental theory and online progression which satisfy the conditions of modularity

and mutual revisability, relieving the developer from considering these conditions.

Given an Online BC+ action description D, observation stream On,m̃, and some

incrementally parametrized multi-valued formula Q[t], we define the corresponding

incremental theory 〈B,P [t], Q[t]〉D,Q[t] and online progression 〈E,F 〉On,m̃

≥1 as follows:

B =
∧

0:Choice(f) for each simple fluent f
0:G→ 0:F for each static law (4.1)
0:Choice(f = u) for each external fluent f
0:UEC (σF )

P [t] =
∧


t:G→ t:F for each static law (3.13)
(t−1):G→ (t−1):F for each action dynamic law (4.1)
(t−1):H ∧ t:G→ t:F for each fluent dynamic law (4.2)
t:Choice(f = u) for each external fluent f
(t−1):Choice(a = u) for each external action a
t:UEC (σF )
(t−1):UEC (σA)

Q[t] = ¬¬Q[t]

Ei[mi] =
∧{

m:c = v for each observation (6.24) ∈ Oi

¬¬m:F for each constraint (6.25) ∈ Oi

Fi[mi] = >

Given a multi-valued propositional signature σ we define At(σ) to be the set of

multi-valued atoms c = v where c ∈ σ and v ∈ Dom(c). Furthermore, we define

Atu(σ) to be the set of all such atoms such that v 6= u.

We define the sets of explicit inputs as follows:

� I(B) = Atu(0:σEF),

� I(P [t/i]) = Atu(i:σEF ∪ (i−1):σEA),

� I(Q[t/i]) = Atu(
⋃

0≤j<i(j:σEF ∪ j:σEA) ∪ i:σEF), and
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� I(Ei) = I(Fi) = ∅.

Proposition 10 and Corollary 2 provide that Online BC+ (and, by extension,

offline BC+) results in an incremental theory and online progression which is able to

be computed using the online ASP theory discussed in Section 6.1.

Proposition 10 (Modular and Mutually Revisable Construction) Given an

online BC+ action description D, observation stream On,m̃, and some incrementally

parametrized multi-valued formula Q[t], the incremental theory 〈B,P [t], Q[t]〉D,Q[t]

and online progression 〈E,F 〉On,m̃

≥1 is modular and mutually revisable.

Corollary 2 (Correctness of Incremental Assembly) Given an online BC+ ac-

tion description D, observation stream On,m̃, some incrementally parametrized multi-

valued formula Q[t], and some k ≥ m̃. Let Rm̃,k = 〈F, I, O〉 be the modular compo-

sition of 〈B,P [t], Q[t]〉D,Q[t] and 〈E,F 〉On,m̃

≥1 . The answer sets of F correspond to the

histories of T (D) which observe On,m̃, are σEF ∪ σEA-normal with respect to On,m̃,

and satisfy Q[t/k].

Example 14 (Continuation of Example 13) Consider the light switch domain

described in Example 13 and let Q[t] be

0:Switch = off ∧ t:Light = on

which requests solutions in which the initial state’s switch (and, by extension, light)

is off and the final state’s light is on. The domain description 〈B,P [t], Q[t]〉DoBC+
switch,Q[t]

is:
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B =
∧


0:Choice(Switch = on) ∧ 0:Choice(Switch = off)∧
s∈{on,off} 0:Switch = s→ 0:Choice(Light = s) DoBC+switch,5

0:Fault = t→ 0:Light = off DoBC+switch,10

0:Choice(Fault = u) σEF

0:UEC (Switch) ∧ 0:UEC (Light) ∧ 0:UEC (Fault) UEC (σF)

P [t] =
∧



∧
s∈{on,off} t:Switch = s→ t:Choice(Light = s) DoBC+switch,5

t:Fault = t→ t:Light = off DoBC+switch,10∧
b∈{t,f}(t−1):Choice(Flip = b) DoBC+switch,2∧
b∈{t,f}(t−1):Choice(ReplaceBulb = b) DoBC+switch,7

(t−1):Flip = t ∧ (t−1) : ReplaceBulb = t→ ⊥ DoBC+switch,8∧
s∈{on,off}(t−1):Switch = s→ t:Choice(Switch = s) DoBC+switch,1

(t−1):Flip = t ∧ (t−1):Switch = off→ t:Switch = on DoBC+switch,3

(t−1):Flip = t ∧ (t−1):Switch = on→ t:Switch = off DoBC+switch,4∧
e∈{t,f,u}(t−1):ReplaceBulb = f

∧ (t−1):Fault = e→ t:Choice(Fault = e) DoBC+switch,6∧
b∈{t,f} t:ExtFault = b→ t:Fault = b DoBC+switch,9

(t−1):ReplaceBulb = t→ t:Choice(Fault = u) DoBC+switch,11

t:Choice(Fault = u) σEF

t:UEC (Switch) ∧ t:UEC (Light) ∧ t:UEC (Fault) UEC (σF)
(t−1):UEC (Flip) ∧ (t−1):UEC (ReplaceBulb) UEC (σA)

Q[t] = ¬¬(0:Switch = off ∧ t:Light = on) Q[t].

Additionally,

� I(B) = {0:Fault = t, 0:Fault = f},

� I(P [t/i]) = {i:Fault = t, i:Fault = f}, and

� I(Q[t/i]) =
⋃

0≤j≤i{i:Fault = t, i:Fault = f}.

Let R0,1 = 〈F, I, O〉. There is 1 stable model of F :
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A1 =


0:Switch = off, 0:Light = off, 0:Fault = u,
0:ExtFault = u, 0:Flip = t, 0:ReplaceBulb = f,
1:Switch = on, 1:Light = on, 1:Fault = u,
1:ExtFault = u

 .

Which corresponds to the histories H1,1 in Example 13.

Given O1,1 from Example 13, we have that

E1[1] =
∧ ¬¬0:Flip = t

1:ExtFault = t
F1[1] = >.

There are then no stable models of R1,1 and 1 of R1,2:

A2 =



0:Switch = off, 0:Light = off, 0:Fault = u,
0:ExtFault = u, 0:Flip = t, 0:ReplaceBulb = f,
1:Switch = on, 1:Light = off, 1:Fault = t,
1:ExtFault = t, 1:Flip = f, 1:ReplaceBulb = t,
2:Switch = on, 2:Light = on, 2:Fault = u,
2:ExtFault = u


.

This corresponds precisely to the history H2 in Example 13.

Additionally, we may equivalently express the online ASP encoding by prepending

¬¬ to each external atom occurring in B and P [t/i](i ≥ 1) as well as each occurrence

of an atom (i−1):f = v where f is a fluent within P [t/i]. Given this alternate encoding,

it holds that the resulting incremental theory and online progression is acyclic.

Proposition 11 (Acyclic Construction) Given an Online BC+ action descrip-

tion D, observation stream On,m̃, and some incrementally parametrized multi-valued

formula Q[t], the alternate encodings of the incremental theory 〈B,P [t], Q[t]〉D,Q[t]

and online progression 〈E,F 〉On,m̃

≥1 are acyclic.
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Due to this, as observed in section 6.1.1, we may reduce BC+ into a disjunctive

logic incremental theory and online progression to be computed by iClingo and

oClingo.
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Chapter 7

SYSTEM CPLUS2ASP

Cplus2ASP was originally introduced by Casolary and Lee (2011) as a prototyp-

ical alternative to CCalc 2 (Giunchiglia et al. (2004)) for solving the action language

C+. While CCalc 2 compiled C+ into propositional logic and used one of several

available propositional SAT solvers as the reasoning workhorse, Cplus2ASP uses

the reduction provided in Section 3.4.3 in order to compile C+ into propositional

ASP and takes advantageous of the available highly-optimized ASP grounders and

solvers. By doing this, Casolary and Lee observed an order of magnitude increase in

performance over CCalc.

However, Casolary and Lee’s Cplus2ASP system was a proof-of-concept system,

and, as such, was far from complete.

In this section we present a re-engineering of the Cplus2ASP system, which we

call Cplus2ASP 2.01, that provides a number of improvements over the original

system. Among these improvements are:

� an enhanced multi-modal architecture which allows for easily extending the

system;

� support for multi-valued formulas under the Stable Mode Semantics and the

action languages BC and BC+, in addition to the existing support for C+;

� syntactic support for external atom definitions via LUA scripting calls;

� an interactive command-line mode to allow users to easily setup program pa-

rameters;

1 Cplus2ASP 2 is available at http://reasoning.eas.asu.edu/cplus2asp.
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� enhanced developer support via additional syntactic and static semantic check-

ing;

� the ability to leverage the system iClingo for performing iterative deepening

searches on the maximum length history being considered using a special case

of the online BC+ semantics provided in Section 6.4; and

� a new reactive running mode which allows for execution monitoring using an

Online BC+ description.

In addition to drastically improved useability, Cplus2ASP 2.0’s optimized stan-

dard library and ability to take advantage of incremental ASP computation tech-

niques provides a significant increase in performance over its predecessors, CCalc

and Cplus2ASP v1, as well as the system Coala, which supports the evaluation of

B and C via a reduction to ASP.

7.1 The Architecture of Cplus2ASP

Figure 7.1: Cplus2ASP v2 System Architecture
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System Cplus2ASP v2 is a re-engineering of the prototypical Cplus2ASP v1

system (Casolary and Lee (2011)) and is available under version 3 of the GNU Public

License.

Like its predecessor, Cplus2ASP v2 uses a highly modular architecture that is

designed to take advantage of the existing tools, including system f2lp and highly-

optimized ASP grounders and solvers in addition to a number of packaged sub-

components. A high-level conceptualization of the interaction of the sub-components

in the Cplus2ASP v2 system architecture can be seen in Figure 7.1.

The components within Cplus2ASP are orchestrated by a wrapper application,

also known as cplus2asp. The wrapper is run in two modes: command-line and

interactive. In both cases, the wrapper accepts configuration information from the

user including, but certainly not limited to, the input language mode, the input files

containing the problem description to examine, and the system running mode. The

wrapper then uses this information to run each of the individual components, as

follows:

Translator

First, the user provided problem description is passed to the translator ap-

plication, cplus2asp.bin, which reduces one of several input languages into

propositional formulas under the SM semantics using the appropriate reduction

described in Chapter 3, Chapter 4, or Chapter 6.

Pre-processor

The wrapper then passes the resulting formulas to f2lp along with additional

rules provided by an optimized standard library. f2lp uses the reduction pro-

cess described by Lee and Palla in order to obtain an ASP program compatible

with the target grounder/solver system.
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Grounder/Solver

The program produced by f2lp is passed to the the grounder/solver system

appropriate to the running mode. By default, this is

� Clingo when running in static mode,

� iClingo when running in incremental mode (default), and

� oClingo when running in reactive mode.

The grounder/solver then produces the solutions to the translated problem de-

scription.

Post-processor

After a result has been returned by the grounder/solver system, the post-

processor is used to produce a CCalc style transition system history from

the solution.

In the event the system is running in static or incremental mode, the result is

then returned to the user via the command line interface.

Reactive Bridge

The reactive bridge acts as an intermediary between the reactive solving system

oClingo and a user-provided agent controller system. It allows the agent

controller system to provide a BC+ observation stream during execution and

receive updated solutions in the form of transition system histories.

7.2 Modes of Cplus2ASP

Cplus2ASP is a multi-modal system which can be configured to behave in a

number of fundamentally different ways. When discussing the modes of Cplus2ASP

we consider three different types of modes that can be configured:
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input language mode

The input language mode determines which input language is currently being

parsed by Cplus2ASP. The input languages supported by Cplus2ASP in-

clude multi-valued formulas under the Stable Model semantics and the action

languages C+, BC, and BC+.

interaction mode

The interaction mode determines what method is being used to gather con-

figuration information from the user. While using the command-line interac-

tion mode, the system gathers its configuration information exclusively from

the command-line arguments provided by the user when calling Cplus2ASP.

Meanwhile, the interactive mode provides an interactive shell that the user is

able to use to set basic parameters prior to running Cplus2ASP.

running mode

The running mode determines the behavior of the system during the solving

process as well as the target grounder/solver system.

The running modes, input language modes, and interaction modes are described

in more detail in Sections 7.3, 7.4, and 7.5, respectively.

7.3 Running Modes of Cplus2ASP

The running modes supported by Cplus2ASP are static-manual mode, static-

auto mode, incremental mode, and reactive mode. These are described in more depth

as follows:

� In static-manual mode, the system targets the static ASP solver Clingo and

searches for histories of a fixed length, which may be specified by the user and

modified after each run.
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� In static-auto mode, the behavior is similar except that the length of the history

is automatically incremented between the specified the minimum plan length

(minstep) and maximum plan length (maxstep) until a solution is found.

� In incremental mode, the system targets the incremental ASP solver iClingo

which is used to incrementally ground and solve the program while searching

for a solution history of length k such that minstep ≤ k ≤ maxstep.

� Finally, in reactive mode, the system behaves similar to the incremental mode,

except that it targets the reactive ASP solver oClingo which interfaces with a

user application via the reactive bridge. This mode is only supported with the

input language BC+.

7.4 The Input Languages of Cplus2ASP

Cplus2ASP 2 is able to evaluate a number of different input languages via re-

duction into an Answer Set Program. Currently these are:

� multi-valued (propositional) formulas under SM (MVPF).

� the action language C+,

� the action language BC, and

� the online action language BC+.

In this section, we discuss the input syntax for each of the languages in turn. We

do this primarily by providing simplified fragments of the context-free grammar used

to generate the translator’s Lemon parser. A complete grammar as well as examples

are included with Cplus2ASP’s distribution files.

7.4.1 Shared Syntax

A Cplus2ASP program is a list of various statements. Each statement is divided

into one of two basic categories: declarations and laws. A declaration provides meta
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information for Cplus2ASP, such as macro declarations, where to include other files,

identifier types (sorts, constants, variables, objects), information on which constants

should be shown in the program’s output, and named query definitions. Meanwhile,

a law is a rule in the program that is translated and evaluated.

Regardless of the input language, the set of available declarations are identical

(although some options may very). In this section, we will discuss each of these

available declarations and their impact on program evaluation. During the course of

this, we will also provide a description of the base syntax of formulas within each of

the laws, which will be used in the next sections while describing each of the available

input languages.

Comments

Cplus2ASP supports comments within programs which are stripped and passed

through to the translated program via a pre-processor. Comments may begin with

% or // and last until the end of the line. Alternatively, a comment beginning with

/∗ lasts until a matching ∗/ is encountered.

Placing comments within the translated program is a best effort task, and, as such,

comments are not guaranteed to be exactly where they were placed originally. For

example, a comment embedded within a statement will appear before the translated

statement.

Macro Declarations and Expansion

Cplus2ASP has, embedded within it, a fully functional macro expansion mechanism

which is resolved during a single-pass two-stage parsing process. Macros are specified

by one or more macro definition statements (stmt macro def) as is shown below.
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stmt macro def← :− macros macro def lst.

macro def lst← [macro def lst; ] macro bnd

macro bnd← IDENTIFIER[“(”macro args“)”] −> MACRO STRING

macro args← [macro args, ]macro arg

macro arg← #INTEGER|#IDENTIFIER

Each macro is defined with a (possibly empty) set of macro expansion arguments,

each beginning with a #, and an expansion string, which is anything after the −>

and before a semicolon or period.

Once a macro has been defined, it can be used in any context. When used, each

of the original macro expansion arguments occurring within the definition string are

replaced with corresponding values provided to the macro and the result replaces

the macro occurrence. The replacement process is performed iteratively from longest

expansion argument to shortest.

Example 15 For example, given the definition

:- macros

DEF(#1,#2) -> :- macros #1 -> #2;

STRING(#x,#x2) -> "#x#x2bar".

The line

DEF(FOO,STRING(foo,bar)).

is expanded in two passes as follows:

DEF(FOO,STRING(foo,bar)).

→ :- macros FOO -> STRING(foo,bar).

→ :- macros FOO -> "foobarbar".

This results in an additional macro being defined named “FOO.”
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Include Statements

Include statements (incl stmt) are very similar to macro statements except that

they are expanded into the contents read in from one or more files. For each item

in an include statement, the parser will attempt to find a file by that name either in

the present working directory or the directory of the current file being operated on

(in that order). The include statement is then replaced with concatenated contents

of each of the files in the order they are listed.

incl stmt← :− include incl lst.

incl lst← [incl lst, ] incl item

incl item← STRING LITERAL|IDENTIFIER|INTEGER

Example 16 The statement

:- include one, ‘‘two.cp’’, 3.

will attempt to read from the files one, two.cp, and 3 and replace the include

statement with their contents concatenated together in that order.

Sort Declarations

A sort is a named set of elements which is used in Cplus2ASP to specify the domain

of each constant and variable. Sorts are defined in two steps: the sort is first declared

using a sort declaration statement (stmt sort decl) and, later, is defined by adding

objects to it in an object declaration statement2.

In addition to their individual contents, a sorts s can also automatically include

the objects within another sort s2 by defining s as supersort of s1, denoted s >> s1

(or, equivalently, s1 << s), during their declaration.

2 Object declaration statements are introduced in Section 7.4.1.
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stmt sort decl← :− sorts sort bnd lst.

sort bnd lst← [sort bnd lst; ]sort bnd

sort bnd← sort dcl lst

sort bnd← sort bnd << sort bnd

sort bnd← sort bnd >> sort bnd

sort bnd← “(”sort bnd“)”

sort dcl lst← [sort dcl lst, ] IDENTIFIER

As a special note, Cplus2ASP implicitly defines the boolean sort to range over

the values true and false.

Example 17 As an example, the statement

:- sorts b; s >> (s1, s2).

defines 4 sorts: b, s, s1, and s2. In addition, it also states that s should contain

all of the elements within s1 and s2.

Object and Variable Declarations

In Cplus2ASP an object is a value in a sort which a constant can take. It is also used

in parameter lists to construct nested objects and sets of constants. Meanwhile, a

variable is a placeholder symbol which will be replaced with each object in its domain

during grounding and are invaluable for specifying any non-trivially sized problem.

Objects are specified using an object declaration statement (stmt object def) by

providing three pieces of information:

� the base name of the object,

� a (possibly empty) list of sorts which act as ranges that each object parameter

may take, and
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� a sort which the object belongs to.

Variable declarations (stmt variable def) are specified in a similar manner, ex-

cept variables cannot be declared with parameters.

stmt object def← :− objects object bnd lst.

object bnd lst← [object bnd lst; ] object bnd

object bnd← object lst :: sort

object lst← [object lst, ]object spec

object spec← IDENTIFIER[“(”sort lst“)”]

object spec← NUMBER RANGE

sort lst← [sort lst, ]sort

stmt variable def← :− variables variable bnd lst.

variable bnd lst← [variable bnd lst; ]variable bnd

variable bnd← variable lst :: sort

variable lst← [variable lst, ]IDENTIFIER

As a shortcut, values in a integral numeric range from n to m can be declared

succinctly using an expression of the form n..m (NUMBER RANGE). A similar notation

can be used for the object’s parameters.

Example 18 Assuming that the sorts int and s have been previously declared, the

statement

:- objects
1..3 :: int;
o(int, int) :: s.

declares 1,2, and 3 as object within int and objects

o(1, 1), o(1, 2), o(1, 3),

o(2, 1), o(2, 2), o(2, 3),

o(3, 1), o(3, 2), and o(3, 3)

95



as values within s.

Furthermore, the declaration

:- variables
I1, I2 :: int;
S1, S2 :: s.

declares schematic variables I1 and I2 to range over the objects within int, and

variables S1 and S2 to range over the objects within s.

Constant Declarations

As described in Chapters 3 and 4, constant symbols are the basic components of multi-

valued formulas. Similar to object symbols, Cplus2ASP constants are defined within

a constant declaration statement (stmt const def) and have a base identifier, an

optional list of parameter sort, and a sort which makes up the constant’s domain. In

addition, constants may have a type specifier (constant dcl type) which determines

which group within the signature the constant belongs to.

stmt const def← :− constants const bnd lst.

const bnd lst← [const bnd lst; ] const bnd

const bnd← const dcl lst :: const dcl type[“(”sort“)”] (7.1)

const bnd← const dcl lst :: sort (7.2)

const bnd← const dcl lst :: attribute[“(”sort“)”] of constant (7.3)

const dcl lst← [const dcl lst, ] IDENTIFIER[“(”sort lst“)”]

In (7.1), the value of constant dcl type is one of

abAction action additiveAction

additiveFluent externalAction externalAction

exogenousAction inertialFluent rigid

simpleFluent sdFluent.
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This corresponds to the constant’s type specifier. (The valid values and meanings

of each value vary depending on the input language.) Meanwhile, the value of sort

provides the domain of the the constants in the list. sort can either be

� sortname, which specifies a predeclared sort,

� n..m, which specifies an implicit sort {i | n ≤ i ≤ m}, or

� sortname∗ or sortname∧, are considered shorthand notations for specifying an

unnamed sort consisting of the elements in sortname and the special element

none or unknown, respectively.

(7.2) is shorthand for (7.1) such that constant dcl type is rigid. (7.3) declares

an attribute to an existing action and is only valid in BC+ and C+.

Example 19 Assuming that the sort int has been previously declared as {1, 2}, the

statement

:- constants
p(int), q(int) :: inertialFluent;
a :: exogenousAction(int*);
b :: attribute(1..5) of a.

declares Boolean fluents p(1),p(2),q(1),q(2), the action a ranging over int∪ {none},

and an action attribute b of a which ranges over {1, 2, 3, 4, 5}.

Terms and Formulas

The most basic syntactic component of formulas and terms in Cplus2ASP is the base

element (base elem), which essentially describes an instance of one of the symbols

which have been previously declared or a LUA call, which will be described in the

next section.

base elem← IDENTIFIER[(term lst)] base elem← lua3

term lst← [term lst, ]term

97



Each base element is classified according to its identifier and the number of param-

eters (arity) and matched to a previously declared symbol4. For example, a constant

is a base element which matches a previously declared constant symbol.

A term (term) is built from any predeclared (non-sort) symbol, an integral value,

andthe built-in Boolean values true and false. Numeric5 terms may be combine with

the standard unary arithmetic operators − (negative) and abs (absolute value), and

binary operators + (addition), − (subtraction), ∗ (multiplication), / (division), and

mod (modulus).

term ::= base elem term ::= INTEGER term ::= STRING LITERAL

term ::= (term) term ::= true term ::= false

term ::= maxstep term ::= maxAdditive term ::= maxAFValue

term ::= −term term ::= abs term term ::= term− term

term ::= term + term term ::= term ∗ term term ::= term/term

term ::= term mod term

Terms can be combined into a formulas in two essential ways: as an atomic for-

mula (af) or as a comparison between two terms (comparison). Similar to previous

sections, an atomic formula is an expression c = v where c is a constant symbol and

v is term. When c is Boolean, Cplus2ASP allows the shorthand notations c and ∼c

which stand for c = true and c = false, respectively.

af ::= constant[= term] af ::= ∼constant

3 LUA functions will be reviewed in Section 7.4.1.
4 Sorts and macros are exempt from this matching process as sorts cannot appear

in formulas and macros are expanded prior to evaluation by the parser.
5 A numeric term is an integer or a variable or constant with a domain consisting

of integers, or an arithmetic combination of the two.
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Comparison between two terms is quite straightforward. Cplus2ASP supports

the operators = (equality, synonymously ==), \= (inequality), < (less than), >

(greater than), <= (less than or equal), and >= (greater than or equal). However,

to disambiguate these from atomic formulas, we use a secondary term definition

term strong which essentially enforces that a constant cannot occur unless directly

followed by an arithmetic or comparison operator (except =).

comparison ::= term strong = term comparison ::= term strong == term

comparison ::= term strong \= term comparison ::= term strong < term

comparison ::= term strong > term comparison ::= term strong =< term

comparison ::= term strong >= term comparison ::= constant == term

comparison ::= −constant\ = term comparison ::= constant < term

comparison ::= constant\ = term comparison ::= constant < term

comparison ::= constant > term comparison ::= constant =< term

comparison ::= constant >= term

Cplus2ASP supports fully nested formulas constructed from atomic formulas

and term comparisons as well as two convenient formula abbreviations: quantifier

formulas (big conjunction/disjunction)6 (formula quant) and cardinality formulas

(formula card). These can be combined with the standard unary logical operator not

(synonymously, −) as well as the binary operators & (conjunction), | (disjunction),

−> (implication), and <−> (equivalence).

6 As the universe of a Cplus2ASP program is fixed and finite the quantifiers

∀ and ∃ may be equivalently represented as a big conjunction or big disjunction

(respectively) over the names of elements in the universe. Due to this, we use these

two notions interchangeably.
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formula base ::= comparison formula base ::= af

formula base ::= formula quant formula base ::= formula card

formula base ::= true formula base ::= false

formula ::= formula base formula ::= (formula)

formula ::= not formula formula ::= −formula
formula ::= formula & formula formula ::= formula“|”formula
formula ::= formula −> formula formula ::= formula <−> formula

Quantifier formulas and cardinality formulas are as follows:

formula quant ::= “[”quant lst“|”formula“]”

quant lst ::= [quant lst] quant op variable

quant op ::= /\
quant op ::= \/

formula card ::= [term strong]{variable lst“|”formula}[term]

variable lst ::= [variable lst, ] variable

Essentially, a quantifier formula is an abbreviation of a conjunction (or disjunc-

tion) over all the elements in the domains of the variables on the left-hand side.

For example, assuming that V 1 and V 2 are variables ranging over {1, 2}, the

quantifier

[\/V 1/\V 2 | foo(V 1, V 2)]

is shorthand for

(foo(1, 1) & foo(1, 2)) | (foo(2, 1) & foo(2, 2)).

Intuitively, a cardinality formula n{x|F (x)} states that there are at least n possi-

ble assignments to the variables within x such that F (x) is true. While {x|F (x)}n is
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similar, except there are at most n possible assignments of x. Finally, n{x|F (x)}m

intuitively states that there are between n and m such assignments.

Formally, these are shorthand for nested formulas. n{x|F (x)} can be expanded

to

∧
1≤i≤n

F (xi) ∧
∧

1≤i≤j≤n

¬(xi = xj)

where each xi is a distinct list of variables of the same length as x and, for any two

lists x = x1, . . . , xm and y = y1, . . . , ym, x = y is shorthand for x1 = y1∧· · ·∧xn = yn.

Additionally, {x|F (x)}n can be viewed as shorthand for ¬(n + 1{x|F (x)}) and

n{x|F (x)}m can be seen as n{x|F (x)} & {x|F (x)}m.

LUA

System Cplus2ASP 2 allows for embedding external LUA function calls in the sys-

tem, which are evaluated by the grounder at grounding time. These LUA calls allow

the user a great deal of flexibility when designing a program and can be used for com-

plex computation that is not easily expressible in logic programs. LUA functions may

be defined within the scope of a LUA code block, which is began by the statement

:- begin lua.

and ended by the statement

:- end lua.

These code blocks are not parsed by Cplus2ASP and, instead, are left to the

ASP grounder/solver. As such, Cplus2ASP does not verify the existence of a LUA

function during translation.

Given a LUA function defined within a code block, it may then be called by

prepending the “@” symbol to the function call.
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lua ::= @IDENTIFIER[(term lst)]

Example 20 Given the LUA definition

:- begin lua.
function a(x)

return x + 2
end

:- end lua.

The formula

c= @a(1)

evaluates to

c= 3

Show/Hide Statements

Show and Hide statements allow the user to control which constants are displayed in

the transition system histories output by Cplus2ASP. Each statement may either

specify a list of atomic formulas show (or hide) or the keyword all , which causes the

statement to affect all constants.

stmt show ::= :− (show | hide) af lst.

stmt show ::= :− (show | hide) all .

af lst ::= [af conj &] af

(Note that each atomic formula c(x) = v occurring in a show or hide statement

cannot contain any constants occurring within x or v. )
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When consecutive statements conflict, the later one will override the previous

ones.

Example 21 Assuming X is a variable ranging over {1, 2}, the statements

:- hide a l l .
:- show p(X), q(1)=2.

will hide all atomic formulas in the output histories except p(1) = true, p(2) = true,

and q(1) = 2.

Queries

A query is a named set of constraints on the transition system history which is

generated by Cplus2ASP. Each query has three components: a label, an optional

maximum step (or maximum step range), and a set of constraint formulas to apply,

each parametrized with the step at which they should be applied (or maxstep to be

applied at the current maximum step).

stmt query ::= :− query query lst.

query lst ::= [query lst; ] term no const : formula

query lst ::= [query lst; ] query maxstep decl

query lst ::= [query lst; ] query label decl

query maxstep decl ::= maxstep :: INTEGER

query maxstep decl ::= maxstep :: NUMBER RANGE

query label decl ::= label :: INTEGER

query label decl ::= label :: IDENTIFIER

(term no const is similar to term, except it contains no constant symbols.)

A query should have at most one label and maximum step definition. In the

event no label is provided, the label is assumed to be “0”; meanwhile, in the event
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no maximum step definition is provided the maximum step range is 0.. inf (i.e. the

system will try longer and longer histories indefinitely until a solution is found).

Example 22 As an example, the statement

:- query
label::foo;
maxstep:: 0..10;
0: p(1) & not p(2);
maxstep: p(2).

specifies a query named foo which searches for histories between lengths 0 and 10

such that the initial state satisfies p(1) & not p(2) and the final state satisfies p(2).

7.4.2 Multi-Valued (Propositional) Formulas (MVPF)

Cplus2ASP provides support for programs consisting of multi-valued formulas

under the Stable Model Semantics. When configured to run in this input mode

Cplus2ASP expects each constant to be declared as a rigid constant (or equiva-

lently, without a type specifier) which indicates that each of these constant are time

in-variant.

There is a single type of law in an multi-valued program (law mvpf), which is an

expression F ← G standing for the implication G→ F . These laws, like all other laws

supported by Cplus2ASP also support an optional where clause, which is evaluated

during grounding time to provide additional scope for each rule.

law ::= formula base[<− formula] [where].

where ::= where formula no const

Two important things to note are that arbitrary formulas in the head of each rule

is not currently supported. Instead, the head is allowed to be a single formula element,
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:- macros N -> 8.

:- sorts num.

:- objects 1..N :: num.

:- variables I, I1, J, J1, NX :: num.

:- constants
q(num,num) :: num.

{q(I,J)=N}.
<- q(I,J)=NX & q(I1,J)=NX & I\=I1.
<- q(I,J)=NX & q(I,J1)=NX & J\=J1.
<- q(I,J)=NX & q(I1,J1)=NX & I\=I1 & abs(I1-I)=J1-J.

Figure 7.2: 8-queens in MVPF

and that the where clause is evaluated completely during the grounding process and

cannot contain constants (formula no const is a constant-free version formula).

The multi-valued formula input language is not current compatible with queries

as well as the incremental and reactive running modes.

As an example, Figure 7.4.2 provides an encoding of the N-queens problem, where

N queens must be placed on an N × N chess board such that no queen can attack

another, in the input language of MVPF.

7.4.3 The Action Language C+

The action language C+ is Cplus2ASP’s namesake and the original action lan-

guage supported by the Cplus2ASP version 1. It was described in Section 3.4.3.

The valid constant types in C+ are as follows:

action A basic action within the signature;

105



exogenousAction Shorthand for an action which is also exogenous (i.e. the law

“exogenous a” is added for each such action a);

abAction Shorthand for an action which defaults to false (the law “default a =

false” is added for each such action);

additiveAction An additive action constant, discussed later;

additiveFluent An additive fluent constant, discussed later;

simpleFluent A simple fluent in the signature;

inertialFluent A simple fluent which is inertial (the law “inertial f” is added for

each such fluent);

sdFluent A statically determined fluent within the signature;

rigid A time-invariant rigid constant.

Cplus2ASP supports each of the law shorthands discussed in Section 3.4.3 in

addition to several additional shorthands. Each of these laws provide a number of

optional clauses which have distinct meanings depending on the law they occur in.

These can include any of those provided below as well as where, which, as in MVPF,

provides ground-time evaluated formulas.

if ::= if formula

after ::= after formula

unless ::= unless constant

by ::= by term

An if clause (if) provides a formula matched against the current state of the system

(as well as actions being executed when the clause occurs within a causes or may cause

style law). Conversely, an after clause (after) provides a formula which is matched

against the previous state and any actions that may have been performed. The unless

clause (unless) specifies a, possibly undeclared, abnormality action that serves to

106



disable the law when asserted; when the abnormality is undeclared, the presence of

the clause unless c is viewed as shorthand for declaring c as a Boolean abAction and

adding the law

default c= false.

Finally, the by clause (by) is used for providing values to increment and decrement

additive constants, which will be discussed in later in this section.

law ::= caused cplus head [if] [after] [unless] [where]. (7.4)

law ::= possibly caused cplus head [if] [after] [unless] [where]. (7.5)

law ::= formula causes cplus head [if] [unless] [where]. (7.6)

law ::= formula may cause cplus head [if] [unless] [where]. (7.7)

law ::= always formula [after] [unless] [where]. (7.8)

law ::= constraint formula [after] [unless] [where]. (7.9)

law ::= impossible formula [after] [unless] [where]. (7.10)

law ::= never formula [after] [unless] [where]. (7.11)

law ::= default af [if] [after] [unless] [where]. (7.12)

law ::= exogenous constant [if] [after] [unless] [where]. (7.13)

law ::= inertial constant [if] [after] [unless] [where]. (7.14)

law ::= nonexecutable formula [if] [unless] [where]. (7.15)

law ::= rigid constant [where]. (7.16)

law ::= constant increments constant by [if] [unless] [where]. (7.17)

law ::= constant decrements constant by [if] [unless] [where]. (7.18)

(7.19)

cplus head ::= af

cplus head ::= true

cplus head ::= false

In addition to the shorthand laws provided in Section 3.4.3, we provide:

� the defeasible causal law (7.5) such that

possibly caused F after H1 ∧H2;
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is synonymous with for

default F after H1 ∧H2;

� the defeasible dynamic formed law (7.7) such that

H1 may cause F if H2

stands for

possibly caused F after H1 ∧H2;

� the constraint law (7.8) which is synonymous with (7.9);

� the negative constraint laws (7.10) and (7.11), such that

impossible G after H, and

never G after H

are shorthand for

constraint ¬G after H;

� the constraint law (7.16) such that

rigid c

is shorthand for the set of constraints

constraint c = v after c = v v ∈ Dom(c); and

� the additive laws (7.17) and (7.18), which will be discussed momentarily.

As an example, Figure 7.4.3 shows the pendulum problem discussed earlier de-

scribed in the input language of C+.
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:- constants
right :: simpleFluent;
hold :: exogenousAction.

hold causes right i f right.
hold causes -right i f -right.

default right after -right.
default -right after right.

:- query
maxstep :: 2..2;
0: -right.

Figure 7.3: The Pendulum Problem in C+

Additive Constants

Lee and Lifschitz (2003) describe a method of encoding additive constants within C+

in order to provide an elaboration tolerant way of modeling the effect of multiple

contributions onto a single constant.

Cplus2ASP supports additive action and fluents constants, which cannot occur

in the head of any law which is not a increments (7.17) or decrements (7.18) law.

Their behavior is as follows:

� If the constant c is an additive fluent begin with its previous value, otherwise

begin with 0.

� Add v to the value of c for each increments law

a increments c by v if G

such that G ∧ a = true was satisfied in the previous state and transition.

� Similarly, subtract v from the value of c for each decrements law

a decrements c by v if G

such that G ∧ a = true was satisfied in the previous state and transition.
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Finally, in order to provide support for these constants, Cplus2ASP, like its

predecessors, needs an upper bound on the values which all of the contributions can

amount to. This is provided by setting the value for maxAdditive using a declaration

stmt maxadditive ::= :− maxAdditive = INTEGER.

or by defining it using the command line interface at run time.

7.4.4 The Action Language BC

The action language BC was discussed in Section 3.4.4 and is also supported by

Cplus2ASP7. In BC, the valid constant types are

action A basic action within the signature (assumed to be exogenous);

simpleFluent A simple fluent in the signature;

inertialFluent A simple fluent which is inertial (the law “inertial f” is added for

each such fluent);

sdFluent A statically determined fluent within the signature;

rigid A time-invariant rigid constant.

The laws supported by BC are similar to C+ with several notable exceptions:

� action constants cannot occur in the heads of any law,

� the bodies of each law must be a conjunction of atoms,

� many of the laws have an additional ifcons clause, as discussed in Section 3.4.4,

� additive constants and the increments and decrements laws are not supported.

7 Cplus2ASP actually supports a slight extension to BC in which it is possible

to utilize multi-valued actions.
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ifcons← ifcons formula

law ::= cplus head [if] [ifcons] [after] [unless] [where]. (7.20)

law ::= formula causes cplus head [if] [unless] [where]. (7.21)

law ::= always formula [after] [unless] [where]. (7.22)

law ::= constraint formula [after] [unless] [where]. (7.23)

law ::= impossible formula [after] [unless] [where]. (7.24)

law ::= never formula [after] [unless] [where]. (7.25)

law ::= default af [if] [ifcons] [after] [unless] [where]. (7.26)

law ::= inertial constant [if] [ifcons] [after] [unless] [where]. (7.27)

law ::= nonexecutable formula [if] [unless] [where]. (7.28)

law ::= rigid constant [where]. (7.29)

7.4.5 The Action Language BC+

Cplus2ASP also supports the online and offline variants of the action language

BC as described in Sections 4.1 and 6.2.

While running in BC+ mode, the system allows for all previously discussed con-

stant types in addition to two new types: externalAction and externalFluent

which are externally defined constants.

The laws available in BC+ are similar syntactically to those available in C+, with

the notable exception that any base formula element, including cardinality formulas

and quantifiers, may now be included in the head of each law.
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law ::= formula base [if] [after] [unless] [where]. (7.30)

law ::= possibly caused formula base [if] [after] [unless] [where]. (7.31)

law ::= formula causes formula base [if] [unless] [where]. (7.32)

law ::= formula may cause formula base [if] [unless] [where]. (7.33)

law ::= always formula [after] [unless] [where]. (7.34)

law ::= constraint formula [after] [unless] [where]. (7.35)

law ::= impossible formula [after] [unless] [where]. (7.36)

law ::= never formula [after] [unless] [where]. (7.37)

law ::= default af [if] [after] [unless] [where]. (7.38)

law ::= exogenous constant [if] [after] [unless] [where]. (7.39)

law ::= inertial constant [if] [after] [unless] [where]. (7.40)

law ::= nonexecutable formula [if] [unless] [where]. (7.41)

law ::= rigid constant [where]. (7.42)

law ::= constant increments constant by [if] [unless] [where]. (7.43)

law ::= constant decrements constant by [if] [unless] [where]. (7.44)

(7.45)

In the event that a cardinality formula occurs within the head of a law, it should

have the form

n{x| F (X)}m

such that F is a single atomic formula and x is a list of schematic variables x1, . . . , xk.

This occurrence is considered shorthand for the the choice formula∧
e1∈Dom(x1)

∧ · · · ∧
∧

ek∈Dom(xk)

(F (e) ∨ ¬F (e))

such that e is e1, . . . , ek and the rule

constraint n{x| c(t1(x), . . . , tl(x)) = v(x)}m.

While running in the reactive mode, system Cplus2ASP solves for plans which

are normal with respect to the provided input stream. This means that external

constants are assumed to be unknown until it is asserted in the online progression.
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7.5 Running Cplus2ASP

After crafting an input program for Cplus2ASP in one of the supported lan-

guages, the next logical step is, of course, to run the program using Cplus2ASP.

Cplus2ASP v2 currently offers two distinct user-interaction methods: command-

line and interactive shell. The command-line mode is designed primarily for inter-

acting with an automated system, such as a script or user provided application, or

a seasoned Cplus2ASP user who is familiar with the various options available in

Cplus2ASP. Meanwhile, the interactive mode provides users with a friendlier in-

terface for providing the various settings which Cplus2ASP requires to run with

minimal effort from the user.

7.5.1 Using the Command-Line Mode

The command-line running mode is a non-interactive mode which accepts settings

from the program’s command line arguments and provides a single result returned

from the solving process. The Cplus2ASP system defaults to this running mode

when all required information, such as the query to run and values for special con-

stants such as maxAdditive are provided (when required).

A Cplus2ASP command-line call take the form of

cplus2asp <FILES> [<OPTIONS>] [<CONSTANTS>] [<SOLUTIONS>].

Each of these input sections are described below in some detail:

<FILES> A list of input files including the provided input program and any sup-

porting files relative to the present working directory. Certain extensions, such

as .fof and .lp are handled with special care. For instance, these extensions will

bypass the translator and be passed directly to the pre-processor and grounder

/ solver, respectively.
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<OPTIONS> A number of optional input options, such as the target input lan-

guage and instructions to skip or replace certain tool chain components. These

are discussed further later.

<CONSTANTS> A list of command-line definitions for simple macros that the

user may provide in order to affect the behavior of his or her program. Each of

these definitions are of the form

<IDENTIFIER>=<VALUE>

and is equivalent to prepending the macro definition

:- macros <IDENTIFIER> -> <VALUE>.

to the beginning of the program.

In practice, these provide a convenient way to specify program parameters at

run time without modifying the program file. This allows the user to try many

variations of these parameters rapidly.

In the event < IDENTIFIER > is either “query”, “maxAdditive”, “minstep”,

or “maxstep”, these are treated as specifications for these special non-macro

values.

<SOLUTIONS> The number of solution histories that should be found and out-

putted. If this number is “0” or the keyword “all” then all solutions are gen-

erated and returned. If no number is provided, the system defaults to finding a

single solution.

Command-Line Options

Cplus2ASP is highly-configurable and, as such, offers a variety of command-line

options in order to specify various behaviors of the program, including the input
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language and running mode of the application. In this section, we briefly introduce

the basic command line options. Which involve selecting the system’s input language,

running mode, the query to be executed, and minimum/maximum step information

for that query.

When executing a program, Cplus2ASP needs to know what input language the

program has been written in in order to properly interpret it. This is done by using

the

--language=<LANG>

option, where < LANG > is “MVPF”, “C+”, “BC”, or “BC+”. By default, Cplus2ASP

assumes the program is composed in the action language C+.

The system’s default running mode is dependent on the input language selected.

Typically, the system runs in incremental mode and targets iClingo as its solver.

However, the system defaults to the static-auto mode for MVPF programs and re-

active mode for BC+ program which contain external constants. The user may also

override the system’s default running mode by providing the

--mode=<MODE>

option, where < MODE > is “static− auto”, “static− manual”, “incremental”,

or “reactive”.8

Finally, unless the system’s input language is MVPF, it is necessary to specify a

query to run. This is done using the

--query=<QUERY>

8 It is important to note that there are certain restrictions for input language

/ running mode combinations. MVPF programs must run in the static-auto mode.

Meanwhile, reactive mode is valid iff the input program is a BC+ program with

external constants.
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option, where < QUERY > is one of the query labels defined within the input program,

or a built in label such as sat, states, and transitions. The sat label specifies

that the program should be checked for satisfiability and no query should be enforced,

the states label refers to a query find valid states of the transition system, likewise,

the transitions label finds valid transitions in the transition system.

The user may also override the query-defined maximum step range. This is done

with the options

--minstep=<MIN>, and

--maxstep=<MAX>

where < MIN > and < MAX > are the minimum and maximum lengths of histories to

attempt while testing the query. In the event only a maxstep is specified, it is a

assumed that the minimum and maximum steps are the same (i.e. the system should

only test one history length). Alternatively, the user may provide

--maxstep=<MIN>..<MAX>

to specify the minimum and maximum steps together.

7.5.2 Using the Interactive Mode

The interactive mode provides a shell-like interface which allows the user to per-

form many of the configurations available from the command line. In general, the

user-interactive mode is entered any time the user fails to provide all necessary in-

formation within the command-line arguments. As such, the easiest way to enter the

user-interactive mode is to neglect to specify a query on the command-line.

Regardless of whether the user wishes to use the interactive mode or command-

line mode, at a minimum Cplus2ASP requires that the user pre-specify the files
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that should be parsed as well as the input language the program is written in (if it is

different from the default).

As an example, the command

cplus2asp switch.cp --language=c+

will parse the program within switch.cp according to the syntax and semantics of

C+ and then enter user-interactive mode.

While in the user-interactive mode, the following commands, among others, are

available to the user:

help Displays the list of available commands.

config Reveals the currently selected running options.

queries Displays the list of available queries to run.

minstep=[#] Overrides the minimum step to solve for for the next query selected.

maxstep=[#] Overrides the maximum step to solve for for the next query selected.

sol=[#] Selects the number of solutions to display.

query=[QUERY] Runs the selected query and returns the results.

exit Exits the program.

If the user wished to find all the states in the program, he could then type the

commands

sol=a l l

query=states.

Following successful execution of a query, the system will return to the interactive

prompt and the process can be repeated. Afterward, if he wished to find all transitions

he could simply type

query=transitions.
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Options such as minstep, maxstep, and sol also accept the keyword default

to return the option to its default setting as selected by the query being ran, the

command line options, and the system defaults.

For more information on using Cplus2ASP v2, we invite the reader to explore the

documentation available at http://reasoning.eas.asu.edu/cplus2asp or within

the help usage message available by executing cplus2asp --help.

7.6 Experiments

In this section, we present the results of benchmarking Cplus2ASP 2’s offline

running modes against its predecessors as well as a similar system Coala, which serve

as a demonstration of the effectiveness of Cplus2ASP’s various running modes.

In order to compare the performance of the Cplus2ASP 2 system with its pre-

decessors, we used large variants of several widely known domains 9 and compared

the performance of Cplus2ASP’s offline running modes with the performance of

CCalc v2, Cplus2ASP v1, and the incremental and static running modes of coala

(where applicable). All experiments were performed on an Intel Core 2 Duo 3.00 GHZ

CPU with 4 GB RAM running Ubuntu 11.10. The CCalc v2 tests used relsat 2.0

as a SAT solver while Cplus2ASP v1, v2, and coala tests used the same version

of clingo, v3.0.5.

The domains tested include large variants of the Traffic World (Akman et al.

(2004)), a numerical domain which models the behavior of cars on a road; a variant

of the Blocks World, as described in Lee and Lifschitz (2003); the Spacecraft Integer

(Lee and Lifschitz (2003)), which models a spacecraft’s movement with multiple inde-

9 All benchmark programs are available at

http://reasoning.eas.asu.edu/cplus2asp/benchmarks.
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Domain # CCalc 2 Cplus2ASP v1
coala Cplus2ASP v2

static incr. static incr.

traffic
11

878.59s + 1s
a

95.43s + 25.95s
– b –

82.16s 14.2s
(altmerge)

– –
+ 26.57s + 2.6s

[531552 / 3671940] [2722247 / 3341068] [2262231 / 2766459]

bw-cost
8

131.1s + 5s 76.16s + 0.4s
– –

17.09s 3.47s
(15) c + 3.16s + 0.16s

[149032 / 624439] [123517 / 260282] [43052 / 526923]
bw-cost

9
52s + 987s 271s + 9.17s

– –
63.26s 13.45s

(20) + 66.58s + 2.24s
[374785 / 1584778] [279869 / 626496] [102426 / 1745166]

spacecraft
3

173.62s + 0s 16.07s + 2.65s
– –

5.57s 2.33s
(15/8) d + 0.06s + 0.01s

[128262 / 622158] [146056 / 146056] [132918 / 253514]
spacecraft

4 timeout
208.2s + 480.24s

– –
67.55s 17.46s

(25/10) + 3.42s + 0.35s
[760673 / 1653650] [732860 / 1427771]

hanoi
64

14s + 1983s 38.9s + 137.27s
1039.15s 1.4s 547.9s 0.76s

(6/3) e + 507.12s + 51.13s + 47.53s + 3.5s
[13710 / 221895] [37297 / 298047] [13798 / 410559] [10086 / 202694]

towers
33 timeout

31.19s + 102.69s
304.02s 1.51s 102.81s 1.04s

(8/4) + 3017.87s + 470.23s + 89.36s + 14.8s
[35041 / 433660] [12922 / 655436] [9074 / 324668]

ferryman
16

39.45s + 0s 8.27s + 2.98s
40.85s 0.87s 21.59s 0.66s

(10/4) f + 8.71s + 1.85s + 2.37s + 0.25s
[55905 / 308909] [14122 / 120693] [4973 / 358772] [12721 / 112912]

ferryman
26

1004.26s + 0s
5

85.21s + 39.54s
793.13s 6.13s 318.4s 4.18s

(15/4) + 169.18s + 14.73s + 34.4s + 2.97s
[256590 / 1452554] [42687 / 539513] [15718 / 2275992] [39536 / 515167]

Figure 7.4: Benchmarking Results

a preprocessing time + solve time [# atoms / # rules]
b ’–’ means that the input language of coala is not expressive enough to represent

the domain.
c maximum cost
d domain size (15× 15× 15) / goal position
e disks / pegs
f # animals / boat capacity

pendent jets; the Towers of Hanoi; and the Ferryman domain, which involves moving

a number of wolves and sheep across a river without allowing the sheep to be eaten.

The Towers of Hanoi and Ferryman descriptions are from examples packaged with

coala v1.0.1. In order to run them on other systems, we manually converted them

CCalc’s input syntax.

Table 7.4 compares the results of the test benchmarks for each of the available

configurations. Each measured time includes translation, grounding, and solving for

all possible maximum steps between 0 and the horizon (#), as well as the number of

atoms and rules produced below each timing. In all test cases Cplus2ASP’s incre-
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Figure 7.5: Ferryman 120/4 Long Horizon Analysis

mental running mode showed a significant performance advantage compared to the

other systems, performing roughly 3 times faster than coala’s incremental mode and

an order of magnitude faster than its predecessor Cplus2ASP v1. coala’s incremen-

tal running mode comes in the second place in all but one benchmark. Cplus2ASP

v2’s static mode tended to outperform its predecessor on the more computation-heavy

additive domains, but was subsequently outmatched in the others. Finally, CCalc

2 and coala’s static mode came in last (with CCalc performing slightly worse in

most cases).

Figure 7.5 shows a more detailed analysis of the execution of the first 100 steps of

solving an extreme variant of the ferryman domain consisting of 120 of each animal by

graphing the time spent (in seconds) on each step by each configuration. While the

static configurations were required to completely re-ground and re-solve the translated

answer set program for each maximum step, resulting in an ever-growing amount of

work to be performed at each step, Cplus2ASP v2’s incremental running mode is

able to avoid this by only grounding the new cumulative (P [t]) and volatile (Q[t])

components and leveraging heuristics learned from previous iterations. This results

in far less time being required for checking each increment.

Although coala’s incremental mode uses the same reasoning engine, iClingo, as

Cplus2ASP v2’s incremental mode, system Cplus2ASP sees a significant overall
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speed-up over coala, which can be attributed to a significant reduction in the number

of rules produced during grounding due to the availability of multi-valued fluents in

Cplus2ASP resulting in a more succinct action description as well as a translation

optimized for the heuristics applied by iClingo, which results in far fewer conflicts

and restarts during solving in all test cases.
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Chapter 8

CONCLUSION

Modeling dynamic systems is an important Knowledge Representation problem

which has received attention due to its use as a reasoning platform for the evolu-

tion of real-world environments. We examined and compared a number of existing

techniques for modeling these systems, including Answer Set Programming and the

action languages B, C, C+, and BC. While ASP provides an expressive semantics ca-

pable of modeling many interesting problems, the low-level logical syntax and lack of

structure makes non-trivial development in ASP difficult. Meanwhile, the action lan-

guages each provide a highly structured syntax and intuitive semantics for modeling

dynamic systems, but this comes at the price of stifling losses in expressivity.

To make matters worse, none of these techniques are capable of efficiently per-

forming an iterative deepening search, such as searching for the shortest plan to

accomplish a goal, or gracefully handle exceptions which occur while executing such

a plan. In either case, the traditional answer is to repeatedly restart the grounding/-

solving process from scratch, throwing out any current results. In practice this proves

quite limiting as the intractable nature of solving each of these formalism makes each

of these restarts prohibitively expensive.

In this work we provided a promising solution to these deficiencies in the form

of an integrated framework for incremental and online reasoning. Our framework

consists of a new online action language, which we call BC+, whose offline fragment

provides a proper generalization of each of the aforementioned action languages while

maintaining their high-level structure and transition system semantics. We showed

how this action language can then be solved in an incremental fashion, allowing
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for efficiently performing an iterative deepening search to generate minimum length

histories, using an online ASP theory based on the background theory of the ASP

system oClingo (and, as a special case, iClingo). In addition, BC+ also provides

facilities for efficiently handling exceptions in an online environment using the same

theories.

Finally, we provided an implementation of this framework in the form of the

system Cplus2ASP 2.0, which implements a number of the formalisms discussed in-

cluding multi-valued propositional formulas under the Stable Model Semantics and

the action languages C+, BC, and BC+. In practice, Cplus2ASP shows a perfor-

mance increase of roughly an order of magnitude when compared to its predecessor

as well as providing additional enhancements in functionality and useability.

Although the online BC+ framework shows promise for solving several of the

deficiencies present within existing formalisms, its effectiveness has yet to be fully

evaluated. As such, future work will focus on exploring specific applications for BC+,

such as a robot agent controller, and fully evaluating its applicability to these ap-

plications. In addition, additional extensions of the framework should be considered

based on the recent extension of the Stable Model Semantics to allow for generalized

quantifiers (and, as a special case, ASP aggregates).

This work has been published in part within

� Babb and Lee (2012), “Module theorem for the general theory of stable models”,

Theory and Practice of Logic Programming 12, 4-5, 719–735 (2012), and

� Babb and Lee (2013), “Cplus2asp: Computing action language C+ in answer

set programming”, in “Proceedings of International Conference on Logic Pro-

gramming and Nonmonotonic Reasoning (LPNMR)”, pp. 122–134 (2013).
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APPENDIX A

REFERENCED ACTION DESCRIPTIONS
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A.1 The Action Language B

Named Sets: Value:
Status {on, off}
Boolean {t, f}

Constants: Type: Domain:
Sw ,Light Fluent Status
Flip Action Boolean

Flip causes Sw = on if Sw = off. DBswitch,1

Flip causes Sw = off if Sw = on. DBswitch,2

Light = s if Sw = s. s ∈ Status DBswitch,3

Figure A.1: The Light Switch Problem in B

Named Sets: Value:
Status {on, off}
Switch {s1, s2, . . . }
Boolean {f, f}

Constants: Type: Domain:
Sw(x) Fluent x ∈ Switch Status
Flip(x) Action x ∈ Switch Action

Flip(x) causes Sw(x) = on if Sw(x) = off. x ∈ Switch DBswitch2,1

Flip(x) causes Sw(x) = off if Sw(x) = on. x ∈ Switch DBswitch2,2

Sw(x) = off if Sw(y) = on, Sw(s3) = on. x, y ∈ {s1, s2}, x 6= y DBswitch2,3

Sw(x) = on if Sw(y) = off, Sw(s3) = on. x, y ∈ {s1, s2}, x 6= y DBswitch2,4

Figure A.2: The Many Switch Problem in B

129



A.2 The Action Language C

Named Sets: Value:
Status {on, off}
Boolean {t, f}

Constants: Type: Domain:
Sw ,Light Fluent Status
Flip Action Boolean

inertial Sw . DCswitch,1

caused Sw = on after Flip = t ∧ Sw = off. DCswitch,2

caused Sw = off after Flip = t ∧ Sw = on. DCswitch,3

caused Light = s if Sw = s. s ∈ Status DCswitch,4

Figure A.3: The Light Switch Problem in C

Named Sets: Value:
Location {left, right}
Boolean {t, f}

Constants: Type: Domain:
Arm Fluent Location
Hold Action Boolean

caused Arm = left if Arm = left
after Arm = right. DCpendulum,1

caused Arm = right if Arm = right
after Arm = left. DCpendulum,2

caused Arm = l after Hold = t ∧ Arm = l. l ∈ Location DCpendulum,3

Figure A.4: The Pendulum Problem in C

A.3 The Action Language C+
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Named Sets: Value:
Status {on, off}
Boolean {t, f}

Constants: Type: Domain:
Sw ,Light Simple Fluent Status
Flip Action Boolean

inertial Sw . DC+switch,1

exogenous Flip. DC+switch,2

Flip = t causes Sw = on if Sw = off. DC+switch,3

Flip = t causes Sw = off if Sw = on. DC+switch,4

caused Light = s if Sw = s. s ∈ Status DC+switch,5

Figure A.5: The Light Switch Problem in C+

Named Sets: Value:
Location {left, right}
Boolean {t, f}

Constants: Type: Domain:
Arm Fluent Location
Hold Action Boolean

exogenous Hold . DC+pendulum,1

default Arm = left after Arm = right. DC+pendulum,2

default Arm = right after Arm = left. DC+pendulum,3

Hold = t causes Arm = l if Arm = l. l ∈ Location DC+pendulum,4

Figure A.6: The Pendulum Problem in C+
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Named Sets: Value:
Len {1, 2, . . . , none}
Type {journal, conference, workshop, none}
Boolean {t, f}

Constants: Type: Domain:
HasPub,HasLongPub Fluent Boolean
HasJournalPub Fluent Boolean
Publish Action Boolean
PubType Action Type
PubLen Action Len

inertial HasPub. DC+publish,1

inertial HasLongPub. DC+publish,2

inertial HasJournalPub. DC+publish,3

exogenous Publish. DC+publish,4

exogenous PubType. DC+publish,5

exogenous PubLen. DC+publish,6

constraint PubType = none↔ Publish = f. DCpublish,7

constraint PubLen = none↔ Publish = f. DCpublish,8

Publish = t causes HasPub = t. DCpublish,9

PubLen = x causes HasLongPub = t. x ∈ Len, x > 30 DCpublish,10

PubType = journal causes HasJournalPub = t. DCpublish,11

constraint HasLongPub = t→ HasPub = t. DCpublish,12

constraint HasJournalPub = t→ HasPub = t. DCpublish,13

Figure A.7: The Publishing Problem in C+
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A.4 The Action Language BC

Named Sets: Value:
Status {on, off}
Boolean {t, f}

Constants: Type: Domain:
Sw ,Light Fluent Status
Flip Action Boolean

inertial Sw . DBCswitch,1

Flip causes Sw = on if Sw = off. DBCswitch,2

Flip causes Sw = off if Sw = on. DBCswitch,3

Light = s if Sw = s. s ∈ Status DBCswitch,4

Figure A.8: The Light Switch Problem in BC

Named Sets: Value:
Status {on, off}
Switch {s1, s2, . . . }
Boolean {t, f}

Constants: Type: Domain:
Sw(x) Fluent x ∈ Switch Status
Flip(x) Action x ∈ Switch Boolean

inertial Sw(x) x ∈ Switch DBCswitch2,1

Flip(x) causes Sw(x) = on if Sw(x) = off. x ∈ Switch DBCswitch2,2

Flip(x) causes Sw(x) = off if Sw(x) = on. x ∈ Switch DBCswitch2,3

Sw(x) = off if Sw(y) = on, Sw(s3) = on. x, y ∈ {s1, s2}, x 6= y DBCswitch2,4

Sw(x) = on if Sw(y) = off, Sw(s3) = on. x, y ∈ {s1, s2}, x 6= y DBCswitch2,5

Figure A.9: The Many Switch Problem in BC
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Named Sets: Value:
Len {1, 2, . . . }
Type {journal, conference, workshop}
Boolean {t, f}
Action {pub(l, t), wait} (l, t) ∈ Len × Type

Constants: Type: Domain:
HasPub,HasLongPub Fluent Boolean
HasJournalPub Fluent Boolean
a Action Action

inertial HasPub. DBCpublish,1

inertial HasLongPub. DBCpublish,2

inertial HasJournalPub. DBCpublish,3

pub(l, t) causes HasPub = t. (l, t) ∈ Len × Type DBCpublish,4

pub(l, t) causes HasLongPub = t. (l, t) ∈ Len × Type
l > 30 DBCpublish,5

pub(l, journal) causes HasJournalPub = t. l ∈ Len DBCpublish,6

HasPub = t if HasJournalPub = t. DBCpublish,7

HasPub = t if HasLongPub = t. DBCpublish,8

Figure A.10: The Publishing Problem in BC

A.5 The Action Language BC+

134



Named Sets: Value:
Status {on, off}
Switch {s1, s2, . . . }
Boolean {t, f}

Constants: Type: Domain:
Sw(x) Fluent x ∈ Switch Status
Flip(x) Action x ∈ Switch Boolean

inertial Sw(x) x ∈ Switch DBC+switch2,1

Flip(x) = t causes Sw(x) = on if Sw(x) = off. x ∈ Switch DBC+switch2,2

Flip(x) = t causes Sw(x) = off if Sw(x) = on. x ∈ Switch DBC+switch2,3

Sw(x) = off if Sw(y) = on, Sw(s3) = on. x, y ∈ {s1, s2}, x 6= y DBC+switch2,4

Sw(x) = on if Sw(y) = off, Sw(s3) = on. x, y ∈ {s1, s2}, x 6= y DBC+switch2,5

Figure A.11: The Many Switch Problem in BC+

Named Sets: Value:
Location {left, right}
Boolean {t, f}

Constants: Type: Domain:
Arm Fluent Location
Hold Action Boolean

exogenous Hold . DBC+pendulum,1

default Arm = left after Arm = right. DBC+pendulum,2

default Arm = right after Arm = left. DBC+pendulum,3

Hold = t causes Arm = l if Arm = l. l ∈ Location DBC+pendulum,4

Figure A.12: The Pendulum Problem in BC+
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Named Sets: Value:
Len {1, 2, . . . , none}
Type {journal, conference, workshop, none}
Boolean {t, f}

Constants: Type: Domain:
HasPub,HasLongPub Fluent Boolean
HasJournalPub Fluent Boolean
Publish Action Boolean
PubType Action Type
PubLen Action Len

inertial HasPub. DBC+publish,1

inertial HasLongPub. DBC+publish,2

inertial HasJournalPub. DBC+publish,3

exogenous Publish. DBC+publish,4

exogenous PubType. DBC+publish,5

exogenous PubLen. DBC+publish,6

constraint PubType = none↔ Publish = f. DBCpublish,7

constraint PubLen = none↔ Publish = f. DBCpublish,8

Publish = t causes HasPub = t. DBCpublish,9

PubLen = x causes HasLongPub = t. x ∈ Len, x > 30 DBCpublish,10

PubType = journal causes HasJournalPub = t. DBCpublish,11

constraint HasLongPub = t→ HasPub = t. DBCpublish,12

constraint HasJournalPub = t→ HasPub = t. DBCpublish,13

Figure A.13: The Publishing Problem in BC+
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PROOFS OF STATEMENTS
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B.1 Proposition 2

Lemma 2 Given formulas F1 = F ∧H ∧G and F2 = F ∧H ∧Choice(A) where A is
a set of atoms such that F is negative on A and G is negative on At(F ) \A, it holds
that if a set of atoms I is an answer set of F1 it is an answer set of F2.

Proof.
As F is negative on A and both G and Choice(A) is negative on At(F ) \ A, it

holds via Theorem 3 of Babb and Lee (2012) that

SM [F ∧H ∧G;σ]↔ SM [F ∧H;σ \ A] ∧ SM [H ∧G;A], and

SM [F ∧H ∧ Choice(A);σ]↔ SM [F ∧H;σ \ A] ∧ SM [H ∧ Choice(A);A]

Furthermore, by Theorem 2 of Ferraris et al. (2011) it holds that

SM [F ∧H;σ \ A] ∧ SM [H ∧ Choice(A);A]↔ SM [F ∧H;σ \ A] ∧ SM [H; ∅]
↔ SM [F ∧H;σ \ A] ∧H

Finally, by Lemma 1 of Ferraris et al. (2009b) it holds that

SM [F ∧H;σ \ A]→ H

therefore

SM [F ∧H;σ \ A] ∧H ↔ SM [F ∧H;σ \ A].

As

SM [F ∧H;σ \ A] ∧ SM [H ∧G;A]→ SM [F ∧H;σ \ A]

it trivially follows that

SM [F ∧H ∧G;σ]→ SM [F ∧H ∧ Choice(A);σ].

For convenience we refer to the notation presented in Babb and Lee (2012). As
such, given a signature σ, set of atoms I ⊆ σ, and formula F such that At(F ) ⊆ σ
we say that I ⊆ σ is an answer set of a formula F iff I |= SM [F ;σ].

Proposition 2
Given a BC+ action description DBC+ and any k ≥ 0 it holds that the histories of
length k of T (DBC+) correspond exactly to the answer sets of DBC+k .
Proof. By Definition 7, DBC+k is

0:Choice(σSF) ∧
∧

(3.13)∈DS

0:G→ 0:F ∧
∧

1≤i≤k

∧
(3.13)∈DAD

(i−1):G→ (i−1):F
∧
∧

(3.13)∈DS i:G→ i:F
∧
∧

(3.14)∈DFD
(i−1):H ∧ i:G→ i:F

.

(B.1)

We show the proposition by induction on k as follows:
Base:
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� DBC+0 is (B.2) which is precisely (4.3).
� Therefore it follows trivially by definition that the answer sets DBC+0 are exactly

the histories of length 0 (i.e. states) of T (DBC+).

Inductive:

� Assume that DBC+k−1 is a history of length k − 1 of T (DBC+).
� The following can be easily observed:

– it holds that

0:Choice(σSF) ∧
∧

(3.13)∈DS

0:G→ 0:F (B.2)

contains only atoms within 0:At(σF);

– for each 1 ≤ i ≤ it holds that∧
(3.13)∈DAD

(i−1):G→ (i−1):F
∧
∧

(3.13)∈DS i:G→ i:F
∧
∧

(3.14)∈DFD
(i−1):H ∧ i:G→ i:F

(B.3)

contains only atoms within (i−1):At(σF) ∪ (i−1):At(σA) ∪ i:At(σF), and is
negative on (i−1):At(σF); and

– finally, there are no rules in (B.1) such that for any 0 ≤ i ≤ j ≤ k

* An action atom a ∈ j:At(σA) occurs in the body, and a fluent atom
f ∈ i:At(σF) occurs in the head, and

* A fluent atom f ∈ j :At(σF) occurs in the body, and a fluent atom
f ′ ∈ i:At(σF) occurs in the head such that i 6= j.

� It follows by Module Theorem, that (B.1) is equivalent to

DBC+k−1 t 〈(B.3), (k−1):At(σF), (k−1):At(σA) ∪ k:At(σF)〉. (B.4)

� Furthermore, by Module theorem, it holds that A is an answer set of (B.4) iff
A = A′ ∪ Ak such that

A′ ⊆ 0:At(σF) ∪
⋃

1≤i<k

((i−1):At(σA) ∪ i:At(σF)) (B.5)

is an answer set of DBC+k−1 and

A ⊆ (k−1):At(σA) ∪ k:At(σF) (B.6)

is an answer set of

〈(B.3), (k−1):At(σF), (k−1):At(σA) ∪ k:At(σF)〉. (B.7)

� It follows immediately from our induction hypothesis that Ak−1 is a history of
length k − 1 of T (DBC+).
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� Additionally, it can be observed that:

– it holds that ∧
(3.13)∈DAD

(k−1):G→ (k−1):F (B.8)

contains only atoms within (k−1):At(σF)∪ (k−1):At(σA) and is negative on
(k−1):At(σF);

– it holds that ∧
(3.13)∈DS

k:G→ k:F (B.9)

contains only atoms within k:At(σF) and is negative on k:At(σSF);

– it holds that ∧
(3.14)∈DFD

(k−1):H ∧ k:G→ k:F (B.10)

contains only atoms within (k−1):At(σF) ∪ (k−1):At(σA) ∪ k:At(σF) and is
negative on (k−1):At(σF) ∪ (k−1):At(σA) ∪ k:At(σSD).

– finally, there are no rules in (B.3) such that a fluent atom f ∈ k:At(σF)
occurs in the body and action atom a ∈ (k−1):At(σA) occurs in the head.

� It follows via Module Theorem that Ak is an answer set of (B.7) iff Ak =
Ak−1,F ∪Ak−1,A ∪Ak,F such that Ak−1,A ⊆ (k−1):At(σA), Ak−1,F ⊆ (k−1):At(σF),
and Ak,F ⊆ k:At(σF) where Ak−1,A ∪ Ak−1,F is an answer set of

〈
∧

(3.13)∈DAD

(k−1):G→ (k−1):F, (k−1):At(σF), (k−1):At(σA)〉 (B.11)

and Ak is an answer set of

〈
∧

(3.14)∈DFD

(k−1):H ∧ k:G→ k:F, (k−1):At(σF) ∪ (k−1):At(σA), k:At(σF)〉.

(B.12)

� By definition, this is equivalent to Ak−1,A ∪Ak−1,F being an answer set of (4.4)
and Ak begin an answer set of (4.5).

� It only remains to observe that, by Lemma 2 it holds that Ak must also be an
answer set of k:(4.3) ∧ Choice((k−1):σF ∪ (k−1):σA), or, equivalently, Ak,F is an
answer set of k:(4.3).

� As Ak−1 is a history of length k − 1 of T (DBC+), it holds that Ak−1,F is a state
of T (DBC+).

� It then follows that Ak−1,A is a candidate transition label leaving Ak−1,F and
that Ak is a transition 〈Ak−1,F, Ak−1,A, Ak,F〉 of T (DBC+).

� It follows immediately that A = Ak−1 ∪Ak is a history of length k of T (DBC+).

140



B.2 Proposition 3

Proposition 3
Given a definite C+ action description D, it holds that the transition system corre-
sponding to D is exactly T (cp2bcp(D)).

Proof. Given a C+ action description D, by DS, DAD and DFD we denote the set
of static, action dynamic, and fluent dynamic laws in D.

Begin with the C+ description D. By definition, Dk is

0:Choice(σSF) ∧
∧

(3.9)∈DS

¬¬0:G→ 0:F ∧
∧

1≤i≤k

∧
(3.9)∈DAD

¬¬(i−1):G→ (i−1):F
∧
∧

(3.9)∈DS ¬¬i:G→ i:F
∧
∧

(3.10)∈DFD
(i−1):H ∧ ¬¬i:G→ i:F

.

(B.13)

This is exactly the propositional formula generated by cp2bcp(D) under the BC+.

B.3 Proposition 4

Proposition 4
Given a BC action description D, it holds that the transition system corresponding to
D is exactly T (bc2bcp(D)).

Proof. Given a BC action description D, by DS and DFD we denote the set of static
and fluent dynamic laws in D.

Begin with the BC description D. By definition, Dk is

0:Choice(σSF) ∧
∧

(3.13)∈DS

0:G1 ∧ ¬¬0:G2 → 0:F

∧
∧

1≤i≤k

∧
(3.13)∈DS i:G1 ∧ ¬¬i:G2 → i:F

∧(i−1):Choice(σA)
∧
∧

(3.14)∈DFD
(i−1):H ∧ i:G1 ∧ ¬¬i:G2 → i:F

. (B.14)

This is exactly the propositional formula generated by bc2bcp(D) under the BC+.

B.4 Theorem 3

Theorem 4 Let F , G, and H be first-order sentences, and let p, q be finite lists of
distinct predicate constants. If

(a) each strongly connected component of the predicate dependency graph of F ∧G∧
H relative to p, q is a subset of p or a subset of q,

(b) F is negative on q, and
(c) G is negative on p

then
SM[F ∧G ∧H; pq]↔ SM[F ∧H; p] ∧ SM[G ∧H; q]

is logically valid.
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Proof. Let p′ (q′) be the set of intensional predicates which are exclusive to p (q),
and r be be the intersection of p,q. We have the following chain of equivalences via
Ferraris et al. (2009b): Splitting Lemma Version 3

SM[F ∧G ∧H; pq] ↔
SM[F ∧G ∧H; p′q′r] ↔
SM[F ∧G ∧H; p1′ ] ∧ · · · ∧ SM[F ∧G ∧H; pn

′
]

∧ SM[F ∧G ∧H; q1′ ] ∧ · · · ∧ SM[F ∧G ∧H; qn
′
]

∧ SM[F ∧G ∧H; r1] ∧ · · · ∧ SM[F ∧G ∧H; rn] ↔
SM[F ∧G ∧H; p′] ∧ SM[F ∧G ∧H; q′] ∧ SM[F ∧G ∧H; r] ↔
SM[F ∧G ∧H; p′r] ∧ SM[F ∧G ∧H; q′r] ↔
SM[F ∧G ∧H; p] ∧ SM[F ∧G ∧H; q] ↔
SM[F ∧H; p] ∧G ∧ SM[G ∧H; q] ∧ F.

This is then equivalent to

SM[F ∧H; p] ∧ SM[G ∧H; q].

as SM[F ∧H; p] (SM[G∧H; q]) entails F (G) by the definition of the SM operator.

Lemma 3 Given a second-order sentence F and compatible partial interpretations
A1, A2 such that all constants occurring in F are in c1 and c2. It holds that A1 |= F
iff A2 |= F .

Proof. We simply must show that FA1 = FA2 . By Induction.
Base: F is an atomic formula p(t1, ..., tn) where t1, ..., tn are variable-free terms,

equality t1 = t2 where t1 and t2 are variable free terms, or ⊥.
If F is an atomic formula, we have that FA1 = pA1(tA1

1 , ..., tA1
n ) = pA1(tA2

1 , ..., tA2
n )

from 4, it then follows directly that this is pA2(tA2
1 , ..., tA2

n ) = FA2 as A1 and A2 are
compatible and p ∈ c1 ∩ c2.

Similarly, if F is an equality, then FA1 is tA1
1 = t2

A
1 which is then tA2

1 = tA2
2 or

equivalently FA2 , by Lemma 4.
If F is ⊥, then FA1 = FA2 = f trivially.
Inductive: Let Lemma 3 hold for any second-order sentences which are shorter

than F . We show that the Lemma holds for the case where F is G�H (� ∈ {∧,∨,→
}), F is QxG(x) where Q ∈ {∀,∃} and x is a predicate-variable, and F is QxG(x)
where Q ∈ {∀,∃} and x is a object-variable.

If F is G�H, then

FA1 = �(GA1 , HA1)

= �(GA2 , HA2) = FA2 . by the I.H.

If F is QxG(x) such that x is a predicate-variable, it is sufficient to show that each
resulting substitution G(ρ), where ρ is an arbitrary predicate name from the extended
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signature of the same arity as x, is evaluated similarly in each interpretation. As G(ρ)
is shorter than F , this holds by the induction hypthesis.

Finally, If F is QxG(x) such that x is an object-variable, we have that |A1| =
|A2| so the set of possible object constants of the extended signature mapping to
the universe is identical for each interpretation. It also follows from the I.H. that
G(ξ∗)A1 = G(ξ∗)A2 for each such object constant ξ∗. It then holds that (QxG(x))A1 =
(QxG(x))A2 .

Therefore, it holds that A1 |= F iff A2 |= F .

Lemma 4 Given a variable-free term t and compatible partial interpretations A1, A2,
such that all constants occurring within t are within c1 ∩ c2. It holds that tA1 = tA2.

Proof. By Induction.
Base: t is an object constant: As A1 and A2 are compatible and t ∈ c1 ∩ c2, it

holds that tA1 = tA2 .
Inductive: Let t1, ..., tn be variable-free terms such that tA1

i = tA2
i for each 1 ≤

i ≤ n. If t = t0(t1, ..., tn), then

tA1 = tA1
0 (tA1

1 , ..., tA1
n ) Definition

= tA1
0 (tA2

1 , ..., tA2
n ) I.H.

= tA2
0 (tA2

1 , ..., tA2
n ) Compatible Interpretations

= tA2
0 . Definition

Theorem 3
Let F1 = 〈F1, I1, O1〉 and F2 = 〈F2, I2, O2〉 be first-order modules that are joinable
with interpretations A1 and A2 of c1 ⊇ c(F1) ∪O1 and c2 ⊇ c(F2) ∪O2, respectively.
If I1 A and A2 are compatible with each other,

A1 ∪ A2 |= SM[F1 t F2] iff A1 |= SM[F1] and A2 |= SM[F2] .

Proof. Let F1 = 〈F ′1 ∧H, I1, O1〉 and F2 = 〈F ′2 ∧H, I2, O2〉.
By definition SM[F1 t F2] is SM[F ′′1 ∧ F ′′2 ∧H;O1 ∪ O2]. By Theorem 4, it holds

that

A1 ∪ A2 |= SM[F ′1 ∧ F ′2 ∧H;O1 ∪O2] iff

A1 ∪ A2 |= SM[F ′1 ∧H;O1] and A1 ∪ A2 |= SM[F ′2 ∧H;O2]

It can trivially be shown that A1 ∪ A2 is compatible with A1, it follows from our
assumptions and by Lemma 3 that A1 ∪ A2 |= SM[F ′1 ∧H;O1] if, and only if, A1 |=
SM[F ′1 ∧H;O1]. Similarly, A1 ∪ A2 |= SM[F ′1 ∧H;O1] if, and only if, A2 |= SM[F ′2 ∧
H;O1]. It follows that

A1 ∪ A2 |= SM[F1 t F2] iff

A1 |= SM[F1] and A2 |= SM[F2]
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B.5 Proposition 7

Proposition 7
Given a modular incremental theory 〈B,P [t], Q[t]〉 and online progression 〈E,F 〉≥1

and any j, k ≥ 0 such that e1, . . . , ej, fj ≤ k, an interpretation I is an answer set of
Rj,k iff there are compatible interpretations

IB, IP [t/1], . . . , IP [t/k], IE1[e1], . . . , IEj [ej ], IQ[t/k], IFj [fj ] (B.15)

such that I =
⋃
X∈(B.15)X where

� IB is an answer set of PM (B, I(B)),
� each IP [t/i] is an answer set of PM (P [t/i], O(Pi−1) ∪ I(P [t/i])),
� each IEi[ei] is an answer set of PM (Ei[ei], O(Pei) ∪O(Ei−1) ∪ I(Ei[ei])),
� IQ[t/k] is an answer set of PM (Q[k/t], O(Pk) ∪ I(Q[t/k])), and
� IFj [fj ] is an answer set of PM (Fj[fj], O(Pfj) ∪O(Ej) ∪ I(Fj[fj])).

Proof. As the incremental theory and online progression are modular, each of the
modules provided in Definition 16 are defined and joinable. All that is required is to
inductively apply the module theorem on the structure provided therein.

B.6 Proposition 8

Given a formula F , by Head(F ) we denote the set of predicates which have strictly-
positive occurrences in F .

Lemma 5 Given propositional formulas F , G and set of atoms I such that G con-
tains no strictly-positive occurrences of Pred(F ) \ I it holds that the stable models of
F ∧G and Simple(F, I) ∧G coincide.

Proof. By induction on the number of iterations of Simple(F, I).

base

Iteration 0: Trivial as F ∧G clearly has the same stable models as itself.
inductive

� Let Fi−1 be the formula obtained by performing i − 1 iterations of the
Simple operation and assume that Fi−1 ∧ G and F ∧ G have the same
stable models.

� It is clear that Pred(Fi−1) ⊆ Pred(F ).

� As G contains no strictly positive occurrences of atoms in Pred(F ) \ I, it
follows that the same holds for Pred(Fi−1) \ I.

� Therefore Fi−1∧G contains no strictly positive occurrences of atoms within
X = Pred(Fi−1) \ (Head(Fi−1) ∪ I).

� Let F ′i−1 be the propositional formula obtained from Fi−1 by replacing
occurrences of all atoms a ∈ X with ⊥.
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� By Ferraris et al. (2011) Theorem 4, it then holds that Fi−1∧G and F ′i−1∧G
have the same stable models.

� Finally, it is only necessary to observe that the transformations prescribed
during projection are strong equivalencies.

� This establishes that the stable models of F ′i−1 ∧G and Fi ∧G coincide.

� By the I.H. it then holds that the stable models of F ∧ G and Fi ∧ G
coincide.

Proposition 8
Given an incremental theory 〈B,P [t], Q[t]〉 and online progression 〈E,F 〉≥1 which
are modular and mutually revisable and some j, k ≥ 0 such that e1, . . . , ej, fj ≤ k
and let Rj,k and Rj,k = 〈R, I,O〉 be the k-expansion and incremental composition,
respectively. It holds that the stable models of Rj,k and R coincide.

Proof.
For each G ∈ (5.6), we define IG such that

IB = I(B),

IP [t/i] = O(Pi−1) ∪ I(P [t/i]),

IEi[ei] = O(Pei) ∪O(Ei−1) ∪ I(Ei[ei]),

IQ[t/i] = O(Pi) ∪ I(Q[t/i]), and

IFi[fi] = O(Pfi) ∪O(Ei) ∪ I(Fj[fj]).

Equivalently, this can be represented as

IG = I(G) ∪
⋃
G′≺G

Simple(G, IG′) \ I(G′).

By definition, Rj,k is

B ∧ P [t/1] ∧ · · · ∧ P [t/k] ∧ E1[e1] ∧ · · · ∧ Ej[ej] ∧Q[t/k] ∧ Fj[fj].

For uniformity, we refer to each formula G ∈ (5.6) by its index in the conjunction,
making Rj,k

G1 ∧G2 ∧ · · · ∧Gk+1 ∧Gk+2 ∧ · · · ∧Gj+k+1 ∧Gj+k+2 ∧Gj+k+3 (B.16)

Observe that for each pair of formulas Gi1 , and Gi2 such that i2 > i1 it holds that
Gi2 6≺ Gi1 .

As the theory is mutually revisable, it then holds by definition that for any
i2 > i1, Gi2 is negative on Pred(Gi1) \ I(Gi1). Furthermore, it can be observed
that Simple(Gi1 , IGi1

) is negative on Pred(Gi2) \ IGi2
:

� If Gi1 ≺ Gi2 it can be observed that

Pred(Simple(Gi1 , IGi1
)) \ I(Gi1) ⊆ IGi2

.

As Gi1 is negative on I(Gi1) it then follows that each strictly positively oc-
curring atom in Gi1 is within IGi2

. Therefore, Simple(Gi1 , IGi1
) is negative on

Pred(Gi2) \ IGi2
.
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� Otherwise Gi1 6≺ Gi2 . As the theory is mutually revisable, it holds by definition
that Gi1 (and therefore Simple(Gi1 , IGi1

)) is negative on Pred(Gie) \ I(Gi2).

It follows via repeated applications of Lemma 5 that (B.16) has the same stable
models as

Simple(G1, IG1) ∧ Simple(G2, IG2) ∧ · · · ∧ Simple(Gj+k+3, IGj+k+3
).

By taking F to be each Gi and G to be

Simple(G1, IG1) ∧ · · · ∧ Simple(Gi−1, IGi−1
) ∧Gi+1 ∧ · · · ∧Gj+k+3.

on each iteration.
This is exactly R.

B.7 Lemma 1

Lemma 6 Given propositional formulas F,G and disjoint sets of atoms A1, A2 such
that each atom occurring outside the scope of negation within F or G is contained in
A1 or A2, respectively. It holds that DG[F ∧G;A1 ∪A2] contains no cycles spanning
A1 and A2.

Proof.

� Assume the presence of such a cycle.

� It follows that there is then some strictly positive implication of the form H1 →
H2 such that some p ∈ A1 occurs positively and outside the scope of negation
in H1 and some q ∈ A2 occurs strictly positively in H2.

� Note that H1 → H2 contains occurrences of atoms within both A1 and A2

outside the scope of negation.

� H1 → H2 cannot occur in F as each atom occurring outside negation in F is in
A1, which is disjoint from A2.

� Similarly, H1 → H2 cannot occur in G as G cannot have a non-negated occur-
rence of an atom within A1.

� Thus a contradiction is drawn.

Lemma 7 Given an acyclic incremental theory 〈B,P [t], Q[t]〉 and online progression
〈E,F 〉≥1, it holds that, for any i ≥ 0, Pi is defined such that

� the set of atoms occurring within F (Pi) outside negation are contained within
O(Pi), and

� O(Pi) ⊆ OPi
where OPi

is

Head(B) ∪ Head(P [t/1]) ∪ · · · ∪ Head(P [t/i]).
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Proof. By induction on i:

Base (i = 0):

� Trivially

P0 = 〈Simple(B, I(B)), I(B),Pred(Simple(B, I(B))) \ I(B)〉

is defined.

� As the theory is acyclic, B contains no occurrences of atoms within I(B)
outside the scope of negation.

� It follows that the set of atoms occurring within F (P0) outside negation
are contained within O(P0)

� Additionally, by definition, Pred(Simple(B, I(B))) ⊆ Head(B) ∪ I(B).

� It follows trivially that O(P0) ⊆ Head(B).

Inductive (i > 0): Assume the lemma holds for i− 1.

� Let I = I(P [t/i]) ∪O(Pi−1).

� Trivially

P[t/i] = 〈Simple(P [t/i], I), I,Pred(Simple(P [t/i], I)) \ I〉

is defined.

� By definition, O(P[t/i]) and O(Pi−1) are disjoint.

� Additionally, it holds that there all atoms occurring within F (P[t/i]) out-
side the scope of negation are within O(P[t/i]):

– As the incremental theory is acyclic, P [t/i] 6≺ B, and P [t/i] 6≺ P [t/j]
(j < i), it holds that P [t/i] contains no occurrences of any atoms
within

(Pred(B) \ I(B)) ∪ (Pred(P [t/1]) \ I(P [t/1])) ∪ . . .
∪ (Pred(P [t/i− 1]) \ I(P [t/i− 1])) (B.17)

outside the scope of negation.

– By the induction hypothesis, (B.17) is a super set of O(Pi−1).

– Additionally, as the incremental theory is acyclic, P [t/i] contains only
negated occurrences of any atoms within I(P [t/i]).

– Since I = I(P [t/i]) ∪ O(Pi−1), it then follows that F (P[t/i]) contains
no non-negated occurrences of any atoms within I.

– Therefore non-negated atoms within F (P[t/i]) must be in O(P[t/i]).

� It then follows by the induction hypothesis and Lemma 6 that

DG[F (Pi−1) ∧ F (P[t/i]);O(Pi−1) ∪O(P[t/i])]

has no cycles spanning O(Pi−1) and O(P[t/i]).
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� It follows immediately that

Pi = Pi−1 t P[t/i]

is defined.

� Furthermore, from the definition of Simple, it can trivially be seen that

O(P[t/i]) ⊆ Head(P [t/i]).

� It then holds by the induction hypothesis that

O(Pi) = O(Pi−1) ∪O(P[t/i]) ⊆ OPi−1
∪ Head(P [t/i]) = OPi

.

� Finally, it is only necessary to observe that as each atom occurring within
F (Pi−1) and F (P[t/i]) outside the scope of negation is in O(Pi−1) and
O(P[t/i]), respectively, it follows that each atom occurring within F (Pi) is
within O(Pi).

Lemma 8 Given an acyclic incremental theory 〈B,P [t], Q[t]〉 and online progression
〈E,F 〉≥1, it holds that, for any i ≥ 0, Ei is defined such that

� the set of atoms occurring within F (Ei) outside negation are contained within
O(Ei), and

� O(Ei) ⊆ OEi
where OEi

is

Head(E1[e1]) ∪ · · · ∪ Head(Ei[ei]).

Proof. By induction on i:

Base (i = 0):

� Trivial.

Inductive (i > 0): Assume the lemma holds for i− 1.

� By Lemma 7, Pei is defined.

� Let I = I(Ei[ei]) ∪O(Ei−1) ∪O(Pei).
� Trivially

Ei[ei] = 〈Simple(Ei[ei], I), I,Pred(Simple(Ei[ei], I)) \ I〉

is defined.

� By definition, O(Ei[ei]) and O(Ei−1) are disjoint.

� Additionally, it holds that there all atoms occurring within F (Ei[ei]) out-
side the scope of negation are within O(E[ei]):
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– As the incremental theory is acyclic, Ei[ei] 6≺ B, Ei[ei] 6≺ P [t/j] (j ≤
ej), and Ei[ei] 6≺ Ej[ej] (j < i), it holds that Ei[ei] contains no non-
negated occurrences of any atoms within

(Pred(B) \ I(B)) ∪ (Pred(P [t/1]) \ I(P [t/1])) ∪ · · · ∪ (Pred(P [t/ei]) \ I(P [t/ei]))
(B.18)

∪ (Pred(E1[e1]) \ I(E1[e1])) ∪ · · · ∪ (Pred(Ei[ei]) \ I(Ei[ei]))
(B.19)

– By the induction hypothesis, (B.19) is a super set of O(Ei−1)∪O(Pei).
– Additionally, as the incremental theory is acyclic, Ei[ei] contains no

non-negated occurrences of any atoms within I(Ei[ei]).

– It then follows that P [t/i] contains only negated occurrences of any
atoms within I.

– Therefore non-negated atoms within Ei[ei] must be in O(Ei[ei]).
� It then follows by the induction hypothesis and Lemma 6 that

DG[F (Ei−1) ∧ F (Ei[ei]);O(Ei−1) ∪O(Ei[ei])]

has no cycles spanning O(Ei−1) and O(Ei[ei]).
� It follows immediately that

Ei = Ei−1 t Ei[ei]

is defined.

� Furthermore, from the definition of Simple, it can trivially be seen that

O(Ei[ei]) ⊆ Head(Ei[ei]).

� It then holds by the induction hypothesis that

O(Ei) ⊆ OEi−1
∪ Head(Ei[ei]) = OEi

.

� Finally, it is only necessary to observe that as each atom occurring within
F (Ei−1) and F (Ei[ei]) outside the scope of negation is in O(Ei−1) and
O(Ei[ei]), respectively, it follows that each atom occurring within F (Ei) is
within O(Ei).

Lemma 9 Given an acyclic incremental theory 〈B,P [t], Q[t]〉 and online progression
〈E,F 〉≥1, it holds that they are modular.

Proof.
We show that for any j, k ≥ 0 such that e1, . . . , ej, fj ≤ k, Rj,k is defined:

� By Lemmas 7 and 8, Pk and Ej are defined.
� Furthermore, as the theory is acyclic, it holds that OPk

and OEj
are disjoint:
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– Assume that there is some a ∈ OPk
∩OEj

.

– By definition, it then holds that there is some F ∈ {B,P [t/1], . . . , P [t/k]}
and some G ∈ {E1[e1], . . . , Ej[ej]} such that a ∈ Head(F ) ∩ Head(G).

– Therefore, it holds that F and G both contain an occurrence of a outside
the scope of negation.

– Observe that for any choices of F and G, G 6≺ F .

– Therefore, as the theory is acyclic, G cannot contain a non-negated occur-
rence of a as, clearly, a ∈ Pred(F ) \ I(F ).

– This contradicts the fact that a ∈ Head(G).

� Therefore, it holds from Lemmas 7 and 8 that O(Pk) and O(Ej) are disjoint.
� It then follows from Lemma 6 that there are no loops in

DG[F (Pk) ∧ F (Ej);O(Pk) ∪O(Ej)].

� It follows immediately that

Mj,k = Pk t Ej

is defined.
� As O(Pk) ⊆ OPk

and O(Ej) ⊆ OEj
it holds that O(Mj,k) ⊆ OPk

∪OEj
.

� Additionally, as the set of atoms occurring within F (Pk) outside negation are
exactly the atoms in O(Pk) (and similarly for F (Ej) and O(Ej)), it can be triv-
ially observed that the set of atoms occurring within F (Mj,k) outside negation
are exactly the atoms in O(Mj,k).

� Next, it can be trivially seen that

Q[t/k] = 〈Simple(Q[t/k], IQ), IQ,Pred(Simple(Q[t/k]) \ IQ〉

is defined where IQ = I(Q[t/k]) ∪O(Pk).
� From the definition of Simple we have that O(Q[t/k]) ⊆ Head(Q[t/k]).
� As the theory is acyclic, it can be seen quite easily from the definition of ≺ that

only atoms in O(Q[t/k]) have non-negated occurrences within F (Q[t/k]).
� Furthermore, it can be observed that O(Q[t/k]) is disjoint from O(Mj,k):

– Assume there is some a ∈ O(Q[t/k]) ∩O(Mj,k).

– It’s clear from the definition of O(Q[t/k]) that a 6∈ O(Pk), therefore it
holds that a ∈ O(Ej).

– By definition, there is then some F ∈ {E1[e1], . . . , Ej[ej]} such that a ∈
Head(F ) ∩ Head(Q[t/k]).

– Similar to the case for OPk
and OEj

, this then contradicts the acyclic
assumption as, clearly, F 6≺ Q[t/k].

� It then follows from Lemma 6 that there are no loops in the joint dependency
graph spanning both outputs.
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� It follows immediately that

Nj,k = Mj,k tQ[t/k]

is defined.
� Similar to Mj,k, it promptly follows that

O(Nj,k) ⊆ Head(Q[t/k]) ∪OPk
∪OEj

and that the set of atoms occurring within F (Nj,k) outside negation are exactly
the atoms in O(Nj,k).

� Finally, it can be trivially seen that

Fj[fj] = 〈Simple(Fj[fj], IF ), IF ,Pred(Simple(Fj[fj]) \ IF 〉
is defined where IF = I(Fj[fj]) ∪O(Ej) ∪O(Pfj).

� From the definition of Simple we have that O(Fj[fj]) ⊆ Head(Fj[fj]).
� As the theory is acyclic, it can bee seen quite easily from the definition of ≺

that only atoms in O(Fj[fj]) have non-negated occurrences within F (Fj[fj]).
� Furthermore, it can be observed that O(Fj[fj]) is disjoint from O(Nj,k):

– Assume there is some a ∈ O(Q[t/k]) ∩O(Mj,k).

– By definition, there is then some

F ∈ {B,P [t/1], . . . , P [t/k], E1[e1], . . . , Ej[ej], Q[t/k]}
such that a ∈ Head(F ) ∩ Head(Fj[fj]).

– Similar to the previously, this then contradicts the acyclic assumption as,
clearly, Fj[fj] 6≺ F .

� It then follows from Lemma 6 that there are no loops in the joint dependency
graph spanning both outputs.

� It follows immediately that

Rj,k = Nj,k t Fj[fj]

is defined.

Lemma 10 Given an acyclic incremental theory 〈B,P [t], Q[t]〉 and online progres-
sion 〈E,F 〉≥1, it holds that they are mutually revisable.

Proof.

� Let F,G be distinct coexisting incremental components of the incremental the-
ory and online progression such that F 6≺ G.

� As the theory is acyclic, it holds that each atom a ∈ Pred(G)\I(G) only occurs
within F in the scope of negation.

� It follows immediately that Head(F ) ∩ Pred(G) \ I(G) = ∅.
� Therefore, the theory is mutually revisable.

Lemma 1
Given an acyclic incremental theory 〈B,P [t], Q[t]〉 and online progression 〈E,F 〉≥1,
it holds that they are modular and mutually revisable.

Proof. Immediate from Lemmas 9 and 10.
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B.8 Proposition 9

Lemma 11 Given any propositional formula F , if an atom occurs outside the scope
of negation in prop2dlf (F ), then there is a corresponding occurrence outside the scope
of negation in F .

Proof. By induction on the number n of transformations performed on F .
Base (n = 0): Trivial.
Inductive (n ≥ 1): Assume that the lemma holds for n − 1 transformations. We
show that for each transformation if a (non-trivial) subformula occurs within the scope
of negation prior to the transformation, then it occurs within the scope of negation
afterward.

Among the possible transformations, only (6.2)-(6.7), (6.14), and (6.20) have sub-
formulas which occur within the scope of negation. Among these, (6.2) and (6.3) are
trivial. We consider the remainder:

(6.4): G occurs within 3 negations, afterward it occurs within 1.
(6.5): G1 and G2 both occur within the scope of a single negation before and after

the transformation.
(6.6): G1 and G2 both occur within the scope of a single negation before and after

the transformation.
(6.7): G and H both occur within the scope of a single negation before the transfor-

mation, afterward G occurs within 2 negations and H occurs within 1.
(6.14): G1 occurs within a two negations before the transformation and one afterward.

No other subformulas occur within negation prior to the transformation.
(6.20): H1 occurs within a two negations before the transformation and one afterward.

No other subformulas occur within negation prior to the transformation.

The claim then follows from the induction hypothesis,

Proposition 9
Given an incremental theory 〈B,P [t], Q[t]〉 and online progression 〈E,F 〉≥1 which
are acyclic. The disjunctive logic compilation of 〈B,P [t], Q[t]〉 and 〈E,F 〉≥1 are also
acyclic.
Proof.

� Select any two distinct coexisting incremental components F,G such that F 6≺ G
of the original incremental theory and online progression and let F ′, G′ be the
corresponding incremental components of the disjunctive logic compilation.

� As the original incremental theory and online progression are acyclic, it holds
that there is no occurrence of an atom a ∈ Pred(G)\ I(G) within F outside the
scope of negation.

� Let F ′ and G′ be the corresponding incremental components of the disjuncitve
logic compilation.

� Finally, it is only necessary to observe that, by definition, Pred(G′) ⊆ Pred(G).
� Therefore, there is no occurrence of an atom a ∈ Pred(G′) \ I(G′) within F ′

outside the scope of negation.
� It follows that the disjunctive logic compilation is acyclic by definition.
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B.9 Proposition 10

Proposition 10
Given an online BC+ action description DoBC+, observation stream On,m̃, and some
incrementally parametrized multi-valued formula Q[t], the incremental theory

〈B,P [t], Q[t]〉DoBC+,Q[t] and online progression 〈E,F 〉On,m̃

≥1 is modular and mutually
revisable.

Proof.
Given a multi-valued signature σ, by At int(σ) we define the set of atoms c = v

such that c ∈ σ and v ∈ Dom(c) if c is an internal constant or v = u otherwise.
Furthermore, given a module G = 〈G, I,O〉 by F (G) we denote G.

Modular:
By definition of 〈B,P [t], Q[t]〉D,Q[t] and 〈E,F 〉On,m̃

n we have the following:

1. Pred(B) ⊆ At(0:σF);

2. Head(B) ⊆ At int(0:σF);

3. Pred(P [t/i]) ⊆ At((i−1):σF ∪ (i−1):σA ∪ i : σF );

4. Head(P [t/i]) ⊆ At int(i:σF ∪ (i−1):σA);

5. Pred(Q[t/k]) ⊆ At(0:σF ) ∪
⋃

1≤j≤k At(j:σF ∪ j:σA);

6. Head(Q[t/k]) = ∅;

7. Pred(Ei[ei]) ⊆ At(0:σF ) ∪
⋃

1≤j≤ei At(j:σF ∪ j:σA);

8. Head(Ei[ei]) ⊆ Atu(0:σF ) ∪
⋃

1≤j≤ei Atu(j:σEF ∪ j:σEA);

9. (Head(Ei[ei]) ∩ Head(Ej[ej])) = ∅ for i 6= j; and

10. Pred(Fi[fi]) = Head(Fi[fi]) = ∅.

We show that, for any k ≥ 0, Pk is defined such that

Pred(F (Pk)) ⊆ At(0:σF)
⋃

1≤i≤k

At(i:σF ∪ (i−1):σA), and

Head(F (Pk)), O(Pk) ⊆ At int(0:σF)
⋃

1≤i≤k

At int(i:σF ∪ (i−1):σA)

by induction.

base

P0 = 〈Simple(B, I(B)), I(B),Pred(Simple(B, I(B))) \ I(B)〉
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is trivially defined. In addition:

Pred(F (P0)) ⊆ At(0:σF), and

Head(F (P0)) ⊆ At int(0:σF)

from 1 and 2 above. It follows by the definition of Simple that

O(F (P0)) = Head(F (Pk)).

inductive (i ≥ 1)

� Assume that Pi−1 is defined such that

Pred(F (Pi−1)) ⊆ At(0:σF)
⋃

1≤j≤i−1

At(j:σF ∪ (j−1):σA), and

Head(F (Pi−1)), O(Pi−1) ⊆ At int(0:σF)
⋃

1≤j≤i−1

At int(j:σF ∪ (j−1):σA)

� Let X = O(Pi−1) ∪ I(P [t/i]). It holds that

〈Simple(P [t/i], X), X,Pred(Simple(P [t/i], X)) \X〉 (B.20)

is trivially defined.

� By definition, O(Pi−1) and O((B.20)) are disjoint.

� Furthermore, by the induction hypothesis it is clear that F (Pi−1) is nega-
tive on O((B.20)).

� Similarly, by 4 and the induction hypothesis it holds that P [t/i] (and
therefore Simple(P [t/i], X)) is negative on O(Pi−1).

� Finally, it holds that there are no loops in

DG[F (Pi−1) ∧ Simple(P [t/i], X);O(Pi−1) ∪O((B.20)]

spanning O(Pi−1) and O((B.20)):

– Assume that there is such a loop.

– There is then a strictly positive implication G → F in F (Pi−1) ∧
Simple(P [t/i], X) such that there is some a1 ∈ O((B.20)) occurring
positively in G and some a2 ∈∈ O(Pi−1) occurring strictly positively
in F .

– By 3 above, it holds that O((B.20)) ⊆ At((i−1):σF ∪ (i−1):σA ∪ i : σF ).

– It then follows from the induction hypothesis that Pred(F (Pi−1)) ∩
O((B.20)) = ∅.

– If follows then that G→ F cannot occur in F (Pi−1).

– Furthermore, by 4 above, it holds that Head(Simple(P [t/i], X)) ∩
O(Pi−1) = ∅.

– Therefore G→ F also cannot occur in Simple(P [t/i], X).
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– It then follows that there can be no such G → F in F (Pi−1) ∧
Simple(P [t/i], X).

– This contradicts our assumption that there is a loop spanning F (Pi−1)
and O((B.20)).

� It follows then that

Pi = Pi−1 t (B.20)

is defined.

� Furthermore, from the induction hypothesis and 3 above, it holds that

Pred(Pi) = Pred(F (Pi−1)) ∪ Pred(Simple(P [t/i], X))

⊆ At(0:σF)
⋃

1≤j≤i

At(j:σF ∪ (j−1):σA).

� Similarly, it follows from the induction hypothesis and (4) that

Head(Pi) = Head(F (Pi−1)) ∪ Head(Simple(P [t/i], X))

⊆ At int(0:σF)
⋃

1≤j≤i

At int(j:σF ∪ (j−1):σA).

� Finally, as I(P [t/i]) = Atu((i−1):σEA ∪:σEF) it follows from the induction
hypothesis that

OPi
= O(Pi−1) ∪O((B.20))

⊆ At int(0:σF)
⋃

1≤j≤i

At int(j:σF ∪ (j−1):σA).

Next, we show that, for any n ≥ 0, En is defined such that

Head(En) = O(En)

Head(En) ⊆ Atu(0:σEF)
⋃

1≤i≤en

Atu(i:σEF ∪ (i−1):σEA)

by induction.

base

Trivial as

E0 = 〈>, ∅, ∅〉.
inductive (i ≥ 1)

� Assume that Ei−1 is defined such that

Head(F (Ei−1)) = O(Ei−1), and

Head(F (Ei−1)) ⊆ Atu(0:σF)
⋃

1≤j≤F (Ei−1)

At int(j:σu ∪ (j−1):σu)
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� Let X = O(Pei) ∪O(Ei−1). It holds that

〈Simple(Ei[ei], X), X,Pred(Simple(Ei[ei], X)) \X〉 (B.21)

is trivially defined.

� By definition, O(Ei−1) and O((B.21)) are disjoint.

� Furthermore, by the induction hypothesis it is clear that F (Ei−1) is nega-
tive on O((B.21)).

� Similarly, by 9 and the induction hypothesis it holds that E[ei] (and there-
fore Simple(Ei[ei], X)) is negative on O(Ei−1).

� Finally, it trivially holds that there are no loops in

DG[F (Ei−1) ∧ Simple(Ei[ei], X);O(Ei−1) ∪O((B.21))]

spanning O(Ei−1) and O((B.21)) as there are no strictly positive implica-
tions of the form G → F in F (Ei−1) ∧ Simple(Ei[ei], X) and therefore no
edges in the dependency are possible.

� It follows then that

Ei = Ei−1 t (B.21)

is defined.

� Furthermore, as I(Ei[ei]) = ∅ and Ei[ei] is negative on O(Ei−1) (and there-
fore X) it holds by definition of Simple that

Pred(Simple(Ei[ei], X)) \X = Head(Simple(Ei[ei], X)) = O((B.21))

� It then follows directly from the induction hypothesis that

Head(F (Ei−1) ∧ Simple(Ei[ei], X)) = O(Ei−1) ∪O((B.21)) = O(Pi)

� Finally, from the induction hypothesis and 8 above, it holds that

Head(F (Ei−1) ∧ Simple(Ei[ei], X)) ⊆ Atu(0:σF ) ∪
⋃

1≤j≤ei

Atu(j:σEF ∪ j:σEA)

Finally, we show that given Pk and En such that k ≥ m̃ it holds that Rn,k is defined.

� It holds that

Pk t En (B.22)

is defined:
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– As shown previously, it holds that

Head(F (Pk)), O(Pk) ⊆ At int(0:σF)
⋃

1≤j≤i−1

At int(j:σF ∪ (j−1):σA),

Head(F (En)) = O(En), and

Head(F (En)) ⊆ Atu(0:σEF)
⋃

1≤i≤F (En)

Atu(i:σEF ∪ (i−1):σEA).

– It is then clear that O(Pk) and O(En) are disjoint, F (Pk) is negative on
O(En), and F (En) is negative on O(Pk).

– Finally, it holds that there are no loops in

DG[F (Pk) ∧ F (En);O(Pk) ∪O(En)]

spanning O(Pk) and O(En):

* Assume that there is such a loop.

* There is then a strictly positive implication in G→ F in F (Pk)∧F (En)
such that there is some a1 ∈ O(Pk) occurring positively in G and some
a2 ∈∈ O(En) occurring strictly positively in F .

* By definition, there is no strictly positive implication in F (En) which
a non-empty head and body. Therefore it cannot occur in F (En).

* Furthermore, it holds that F (Pk) is negative on O(En).

* If follows then that G→ F cannot occur in F (Pk).
* It then follows that there can be no such G→ F in F (Pk) ∧ F (En).

* This contradicts our assumption that there is a loop spanning O(Pk)
and O(En).

– It follows that (B.22) is defined.

� Let X = O(Pk) ∪ I(Q[t/k]). It holds trivially that

〈Simple(Q[t/k], X), X,Pred(Simple(Q[t/k], X)) \X〉 (B.23)

is defined.
� Furthermore, it follows from 6 that Pred(Simple(Q[t/k], X)) \X = ∅.
� It follows trivially then that O((B.22)) ∩ O((B.23)) = ∅, F ((B.22)) is negative

on O((B.23)), and there are no loops in

DG[F ((B.22)) ∧ F ((B.23));O((B.22)) ∪O((B.23))]

which span O((B.22)) and O((B.23)).
� By 6 above it is also clear that F ((B.23)) is negative on O((B.22)).
� It follows then that

(B.22) t (B.23) (B.24)

is defined.
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� Finally, it is only necessary to see that

〈Simple(Fn[fn], X2), X2,Pred(Simple(Fn[fn], X2)) \X2〉,

where X2 = O(Pfj) ∪O(Ej) ∪ I(Fj[fj]), is

〈>, X2, ∅〉

by definition.
� This is trivially joinable with (B.24) (and results in the same module).

It follows that 〈B,P [t], Q[t]〉DoBC+,Q[t] and 〈E,F 〉On,m̃

≥0 is modular.
Mutually Revisable:

� Firstly, it is clear that by definition Pred(F ) ∩ I(F ) = ∅ for each F ∈ (5.6).
� Assume that there is some F,G ∈ (5.6) such that F 6= G, F 6≺ G, and there is

some a ∈ (Head(F )∩Pred(G)) \ I(G). Consider each of the following cases for
(G,F ):

– (B,P [t/i]) (1 ≤ i ≤ k)

By definition Head(P [t/i]) ∩ Pred(B) = ∅1.

– (P [t/i], P [t/i′]) (1 ≤ i < i′ ≤ k)

By definition Head(P [t/i′]) ∩ Pred(P [t/i]) = ∅.
– (Ei[ei], P [t/i′]) (1 ≤ ei < i′ ≤ k)

By definition Head(P [t/i′]) ∩ Pred(Ei[ei]) = ∅.
– (Fj[fj], P [t/i]) (1 ≤ fj < i ≤ k)

Trivial as Pred(Fj) = ∅ by definition.

– (B,Q[t/k]), (P [t/i], Q[t/k]), (Ei, Q[t/k]), (Fj, Q[t/k])

Trivial as Head(Q[t/k]) = ∅ by definition.

– (B,Ei[ei]) (1 ≤ ei ≤ k)

By definition Head(Ei[ei]) ∩ Pred(Bi) ⊆ 0:σEF = I(B).

– (P [t/i], Ei′ [ei′ ]) (1 ≤ i′ ≤ j) and (1 ≤ i ≤ k)

By definition

Head(Ei′ [ei′ ]) ∩ Pred(P [t/i]) ⊆ I(P [t/i])

– (Q[t/k], Ei[ei]) (1 ≤ i ≤ j)

By definition it holds that

Head(Ei[ei]) ⊆ Atu(
⋃

0≤j≤ei

(j:σEF ∪ j:σEA)) (ei < m̃)

Head(Ei[ei]) ⊆ Atu(
⋃

0≤j<ei

(j:σEF ∪ j:σEA) ∪ i:σEF) otherwise

As k ≥ m̃ it follows that Head(Ei[ei]) ⊆ I(Q[t/k]).
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– (Ei[ei], Ei′ [ei′ ]) (1 ≤ i < i′ ≤ j)

By definition there can be no two observations (6.24)1 and (6.24)2 such that
m1 = m2 and c1 = c2, additionally no constraint may contain any external
constants. Therefore it holds that Head(Ei′ [ei′ ]) ∩ (Pred(Ei[ei]) = ∅.

– (B,Fj[fj]), (P [t/i], Fj[fj]) such that 1 ≤ i ≤ k, (Q[t/k], Fj[fj]), and
(Ei[ei], Fj[fj]) such that 1 ≤ i ≤ j

Trivial as Head(Fj) = ∅ by definition.

� Therefore it holds via contradiction that the incremental theory and online
progression are mutually revisable.

B.10 Proposition 11

Proposition 11
Given an online BC+ action description DoBC+, observation stream On,m̃, and some
incrementally parametrized multi-valued formula Q[t], the incremental theory

〈B,P [t], Q[t]〉DoBC+,Q[t] and online progression 〈E,F 〉On,m̃

≥1 are acyclic.

Proof.
Given a propositional formula F and set of atoms A, by F¬¬A we denote the formula
obtained from F by prepending each atom a ∈ A with ¬¬.
We consider the encoding

B =


0:Choice(f) for each simple fluent f
0:G¬¬Atu(σEF) → 0:F for each static law (4.1)
0:Choice(f = u) for each external fluent f
0:UEC (σF )

P [t] =



t:G¬¬Atu(σEF) → t:F for each static law (4.1)
(t−1):G¬¬Atu(σEA) → (t−1):F for each action dynamic law (4.1)
(t−1):H¬¬X ∧ t:G¬¬At(σEF) → t:F for each fluent dynamic law (4.2)
t:Choice(f = u) for each external fluent f
(t−1):Choice(a = u) for each external action a
t:UEC (σF )
(t−1):UEC (σA)

Q[t] = ¬¬Q[t]

Ei[mi] =

{
m:c = v for each observation (6.24) ∈ Oi

¬¬m:F for each constraint (6.25) ∈ Oi

Fi[mi] = >
1 See the Modular part of the proof for definitions of Head(F ) and Pred(F ) for

each F ∈ (5.6).
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where X = At(σF) ∪ Atu(σEA).
We consider each of the incremental components in turn:

B: By definition, B precedes all other incremental components. It is therefore suffi-
cient to verify that the atoms within I(B) occur within the scope of negation.
In this case, these atoms are Atu(0:σEF), which may occur within the rules of
the form

0:G¬¬Atu(σEF) → 0:F, and

0:UEC(σF)

within the translation. Note that for the first type of rule, these input atoms
cannot occur within 0:F , and, while they do occur within 0:G¬¬Atu(σEF) they
only appear preceded by double negation (¬¬). Meanwhile, the UEC laws are
all of the form 0:F → ⊥, which can be abbreviated to ¬0:F .

P[t/i] (i ≥ 1): By definition, P [t/i] precedes Q[t/j](j ≥ 1), Ej[ej] (ej ≥ i), and
Fj[fj] (fj ≥ i). Additionally, it holds that P [t/i] does not coexist with any
Q[t/j] (j < i). As such, we need only consider its relationship to:

B: As observed previously, Pred(B) \ I(B) ⊆ At int(0:σF). Meanwhile,

Pred(P [t/i]) ⊆ At((i−1):σF ∪ (i−1):σA ∪ i : σF ).

These overlap only when i = 1. In that case, atoms within At int(0:σF may
occur in the (t−1):H¬¬X portion of the rule

(t−1):H¬¬X ∧ t:G¬¬At(σEF) → t:F.

As X ⊇ At int(0:σF), it follows that each such occurrence occurs within
double negation by definition.

P [t/j](j < i): It holds that Pred(P [t/j] \ I(B) ⊆ At int(i :σF ∪ (i−1) :σA).
Meanwhile,

Pred(P [t/i]) ⊆ At((i−1):σF ∪ (i−1):σA ∪ i : σF ).

. Similar to the the case for B, these only overlap when j = i− 1. In that
case, their overlap is

(Pred(P [t/(i−1)]) \ I(P [t/(i−1)]) ∩ Pred(P [t/i]) ⊆ At int((i−1):σF,

which may occur in the (t−1):H¬¬X portion of the rule

(t−1):H¬¬X ∧ t:G¬¬At(σEF) → t:F.

As X ⊇ At int((i−1):σF), it follows that each such occurrence occurs within
double negation by definition.
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Ej[ej](ej < i): By definition, Ej[ej] contains no fluent atoms k:f = v such that
k > ej and no action atoms k :a = v such that k ≥ ej. If ej < i, these
overlap only when ej = i− 1. In this case, their overlap is

(Pred(Ej[ej]) \ I(Ej[ej]) ∩ Pred(P [t/i]) ⊆ At((i−1):σF.

The remainder follows identically to the previous case.

Fj[fj](fj < i): Trivial.

Q[t/i] (i ≥ 1): Trivial as all occurrences of atoms within Q[t/i] are within the scope
of negation.

Ei[ei] (i ≥ 1): By definition, Ei[ei] precedes Ej[ej](j > i) and Fj[fj](j ≥ i). Addi-
tionally Ei[ei] does not coexist with Q[t/j] (j < ei) or Fj[fj] (j < i). As such,
we need only consider its relationship to:

B: Observe once again that Pred(B) \ I(B) ⊆ At int(0:σF). These atoms may
occur only within rules of the form

¬¬m:F.

The remainder is trivial as all atoms within these rules are clearly within
negation.

P [t/j]: It holds that Pred(P [t/j]\I(B) ⊆ At int(i:σF∪(i−1):σA). The remainder
follows identically to the last case.

Ej[ej](j < i): By definition, Pred(Ej[ej]) ⊆ At(0:σF )∪
⋃

1≤k≤ej At(k:σF ∪(k−1):

σA). Among these, the internal atoms may occur in Ej[ej] only within rules
of the form

¬¬m:F.

Meanwhile, external atoms may occur in Ej[ej] only within rules of the
form

m:c = v.

Furthermore, by definition, each such atom occurs within at most one
such rule among all online components. It then follows that for any such
m:c = v, if m:c = v ∈ Pred(Ej[ej]), then m:c = v 6∈ Pred(Ei[ei]).

Q[t/j](j ≥ ei): By definition,

Pred(Q[t/i]) \ I(Q[t/i]) ⊆ At int(0:σF ) ∪
⋃

1≤j≤i

At int(k:σF ∪ (k−1):σA).

These atoms may occur only within rules of the form

¬¬m:F.

The remainder is trivial as all atoms within these rules are clearly within
negation.

Fi[fi] (i ≥ 1): Trivial.
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