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ABSTRACT

Action language C+ is a formalism for describing properties of actions,

which is based on nonmonotonic causal logic. The definite fragment of C+ is

implemented in the Causal Calculator (CCalc), which is based on the reduction

of nonmonotonic causal logic to propositional logic. This thesis describes the

language of CCalc in terms of answer set programming (ASP), based on the

translation of nonmonotonic causal logic to formulas under the stable model

semantics. I designed a standard library which describes the constructs of

the input language of CCalc in terms of ASP, allowing a simple modular

method to represent CCalc input programs in the language of ASP. Using

the combination of system F2LP and answer set solvers, this method achieves

functionality close to that of CCalc while taking advantage of answer set solvers

to yield efficient computation that is orders of magnitude faster than CCalc

for many benchmark examples. In support of this, I created an automated

translation system Cplus2ASP that implements the translation and encoding

method and automatically invokes the necessary software to solve the translated

input programs.
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CHAPTER 1

INTRODUCTION

The field of knowledge representation is a specialization of artificial intelligence

that focuses on designing, implementing, and utilizing logical formalisms that

encode facts and relationships in a way that allows computers to store them and

reason about them in a flexible and efficient manner. In pursuit of this goal, many

formalisms have been created, each aiming to capture certain domains or solve

specific problems related to creating intuitive logics. Action-oriented formalisms

focus on the concept of reasoning about actions and their effects on the state

of a given world. Common issues action-oriented formalisms address are the

frame problem (McCarthy & Hayes, 1969), which is how to encode the idea that

objects have persistent states, and the ramification problem (Finger, 1986), which

addresses capturing indirect effects of actions.

In particular, nonmonotonic causal logic (Giunchiglia, Lee, Lifschitz,

McCain, & Turner, 2004), as the name implies, is a formalism designed around

representing causal relationships. C+ (Giunchiglia et al., 2004) is a high-level

notation of nonmonotonic causal logic that is designed to describe actions and

their effects. The Causal Calculator (CCalc1), an implementation of C+,

reduces a fragment of nonmonotonic causal logic to propositional logic and uses

satisfiability (SAT) solvers to produce solutions for given action descriptions.

CCalc was originally created as a prototype, but it has been successfully applied

to several challenging commonsense reasoning problems; it has been used on

problems of nontrivial size (Akman, Erdoğan, Lee, Lifschitz, & Turner, 2004),
1http://www.cs.utexas.edu/users/tag/cc/

1



to provide a group of robots with high-level reasoning (Caldiran et al., 2009), to

give executable specifications of norm-governed computational societies (Artikis,

Sergot, & Pitt, 2009; Chopra & Singh, 2003), and to automate the analysis of

business processes under authorization constraints (Armando, Giunchiglia, &

Ponta, 2009).

It has been shown by McCain (1997), Ferraris (2007), and Ferraris et al.

(2010) that nonmonotonic causal logic can be turned into logic programs under

the answer set semantics (Gelfond & Lifschitz, 1988). This provides a way to

compute nonmonotonic causal logic using answer set solvers and is an alternative

to the computing method that is implemented in CCalc. As there are currently

many efficient answer set solvers available, this is a promising approach.

In a related work, Kim, Lee, and Palla (2009) showed that the event

calculus (Shanahan, 1995) can be reformulated in answer set programming. That

work enabled Kim to create an implementation of the event calculus (Kim,

2009) that utilized this embedding to translate event calculus into the language of

answer set programming (ASP), taking advantage of ASP solvers to significantly

improve the efficiency of solving event calculus descriptions.

Taking inspiration from the work on event calculus, in this thesis we

examine the effectiveness of using a similar approach with causal logic. Our

aim is to create a system that is a step toward combining the expressivity of

C+ with the speed of modern ASP solvers. We create an enhanced translation

and encoding method designed to translate action descriptions in the input

language of CCalc into the input language of ASP solvers. We then implement

Cplus2ASP, a software tool that performs this translation in an automated

fashion. Figure 1.1 shows the design of Cplus2ASP. Our experiments show
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Figure 1.1. Design of the Cplus2ASP System

that Cplus2ASP achieves functionality close to CCalc while taking advantage

of ASP solvers to yield efficient computation that is orders of magnitude faster

than CCalc on several benchmark examples. This work paves the way to

implement a new version of CCalc that will incorporate recent advances

in answer set programming, such as incremental grounding, online reasoning,

modular programming, constraint solving, and aggregates.

In Chapter 2, we introduce background material. Chapter 3 covers

preliminary content used as a basis for this work. The actual method for

translating and encoding CCalc input into ASP is documented in Chapter 4.

Information about the software system Cplus2ASP and its components is

presented in Chapter 5, and the results of testing the software against various

benchmark domains can be found in Chapter 6. Chapter 7 addresses and

compares related works, and in Chapter 8, we comment on our contribution

as a whole and discuss possible future enhancements to Cplus2ASP.
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CHAPTER 2

BACKGROUND

2.1 Nonmonotonic Causal Theories and C+

Action language C+ (Giunchiglia et al., 2004) is a high-level notation of non-

monotonic causal logic designed to describe transition systems. A transition

system is a directed graph whose vertices represent possible states of a world

and whose edges, labeled with actions, represent transitions from one state

to another. To aid in these representations, C+ takes common syntactic and

semantic concepts, such as inertia and conditional causation, and represents them

as English-like “laws” that are generally easier to parse and understand than their

logic formula equivalents. C+ is an extension of C (McCain, 1997) that overcomes

several essential limitations of its predecessor by including features such as multi-

valued constants, defined fluents, additive fluents, rigid constants, attributes, and

defeasible causal laws. C+ was further extended to express distant causation

(Craven & Sergot, 2005), preferred states and actions (Sergot & Craven, 2006),

and to allow for probabilistic reasoning (Eiter & Lukasiewicz, 2003).

2.2 The Causal Calculator

The Causal Calculator was originally created by McCain (1997) as an implemen-

tation of action language C. To support C+, Lee extended CCalc (2005) by

adding several features, including those mentioned above. While Lee’s extended

CCalc was originally intended to be a proof-of-concept software tool demon-

strating that an implementation of C+ was feasible, CCalc benefitted from the
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expressivity of C+ such that it became desirable for use in a variety of problem-

solving applications. Several representative examples of such applications were

mentioned in the introduction.

2.3 Answer Set Programming

Answer set programming is a declarative programming paradigm that is oriented

towards difficult NP-hard search problems. Its goal is to reduce the given search

problem to computing stable models, using an ASP solver to perform the search.

There are many answer set solvers available, such as gringo and clasp1,

Smodels2, Cmodels3, and DLV4. In addition, a biannual ASP competition

is held to encourage the development and further improvement of ASP solvers.

Thanks in part to the versatility of answer set solvers, ASP has been applied

to a wide range of problems, from code optimization (Brain, Crick, Vos, &

Fitch, 2006) and model checking (Liu, Ramakrishnan, & Smolka, 1998) to music

composition (Boenn, Brain, Vos, & Fitch, 2008) and multi-agent planning (Son,

Pontelli, & Sakama, 2009).

2.4 F2LP

The input to ASP solvers is limited to rule forms, which are analogous to clausal

normal form in classical logic. System f2lp (“Formulas To Logic Programs”)

(Lee & Palla, 2009) is a front end that allows ASP solvers to compute stable

models of first-order formulas, as defined by Ferraris (2007) and Ferraris et al.
1http://potassco.sourceforge.net/
2http://www.tcs.hut.fi/Software/smodels/
3http://www.cs.utexas.edu/users/tag/cmodels.html
4http://www.dlvsystem.com/dlvsystem/index.php/Home
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(2011). Allowing first-order formulas as input makes it easier to express concepts

like nested connectives and quantifiers. For example, the formula

terminal(X) <- vertex(X) & not ?[Y]:edge(X,Y)

succinctly describes the conditions under which x is considered to be a terminal

vertex of a directed graph by using existential quantification over Y (denoted by

?[Y]). f2lp can also be used to compute event calculus (Shanahan, 1995) and

situation calculus (McCarthy & Hayes, 1969; Reiter, 2001) by using ASP solvers

(Kim et al., 2009; Lee & Palla, 2010).
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CHAPTER 3

PRELIMINARIES

The following sections document prior research and experiments that we use as

a basis for our enhancements and contribution.

3.1 Nonmonotonic Causal Logic

Our work focuses on the version of causal logic supported by CCalc (multi-

valued definite propositional causal logic), so what follows is the definition of

nonmonotonic causal logic given in the paper “Nonmonotonic Causal Theories”

(Giunchiglia et al., 2004).

In causal logic, a multi-valued propositional signature consists of:

• A set σ of symbols called constants, and

• for each constant c in σ, a nonempty, finite set Dom(c) consisting of at least

two elements that comprise the domain of c.

An atom of σ is an expression c=v, which signifies that the value of the constant

c is equal to v.

The expression c= d is a commonly seen shortcut representing that the

value of c equals the value of d for some value from the intersection of their

domains. Stated formally:

c=d ≡
∨

v∈Dom(c)∩Dom(d)

c=v ∧ d=v.
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Another syntactic shortcut that works for constants with Boolean do-

mains is to use c in a causal rule to stand for c= true and ¬c to stand for c= false.

An interpretation I of σ is a function that maps each constant in σ to a

value in its domain.

Causal logic is defined in terms of causal rules of the form

F ⇐ G (3.1)

where this is understood as, “There is a cause for F if G is true.” (This is in

contrast to the classical version

G→ F

of (3.1), which would be read, “If G is true then so is F .”) In the general case,

both F and G may be arbitrary formulas, which are propositional combinations

of elements from σ, > (universal truth), and ⊥ (universal falsehood). If F is ⊥ in

a causal rule, we call that rule a constraint.

A causal theory T of σ is a finite set of causal rules. If all of the heads of

the rules in a causal theory are either ⊥ or a single literal, then we call that causal

theory definite.

An interpretation I satisfies an atom c = v (represented as I |= c = v) if

I(c) = v. As expected, every interpretation I satisfies > (I |= > for every I),

and no I satisfies ⊥ (I 6|= ⊥ for every I). Satisfaction is extended to arbitrary

formulas using classical truth tables for the standard propositional connectives.

The semantics of causal logic is defined in terms of a fixpoint definition.

For a causal theory T and an interpretation I , the reduct T I of T under I is the

set of heads of the causal rules of T whose bodies are satisfied by I . I is a model

8



of T if I is the unique interpretation of σ that satisfies T I . A causal theory T is

called satisfiable if it has at least one model and unsatisfiable (or inconsistent) if it

has no models.

For example, take causal theory T to be

p ⇐ q,

q ⇐ q,

¬q ⇐ ¬q.

(3.2)

If we let interpretation I1 be the set {p,¬q} (i.e., I1(p) = true and I1(q) = false),

this would not be a model of T . I1 only satisfies the body of the third rule

in the theory, causing the reduct T I1 to be {¬q}. Interpretation {p,¬q} does

not uniquely satisfy the reduct (the set {¬p,¬q} would as well); therefore, I1 is

not a model of T . However, if we let interpretation I2 be the set {p, q} (i.e.,

I2(p) = true and I2(q) = true), then the first two bodies of T would be satisfied

by I2, making the reduct T I2 = {p, q}. Therefore, I2 uniquely satisfies T I2 , and

thus is a model of T . It turns out that this is the only model of the theory.

3.2 Action Language C+

Action language C+ is a high-level notation for causal logic that is designed

to describe transition systems in a succinct way. In C+, constants are divided

into two groups: fluent constants and action constants. Fluent constants are

further partitioned into simple and statically determined fluents. Using these new

categories, C+ also distinguishes between various types of formulas. A fluent

formula is a formula where any constants occurring in it are fluent constants. An
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action formula is a formula that contains at least one action constant and no fluent

constants.

Where causal logic utilized causal rules as its fundamental logic sentences,

C+ uses higher level causal laws. There are three basic kinds of causal laws:

• Static laws are expressions of the form

caused F if G (3.3)

where F and G are fluent formulas.

• Action dynamic laws are expressions with the same form as (3.3), except F

is an action formula and G is any kind of formula.

• Fluent dynamic laws are expressions of the form

caused F if G after H (3.4)

where F and G are fluent formulas and H is any kind of formula. In this

case, F cannot contain statically determined constants.

Static laws are typically used to express relationships and dependencies

between fluents in the same state. Action dynamic laws perform a similar

function, but they are specific to dependencies between actions. The bulk of

C+ laws found in the average action description are fluent dynamic laws, as they

are the ones that define how a given state changes over time as a result of the

effects of actions or other conditions.

In addition to the basic causal laws shown in (3.3) and (3.4), several

“shortcut” causal laws were defined in terms of these basic laws in Giunchiglia

10



et al. (2004, Appendix B) to make it easier to express common concepts of

transition systems.

The C+ analogue of a causal theory from causal logic is an action

description, which is a set of causal laws.

The semantics of C+ in Giunchiglia et al. (2004) is defined in terms of

a translation into causal logic. In order to perform the translation, the earlier

definition of causal logic must be extended to include the concept of time via the

inclusion of ordered states. The definition of a constant is extended to include a

nonnegative integer time stamp: i :c. This represents the constant c at time i. The

domain of i :c remains the same as the domain of c. Using this new definition, an

atom of the form i :c=v signifies, “The constant c has the value v at time i.”

For any action description D and any nonnegative integer m, the causal

theory Dm is defined in the following manner. The signature of Dm consists of

extended constants i :c such that

• i ∈ {0, . . . ,m} if c is a fluent constant of D, or

• i ∈ {0, . . . ,m− 1} if c is an action constant of D.

We use the expression i : F to denote the result of inserting i : in front of every

occurrence of every constant in a formula F , and similarly for a set of formulas.

For every static causal law (3.3) in D, add the causal rule

i :F ⇐ i :G (3.5)

to Dm, where i ∈ {0, . . . ,m}. Do the same thing for every action dynamic law

in D, using i ∈ {0, . . . ,m− 1}.

11



Transform each fluent dynamic law (3.4) in D into

i+1:F ⇐ (i+1:G) ∧ (i :H) (3.6)

in Dm, using i ∈ {0, . . . ,m − 1}. Simple fluent constants have a property that

their values are initially exogenous (i.e., by default they can take on any value from

their domain unless constrained otherwise). This is represented in causal logic by

adding the rule

0:c=v ⇐ 0:c=v (3.7)

for every simple fluent constant c and every v ∈ Dom(c).

The causal models of Dm correspond to paths through a transition system

representing the action description D. Viewed as a directed graph, the nodes (or

“states”) consist of the possible values for each constant in σ, and the edges from

one state to another correspond to the actions that change the state of the system

to a new state.

3.3 The Language of CCalc

The language of CCalc provides a convenient way of representing C+. In

addition to supporting all of the causal laws mentioned above, CCalc also

provides mechanisms for declaring constants, declaring named domains (“sorts”),

and populating those domains with values (“objects”). This is illustrated in

Figure 3.1 using an action description that models a simple transition system.

This domain models the concept of a person who has a certain quantity of items

and can choose to buy another item to increase how many they possess by one,

up to a given limit. Line 2 declares two domains, num and s_num, that can be

populated and used later in the description.

12



1 :- sorts
2 num >> s_num.
3

4 :- objects
5 0..4 :: s_num;
6 5 :: num.
7

8 :- variables
9 K :: s_num.
10

11 :- constants
12 has :: inertialFluent(num);
13 buy :: exogenousAction.
14

15 buy causes has=K+1 if has=K.
16 nonexecutable buy if has=5.
17

18 :- query
19 maxstep :: 3;
20 0: has=2;
21 maxstep: has=4.

Figure 3.1. Simple Transition System and Its Action Description in the Language
of CCalc

The use of >> signifies that s_num is a subsort of num, which means that

any objects added to s_num are automatically added to num as well. Lines 5

and 6 populate the s_num and num sorts (respectively) with objects. s_num has

the numbers from 0 to 4 added to it, as does num (by virtue of being a supersort of

s_num), which also has the number 5 added to its domain.

Line 9 declares that K, when used in a causal law, may stand for any

value from the sort s_num. Variable declarations like this allow for the creation

of causal laws that are automatically grounded by CCalc into sets of laws

representing all possible values from the variables referenced in each law.

Line 12 declares has as a fluent constant with the domain of num. In

addition to simpleFluent, sdFluent (statically determined fluent), and action,

CCalc allows declarations of constants using special keywords that combine a

constant declaration with an implicit inclusion of certain causal laws to predefine

13



the behavior of that constant. In this case, inertialFluent is a keyword that

declares has as a simple fluent constant, then implicitly adds the law

inertial has,

which is short for a set of laws

caused has=v if has=v after has=v

for every value v in the domain of has. This grants the property of inertia to

has.

Similarly, line 13 declares buy as an action constant. The lack of a named

domain following the constant type signifies that buy is to have the default

Boolean domain. Like inertialFluent, exogenousAction is another CCalc

keyword that automatically adds the law

exogenous buy

to the description, which stands for the set of laws

caused buy=v if buy=v

for every value v in the domain of buy. Since buy happens to have the Boolean

domain, the set can be explicitly unfolded as

caused buy if buy,

caused -buy if -buy.

As mentioned earlier, if a constant c has the Boolean domain, using it as a bare

keyword (i.e., buy) is understood as c= true (in this case, buy=true). Negating a

bare Boolean constant ¬c is shorthand for c= false (i.e., buy=false).

14



The causal laws in lines 15 and 16 define the behavior of the buy action.

The first law states that an effect of executing the buy action is to increment the

value of has by one. The law is in the form

F causes G if H, (3.8)

which, because G (has) is a fluent formula, is equivalent in this case to the basic

causal law

caused G if > after F ∧H.

An if or after clause can generally be omitted if it is trivially >, resulting in the

more compact form

caused G after F ∧H,

or, in the specific case of line 15,

caused has=K+1 after buy & has=K.

The law on line 16 conditionally restricts the buy action from executing if the

person already has the maximum number of items. It too is a shortcut law, this

time of the form

nonexecutable F if G (3.9)

which is shorthand for

caused ⊥ after F ∧G.

Thus, the law in the action description is equivalent to

caused false after buy & has=5.

In CCalc, false used as a bare keyword stands for ⊥. Similarly, true stands

for >.
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% Shifting atoms and clauses... done. (0.00 seconds)
% After shifting: 47 atoms (including new atoms), 135 clauses
% Writing input clauses... done. (0.00 seconds)
% Calling ZChaff... done.
% Reading output file(s) from SAT solver... done.
% Solution time: 0 seconds.

0: has=2

1: has=2

ACTIONS: buy

2: has=3

ACTIONS: buy

3: has=4

Figure 3.2. Output of Running the Simple Transition System in CCalc

Finally, lines 18–21 define a query that can be run on this action

description. In this case, the query specifies that time steps shall range from 0

to 3, and its conditions are that at time step 0, has is equal to 2, and at the final

time step, has is equal to 4. CCalc transforms these conditions into constraints,

merges them with the base action description, and tries to find models of the

resulting causal theory.

Running CCalc on this action description, configuring it to return the

first model it finds, and invoking the included query produces the output in

Figure 3.2.

As can be seen from the output, CCalc has found a model where the buy

action is executed in time steps 1 and 2, resulting in the value of has increasing

from 2 to 4, just as the query stipulated. Note that this is not the only model

of this query; there are two other models that change when the buy actions are

executed, but both models are similar to the one above.
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Though they do not appear in the action description of Figure 3.1, two

more keywords deserve mention: rigid and attribute. Declaring a constant c

as rigid makes it a fluent constant, adding the law

rigid c (3.10)

implicitly, which is short for the set of laws

caused ⊥ if c=v1 after c=v ∧ v 6= v1

for all values v and v1 in the domain of c. In actuality, CCalc does not do this.

CCalc understands that an explicitly rigid fluent constant cannot change its

value from the one initially assigned to it. As a result, instead of adding the laws

above for each rigid constant c, CCalc simply strips the time stamp from them,

reverting them to c = v style atoms instead of the time-stamped i : c = v style.

This improves efficiency when using these constants by avoiding the creation of

unnecessary copies of causal laws.

The other important keyword to note is attribute. An attribute is a

special kind of non-Boolean exogenous action constant designed to attach to a

Boolean action constant and act as a property of that action. For example, in the

description in Figure 3.1, we could add an attribute howMany to the action buy

that indicated how many items the person bought each time buy was executed.

This could be declared in CCalc with the statement

howMany :: attribute(num) of buy,

which would bind the new constant howMany to buy, letting howMany range over

the domain num. Upon encountering this declaration, CCalc automatically

creates a supersort num* of num, adding the object none to num* and assigning

num* as the actual domain of howMany. CCalc would then add the causal law
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always howMany=none <-> -buy

to the action description, which is shorthand for

caused false after -(howMany=none <-> -buy).

This ties howMany to buy such that howMany only has a value that is not none if

buy is executed. If buy is not executed, howMany must take on the value none.

Once we define the attribute howMany, we can then modify the action description

to support purchasing multiple items.

3.4 Stable Model Semantics

For the purposes of this work, it is sufficient to restrict our attention to

propositional stable model semantics. What follows is a definition of stable model

semantics similar to Ferraris’s definition (2005), with extensions to include strong

(i.e., classical) negation in addition to default negation. Notationally, we will

distinguish between the two by using “¬” to indicate default negation (negation

as failure), and “∼” to indicate strong negation.

A propositional signature σ is a set of atoms, which inherit their definition

from classical logic. A literal is an atom that is optionally preceeded by ∼. All

propositional connectives ∧, ∨, →, ↔, ¬, ⊥, and > are allowed. > is shorthand

for ⊥ → ⊥, ¬F is shorthand for F → ⊥, and F ↔ G is an abbreviation of

(F → G) ∧ (G → F ). Formulas are combinations of literals and connectives, as

defined in propositional logic.

With the understanding that F ← G is an alternate representation of

G→ F , a rule is a formula of the form

F ← G, (3.11)
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where F and G may be arbitrary (propositional) formulas. In this work, we

restrict our attention to rules where F and G are finite. A program Π is a finite

set of rules.

An interpretation of Π is a mapping of each atom in σ to one of the truth

values true or false. We identify an interpretation I with the set of atoms X that

are true in the interpretation. The definition of satisfaction for atoms is the same

as in classical logic. A literal containing strong negation is satisfied if its atom is

not, and vice-versa. Satisfaction for a formula is defined in a manner similar to

that of classical logic.

Like the semantics for causal theories, the semantics of a program is

defined in terms of a reduct. The reduct ΠX of a program Π relative to X is

the result of replacing each maximal subformula in each rule of Π that is not

satisfied by X with ⊥. X is an answer set of Π if X is the minimal set satisfying

ΠX . An answer set X of Π is considered coherent if it does not contain both an

atom p and its strong negation ∼p. For the purposes of this work, we restrict our

attention to coherent answer sets.

As an example, consider the program

p← ¬q,

q ←∼r,

∼r ← ¬¬ ∼r.

(3.12)
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The set X = {p} is an answer set of the program, as can be seen by

forming the reduct

p← ¬⊥,

⊥ ← ⊥,

⊥ ← ⊥,

and observing that the latter two rules are equivalent to> and the remaining rule

reduces to p ← >, and therefore {p} is the minimal set satisfying that rule. In

addition, {q,∼r} is also an answer set of the program. The reduct relative to

{q,∼r}

⊥ ← ⊥,

q ←∼r,

∼r ← ¬⊥,

is equivalent to the conjunction of rules q ←∼r and ∼r ← >, which has {q,∼r}

as its minimally satisfying set. Further experimentation shows that these are the

only two answer sets of the given program.

Observe that in the program (3.12), strong negation (∼) behaves differ-

ently in the reduct from negation as failure (¬). This reflects the intuitive reading

of ¬p as “p is not known to be true” versus that of ∼ p, which is read as “p

is known to be false.” We utilize this difference in behavior between the two

negations to embed features from causal logic in stable model semantics.

3.5 Translating Causal Logic Into Logic Programs

In (Ferraris et al., 2010), McCain’s translation (McCain, 1997) is extended as

follows. Assuming a Boolean signature σ, take any set T of definite causal rules,
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each of which has the form

a⇐ G, (3.13)

¬a⇐ G, (3.14)

or

⊥ ⇐ G, (3.15)

where a is an atom and G is an arbitrary propositional formula. Define the set

of rules under the stable model semantics T ′ as follows. For each rule (3.13),

replace it with the formula a ← ¬¬G; replace each rule (3.14) with the formula

∼a← ¬¬G; and for each rule (3.15), replace it with the formula ¬G. Then, add

the following completeness constraints (3.16) for all atoms a:

⊥ ← ¬a ∧ ¬∼a. (3.16)

Note that for T , which is definite, the modified McCain’s translation yields a

program that is tight (Ferraris et al., 2011). Given that definite propositional

causal theories are automatically in clausal form as defined in (Ferraris, 2007),

we can justify the extended McCain’s translation using a simplified form of

Theorem 2 from that paper:

Theorem 1 A set of literals X from atoms in σ is a causal model of T iff X is also

an answer set of T ′.
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CHAPTER 4

ENCODING CAUSAL LOGIC IN ASP

4.1 Translating C+ Into Logic Programs

Consider a finite definite C+ action description D with signature σ, where the

head of each of its rules is either an atom or ⊥. Without losing generality,

we assume that, for any constant c in σ, Dom(c) has at least two elements.

Description D can be turned into a logic program by following these steps:

1. Turn D into a corresponding multi-valued causal theory Dm, as described

in Section 3.2;

2. Turn Dm into a Boolean-valued causal theory Dc
m;

3. Turn the causal rules of Dc
m into rules under the stable model semantics;

4. Turn the result further into a logic program using f2lp, as explained in

Section 4.2.

4.1.1 Definite Elimination of Multi-Valued Constants. Consider

the causal theory Dm with signature σm consisting of rules of the form (3.5),

(3.6), and (3.7). Consider all constants i : c (0 ≤ i ≤ m) in σm, where c is a fluent

constant ofD. Create a new signature σc
m from σm by replacing each constant i :c

with Boolean constants i :eql(c, v) for all v ∈ Dom(c).

The causal theory Dc
m with signature σc

m is obtained from Dm by

replacing each occurrence of an atom i : c = v in Dm with i : eql(c, v) = true
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and adding the causal rules

i :eql(c, v′)= false ⇐ i : eql(c, v)= true (0 ≤ i ≤ m) (4.1)

for all v, v′ ∈ Dom(c) such that v 6= v′.

The following proposition is a simplification of Proposition 9 from Lee’s

paper (2005).1

Proposition 1 There is a 1-1 correspondence between the models of Dm and the

models of Dc
m.

The elimination of multi-valued action constants is similar.

4.1.2 Turning Boolean-Valued Action Descriptions Into Logic Pro-

grams. Consider Dc
m, which is obtained from Dm by eliminating all multi-

valued constants in favor of Boolean constants. h(i :F ) is a formula obtained from

i :F by replacing every occurrence of i : eql(c, v) = true in it with h(eql(c, v), i)2

and every occurrence of i :eql(c, v)= false with ∼h(eql(c, v), i)3. According to

the modified McCain’s translation, the causal rules (3.5) that represent static

laws (3.3) are represented by formulas under the stable model semantics as

h(i :F )← ¬¬h(i :G) (4.2)

(i ∈ {0, . . . ,m}).The translation of causal rules for action dynamic laws is similar,

except that i ranges over {0, . . . ,m− 1}.
1Proposition 9 involves adding two kinds of rules. Vladimir Lifschitz pointed out that one of

the kinds of rules can be dropped if the given theory is definite.
2In the case of atoms with rigid constants that do not require time stamps, i.e. eql(c, v), we

replace them with h(eql(c, v)).
3If the domain of c was Boolean originally, as an optimization we replace h(eql(c, false), i)

with ∼h(eql(c, true), i) and ∼h(eql(c, false), i) with h(eql(c, true), i).
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In the special case when h(i :F ) and h(i :G) are the same literal, (4.2) can

be represented using choice rules in ASP:

{h(i :F )}. (4.3)

This is because when h(i : F ) and h(i : G) are the same literal, (4.2) is strongly

equivalent to h(i :F )∨¬h(i :F ), which can be abbreviated as (4.3) (Lee, Lifschitz,

& Palla, 2008a). In fact, we observe that in many cases (4.3) can be used place of

(4.2).

Similarly, the modified McCain’s translation turns the causal rules (3.6)

that correspond to fluent dynamic laws (3.4) into

h(i+1:F ) ← ¬¬
(
h(i+1:G) ∧ h(i :H)

)
. (4.4)

We can also turn (3.6) into

h(i+1:F ) ← ¬¬h(i+1:G) ∧ h(i :H) (4.5)

because the change does not affect the stable models of the resulting theory, which

is tight (Ferraris et al., 2011). Similarly, certain occurrences of ¬¬ in (4.2) and

(4.5) can be further dropped if removing them does not cause the resulting theory

to become non-tight, which may change the stable models.

Again in the special case when h(i+1 : F ) and h(i+1 : G) are the same

literal, (4.5) can be represented using choice rules as follows:

{h(i+1:F )} ← h(i :H).

4.2 Representing Domain Descriptions in the Language of F2LP

Figure 4.1 shows a side-by-side comparison of an example CCalc input program

(on the left) and its representation in the language of f2lp (on the right). As the
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1 :- sorts
2 num >> s_num.
3
4
5
6
7
8
9
10
11 :- objects
12 0..4 :: s_num;
13 5 :: num.
14
15 :- variables
16 K :: s_num.
17
18 :- constants
19 has :: inertialFluent(num);
20
21
22 buy :: exogenousAction.
23
24
25 buy causes has=K+1 if has=K.
26
27
28
29 nonexecutable buy if has=5.
30
31
32 :- query
33 maxstep :: 3;
34 0: has=2;
35 maxstep: has=4.

1
2 sort(num).
3 #domain num(V_num).
4 sort_object(num,V_num).
5
6 sort(s_num).
7 #domain s_num(V_s_num).
8 sort_object(num,V_s_num).
9
10 num(V_s_num).
11
12 s_num(0..4).
13 num(5).
14
15
16 #domain s_num(K).
17
18
19 inertialFluent(has).
20 constant_sort(has,num).
21
22 exogenousAction(buy).
23 constant_sort(buy,boolean).
24
25 h(eql(has,K+1),V_astep+1) <-
26 h(eql(buy,true),V_astep) &
27 h(eql(has,K),V_astep).
28
29 false <-
30 h(eql(buy,true),V_astep) &
31 h(eql(has,5),V_astep).
32
33 false <- query_label(0) &
34 not (h(eql(has,2),0) &
35 h(eql(has,4),maxstep)).

Figure 4.1. Simple Transition System in the Language of CCalc and in the
Language of F2LP

example shows, the translation is modular. For each sort name S that is declared

in the CCalc input program, the translation introduces a fact sort(S) along

with a variable VS that ranges over all objects of the sort S (expressed by the line

#domain S(VS)). The translation relates the sort name to the objects of the sort

by the fact sort_object(S, VS). The declaration that S1 is a supersort of S2 is

represented by S1(VS2), as illustrated in line 10.
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The ASP representation of the object and variable declarations are

straightforward. The declaration that O is an object of sort S is encoded as

a fact S(O). In order to declare a user-defined variable V of sort S, we write

#domain S(V ). See lines 12–13 and line 16 for examples.

A constant declaration in the language of CCalc of the form

C :: CompositeSort(V )

is turned into a fact CompositeSort(C), followed by the declaration of a meta-

predicate constant_sort(C, V ), which is used in the standard library. Lines

19–23 are an example.

Encoding causal laws in the language of f2lp follows the method in

Section 3.5. Like in the input language of CCalc, variables in the f2lp rules

are understood as schemas for ground terms. Lines 25–31 show an encoding of

causal laws in the language of f2lp. Since every variable is sorted, these f2lp

rules are safe according to the definition of safety by Lee et al. (2008b), and the

translation of these rules into an ASP program also results in a safe logic program.

Note that the translation in Figure 4.1 does not include certain causal laws

from the complete action description (in particular, the inertial assumption for

has and the exogeneity assumption for buy are not present). Since such causal

laws and rules are frequently used, they are expressed in a general form in the

standard library, as explained in the next section.

26



4.3 Standard Library File

The standard library4 contains declarations of predicates, variables, and postulates

that are common to all translated action descriptions. Certain declarations, like

that of the boolean sort and its objects true and false, mirror internal CCalc

declarations. Other declarations, like that of the constant_object predicate, are

specific to the translation and encoding method, and are used to mimic features

of CCalc that are not handled by the software components of the Cplus2ASP

system.

4.3.1 Postulates for Different Fluents and Actions. First, we assume

the presence of certain meta-variables that are used in the postulates. V_step is a

variable of the sort step, whose objects range over the values 0, 1, . . . , maxstep.

V_astep is a variable of the sort astep, whose objects range over the values

0, 1, . . . , maxstep − 1. V_inertialFluentAF is a meta-variable that ranges over

all ground terms of the form eql(c, v), where c is an inertialFluent and

v is an object in the domain of c as introduced in the domain description.

For example, for the domain description in Figure 4.1, V_inertialFluentAF

ranges over the values eql(has,0), eql(has,1), . . . , eql(has,5). Similarly,

we have other meta-variables V_fluentAF, V_simpleFluentAF, V_sdFluentAF,

V_rigidAF, V_actionAF, V_exogenousActionAF, and V_attributeAF that

range over ground terms of the form eql(c, v), where c and v range over

corresponding constants and values.

We show later how to prepare a program so that meta-variables range over

the atoms as intended.
4Presented in Appendix A and available at http://reasoning.eas.asu.edu/cplus2asp
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The inertial assumption for inertialFluent constants is represented by

h(V_inertialFluentAF,V_astep+1) <-

not not h(V_inertialFluentAF,V_astep+1) &

h(V_inertialFluentAF,V_astep),

or equivalently as

{h(V_inertialFluentAF,V_astep+1)} <-

h(V_inertialFluentAF,V_astep).

The exogeneity assumption (3.7) for simple fluents in the initial time step

is represented by

h(V_simpleFluentAF,0) <- not not h(V_simpleFluentAF,0),

or equivalently as

{h(V_simpleFluentAF,0)}.

The exogeneity assumptions for exogenousAction and attribute con-

stants are stated as

{h(V_exogenousActionAF,V_astep)}

and

{h(V_attributeAF,V_astep)},

here shortened like other simple exogeneity rules.

In addition, we say that attributes take the special value none iff the cor-

responding action is not executed, per the definition of attributes in Section 3.3.
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false <- not

( h(eql(V_attribute,none),V_astep) <->

-h(eql(V_action,true),V_astep) )

& action_attribute(V_action,V_attribute).

action_attribute is obtained from the declaration of attributes. It records the

relation between an action and its attributes.

The completeness assumption (3.16) for fluents is represented as follows.

false <- not h(V_fluentAF,V_step) & not -h(V_fluentAF,V_step),

or equivalently as

false <- {h(V_fluentAF,V_step), -h(V_fluentAF,V_step)}0.

The definite elimination rules for multi-valued fluent constants corre-

sponding to (4.1) can be represented as

-h(eql(V_fluent,Object1),V_step) <-

h(eql(V_fluent,Object),V_step) &

constant_object(V_fluent,Object) &

constant_object(V_fluent,Object1) & Object != Object1.

Here, V_fluent is a meta-variable that ranges over all fluent constants.

The predicate constant_object is defined in terms of sort_object and

constant_sort:

constant_object(V_constant,Object) <-

constant_sort(V_constant,V_sort) &

sort_object(V_sort,Object).
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Figure 4.2. The Hierarchy of Constant Meta-Sorts

As stated earlier, sort_object is introduced as part of translating sort decla-

rations from the domain description, and constant_sort is introduced while

translating constant declarations in the domain description.

The definite elimination rules and the completeness assumptions for

action constants are similar to those for fluent constants. The rules for rigid

fluent constants are the same as the ones for fluent constants that are not rigid,

except rigid fluent constants do not have a time stamp (i.e., V_step is omitted).

4.3.2 Meta-Sorts and Meta-Variables. In order to have grounding

replace all meta-variables with the corresponding ground atoms as intended in

the previous section, we introduce meta-level sorts for representing the constant

hierarchy, shown in Figure 4.2. This is done in the same way as introducing user-

defined sorts. For instance, the following are declarations for the simpleFluent

and inertialFluent meta-sorts, along with the declaration of their subsort

relation.
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sort(simpleFluent).

#domain simpleFluent(V_simpleFluent).

sort_object(simpleFluent,V_simpleFluent).

sort(inertialFluent).

#domain inertialFluent(V_inertialFluent).

sort_object(inertialFluent,V_inertialFluent).

simpleFluent(V_inertialFluent).

Recall that in Figure 4.1, line 19 of the f2lp program declared the fact

inertialFluent(has) as part of a constant declaration. As a result of the

declarations above, the variable V_simpleFluent ranges over all simple fluent

constants, including the inertial fluent has in the example.

Similarly, we introduce meta-level sorts for different categories of atomic

formulas that are related to each kind of constant. For example, the fol-

lowing is a part of the declaration for the meta-sorts simpleFluentAF and

inertialFluentAF.

sort(simpleFluentAF).

#domain simpleFluentAF(V_simpleFluentAF).

sort_object(simpleFluentAF,V_simpleFluentAF).

sort(inertialFluentAF).

#domain inertialFluentAF(V_inertialFluentAF).

sort_object(inertialFluentAF,V_inertialFluentAF).

simpleFluentAF(V_inertialFluentAF).
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These declarations are used to define ConstantAF domain predicates

which contain atomic formulas of the form eql(c, v), where c is a constant of

meta-level sort Constant and v is a value in the domain of c. For instance, the

following represents that simpleFluentAF and inertialFluentAF are domain

predicates that contain all atomic formulas of the form eql(c, v), where c is a

simpleFluent or inertialFluent (respectively), and v is a value in the domain

of c, using the meta-predicate constant_object.

simpleFluentAF(eql(V_simpleFluent,Object)) <-

constant_object(V_simpleFluent,Object).

inertialFluentAF(eql(V_inertialFluent,Object)) <-

constant_object(V_inertialFluent,Object).

Recall that constant_object is derived from a combination of constant_sort

and sort_object declarations.

The grounding process replaces the meta-variable V_simpleFluentAF by

every ground term of the form eql(c, v) where c is a constant of the meta-level

sort simpleFluent (and its subsorts as well) and v is an element in the domain of

c, as specified by the constant_object relation. Once the user declares that c is

a simpleFluent (or one of its subsorts) in the domain description, the postulates

for initial exogeneity of the value of c are automatically generated by the ASP

grounders. If c is declared an inertialFluent, the inertial assumption for c is

automatically generated as well.

As a result of this process, the ground ASP program produced from the

encoding of a translated action description will contain identical rules to that

of the modified McCain’s translation of Dc
m, as described in Section 4.1.2. The
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use of the standard library’s meta-predicates will introduce additional rules and

predicates, but these will just be intermediate declarations in support of the

postulates in the standard library; removing these extra rules and predicates

from the ground program will produce a program identical to the one created

in Section 4.1.2.
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CHAPTER 5

SOFTWARE SUPPORT

While we have shown that this translation and encoding method is sound and

convenient due to its modular form, it remains a nontrivial process to perform

the translation of any relatively large domain by hand; one must have a firm grasp

of CCalc syntax and C+ semantics, along with a solid understanding of f2lp

syntax and ASP semantics, to be able to faithfully follow the steps outlined above.

To make the translation process more practical, we utilize a combination of

existing software and newly created programs (collectively referred to as “the tool

chain”) to handle the complete process of translation, solution generation, and

interpretation of results, making it much easier to translate action descriptions

and significantly reducing the possibility of human error.

5.1 Cplus2ASP

Cplus2ASP was written to act as an overarching system designed to automate

the process of calling the tool chain in the correct order and with the appropriate

options. By default, Cplus2ASP takes CCalc input, processes it with the

translator module (cplus2asp.bin) and f2lp, invokes gringo and clasp to

ground and solve the resulting ASP program, and finally passes the answer sets

returned by clasp to as2transition so they can be transformed back into a

more human-readable form, presentingCCalc-style models of the original input

(i.e., similar to Figure 3.2) as its final output.
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In addition to managing the tool chain, Cplus2ASP can also interac-

tively run queries and automatically determine various parameters and settings

based on the input to and output from various stages of the tool chain.

5.2 Cplus2ASP.bin

The program cplus2asp.bin was created as a module designed to acceptCCalc

input and automatically use the encoding method described earlier to produce

equivalent f2lp input. It not only handles C+ causal laws but also supports many

extra features ofCCalc, such as rigid constants, automatic insertion of necessary

postulates for CCalc constant keywords (like inertialFluent), support for all

“shortcut” causal law forms, elimination of multi-valued constants in favor of

Boolean constants, and translation of queries in CCalc syntax into constraints

in the language of f2lp. These features allow cplus2asp.bin to process many

action descriptions without any changes required to the original CCalc input.

However, cplus2asp.bin is currently a prototype, and as such, certain advanced

features of CCalc are not yet fully supported, including macro expansion,

handling of nested constants, full evaluation of “where” clauses in causal laws,

and support for certain dynamic declarations and syntactic shortcuts. That said,

cplus2asp.bin can still properly parse and translate many action descriptions,

including all examples from “Nonmonotonic Causal Theories” (Giunchiglia et

al., 2004), without any modifications required to the original input files.

cplus2asp.bin forms the core of Cplus2ASP, as it makes the system

practical for use by anyone with a good working knowledge of CCalc. It was

created in C++ using flex and bison to streamline the process of creating an
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clasp version 1.3.7
Reading from stdin
Solving...
Answer: 1
constant_sort(has,num) constant_sort(buy,boolean) inertialFluent(has)
simpleFluent(has) fluent(has) exogenousAction(buy) action(buy) s_num(0)
s_num(1) s_num(2) s_num(3) s_num(4) num(4) num(3) num(2) num(1) num(0)
num(5) h(eql(buy,true),2) h(eql(buy,true),1) h(eql(has,2),0) h(eql(has,2),1)
h(eql(has,3),2) h(eql(has,4),3) -h(eql(has,5),3) -h(eql(has,5),0)
-h(eql(has,5),1) -h(eql(has,5),2) -h(eql(has,0),3) -h(eql(has,0),0)
-h(eql(has,0),1) -h(eql(has,0),2) -h(eql(has,1),3) -h(eql(has,1),0)
-h(eql(has,1),1) -h(eql(has,1),2) -h(eql(has,2),3) -h(eql(has,2),2)
-h(eql(has,3),3) -h(eql(has,3),0) -h(eql(has,3),1) -h(eql(has,4),0)
-h(eql(has,4),1) -h(eql(has,4),2) -h(eql(buy,true),0) sort(s_num)
sort(num) query_label(0)

Figure 5.1. Answer Set of the Translated Simple Transition System

acceptable grammar that recognizes CCalc input and parses it correctly. The

entire program consists of approximately eleven thousand lines of code, including

the definitions of the lexical analyzer and parser.

5.3 AS2Transition

The output of Cplus2ASP at this point is a series of answer set outputs from

the ASP solver. While it is possible to parse this output in its native format,

the transformations performed during the translation and encoding of an action

description make it difficult to understand and analyze the answer sets in terms

of the original action description. As a demonstration, Figure 5.1 shows the raw

output of an answer set from clasp after running Cplus2ASP on the simple

transition system in Figure 3.1.

To improve readability of the output of Cplus2ASP, as2transition

was written to take the answer sets output by ASP solvers and transform them

into output similar to that of CCalc. In addition to turning h(eql(c, v), i)

predicates back into their original i : c= v forms, as2transition also separates
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Solution 1:

0: has=2

1: has=2

ACTIONS: buy

2: has=3

ACTIONS: buy

3: has=4

Figure 5.2. Transformed Answer Set of the Translated Simple Transition System

action constants from fluent constants and arranges them in order of time stamp,

making it much easier to parse and analyze the output from Cplus2ASP.

Figure 5.2 shows the result of passing the output in Figure 5.1 to as2transition.

The similarity between the output of as2transition and CCalc allows users

familiar with CCalc to use Cplus2ASP instead with little to no change in how

they write their action descriptions or how they collect and analyze their data.

5.4 Using Cplus2ASP

Cplus2ASP was designed to gracefully handle the complexity of the underlying

tool chain, the goal being to make it easy to use from an end-user perspective. For

example, if the action description in Figure 3.1 were saved in a file called has.cp,

passing the file to Cplus2ASP using the default options (ask which query to

run, return the first solution found) would only require the following command

line:

cplus2asp has.cp
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This causesCplus2ASP to translate the input file, automatically find and

remember any queries defined, and interactively prompt the user for which query

to run before calling the answer set solver and as2transition. The number 0

can be added to the end of the command line to have Cplus2ASP return all

solutions found by the answer set solver; positive numbers used in this way tell

Cplus2ASP to look for a specific number of solutions.

Normally, Cplus2ASP does not show any intermediate information or

data, just the output from as2transition along with any errors that may have

been reported by the programs in the tool chain. However, it is possible to

stop Cplus2ASP partway through its translating and solving process and have

it show the ASP input being sent to the answer set solver. Having a copy of

the input to the answer set solver can come in handy as a debugging aid if the

grounder reports an error in the translated description.

Cplus2ASP is designed to use gringo and clasp as the respective

grounder and solver for the ASP part of the tool chain. However, it can also

be adapted to use a combined grounder and solver, like clingo, if desired.
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CHAPTER 6

EXPERIMENTS

6.1 Benchmark Problems

During the creation and subsequent use ofCCalc, several “benchmark” domains

were created or adapted from prior systems in order to test both the efficiency

and the expressive capabilities of CCalc. These domains were selected to be

translated (both by hand and using the automated translator) and evaluated with

respect to the correctness of the translations, along with the speed and efficiency

of the ASP-based solving system. Note that for the purposes of benchmarking,

clingo was used instead of gringo and clasp, as the integrated grounding and

solving capabilities of clingo generally make it a faster and more efficient solver

compared to invoking its components separately.

6.1.1 NMCT Benchmarks. Each of the sample domains presented in

“Nonmonotonic Causal Theories” (Giunchiglia et al., 2004) either demonstrate

capabilities of C+ or formalize classic knowledge representation problems.

Producing correct solutions for these domains shows that a given system can

overcome key challenges of knowledge representation, such as the frame problem.

As these domains conveniently cover a wide set of capabilities, we also chose them

as tests of Cplus2ASP. Table 6.1 shows the comparative results of running

each of the NMCT example domains through CCalc versus the performance of

Cplus2ASP on the same input.
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What follows are brief descriptions of each domain, including the feature

or problem it represents.

• Going to Work: This domain formalizes the concept of a person who starts

at home and can either walk or drive to work. It utilizes the concept of

nondeterministic actions and demonstrates the ability of C+ to support

this.

• Lifting the Table: An object is on a large table that requires two people to

lift. They must lift each end at the same time or else the object will fall off.

Correct models require that actions be allowed to execute simultaneously.

• Monkey and Bananas: This is a classic domain used to demonstrate various

aspects of planning problems via a monkey that wants to get bananas that

are hung from the ceiling of a room.

• Pendulum: A pendulum swings back and forth unless someone holds on

to it to stop its motion temporarily. This is a demonstration of defeasible

actions and redefining inertia.

• Publishing Papers: A professor publishes papers of varying length to

different venues and must keep track of what kinds of papers (conference,

journal, etc.) have been published. The domain utilizes attributes to

elaborate on a basic publishing action.

• Shooting Turkeys: A slightly less homicidal version of the Yale Shooting

Problem with two turkeys pursued by a hunter. This domain is a classic

formalization of the frame problem; while the hunter is reloading his gun
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and aiming at the second turkey, the one shot first should remain dead and

not return to life as a zombie turkey.

6.1.2 Zoo World and Traffic World. Zoo World and Traffic World

(Akman et al., 2004) are both nontrivial formalizations of medium-sized action

domains suitable for testing the ability of C+ to express and reason about

complex relationships, including indirect effects of actions, chain reactions of

cause and effect, and conditional or nondeterministic actions. Indirectly, they

also serve as a stress test for CCalc and Cplus2ASP, as even the smallest Zoo

World or Traffic World example is far larger (in terms of size of the grounded

program) than any of the NMCT examples, and it is relatively simple to scale

up the Zoo World and Traffic World domains in a nontrivial fashion. Tables 6.2

and 6.3 show the results of running various scenarios in both systems.
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Most of the Zoo World scenarios are structured as planning problems,

such as how to get a certain number of people and animals into a cage within a

certain period of time. The “Big Cage Shuffle” Zoo World scenario is a larger-

scale version of the world described in the other scenarios, and while it is also

structured as a planning problem (“How quickly can all people and animals in the

world visit every cage in the zoo?”), its more open-ended nature, larger size, and

much longer solution all present challenges for both systems. The use of query

conditions based on a variable time stamps caused CCalc to handle the query

in an unexpected manner, resulting in zchaff returning incorrect solutions.

The senarios for Traffic World include a mix of planning problems and

prediction. The challenges of computing solutions to the Traffic World scenarios

are similar to those of the Zoo World scenarios in the sense that the domain (with

multiple cars and road segments) can quickly become large. However, the Traffic

World scenarios utilize numeric computation more frequently. Scenario 3-1 is

an example of what scaling can do to the computation time required to produce

solutions to Traffic World scenarios, as it is effectively a scaled-up version of

Scenario 3 with more cars and longer roads.

6.1.3 Other Domains. Two other domains demonstrate interesting

properties of and test the limitations of both systems. The Tower of Hanoi is

a classic puzzle involving moving discs along a set of pegs, guided by a set of

simple rules regarding which discs can move and where they can move to. It

is an interesting domain due to the fact that increasing the number of discs in

the puzzle geometrically increases the number of moves required to solve it, also

geometrically increasing the size of the grounded action description.
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The Knapsacks of Marbles domain is a puzzle variant of the knapsack

problem: how to fit a certain number (or configuration) of items of varying

dimensions into a knapsack of a given size. As presented here, the puzzle version

of the problem describes piles of marbles of varying size and a set of bags, which

are also of varying size. The challenge is to put the marbles in the bags such that

all of the marbles fit and none are left outside of a bag. This puzzle is formalized

as a reasoning about state problem, meaning that placing a marble in a bag does

not involve performing an action; instead, the bags are filled with marbles all

at once. As a result, solutions can be found via manipulation and analysis of

the initial state, meaning that the workload for reasoning about this domain is

left almost entirely to the grounders of the respective systems. In addition, the

Knapsacks of Marbles puzzle heavily utilizes numeric computation.
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As can be seen from the results in Table 6.4, the domains stress test

different parts of the systems, allowing us to observe comparative efficiencies

between individual components. It is of interest to note that CCalc was

able to keep the size of the ground Knapsacks of Marbles domain relatively

small compared to ASP. This is likely due to the fact that the Knapsacks of

Marbles action description makes frequent use of rigid constants; CCalc is

able to perform several optimizations when rigid constants are used in action

descriptions, whereas Cplus2ASP performs fewer optimizations and still has to

include all meta-predicate declarations for all rigid constants.

6.2 Size of Domains

A side effect of the translation ofCCalc action descriptions into ASP and the use

of our encoding method and standard library is that the translated domain, while

relatively compact thanks to the use of meta-postulates in the standard library,

will still increase in size as a result of the translation. Table 6.5 demonstrates this

by comparing the word counts of each of the NMCT examples, the Zoo World

domain, and the Traffic World domain before translation (asCplus2ASP input),

after translation (as f2lp input), and finally as raw ASP code suitable for use with

clingo.

6.3 Analysis

Based on the results outlined in the tables above,Cplus2ASP demonstrates itself

to be a competitive system compared to CCalc; in many cases Cplus2ASP can

also outperformCCalc in terms of solving speed by over an order of magnitude.
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Table 6.5

Sizes of Domains as Cplus2ASP Input, F2LP Input, and Clingo Input

Problem Word Count
Cplus2ASP Input f2lp Inputa clingo Inputb

Going To Work 77 160 923
Lifting the Table 47 108 867
Monkey and Bananas 216 521 1336
Pendulum 26 83 826
Publishing Papers 64 193 978
Shooting Turkeys 60 157 925

Zoo World 1023 1994 3751

Traffic World 847 1709 3280

aafter processing with cplus2asp.bin
bafter processing with f2lp and including the standard library

In addition, further testing for correctness of the solutions for each domain

showed thatCplus2ASP produced identical solutions toCCalc in all examples

for all queries. CCalc consistently requires far fewer atoms than Cplus2ASP

to ground domains, but Cplus2ASP almost always outperforms CCalc when

it comes to the number of rules created in Cplus2ASP versus the number of

clauses used by CCalc.

As the data shows, when Cplus2ASP is able to solve problems faster

than CCalc, it is often due to much lower grounding times. The grounding

techniques used by gringo make it very efficient, especially with domains that

have numeric computations, allowing it to outperform the grounding methods of

CCalc for those domains. This development presents interesting possibilities,

as prior to this, numerically dense domains were often off-limits to CCalc due

to problems it could have grounding these domains because of their size. With

further optimization, it appears possible to utilize Cplus2ASP to tackle a wide

variety of reasoning problems involving numeric domains.
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It should be noted that all of the benchmark tests were only run on

one query from each domain. CCalc has a slight advantage with respect to

grounding when multiple queries are run on the same domain, as its internal

atom and clause shifting mechanisms can efficiently copy the base domain over

multiple queries and time steps. In contrast, Cplus2ASP must process and

fully ground a domain each time a different query is run, even if the only

change is to alter the range of time steps being considered. This is a current

limitation of the answer set solvers Cplus2ASP utilizes, and it is expected that

as incremental solvers like iclingo (Gebser et al., 2008) improve, they can be

coupled with Cplus2ASP to potentially allow Cplus2ASP to use dynamic

grounding methods to emulate the shifting ability of CCalc.

The domain size comparison in Table 6.5 points to another advantage

of using Cplus2ASP, in particular the automated translator cplus2asp.bin.

The increased word counts of the domains reflect an increase in the difficulty

of translating them, as can be observed from the translation of the simple

transition system in Figure 4.1. The translation and encoding method described

in Chapter 4 can be performed without automated aids, but doing so becomes

prone to human error and requires advanced knowledge of CCalc and f2lp

syntax when translating nontrivial domains.
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CHAPTER 7

RELATED WORK

Cplus2ASP is a new addition to a set of systems designed to transform

action formalisms into ASP. There are three other predecessors to Cplus2ASP

that indirectly inspired its creation. The first was created by Doğandağ et al.

(2001) and turned action language C into the language of Smodels, an early

implementation of stable model semantics. The work described a complete

encoding method, but the implementation is not publicly available.

Another was the ALM to ASP system1 (Gelfond & Inclezan, 2010),

which takes action language ALM and translates it into ASP. ALM (Gelfond &

Inclezan, 2009) can be thought of as a cousin to the Modular Action Description

language (MAD) (Lifschitz & Ren, 2006), with syntax similar to a modified

version of C+ that supports the concept of description-independent modules.

The last inspiration for Cplus2ASP was coala2 (Gebser, Grote, &

Schaub, 2010), a system that translates a limited verion of C+, in addition to other

similar formalisms like action languages B and AL, into ASP so that they can be

computed by answer set solvers. coala has many of the same basic features

and abilities of Cplus2ASP but lacks support for features like multi-valued

constants or non-exogenous actions, which prevents coala from supporting

constructs like attributes. It also requires the use of a specialized syntax, meaning

native CCalc action descriptions cannot be used with coala without first

translating them into the input language of coala. As an example, Figure 7.1

shows the syntax for a simple domain involving opening a closed door. As the
1http://www.webpages.ttu.edu/dincleza/ALM/
2http://www.cs.uni-potsdam.de/wv/coala/
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<action> openDoor.
<fluent> closed.

<caused> closed <if> closed.

<caused> -closed <if> <true> <after> openDoor.

Figure 7.1. Sample Coala Action Description

example shows, coala action descriptions take inspiration from CCalc action

descriptions, but utilize a significantly different syntax for constant declarations

in addition to a more restrictive format for causal laws.
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CHAPTER 8

CONCLUSION

We have created an efficient and modular encoding method for C+ that enables it

to be translated into the language of ASP. Our experiments demonstrate that this

new translation faithfully captures the features of C+. In addition, we have shown

that using answer set solvers to compute models of translated action descriptions

is generally far faster and more efficient than using CCalc.

The software system Cplus2ASP automates the process of performing

this translation and calling the necessary programs to produce CCalc-style

output, making this encoding method practical for use by anyone familiar with

CCalc and causal logic.

By transforming CCalc input into the language of ASP, we capture the

best of both worlds: we retain the expressivity and ease of use of C+ while

also taking advantage of the rapid improvement of modern answer set solvers.

Due to the general and modular nature of our translation and encoding method,

future advances in the efficiency of answer set solvers can be easily integrated into

our software system, in many cases automatically improving the capabilities of

Cplus2ASP.

Work has already begun on enhancing the translator (cplus2asp.bin)

so that it supports more features of the original CCalc system. As answer set

solvers improve, investigations could be made into the possibility of extending the

input language of Cplus2ASP beyond the capabilities of CCalc, incorporating

concepts such as aggregate expressions and nondefinite causal theories into the

system. Coupled with recent developments in answer set programming such as
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incremental grounding with the iclingo system (Gebser et al., 2008) and hybrid

constraint solving with the clingcon system1, Cplus2ASP’s efficiency could

improve even further, especially with respect to solving speed and the sizes and

types of domains that can be formalized using the system.

As the overall Cplus2ASP system improves, investigations into repre-

senting new domains and scenarios can be conducted, including topics such as

online reasoning and semantic processing. We hope this work will serve as a

foundation to increase the visibility and popularity of C+, particularly with those

whose specialties lie outside the field of knowledge representation.

1http://www.cs.uni-potsdam.de/clingcon/
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% Standard description-independent declarations and rules

% that embed CCalc constructs in ASP.

% A derived binary relation between a constant and its domain objects,

% connected via constant_sort and sort_object.

constant_object(V_constant,X_Object) <-

constant_sort(V_constant,X_Sort) &

sort_object(X_Sort,X_Object).

%------------------------------------------------------------

% Description-independent declarations of sorts and objects.

sort(boolean).

#domain boolean(V_boolean).

sort_object(boolean,V_boolean).

boolean(true).

%------------------------------------------------------------

% Time steps

sort(step).

#domain step(V_step).

sort_object(step,V_step).

sort(astep).

#domain astep(V_astep).

sort_object(astep,V_astep).

% astep is a subsort of step

step(V_astep).

step(0..maxstep).

astep(0..maxstep-1).

%------------------------------------------------------------

% Constants hierarchy

% Meta-constants to group categories of constants.

sort(constant).

#domain constant(V_constant).

sort_object(constant,V_constant).

%----

% Rigid constants

sort(rigid).

#domain rigid(V_rigid).

sort_object(rigid,V_rigid).

%---

% Fluent-based constants.

sort(fluent).

#domain fluent(V_fluent).

sort_object(fluent,V_fluent).

sort(simpleFluent).

#domain simpleFluent(V_simpleFluent).

sort_object(simpleFluent,V_simpleFluent).

sort(inertialFluent).

#domain inertialFluent(V_inertialFluent).

sort_object(inertialFluent,V_inertialFluent).

sort(sdFluent).

#domain sdFluent(V_sdFluent).

sort_object(sdFluent,V_sdFluent).
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%---

% Action-based constants.

sort(action).

#domain action(V_action).

sort_object(action,V_action).

sort(exogenousAction).

#domain exogenousAction(V_exogenousAction).

sort_object(exogenousAction,V_exogenousAction).

sort(abAction).

#domain abAction(V_abAction).

sort_object(abAction,V_abAction).

sort(attribute).

#domain attribute(V_attribute).

sort_object(attribute,V_attribute).

%---

% Subsort relations.

constant(V_fluent).

constant(V_action).

constant(V_rigid).

fluent(V_simpleFluent).

simpleFluent(V_inertialFluent).

fluent(V_sdFluent).

action(V_exogenousAction).

action(V_abAction).

action(V_attribute).

%------------------------------------------------------------

% Sort declaration: atomic formulas

%---

sort(fluentAtomicFormula).

#domain fluentAtomicFormula(V_fluentAtomicFormula).

sort_object(fluentAtomicFormula,V_fluentAtomicFormula).

sort(simpleFluentAtomicFormula).

#domain simpleFluentAtomicFormula(V_simpleFluentAtomicFormula).

sort_object(simpleFluentAtomicFormula,V_simpleFluentAtomicFormula).

sort(inertialFluentAtomicFormula).

#domain inertialFluentAtomicFormula(V_inertialFluentAtomicFormula).

sort_object(inertialFluentAtomicFormula,V_inertialFluentAtomicFormula).

sort(sdFluentAtomicFormula).

#domain sdFluentAtomicFormula(V_sdFluentAtomicFormula).

sort_object(sdFluentAtomicFormula,V_sdFluentAtomicFormula).

sort(rigidAtomicFormula).

#domain rigidAtomicFormula(V_rigidAtomicFormula).

sort_object(rigidAtomicFormula,V_rigidAtomicFormula).

%---

sort(actionAtomicFormula).

#domain actionAtomicFormula(V_actionAtomicFormula).

sort_object(actionAtomicFormula,V_actionAtomicFormula).

sort(exogenousActionAtomicFormula).

#domain exogenousActionAtomicFormula(V_exogenousActionAtomicFormula).

sort_object(exogenousActionAtomicFormula,V_exogenousActionAtomicFormula).
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sort(abActionAtomicFormula).

#domain abActionAtomicFormula(V_abActionAtomicFormula).

sort_object(abActionAtomicFormula,V_abActionAtomicFormula).

sort(attributeAtomicFormula).

#domain attributeAtomicFormula(V_attributeAtomicFormula).

sort_object(attributeAtomicFormula,V_attributeAtomicFormula).

%---

% Subsort relations.

fluentAtomicFormula(V_simpleFluentAtomicFormula).

simpleFluentAtomicFormula(V_inertialFluentAtomicFormula).

fluentAtomicFormula(V_sdFluentAtomicFormula).

actionAtomicFormula(V_exogenousActionAtomicFormula).

actionAtomicFormula(V_abActionAtomicFormula).

actionAtomicFormula(V_attributeAtomicFormula).

%------------------------------------------------------------

% Object declaration: atomic formulas

rigidAtomicFormula(eql(V_rigid,X_Object)) <-

constant_object(V_rigid,X_Object).

simpleFluentAtomicFormula(eql(V_simpleFluent,X_Object)) <-

constant_object(V_simpleFluent,X_Object).

inertialFluentAtomicFormula(eql(V_inertialFluent,X_Object)) <-

constant_object(V_inertialFluent,X_Object).

sdFluentAtomicFormula(eql(V_sdFluent,X_Object)) <-

constant_object(V_sdFluent,X_Object).

actionAtomicFormula(eql(V_action,X_Object)) <-

constant_object(V_action,X_Object).

exogenousActionAtomicFormula(eql(V_exogenousAction,X_Object)) <-

constant_object(V_exogenousAction,X_Object).

abActionAtomicFormula(eql(V_abAction,X_Object)) <-

constant_object(V_abAction,X_Object).

attributeAtomicFormula(eql(V_attribute,X_Object)) <-

constant_object(V_attribute,X_Object).

%------------------------------------------------------------

% Description-independent rules to encode common CCalc constructs.

% Exogeneity for exogenous actions.

{h(V_exogenousActionAtomicFormula,V_astep)}.

% Negative version for Booleans.

{-h(eql(V_exogenousAction,true),V_astep)} <-

constant_sort(V_exogenousAction,boolean).

% abActions default to false.

{-h(eql(V_abAction,true),V_astep)}.

% Exogeneity for attributes.

{h(V_attributeAtomicFormula,V_astep)}.

62



% Restriction that attributes will take on the value "none"

% if and only if their linked action does not execute.

false <-

not (( h(eql(V_attribute,none),V_astep) -> -h(eql(V_action,true),V_astep) ) &

( -h(eql(V_action,true),V_astep) -> h(eql(V_attribute,none),V_astep) )) &

action_attribute(V_action,V_attribute).

% Inertia for inertial fluents

{h(V_inertialFluentAtomicFormula,V_astep+1)} <-

h(V_inertialFluentAtomicFormula,V_astep).

% Negative version for Booleans.

{-h(eql(V_inertialFluent,true),V_astep+1)} <-

-h(eql(V_inertialFluent,true),V_astep) &

constant_sort(V_inertialFluent,boolean).

%------------------------------------------------------------

% Exogeneity for simple fluents at time 0.

{h(V_simpleFluentAtomicFormula,0)}.

% Negative version for Booleans.

{-h(eql(V_simpleFluent,true),0)} <-

constant_sort(V_simpleFluent,boolean).

%------------------------------------------------------------

% exogenous: Grants exogeneity to a constant.

% Rigids

{h(eql(V_rigid,X_Object))} <-

exogenous(V_rigid) &

constant_object(V_rigid,X_Object).

% Negative version if it's Boolean.

{-h(eql(V_rigid,true))} <-

exogenous(V_rigid) &

constant_sort(V_rigid,boolean).

% Fluents

{h(eql(V_fluent,X_Object),V_step)} <-

exogenous(V_fluent) &

constant_object(V_fluent,X_Object).

% Negative version if it's Boolean.

{-h(eql(V_fluent,true),V_step)} <-

exogenous(V_fluent) &

constant_sort(V_fluent,boolean).

% Actions

{h(eql(V_action,X_Object),V_astep)} <-

exogenous(V_action) &

constant_object(V_action,X_Object).

% Negative version if it's Boolean.

{-h(eql(V_action,true),V_astep)} <-

exogenous(V_action) &

constant_sort(V_action,boolean).

%------------------------------------------------------------

% inertial: Grants inertia to a (non-rigid) fluent.

{h(eql(V_fluent,X_Object),V_astep+1)} <-

inertial(V_fluent) &

h(eql(V_fluent,X_Object),V_astep) &

constant_object(V_fluent,X_Object).
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% Negative version if it's Boolean.

{-h(eql(V_fluent,true),V_astep+1)} <-

inertial(V_fluent) &

-h(eql(V_fluent,true),V_astep) &

constant_sort(V_fluent,boolean).

%------------------------------------------------------------

% noconcurrency: If stated as a fact, prevents

% concurrent execution of Boolean actions.

false <-

noconcurrency &

action(V_action_1) &

not (h(eql(V_action,true),V_astep) &

h(eql(V_action_1,true),V_astep)

-> V_action=V_action_1).

%------------------------------------------------------------

% Existence and uniqueness for every constant relative to its domain.

% Rigids

-h(eql(V_rigid,X_Object_1)) <-

h(eql(V_rigid,X_Object)) &

constant_object(V_rigid,X_Object) &

constant_object(V_rigid,X_Object_1) &

X_Object != X_Object_1 &

not constant_sort(V_rigid,boolean).

% Fluents

-h(eql(V_fluent,X_Object_1),V_step) <-

h(eql(V_fluent,X_Object),V_step) &

constant_object(V_fluent,X_Object) &

constant_object(V_fluent,X_Object_1) &

X_Object != X_Object_1 &

not constant_sort(V_fluent,boolean).

% Actions

-h(eql(V_action,X_Object_1),V_astep) <-

h(eql(V_action,X_Object),V_astep) &

constant_object(V_action,X_Object) &

constant_object(V_action,X_Object_1) &

X_Object != X_Object_1 &

not constant_sort(V_action,boolean).

% Only complete interpretations allowed.

false <-

{h(V_rigidAtomicFormula),

-h(V_rigidAtomicFormula)}0.

false <-

{h(V_fluentAtomicFormula,V_step),

-h(V_fluentAtomicFormula,V_step)}0.

false <-

{h(V_actionAtomicFormula,V_astep),

-h(V_actionAtomicFormula,V_astep)}0.
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%------------------------------------------------------------

% Hide most of the internal predicates to avoid cluttering the answer sets.

#hide sort(step).

#hide sort(astep).

#hide sort(boolean).

#hide step/1.

#hide astep/1.

#hide boolean/1.

#hide sort(constant).

#hide sort(fluent).

#hide sort(action).

#hide sort(abAction).

#hide sort(attribute).

#hide sort(exogenousAction).

#hide sort(inertialFluent).

#hide sort(rigid).

#hide sort(sdFluent).

#hide sort(simpleFluent).

#hide constant/1.

#hide sort_object/2.

#hide constant_object/2.

#hide sort(actionAtomicFormula).

#hide sort(fluentAtomicFormula).

#hide sort(abActionAtomicFormula).

#hide sort(attributeAtomicFormula).

#hide sort(exogenousActionAtomicFormula).

#hide sort(inertialFluentAtomicFormula).

#hide sort(rigidAtomicFormula).

#hide sort(simpleFluentAtomicFormula).

#hide sort(sdFluentAtomicFormula).

#hide actionAtomicFormula/1.

#hide fluentAtomicFormula/1.

#hide abActionAtomicFormula/1.

#hide attributeAtomicFormula/1.

#hide exogenousActionAtomicFormula/1.

#hide inertialFluentAtomicFormula/1.

#hide rigidAtomicFormula/1.

#hide sdFluentAtomicFormula/1.

#hide simpleFluentAtomicFormula/1.
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