Representing the Language of the Causal Calculator
in Answer Set Programming
by
Michael Casolary

A Thesis Presented in Partial Fulfillment
of the Requirements for the Degree
Master of Science

Approved July 2011 by the

Graduate Supervisory Committee:

Joohyung Lee, Chair
Gail-Joon Ahn
Chitta Baral

ARIZONA STATE UNIVERSITY
August 2011

ABSTRACT

Action language C+ is a formalism for describing properties of actions,
which is based on nonmonotonic causal logic. The definite fragment of C+ is
implemented in the Causal Calculator (CCalc), which is based on the reduction
of nonmonotonic causal logic to propositional logic. This thesis describes the
language of CCalc in terms of answer set programming (ASP), based on the
translation of nonmonotonic causal logic to formulas under the stable model
semantics. I designed a standard library which describes the constructs of
the input language of CCalc in terms of ASP, allowing a simple modular
method to represent CCalc input programs in the language of ASP. Using
the combination of system F2LP and answer set solvers, this method achieves
functionality close to that of CCalc while taking advantage of answer set solvers
to yield efficient computation that is orders of magnitude faster than CCalc
for many benchmark examples. In support of this, I created an automated
translation system Cplus2ASP that implements the translation and encoding
method and automatically invokes the necessary software to solve the translated

input programs.

To my family and friends.

1

TABLE OF CONTENTS

TABLE OF CONTENTS
LISTOF TABLES e

LISTOFFIGURES i
CHAPTER

1 INTRODUCTION i

2 BACKGROUND e

21
2.2
2.3
24

Nonmonotonic Causal Theoriesand C+

The Causal Calculator

3 PRELIMINARIES o .

3.1
3.2
33
34
3.5

Nonmonotonic Causal Logic
Action Language C+ Lo oL
The Language of CCalc
Stable Model Semantics Lo Lo oL

Translating Causal Logic Into Logic Programs

4 ENCODING CAUSALLOGICINASP

4.1

4.2

Translating C+ Into Logic Programs
4.1.1 Definite Elimination of Multi-Valued Constants
4.1.2 Turning Boolean-Valued Action Descriptions Into Logic

Programs

Representing Domain Descriptions in the Language of F2LP . . .

111

Page

111

Vi

S~ B~ A

CHAPTER Page

4.3 Standard Library File L .. 27

4.3.1 DPostulates for Different Fluents and Actions 27

4.3.2 Meta-Sorts and Meta-Variables 30

5 SOFTWARESUPPORT 34

51 Cplus2ASP 34

52 Cplus2ASPbin 35

53 AS2Transitiono ot e e 36

54 UsingCplus2ASP 37

6 EXPERIMENTS i 39

6.1 Benchmark Problems 39

6.1.1 NMCT Benchmarks 39

6.1.2 Zoo World and Traffic World 42

6.1.3 OtherDomains 45

6.2 Sizeof Domains 48

6.3 Analysis 48

7 RELATEDWORK i 51

8 CONCLUSION e e e 53

REFERENCES e 55
APPENDIX

A F2LPSTANDARDFILE. o o .. 60

v

LIST OF TABLES

Table Page
6.1 Comparative Performance of CCalc and Cplus2ASP: NMCT Domains 40
6.2 Comparative Performance of CCalc and Cplus2ASP: Zoo World . . 43
6.3 Comparative Performance of CCalc and Cplus2ASP: Tratfic World . 44
6.4 Comparative Performance of CCalc and Cplus2ASP: Miscellaneous
Domains. e 47

6.5 Sizes of Domains as Cplus2ASP Input, F2LP Input, and Clingo Input 49

LIST OF FIGURES

Figure

1.1
3.1

3.2
4.1

4.2
5.1
5.2
7.1

Design of the Cplus2ASP System
Simple Transition System and Its Action Description in the Language
of CCale o
Output of Running the Simple Transition System in CCalc
Simple Transition System in the Language of CCalc and in the
Language of F2LP
The Hierarchy of Constant Meta-Sorts
Answer Set of the Translated Simple Transition System
Transformed Answer Set of the Translated Simple Transition System

Sample Coala Action Description

vi

CHAPTER 1

INTRODUCTION

The field of knowledge representation is a specialization of artificial intelligence
that focuses on designing, implementing, and utilizing logical formalisms that
encode facts and relationships in a way that allows computers to store them and
reason about them in a flexible and efficient manner. In pursuit of this goal, many
formalisms have been created, each aiming to capture certain domains or solve
specific problems related to creating intuitive logics. Action-oriented formalisms
focus on the concept of reasoning about actions and their effects on the state
of a given world. Common issues action-oriented formalisms address are the
frame problem (McCarthy & Hayes, 1969), which is how to encode the idea that
objects have persistent states, and the ramification problem (Finger, 1986), which

addresses capturing indirect effects of actions.

In particular, nonmonotonic causal logic (Giunchiglia, Lee, Lifschitz,
McCain, & Turner, 2004), as the name implies, is a formalism designed around
representing causal relationships. C+ (Giunchiglia et al., 2004) is a high-level
notation of nonmonotonic causal logic that is designed to describe actions and
their effects. The Causal Calculator (CCALcC!), an implementation of C+,
reduces a fragment of nonmonotonic causal logic to propositional logic and uses
satishability (SAT) solvers to produce solutions for given action descriptions.
CCALC was originally created as a prototype, but it has been successfully applied
to several challenging commonsense reasoning problems; it has been used on

problems of nontrivial size (Akman, Erdogan, Lee, Lifschitz, & Turner, 2004),

1ht'cp ://www.cs.utexas.edu/users/tag/cc/

to provide a group of robots with high-level reasoning (Caldiran et al., 2009), to
give executable specifications of norm-governed computational societies (Artikis,
Sergot, & Pitt, 2009; Chopra & Singh, 2003), and to automate the analysis of
business processes under authorization constraints (Armando, Giunchiglia, &

Ponta, 2009).

It has been shown by McCain (1997), Ferraris (2007), and Ferraris et al.
(2010) that nonmonotonic causal logic can be turned into logic programs under
the answer set semantics (Gelfond & Lifschitz, 1988). This provides a way to
compute nonmonotonic causal logic using answer set solvers and is an alternative
to the computing method that is implemented in CCALC. As there are currently

many efficient answer set solvers available, this is a promising approach.

In a related work, Kim, Lee, and Palla (2009) showed that the event
calculus (Shanahan, 1995) can be reformulated in answer set programming. That
work enabled Kim to create an implementation of the event calculus (Kim,
2009) that utilized this embedding to translate event calculus into the language of
answer set programming (ASP), taking advantage of ASP solvers to significantly

improve the efficiency of solving event calculus descriptions.

Taking inspiration from the work on event calculus, in this thesis we
examine the effectiveness of using a similar approach with causal logic. Our
alm is to create a system that is a step toward combining the expressivity of
C+ with the speed of modern ASP solvers. We create an enhanced translation
and encoding method designed to translate action descriptions in the input
language of CCALC into the input language of ASP solvers. We then implement
CPLUS2ASP, a software tool that performs this translation in an automated

fashion. Figure 1.1 shows the design of CPLUS2ASP. Our experiments show

Input cplus2asp Output

Ccalc —>| cplus2asp.bin ‘

domain

description : -

& que gringo clasp
= ASP input (grounder) ket (solver)

Answer setsl
as2transition CCalc-slyle
output

Figure 1.1. Design of the Cplus2ASP System

Standard
library

that CPLUS2ASP achieves functionality close to CCALC while taking advantage
of ASP solvers to yield efficient computation that is orders of magnitude faster
than CCALC on several benchmark examples. This work paves the way to
implement a new version of CCALC that will incorporate recent advances
in answer set programming, such as incremental grounding, online reasoning,

modular programming, constraint solving, and aggregates.

In Chapter 2, we introduce background material. Chapter 3 covers
preliminary content used as a basis for this work. The actual method for
translating and encoding CCALC input into ASP is documented in Chapter 4.
Information about the software system CPLUS2ASP and its components is
presented in Chapter 5, and the results of testing the software against various
benchmark domains can be found in Chapter 6. Chapter 7 addresses and
compares related works, and in Chapter 8, we comment on our contribution

as a whole and discuss possible future enhancements to CPLUS2ASP.

CHAPTER 2

BACKGROUND

2.1 Nonmonotonic Causal Theories and C+

Action language C+ (Giunchiglia et al., 2004) is a high-level notation of non-
monotonic causal logic designed to describe transition systems. A transition
system is a directed graph whose vertices represent possible states of a world
and whose edges, labeled with actions, represent transitions from one state
to another. To aid in these representations, C+ takes common syntactic and
semantic concepts, such as inertia and conditional causation, and represents them
as English-like “laws” that are generally easier to parse and understand than their
logic formula equivalents. C+ is an extension of C (McCain, 1997) that overcomes
several essential limitations of its predecessor by including features such as multi-
valued constants, defined fluents, additive fluents, rigid constants, attributes, and
defeasible causal laws. C+ was further extended to express distant causation
(Craven & Sergot, 2005), preferred states and actions (Sergot & Craven, 2006),

and to allow for probabilistic reasoning (Eiter & Lukasiewicz, 2003).

2.2 The Causal Calculator

The Causal Calculator was originally created by McCain (1997) as an implemen-
tation of action language C. To support C+, Lee extended CCALC (2005) by
adding several features, including those mentioned above. While Lee’s extended
CCALC was originally intended to be a proof-of-concept software tool demon-

strating that an implementation of C+ was feasible, CCALC benefitted from the

expressivity of C+ such that it became desirable for use in a variety of problem-
solving applications. Several representative examples of such applications were

mentioned in the introduction.

2.3 Answer Set Programming

Answer set programming is a declarative programming paradigm that is oriented
towards difficult NP-hard search problems. Its goal is to reduce the given search
problem to computing stable models, using an ASP solver to perform the search.
There are many answer set solvers available, such as GRINGO and CLASP!,
SMODELS?, CMODELS?, and DLV*. In addition, a biannual ASP competition
is held to encourage the development and further improvement of ASP solvers.
Thanks in part to the versatility of answer set solvers, ASP has been applied
to a wide range of problems, from code optimization (Brain, Crick, Vos, &
Fitch, 2006) and model checking (Liu, Ramakrishnan, & Smolka, 1998) to music
composition (Boenn, Brain, Vos, & Fitch, 2008) and multi-agent planning (Son,

Pontelli, & Sakama, 2009).

2.4 F2LP

The input to ASP solvers is limited to rule forms, which are analogous to clausal
normal form in classical logic. System F2LP (“Formulas To Logic Programs”)
(Lee & Palla, 2009) is a front end that allows ASP solvers to compute stable

models of first-order formulas, as defined by Ferraris (2007) and Ferraris et al.

'http://potassco.sourceforge.net/
Zhttp://www.tcs.hut.fi/Software/smodels/
Shttp://www.cs.utexas.edu/users/tag/cmodels.html
*http://www.dlvsystem.com/dlvsystem/index.php/Home

(2011). Allowing first-order formulas as input makes it easier to express concepts

like nested connectives and quantifiers. For example, the formula

terminal (X) <- vertex(X) & not ?[Y]:edge(X,Y)
succinctly describes the conditions under which x is considered to be a terminal
vertex of a directed graph by using existential quantification over Y (denoted by
?[Y]). F2LP can also be used to compute event calculus (Shanahan, 1995) and
situation calculus (McCarthy & Hayes, 1969; Reiter, 2001) by using ASP solvers
(Kim et al., 2009; Lee & Palla, 2010).

CHAPTER 3

PRELIMINARIES

The following sections document prior research and experiments that we use as

a basis for our enhancements and contribution.

3.1 Nonmonotonic Causal Logic

Our work focuses on the version of causal logic supported by CCALC (multi-
valued definite propositional causal logic), so what follows is the definition of
nonmonotonic causal logic given in the paper “Nonmonotonic Causal Theories”

(Giunchiglia et al., 2004).

In causal logic, a multi-valued propositional signature consists of:

® A set o of symbols called constants, and

e for each constant ¢ in 0, a nonempty, finite set Dom(c) consisting of at least

two elements that comprise the domain of c.

An atom of o is an expression ¢=v, which signifies that the value of the constant

cis equal to v.

The expression ¢ = d is a commonly seen shortcut representing that the
value of ¢ equals the value of d for some value from the intersection of their
domains. Stated formally:

c=d = c=vAd=v.
vE€Dom(c)NDom(d)

Another syntactic shortcut that works for constants with Boolean do-

mains is to use ¢ in a causal rule to stand for c=true and —c to stand for c=false.

An interpretation I of ¢ is a function that maps each constant in ¢ to a

value in its domain.

Causal logic is defined in terms of causal rules of the form
F<aG (3.1)

where this is understood as, “There is a cause for F' if G is true.” (This is in

contrast to the classical version

G—F

of (3.1), which would be read, “If G is true then so is F.”) In the general case,
both F and G may be arbitrary formulas, which are propositional combinations
of elements from o, T (universal truth), and | (universal falsehood). If F'is | in

a causal rule, we call that rule a constraint.

A causal theory T of o is a finite set of causal rules. If all of the heads of
the rules in a causal theory are either L or a single literal, then we call that causal

theory definite.

An interpretation [satisfies an atom ¢ = v (represented as I = ¢ =) if
I(c) = v. As expected, every interpretation I satisfies T (I = T for every I),
and no [satisfies L (I [~ L forevery I). Satisfaction is extended to arbitrary

formulas using classical truth tables for the standard propositional connectives.

The semantics of causal logic is defined in terms of a fixpoint definition.
For a causal theory T and an interpretation I, the reduct T* of T under I is the

set of heads of the causal rules of 7" whose bodies are satisfied by I. I is a model

of T if I is the unique interpretation of o that satisfies 77. A causal theory T is
called satisfiable if it has at least one model and wunsatisfiable (or inconsistent) if it

has no models.

For example, take causal theory 7" to be

p < q,

If we let interpretation I; be the set {p, —¢} (i.e., I1(p) = true and I,(q) = false),
this would not be a model of T. I, only satisfies the body of the third rule
in the theory, causing the reduct T'* to be {—¢}. Interpretation {p, —~q} does
not uniquely satisfy the reduct (the set {—p, ~¢} would as well); therefore, I; is
not a model of 7. However, if we let interpretation I be the set {p, ¢} (i.e.,
I(p) = true and I5(q) = true), then the first two bodies of T" would be satisfied
by I, making the reduct 772 = {p, q}. Therefore, I, uniquely satisfies 72, and

thus is a model of 7. It turns out that this is the only model of the theory.

3.2 Action Language C+

Action language C+ is a high-level notation for causal logic that is designed
to describe transition systems in a succinct way. In C+, constants are divided
into two groups: fluent constants and action constants. Fluent constants are
further partitioned into simple and statically determined fluents. Using these new
categories, C+ also distinguishes between various types of formulas. A fluent

formula is a formula where any constants occurring in it are fluent constants. An

action formula is a formula that contains at least one action constant and no fluent

constants.

Where causal logic utilized causal rules as its fundamental logic sentences,

C+ uses higher level causal laws. There are three basic kinds of causal laws:

® Static laws are expressions of the form
caused F if G (3.3)

where F' and G are fluent formulas.

® Action dynamic laws are expressions with the same form as (3.3), except F’

is an action formula and G is any kind of formula.

® Fluent dynamic laws are expressions of the form
caused F if G after H (3.4)

where F' and G are fluent formulas and H is any kind of formula. In this

case, F’ cannot contain statically determined constants.

Static laws are typically used to express relationships and dependencies
between fluents in the same state. Action dynamic laws perform a similar
function, but they are specific to dependencies between actions. The bulk of
C+ laws found in the average action description are fluent dynamic laws, as they
are the ones that define how a given state changes over time as a result of the

effects of actions or other conditions.

In addition to the basic causal laws shown in (3.3) and (3.4), several

“shortcut” causal laws were defined in terms of these basic laws in Giunchiglia

10

et al. (2004, Appendix B) to make it easier to express common concepts of

transition systems.

The C+ analogue of a causal theory from causal logic is an action

description, which is a set of causal laws.

The semantics of C+ in Giunchiglia et al. (2004) is defined in terms of
a translation into causal logic. In order to perform the translation, the earlier
definition of causal logic must be extended to include the concept of time via the
inclusion of ordered states. The definition of a constant is extended to include a
nonnegative integer time stamp: ¢ : ¢. This represents the constant c at time 7. The
domain of i: ¢ remains the same as the domain of ¢. Using this new definition, an

atom of the form i:c=w signifies, “The constant ¢ has the value v at time i.”

For any action description D and any nonnegative integer m, the causal
theory D,, is defined in the following manner. The signature of D,, consists of

extended constants 7 : ¢ such that

e ;€{0,...,m} if cis a fluent constant of D, or

e ;€{0,...,m— 1} if ¢ is an action constant of D.

We use the expression i : F' to denote the result of inserting i : in front of every
occurrence of every constant in a formula F', and similarly for a set of formulas.

For every static causal law (3.3) in D, add the causal rule
iF <= i:G (3.5)

to D,y,, where i € {0,...,m}. Do the same thing for every action dynamic law

in D,using i € {0,...,m —1}.

11

Transform each fluent dynamic law (3.4) in D into
i+1:F <= (i+1:G) A (i:H) (3.6)

in D,,, using i € {0,...,m — 1}. Simple fluent constants have a property that
their values are initially exogenous (i.e., by default they can take on any value from
their domain unless constrained otherwise). This is represented in causal logic by
adding the rule

O:c=v <= 0:c=v (3.7)

for every simple fluent constant ¢ and every v € Dom(c).

The causal models of D,,, correspond to paths through a transition system
representing the action description D. Viewed as a directed graph, the nodes (or
“states”) consist of the possible values for each constant in o, and the edges from
one state to another correspond to the actions that change the state of the system

to a new state.

3.3 The Language of CCalc

The language of CCALC provides a convenient way of representing C+. In
addition to supporting all of the causal laws mentioned above, CCALC also
provides mechanisms for declaring constants, declaring named domains (“sorts”),
and populating those domains with values (“objects”). This is illustrated in
Figure 3.1 using an action description that models a simple transition system.
This domain models the concept of a person who has a certain quantity of items
and can choose to buy another item to increase how many they possess by one,
up to a given limit. Line 2 declares two domains, num and s_num, that can be

populated and used later in the description.

12

@ —\ﬁ 1 :- sorts
2 num >> s_num.
has=0 8
4 :- objects
5 0..4 :: s_num;
{kﬂly}- 6 5 :: num.
0 7
8 :- variables
has=1 13 K i s_num.
11 :- constants
{buy} 12 has :: inertialFluent (num);
13 buy :: exogenousAction.
14
15 buy causes has=K+1 if has=K.
16 nonexecutable buy if has=b.
{buy} 17
Qj O 18 :- query
19 maxstep :: 3;

has=n 20 0: has=2;
21 maxstep: has=4.

Figure 3.1. Simple Transition System and Its Action Description in the Language
of CCalc

The use of >> signifies that s_num is a subsort of num, which means that
any objects added to s_num are automatically added to num as well. Lines 5
and 6 populate the s_num and num sorts (respectively) with objects. s_num has
the numbers from 0 to 4 added to it, as does num (by virtue of being a supersort of

s_num), which also has the number 5 added to its domain.

Line 9 declares that K, when used in a causal law, may stand for any
value from the sort s_num. Variable declarations like this allow for the creation
of causal laws that are automatically grounded by CCALC into sets of laws

representing all possible values from the variables referenced in each law.

Line 12 declares has as a fluent constant with the domain of num. In
addition to simpleFluent, sdFluent (statically determined fluent), and action,
CCALC allows declarations of constants using special keywords that combine a

constant declaration with an implicit inclusion of certain causal laws to predefine

13

the behavior of that constant. In this case, inertialFluent is a keyword that

declares has as a simple fluent constant, then implicitly adds the law

inertial has,

which is short for a set of laws

caused has=v if has=v after has=v

for every value v in the domain of has. This grants the property of inertia to

has.

Similarly, line 13 declares buy as an action constant. The lack of a named
domain following the constant type signifies that buy is to have the default
Boolean domain. Like inertialFluent, exogenousAction is another CCALC

keyword that automatically adds the law

exogenous buy

to the description, which stands for the set of laws

caused buy=v if buy=v
for every value v in the domain of buy. Since buy happens to have the Boolean
domain, the set can be explicitly unfolded as

caused buy if buy,

caused -buy if -buy.
As mentioned earlier, if a constant ¢ has the Boolean domain, using it as a bare
keyword (i.e., buy) is understood as c=true (in this case, buy=true). Negating a

bare Boolean constant —c is shorthand for c=false (i.e., buy=false).

14

The causal laws in lines 15 and 16 define the behavior of the buy action.
The first law states that an effect of executing the buy action is to increment the

value of has by one. The law is in the form
F causes G if H, (3.8)

which, because G (has) is a fluent formula, is equivalent in this case to the basic

causal law

caused G if T after F' A H.

An if or after clause can generally be omitted if it is trivially T, resulting in the
more compact form

caused G after ' \ H,
or, in the specific case of line 15,

caused has=K+1 after buy & has=K.

The law on line 16 conditionally restricts the buy action from executing if the
person already has the maximum number of items. It too is a shortcut law, this
time of the form

nonexecutable I if G (3.9)

which is shorthand for

caused L after F' A G.
Thus, the law in the action description is equivalent to

caused false after buy & has=b.

In CCALC, false used as a bare keyword stands for L. Similarly, true stands

for T.

15

% Shifting atoms and clauses... done. (0.00 seconds)

% After shifting: 47 atoms (including new atoms), 135 clauses
% Writing input clauses... done. (0.00 seconds)

% Calling ZChaff... done.

% Reading output file(s) from SAT solver... done.

% Solution time: O seconds.

0: has=2
1: has=2
ACTIONS: buy
2: has=3
ACTIONS: buy

3: has=4

Figure 3.2. Output of Running the Simple Transition System in CCalc

Finally, lines 18-21 define a query that can be run on this action
description. In this case, the query specifies that time steps shall range from 0
to 3, and its conditions are that at time step O, has is equal to 2, and at the final
time step, has is equal to 4. CCALC transforms these conditions into constraints,
merges them with the base action description, and tries to find models of the

resulting causal theory.

Running CCALC on this action description, configuring it to return the
first model it finds, and invoking the included query produces the output in

Figure 3.2.

As can be seen from the output, CCALC has found a model where the buy
action is executed in time steps 1 and 2, resulting in the value of has increasing
from 2 to 4, just as the query stipulated. Note that this is not the only model
of this query; there are two other models that change when the buy actions are

executed, but both models are similar to the one above.

16

Though they do not appear in the action description of Figure 3.1, two
more keywords deserve mention: rigid and attribute. Declaring a constant ¢

as rigid makes it a fluent constant, adding the law
rigid ¢ (3.10)
implicitly, which is short for the set of laws
caused L if c=wv; after c=v A v # vy

for all values v and v; in the domain of ¢. In actuality, CCALC does not do this.
CCALC understands that an explicitly rigid fluent constant cannot change its
value from the one initially assigned to it. As a result, instead of adding the laws
above for each rigid constant ¢, CCALC simply strips the time stamp from them,
reverting them to ¢ = v style atoms instead of the time-stamped i : ¢ = v style.
This improves efficiency when using these constants by avoiding the creation of

unnecessary copies of causal laws.

The other important keyword to note is attribute. An attribute is a
special kind of non-Boolean exogenous action constant designed to attach to a
Boolean action constant and act as a property of that action. For example, in the
description in Figure 3.1, we could add an attribute howMany to the action buy
that indicated how many items the person bought each time buy was executed.

This could be declared in CCALC with the statement

howMany :: attribute(num) of buy,
which would bind the new constant howMany to buy, letting howMany range over
the domain num. Upon encountering this declaration, CCALC automatically
creates a supersort num* of num, adding the object none to num* and assigning

numx* as the actual domain of howMany. CCALC would then add the causal law

17

always howMany=none <-> -buy

to the action description, which is shorthand for

caused false after -(howMany=none <-> -buy).
This ties howMany to buy such that howMany only has a value that is not none if
buy is executed. If buy is not executed, howMany must take on the value none.
Once we define the attribute howMany, we can then modify the action description

to support purchasing multiple items.

3.4 Stable Model Semantics

For the purposes of this work, it is sufficient to restrict our attention to
propositional stable model semantics. What follows is a definition of stable model
semantics similar to Ferraris’s definition (2005), with extensions to include strong
(i.e., classical) negation in addition to default negation. Notationally, we will
distinguish between the two by using “~” to indicate default negation (negation

as failure), and “~” to indicate strong negation.

A propositional signature o is a set of atoms, which inherit their definition
from classical logic. A literal is an atom that is optionally preceeded by ~. All
propositional connectives A, V, —, <+, =, L, and T are allowed. T is shorthand
for L — 1, —=F is shorthand for ' — 1, and F' <+ G is an abbreviation of
(F — G) A (G — F). Formulas are combinations of literals and connectives, as

defined in propositional logic.

With the understanding that F' <— G is an alternate representation of

G — F, arule is a formula of the form
F @G, (3.11)

18

where ' and G may be arbitrary (propositional) formulas. In this work, we
restrict our attention to rules where ' and G are finite. A program 11 is a finite

set of rules.

An interpretation of II is a mapping of each atom in ¢ to one of the truth
values true or false. We identify an interpretation I with the set of atoms X that
are true in the interpretation. The definition of satisfaction for atoms is the same
as in classical logic. A literal containing strong negation is satisfied if its atom is
not, and vice-versa. Satisfaction for a formula is defined in a manner similar to

that of classical logic.

Like the semantics for causal theories, the semantics of a program is
defined in terms of a reduct. The reduct 11X of a program II relative to X is
the result of replacing each maximal subformula in each rule of II that is not
satisfied by X with L. X is an answer set of II if X is the minimal set satisfying
IT%. An answer set X of II is considered coberent if it does not contain both an
atom p and its strong negation ~p. For the purposes of this work, we restrict our

attention to coherent answer sets.

As an example, consider the program

P <74,
q %NT’ (312)

AT 4= T AT

19

The set X = {p} is an answer set of the program, as can be seen by
forming the reduct
p+ L,
1L+ 1,
11,
and observing that the latter two rules are equivalent to T and the remaining rule

reduces to p < T, and therefore {p} is the minimal set satisfying that rule. In

addition, {q,~r} is also an answer set of the program. The reduct relative to
{g,~}
1+ 1,
q <,
~r 4=l
is equivalent to the conjunction of rules ¢ <—~r and ~r < T, which has {¢, ~r}

as its minimally satisfying set. Further experimentation shows that these are the

only two answer sets of the given program.

Observe that in the program (3.12), strong negation (~) behaves differ-
ently in the reduct from negation as failure (=). This reflects the intuitive reading
of —p as “p is not known to be true” versus that of ~ p, which is read as “p
is known to be false.” We utilize this difference in behavior between the two

negations to embed features from causal logic in stable model semantics.

3.5 Translating Causal Logic Into Logic Programs

In (Ferraris et al., 2010), McCain’s translation (McCain, 1997) is extended as

follows. Assuming a Boolean signature o, take any set 7" of definite causal rules,

20

each of which has the form

a <G, (3.13)

—a <= G, (3.14)
or

1L <G, (3.15)

where a is an atom and G is an arbitrary propositional formula. Define the set
of rules under the stable model semantics 7" as follows. For each rule (3.13),
replace it with the formula a <— =—G} replace each rule (3.14) with the formula
~a < ——G; and for each rule (3.15), replace it with the formula —=G. Then, add

the following completeness constraints (3.16) for all atoms a:

Note that for T, which is definite, the modified McCain’s translation yields a
program that is tight (Ferraris et al., 2011). Given that definite propositional
causal theories are automatically in clausal form as defined in (Ferraris, 2007),
we can justify the extended McCain’s translation using a simplified form of

Theorem 2 from that paper:

Theorem 1 A set of literals X from atoms in o is a cansal model of T iff X is also

an answer set of T".

21

CHAPTER 4

ENCODING CAUSAL LOGIC IN ASP

4.1 Translating C+ Into Logic Programs

Consider a finite definite C+ action description D with signature o, where the
head of each of its rules is either an atom or L. Without losing generality,
we assume that, for any constant ¢ in o, Dom(c) has at least two elements.

Description D can be turned into a logic program by following these steps:

1. Turn D into a corresponding multi-valued causal theory D,,, as described

in Section 3.2;
2. Turn D,, into a Boolean-valued causal theory D¢ ;
3. Turn the causal rules of D¢, into rules under the stable model semantics;

4. Turn the result further into a logic program using F2LP, as explained in

Section 4.2.

4.1.1 Definite Elimination of Multi-Valued Constants. Consider
the causal theory D,, with signature o, consisting of rules of the form (3.5),
(3.6), and (3.7). Consider all constants i:c (0 < i < m) in 0,,, where ¢ is a fluent
constant of D. Create a new signature o¢, from o,,, by replacing each constant i: ¢

with Boolean constants i:eql(c, v) for all v € Dom(c).

The causal theory D¢, with signature of, is obtained from D,, by

replacing each occurrence of an atom i : ¢ = v in D,, with ¢ : eql(c,v) = true

22

and adding the causal rules
izeql(c,v")=false <= i: eql(c,v)=true (0<i<m) 4.1)
for all v,v" € Dom(c) such that v # v'.

The following proposition is a simplification of Proposition 9 from Lee’s

paper (2005).!

Proposition 1 There is a 1-1 correspondence between the models of D,, and the

models of DE,.

The elimination of multi-valued action constants is similar.

4.1.2 Turning Boolean-Valued Action Descriptions Into Logic Pro-

grams. Consider D¢, which is obtained from D,, by eliminating all multi-

valued constants in favor of Boolean constants. h(i: F') is a formula obtained from
i: F by replacing every occurrence of i : eqgl(c,v) =true in it with h(egl(c,v),4)?
and every occurrence of i:eql(c,v) =false with ~h(eql(c,v),i)’. According to

the modified McCain’s translation, the causal rules (3.5) that represent static

laws (3.3) are represented by formulas under the stable model semantics as

h(i:F) <= ==h(i:G) 4.2)
(i € {0,...,m}).The translation of causal rules for action dynamic laws is similar,
except that i ranges over {0,...,m — 1}.

Proposition 9 involves adding two kinds of rules. Vladimir Lifschitz pointed out that one of
the kinds of rules can be dropped if the given theory is definite.

?In the case of atoms with rigid constants that do not require time stamps, i.e. egl(c,v), we
replace them with h(eql(c,v)).

31f the domain of ¢ was Boolean originally, as an optimization we replace h(egl(c, false), i)
with ~h(egl(c, true),) and ~h(eqgl(c, false), i) with h(egl(c, true),).

23

In the special case when h(i: F) and h(i: G) are the same literal, (4.2) can

be represented using choice rules in ASP:

{h(i:F)}. (4.3)
This is because when h(i : F) and h(i : G) are the same literal, (4.2) is strongly
equivalent to h(i: F))V —h(i: F'), which can be abbreviated as (4.3) (Lee, Lifschitz,

& Palla, 2008a). In fact, we observe that in many cases (4.3) can be used place of

4.2).

Similarly, the modified McCain’s translation turns the causal rules (3.6)

that correspond to fluent dynamic laws (3.4) into
h(i+1:F) « ﬂﬂ<h(é+1:G) A h(z’:H)). (4.4)
We can also turn (3.6) into
h(i4+1:F) < —=h(i+1:G) A h(i:H) (4.5)

because the change does not affect the stable models of the resulting theory, which
is tight (Ferraris et al., 2011). Similarly, certain occurrences of —=— in (4.2) and
(4.5) can be further dropped if removing them does not cause the resulting theory

to become non-tight, which may change the stable models.

Again in the special case when h(i+1: F) and h(i+1: G) are the same

literal, (4.5) can be represented using choice rules as follows:

{h(i+1:F)} < h(i:H).

4.2 Representing Domain Descriptions in the Language of F2LP

Figure 4.1 shows a side-by-side comparison of an example CCALC input program

(on the left) and its representation in the language of F2LP (on the right). As the

24

- sorts
num >> s_num.

0~ o s WN -

11 :- objects
12 0..4 :: s_num;
13 5 :: num.

15 :- variables
16 K ;@ s_num.

18 :- constants

19 has :: inertialFluent (num);

22 buy :: exogenousAction.

25 buy causes has=K+1 if has=K.

29 nonexecutable buy if has=5.

32 :- query

33 maxstep :: 3;
34 0: has=2;

35 maxstep: has=4.

0~ o s WN =

sort (num) .
#domain num(V_num) .
sort_object (num,V_num) .

sort(s_num) .
#domain s_num(V_s_num).
sort_object (num,V_s_num) .

num(V_s_num) .

s_num(0..4).
num(5) .

#domain s_num(K).

inertialFluent (has) .
constant_sort (has,num) .

exogenousAction(buy) .
constant_sort (buy,boolean) .

h(eql(has,K+1),V_astep+l) <-
h(eql(buy,true),V_astep) &
h(eql(has,K) ,V_astep) .

false <-
h(eql(buy,true),V_astep) &
h(eql(has,5),V_astep) .

false <- query_label(0) &
not (h(eql(has,2),0) &
h(eql (has,4) ,maxstep)).

Figure 4.1. Simple Transition System in the Language of CCalc and in the

Language of F2LP

example shows, the translation is modular. For each sort name S that is declared

in the CCALC input program, the translation introduces a fact sort(S) along

with a variable Vs that ranges over all objects of the sort S (expressed by the line

#domain S(Vs)). The translation relates the sort name to the objects of the sort

by the fact sort_object(S, Vs). The declaration that S; is a supersort of S5 is

represented by S1(Vs,), as illustrated in line 10.

25

The ASP representation of the object and variable declarations are
straightforward. The declaration that O is an object of sort S is encoded as
a fact S(O). In order to declare a user-defined variable V' of sort S, we write

#domain S(V). See lines 12-13 and line 16 for examples.

A constant declaration in the language of CCALC of the form
C' :: CompositeSort(V)

is turned into a fact CompositeSort(C), followed by the declaration of a meta-
predicate constant_sort(C, V), which is used in the standard library. Lines

19-23 are an example.

Encoding causal laws in the language of F2LP follows the method in
Section 3.5. Like in the input language of CCALC, variables in the F2LP rules
are understood as schemas for ground terms. Lines 25-31 show an encoding of
causal laws in the language of F2LP. Since every variable is sorted, these F2LpP
rules are safe according to the definition of safety by Lee et al. (2008b), and the

translation of these rules into an ASP program also results in a safe logic program.

Note that the translation in Figure 4.1 does not include certain causal laws
from the complete action description (in particular, the inertial assumption for
has and the exogeneity assumption for buy are not present). Since such causal
laws and rules are frequently used, they are expressed in a general form in the

standard library, as explained in the next section.

26

4.3 Standard Library File

The standard library* contains declarations of predicates, variables, and postulates
that are common to all translated action descriptions. Certain declarations, like
that of the boolean sort and its objects true and false, mirror internal CCALC
declarations. Other declarations, like that of the constant_object predicate, are
specific to the translation and encoding method, and are used to mimic features
of CCALC that are not handled by the software components of the CPLUS2ASP

system.

4.3.1 Postulates for Different Fluents and Actions. First, we assume
the presence of certain meta-variables that are used in the postulates. V_step is a
variable of the sort step, whose objects range over the values 0,1, ..., maxstep.
V_astep is a variable of the sort astep, whose objects range over the values
0,1,...,maxstep — 1. V_inertialFluentAF is a meta-variable that ranges over
all ground terms of the form eql(c,v), where ¢ is an inertialFluent and
v is an object in the domain of ¢ as introduced in the domain description.
For example, for the domain description in Figure 4.1, V_inertialFluentAF
ranges over the values eql(has,0),eql(has,1),...,eql(has,5). Similarly,
we have other meta-variables V_fluentAF, V_simpleFluentAF, V_sdFluentAF,
V_rigidAF, V_actionAF, V_exogenousActionAF, and V_attributeAF that
range over ground terms of the form eql(c,v), where ¢ and v range over

corresponding constants and values.

We show later how to prepare a program so that meta-variables range over

the atoms as intended.

“Presented in Appendix A and available at http://reasoning.eas.asu.edu/cplus2asp

27

The inertial assumption for inertialFluent constants is represented by

h(V_inertialFluentAF,V_astep+1l) <-
not not h(V_inertialFluentAF,V_astep+l) &

h(V_inertialFluentAF,V_astep),

or equivalently as
{h(V_inertialFluentAF,V_astep+1)} <-

h(V_inertialFluentAF,V_astep).

The exogeneity assumption (3.7) for simple fluents in the initial time step

is represented by

h(V_simpleFluentAF,0) <- not not h(V_simpleFluentAF,0),

or equivalently as

{h(V_simpleFluentAF,0)}.

The exogeneity assumptions for exogenousAction and attribute con-

stants are stated as

{h(V_exogenousActionAF,V_astep)}

and

{h(V_attributeAF,V_astep)?},

here shortened like other simple exogeneity rules.

In addition, we say that attributes take the special value none iff the cor-

responding action is not executed, per the definition of attributes in Section 3.3.

28

false <- not
(h(eql(V_attribute,none),V_astep) <->
-h(eql(V_action,true),V_astep))

& action_attribute(V_action,V_attribute).

action_attribute is obtained from the declaration of attributes. It records the
relation between an action and its attributes.
The completeness assumption (3.16) for fluents is represented as follows.

false <- not h(V_fluentAF,V_step) & not -h(V_fluentAF,V_step),

or equivalently as

false <- {h(V_fluentAF,V_step), -h(V_fluentAF,V_step)l}0.

The definite elimination rules for multi-valued fluent constants corre-
sponding to (4.1) can be represented as
-h(eql(V_fluent,Objectl),V_step) <-
h(eql(V_fluent,0Object) ,V_step) &

constant_object (V_fluent,0Object) &

constant_object (V_fluent,0bjectl) & Object != Objectl.

Here, V_fluent is a meta-variable that ranges over all fluent constants.
The predicate constant_object is defined in terms of sort_object and

constant_sort:

constant_object(V_constant,Object) <-
constant_sort(V_constant,V_sort) &

sort_object(V_sort,0bject).

29

rigid

fluent simpleFluent | inertialFluent
— sdFluent

action exogenousAction
— attribute
— abAction

Figure 4.2. The Hierarchy of Constant Meta-Sorts

As stated earlier, sort_object is introduced as part of translating sort decla-
rations from the domain description, and constant_sort is introduced while

translating constant declarations in the domain description.

The definite elimination rules and the completeness assumptions for
action constants are similar to those for fluent constants. The rules for rigid
fluent constants are the same as the ones for fluent constants that are not rigid,

except rigid fluent constants do not have a time stamp (i.e., V_step is omitted).

4.3.2 Meta-Sorts and Meta-Variables. In order to have grounding
replace all meta-variables with the corresponding ground atoms as intended in
the previous section, we introduce meta-level sorts for representing the constant
hierarchy, shown in Figure 4.2. This is done in the same way as introducing user-
defined sorts. For instance, the following are declarations for the simpleFluent
and inertialFluent meta-sorts, along with the declaration of their subsort

relation.

30

sort (simpleFluent) .
#domain simpleFluent (V_simpleFluent).

sort_object(simpleFluent,V_simpleFluent).

sort(inertialFluent).
#domain inertialFluent(V_inertialFluent).

sort_object(inertialFluent,V_inertialFluent).

simpleFluent (V_inertialFluent).

Recall that in Figure 4.1, line 19 of the F2LP program declared the fact
inertialFluent (has) as part of a constant declaration. As a result of the
declarations above, the variable V_simpleFluent ranges over all simple fluent

constants, including the inertial fluent has in the example.

Similarly, we introduce meta-level sorts for different categories of atomic
formulas that are related to each kind of constant. For example, the fol-
lowing is a part of the declaration for the meta-sorts simpleFluentAF and
inertialFluentAF.

sort (simpleFluentAF) .

#domain simpleFluentAF(V_simpleFluentAF).

sort_object (simpleFluentAF,V_simpleFluentAF).

sort (inertialFluentAF) .
#domain inertialFluentAF(V_inertialFluentAF).

sort_object (inertialFluentAF,V_inertialFluentAF).

simpleFluentAF(V_inertialFluentAF).

31

These declarations are used to define ConstantAF domain predicates
which contain atomic formulas of the form eql(c,v), where ¢ is a constant of
meta-level sort Constant and v is a value in the domain of c. For instance, the
following represents that simpleFluentAF and inertialFluentAF are domain
predicates that contain all atomic formulas of the form eql(c,v), where ¢ is a
simpleFluent or inertialFluent (respectively), and v is a value in the domain

of ¢, using the meta-predicate constant_object.

simpleFluentAF (eql(V_simpleFluent,Object)) <-

constant_object(V_simpleFluent,0Object).

inertialFluentAF(eql(V_inertialFluent,Object)) <-

constant_object(V_inertialFluent,0Object).

Recall that constant_object is derived from a combination of constant_sort

and sort_object declarations.

The grounding process replaces the meta-variable V_simpleFluentAF by
every ground term of the form eql(c, v) where ¢ is a constant of the meta-level
sort simpleFluent (and its subsorts as well) and v is an element in the domain of
¢, as specified by the constant_object relation. Once the user declares that c is
a simpleFluent (or one of its subsorts) in the domain description, the postulates
for initial exogeneity of the value of ¢ are automatically generated by the ASP
grounders. If ¢ is declared an inertialFluent, the inertial assumption for c is

automatically generated as well.

As a result of this process, the ground ASP program produced from the
encoding of a translated action description will contain identical rules to that

of the modified McCain’s translation of D¢,, as described in Section 4.1.2. The

32

use of the standard library’s meta-predicates will introduce additional rules and
predicates, but these will just be intermediate declarations in support of the
postulates in the standard library; removing these extra rules and predicates
from the ground program will produce a program identical to the one created

in Section 4.1.2.

33

CHAPTER 5

SOFTWARE SUPPORT

While we have shown that this translation and encoding method is sound and
convenient due to its modular form, it remains a nontrivial process to perform
the translation of any relatively large domain by hand; one must have a firm grasp
of CCALC syntax and C+ semantics, along with a solid understanding of F2LP
syntax and ASP semantics, to be able to faithfully follow the steps outlined above.
To make the translation process more practical, we utilize a combination of
existing software and newly created programs (collectively referred to as “the tool
chain”) to handle the complete process of translation, solution generation, and
interpretation of results, making it much easier to translate action descriptions

and significantly reducing the possibility of human error.

5.1 Cplus2ASP

CPLUS2ASP was written to act as an overarching system designed to automate
the process of calling the tool chain in the correct order and with the appropriate
options. By default, CPLUS2ASP takes CCALC input, processes it with the
translator module (cplus2asp.bin) and F2LP, invokes GRINGO and CLASP to
ground and solve the resulting ASP program, and finally passes the answer sets
returned by CLASP to as2transition so they can be transformed back into a
more human-readable form, presenting CCALC-style models of the original input

(i.e., similar to Figure 3.2) as its final output.

34

In addition to managing the tool chain, CPLUS2ASP can also interac-
tively run queries and automatically determine various parameters and settings

based on the input to and output from various stages of the tool chain.

5.2 Cplus2ASP.bin

The program cplus2asp.bin was created as a module designed to accept CCALC
input and automatically use the encoding method described earlier to produce
equivalent F2LP input. It not only handles C + causal laws but also supports many
extra features of CCALC, such as rigid constants, automatic insertion of necessary
postulates for CCALC constant keywords (like inertialFluent), support for all
“shortcut” causal law forms, elimination of multi-valued constants in favor of
Boolean constants, and translation of queries in CCALC syntax into constraints
in the language of F2LP. These features allow cplus2asp.bin to process many
action descriptions without any changes required to the original CCALC input.
However, cplus2asp.bin is currently a prototype, and as such, certain advanced
features of CCALC are not yet fully supported, including macro expansion,
handling of nested constants, full evaluation of “where” clauses in causal laws,
and support for certain dynamic declarations and syntactic shortcuts. That said,
cplus2asp.bin can still properly parse and translate many action descriptions,
including all examples from “Nonmonotonic Causal Theories” (Giunchiglia et

al., 2004), without any modifications required to the original input files.

cplus2asp.bin forms the core of CPLUS2ASP, as it makes the system
practical for use by anyone with a good working knowledge of CCALC. It was

created in C+ + using flex and bison to streamline the process of creating an

35

clasp version 1.3.7

Reading from stdin

Solving. ..

Answer: 1

constant_sort (has,num) constant_sort(buy,boolean) inertialFluent (has)
simpleFluent (has) fluent(has) exogenousAction(buy) action(buy) s_num(O)
s_num(1) s_num(2) s_num(3) s_num(4) num(4) num(3) num(2) num(1) num(0)
num(5) h(eql(buy,true),2) h(eql(buy,true),1) h(eql(has,2),0) h(eql(has,2),1)
h(eql(has,3),2) h(eql(has,4),3) -h(eql(has,5),3) -h(eql(has,5),0)
-h(eql(has,5),1) -h(eql(has,5),2) -h(eql(has,0),3) -h(eql(has,0),0)
-h(eql(has,0),1) -h(eql(has,0),2) -h(eql(has,1),3) -h(eql(has,1),0)
-h(eql(has,1),1) -h(eql(has,1),2) -h(eql(has,2),3) -h(eql(has,2),2)
-h(eql(has,3),3) -h(eql(has,3),0) -h(eql(has,3),1) -h(eql(has,4),0)
-h(eql(has,4),1) -h(eql(has,4),2) -h(eql(buy,true),0) sort(s_num)

sort (num) query_label(0)

Figure 5.1. Answer Set of the Translated Simple Transition System

acceptable grammar that recognizes CCALC input and parses it correctly. The
entire program consists of approximately eleven thousand lines of code, including

the definitions of the lexical analyzer and parser.

5.3 AS2Transition

The output of CPLUS2ASP at this point is a series of answer set outputs from
the ASP solver. While it is possible to parse this output in its native format,
the transformations performed during the translation and encoding of an action
description make it difficult to understand and analyze the answer sets in terms
of the original action description. As a demonstration, Figure 5.1 shows the raw
output of an answer set from CLASP after running CPLUS2ASP on the simple

transition system in Figure 3.1.

To improve readability of the output of CPLUS2ASP, as2transition
was written to take the answer sets output by ASP solvers and transform them
into output similar to that of CCALC. In addition to turning h(egl(c,v),1)

predicates back into their original i : ¢ =v forms, as2transition also separates

36

Solution 1:

0: has=2

1: has=2
ACTIONS: buy

2: has=3
ACTIONS: buy

3: has=4

Figure 5.2. Transformed Answer Set of the Translated Simple Transition System

action constants from fluent constants and arranges them in order of time stamp,
making it much easier to parse and analyze the output from CPLUS2ASP.
Figure 5.2 shows the result of passing the output in Figure 5.1 to as2transition.
The similarity between the output of as2transition and CCALC allows users
familiar with CCALC to use CPLUS2ASP instead with little to no change in how

they write their action descriptions or how they collect and analyze their data.

5.4 Using Cplus2ASP

CpPLUS2ASP was designed to gracefully handle the complexity of the underlying
tool chain, the goal being to make it easy to use from an end-user perspective. For
example, if the action description in Figure 3.1 were saved in a file called has. cp,
passing the file to CPLUS2ASP using the default options (ask which query to
run, return the first solution found) would only require the following command

line:

cplus2asp has.cp

37

This causes CPLUS2ASP to translate the input file, automatically find and
remember any queries defined, and interactively prompt the user for which query
to run before calling the answer set solver and as2transition. The number 0
can be added to the end of the command line to have CPLUS2ASP return all
solutions found by the answer set solver; positive numbers used in this way tell

CpLUS2ASP to look for a specific number of solutions.

Normally, CPLUS2ASP does not show any intermediate information or
data, just the output from as2transition along with any errors that may have
been reported by the programs in the tool chain. However, it is possible to
stop CPLUS2ASP partway through its translating and solving process and have
it show the ASP input being sent to the answer set solver. Having a copy of
the input to the answer set solver can come in handy as a debugging aid if the

grounder reports an error in the translated description.

CPLUS2ASP is designed to use GRINGO and CLASP as the respective
grounder and solver for the ASP part of the tool chain. However, it can also

be adapted to use a combined grounder and solver, like CLINGO, if desired.

38

CHAPTER 6

EXPERIMENTS

6.1 Benchmark Problems

During the creation and subsequent use of CCALC, several “benchmark” domains
were created or adapted from prior systems in order to test both the efficiency
and the expressive capabilities of CCALC. These domains were selected to be
translated (both by hand and using the automated translator) and evaluated with
respect to the correctness of the translations, along with the speed and efficiency
of the ASP-based solving system. Note that for the purposes of benchmarking,
CLINGO was used instead of GRINGO and CLASP, as the integrated grounding and
solving capabilities of CLINGO generally make it a faster and more efficient solver

compared to invoking its components separately.

6.1.1 NMCT Benchmarks. Each of the sample domains presented in
“Nonmonotonic Causal Theories” (Giunchiglia et al., 2004) either demonstrate
capabilities of C+ or formalize classic knowledge representation problems.
Producing correct solutions for these domains shows that a given system can
overcome key challenges of knowledge representation, such as the frame problem.
As these domains conveniently cover a wide set of capabilities, we also chose them
as tests of CPLUS2ASP. Table 6.1 shows the comparative results of running
each of the NMCT example domains through CCALC versus the performance of

CpLUS2ASP on the same input.

39

indur Jgy punoid jo s3[ni pue swoae,
owmn 3urajos + swn Juissadoxdard 0 NITO,,
swn Surpunoid OONITO + awmn 3urssadord d1g. pue utq - dsegsndo,

HBQCM J9AJOS TVS ﬁESOaw WO SasnE[d pue SWole

9

ouin asnepd ndur Sunum pue unjiys + swn uond[dwos + swmn Surpunoid,

96 (100 + 00°0) (100 + 20°0) 8/1:D (000 + 1070 + 20°0) (9=deasxem)
899V ST0°0 S€0°0 $¥0°0 99V S00°0 S€0°0 S€0°0 s£ayIny, 3unooys
€19¢ed (000 + 20°0) (9z°0 + 20°0) 960C:D (zo0 + 9070 + £0°0) (¢=deasxem)
01TV S¢0°0 S8C°0 S0¢°0 Y¢8'V ST0°0 SG1°0 S91°0 sxadeg Surystiqng
901Yg (000 + 00°0) (000 + 20°0) 8:D (000 + 0070 + 10°0) (z=deasxew)
6V S00°0 S¢00 S¢0°0 SV S00°0 ST0°0 ST0°0 wnmpusJ
YVAR| (000 + 10°0) (z00 + 200) 8¢HD (000 + 1070 + S0°0) (p=deasxem)
618V ST0°0 $+0°0 SG0°0 16°V S00°0 S90°0 $90°0 seueUEq pUE LYUOIN]
97Ty (000 + 00°0) (000 + €0°0) 9D (000 + 1070 + 20°0) (1 =deasxew)
€61V S00°0 S€0°0 $€0°0 ¢y S00°0 S€0°0 S€0°0 dqeT, ay3 Sunyry
00z (000 + 00°0) (100 + 20°0) 9¢:D (000 + 0070 + €0°0) (1 =deasxew)
L1V S00°0 S€0°0 S€0°0 Y1V S00°0 S€0°0 S€0°0 10/ 03 SutoD)
2718 | LSuajog [uonesedorg [peaof, 271s | Sujog | suoneredorg [qeaof
ODNITD YIM JSVZSNTdD AAVHDZ YA DTVDD wR[qoI

sutvuo(J IDOWN “dS «\NQ\Q&U puv 210 \c 8&3&3\&& 2011044107

1°9 919FL

40

What follows are brief descriptions of each domain, including the feature

or problem it represents.

® Going to Work: This domain formalizes the concept of a person who starts
at home and can either walk or drive to work. It utilizes the concept of
nondeterministic actions and demonstrates the ability of C+ to support

this.

e Lifting the Table: An object is on a large table that requires two people to
lift. They must lift each end at the same time or else the object will fall off.

Correct models require that actions be allowed to execute simultaneously.

® Monkey and Bananas: This is a classic domain used to demonstrate various
aspects of planning problems via a monkey that wants to get bananas that

are hung from the ceiling of a room.

® Pendulum: A pendulum swings back and forth unless someone holds on
to it to stop its motion temporarily. This is a demonstration of defeasible

actions and redefining inertia.

® Publishing Papers: A professor publishes papers of varying length to
different venues and must keep track of what kinds of papers (conference,
journal, etc.) have been published. The domain utilizes attributes to

elaborate on a basic publishing action.

¢ Shooting Turkeys: A slightly less homicidal version of the Yale Shooting
Problem with two turkeys pursued by a hunter. This domain is a classic

formalization of the frame problem; while the hunter is reloading his gun

41

and aiming at the second turkey, the one shot first should remain dead and

not return to life as a zombie turkey.

6.1.2 Zoo World and Traffic World. Zoo World and Traffic World
(Akman et al., 2004) are both nontrivial formalizations of medium-sized action
domains suitable for testing the ability of C+ to express and reason about
complex relationships, including indirect effects of actions, chain reactions of
cause and effect, and conditional or nondeterministic actions. Indirectly, they
also serve as a stress test for CCALC and CPLUS2ASP, as even the smallest Zoo
World or Tratfic World example is far larger (in terms of size of the grounded
program) than any of the NMCT examples, and it is relatively simple to scale
up the Zoo World and Traffic World domains in a nontrivial fashion. Tables 6.2

and 6.3 show the results of running various scenarios in both systems.

42

urewrop sTy1 ss2301d 01 o[qeun sem JAVHOZ ./

indur Jgy punoid jo s3[ni pue swoie,

owm 3urajos + own Juissoooxdard oo NITO,,

owm 3urpunoid OHNITO + awmn 3urssadord d1gd pue utq-dsegsndo,

ndur JI9AT0S TS v:sem JO sasne[d pue swoe

9

awiny asnepd ndur Sunim pue Sunjiys + swn uond[dwod + swmn Surpunoid,

(20°88¢
Sh66L2Td | (1006 + ¥T61) | (h222 + S0°0) LL08Y¥T1:D + OP'€EE + SHE9D) (61 =deasxew)
/9¢108°V SGT 60T S6/°/L | SYO'/81 9G6T8TV S ST6'¥8T¢ s—- || opynys o8 Sig :ppoy 0oz
1718¢€Y (000 + Z1°0) (9¥°0 + S0°0) £891%°D (£€0 + 0€y + 98°0%) (1=deasxeu)
8Y1TTV SZ1°0 SIS0 S€9°0 ¥986C°V S¢T°0 S¢S 'Sh $99°G¥ 9 1597, :P[FOM\ 007

(180
S8Ter (1070 + £1°0) (L0 + 50°0) ¥92/9:D + G0, + LS¥TD) (1=deasxeu)
868V V S81°0 T80 S00°'T Y8tV S/T0 SCH'TET S0/°T€T G 1597, :pP[TO/\ 007
S19c/4°d (500 + 9¢°0) (0€1 + +0°0) £¥2001:D (61 + S€F + $9°01) (y=deasxeu)
98¢9¢'V STH°0 SPE'T SG/'T 0814V S¢S0 $96'9% S6¥ /¥ ¥ 1897, :P[IOM\ 007
L4297 (100 + 0z°0) (080 + +0°0) G960£:D (8€0 + 9T¥ + 92'6¢) (¢=deasxeu)
Y6897V STZ0 $+8°0 SGO'T LTSSV S/T°0 SOF ¥¥ S/9't¥ € 1591, :P[TO/\ 007
991¢¢d (000 + #1°0) (8°0 + +0°0) S6CIHD (6£0 + 66T + €0°TT) (¢=deasxeu)
768TTV SHT°0 TS0 $99°0 TS6€Y S0Z°0 STH'¥1 ST9'+1 T 1897, :P[FOM\ 007
£657/°9 (000 + ££0) (1T + 60°0) 12S6C1°D (LT +9¢y +0LTh) (y=deasxeu)
60¥9¢°V S/€°0 S6¥'1 S98°'T £€88'V S79°0 S¢86¥ SGH'0S 1 1891, :P[IO/\ 007

P71 7 SUIA[Og 7 ,uoneredarg 7 [e10], P78 7 Surajog 7 yuoneredar g 7 [elo7,

ODNITO JIM JSYsSNIdD

JAVHOZ QUM DTV

WwR1qoIJ

PIAOM 007 ‘(IS TSHIED) puv 217 Jo ouvisiofiag aavivduior)

9 9I98L

43

indur Jgy punoid jo s3[ni pue swoie,
owmn 3urajos + swn Juissaooxdard 0 NITO,
oum Jurpunoid 0ONITO + auwm Jurssadord d1g.d pue utq-dsegsndo,

uﬂ&ﬁm J9AJOS TVS @GSOHw JO Sosne[d pue swole

9

oun asnepd indur Sunum pue Sunjiys + swn uond[dwoo + swmn 3urpunoid,

(s6'£8
TEETPEE | (€0L+6521) | (S£8T + £0°0) 0v61£9€:D + GFSg + 90°SIY) (17 =de3sxew)
116CCLTN SCIvC SC8'8¢C SPy'Es 41550 S0¢°0S S9¥°89S $9£°809 [-¢ OLIEUAOG P[IO/\ dYJeI],
Sre/ey (000 + 21°0) (ze0 + +0°0) 9/196D (85°0 + 660 + 8¥'F) (¢=deqsxen)
8¢€06C'V 4 N0) S9¢°0 S84°0 648V SYC°0 S60'9 S6C°9 ¢ OLIEUAG :P[IO/X\ dYJeI],
£5076°d (000 + 1+°0) (580 + ¥0°0) 8CI011:D (80T + Sb'¢ + 68°/1) (¢=dsysxeu)
LOVILVY ST¥°0 S68°0 S0¢'T Y66/1°V S9¢€°0 S8¢C'CC Sv/'CC ¢ OIEUDS PO\ dGJel],
065/ (000 + 20°0) (01°0 + £0°0) T8FE1D (1o + 670 +90T) (g=dsysxeu)
9¢rSV S¢00 S/1°0 S61°0 4T S€0°0 SCS'T SGS'T] OLIEUadS :P[IO/X\ dYJel],
71§ 4 ,BUIA[Og 4 ,uoneredar g 4 [elor, 2N 4 Surajog 4 yuoneredar [eloy,

ODNITO QM JSYsNIdD)

dAVHOZ YU DTVDD

wR[qoI

PO dYfra] ISV TsmdD) pur ojpDD) Jo duvuuiofuag sarivivduior)

€9 9Iq¥L

44

Most of the Zoo World scenarios are structured as planning problems,
such as how to get a certain number of people and animals into a cage within a
certain period of time. The “Big Cage Shuffle” Zoo World scenario is a larger-
scale version of the world described in the other scenarios, and while it is also
structured as a planning problem (“How quickly can all people and animals in the
world visit every cage in the z00?”), its more open-ended nature, larger size, and
much longer solution all present challenges for both systems. The use of query
conditions based on a variable time stamps caused CCALC to handle the query

in an unexpected manner, resulting in ZCHAFF returning incorrect solutions.

The senarios for Traffic World include a mix of planning problems and
prediction. The challenges of computing solutions to the Traffic World scenarios
are similar to those of the Zoo World scenarios in the sense that the domain (with
multiple cars and road segments) can quickly become large. However, the Traffic
World scenarios utilize numeric computation more frequently. Scenario 3-1 is
an example of what scaling can do to the computation time required to produce
solutions to Traffic World scenarios, as it is effectively a scaled-up version of

Scenario 3 with more cars and longer roads.

6.1.3 Other Domains. Two other domains demonstrate interesting
properties of and test the limitations of both systems. The Tower of Hanoi is
a classic puzzle involving moving discs along a set of pegs, guided by a set of
simple rules regarding which discs can move and where they can move to. It
is an interesting domain due to the fact that increasing the number of discs in
the puzzle geometrically increases the number of moves required to solve it, also

geometrically increasing the size of the grounded action description.

45

The Knapsacks of Marbles domain is a puzzle variant of the knapsack
problem: how to fit a certain number (or configuration) of items of varying
dimensions into a knapsack of a given size. As presented here, the puzzle version
of the problem describes piles of marbles of varying size and a set of bags, which
are also of varying size. The challenge is to put the marbles in the bags such that
all of the marbles fit and none are left outside of a bag. This puzzle is formalized
as a reasoning about state problem, meaning that placing a marble in a bag does
not involve performing an action; instead, the bags are filled with marbles all
at once. As a result, solutions can be found via manipulation and analysis of
the initial state, meaning that the workload for reasoning about this domain is
left almost entirely to the grounders of the respective systems. In addition, the

Knapsacks of Marbles puzzle heavily utilizes numeric computation.

46

indur Jgy punoid jo s3[ni pue swoie,

owmn 3urajos + swn Juissaooxdard 0 NITO,,

s Surpunoid ODNITO + awmn 3urssadord g pue utq - dsegsndo,
ndur 194708 1§ punois jo sasne[d pue swoie g

ouin asnepd ndur Sunum pue Sunjiys + swn uond[dwoo + swmn Jurpunoid,

06991 | (s8¢ + €6°0) 61 + 20°0) $62065:D (b5 + 89°0 + 81°T) (g9=deasxem)
04CLLN S8C°6¢ S96°1 SyE Ty S0SLYV ST9°¢81 SO¥'6 ST0¢61 SOSI(J 9 ‘TOURH JO JomQ],
#1199 (cre + 820 (190 + €0°0) L¥6T61:D (65T + 60 + 98°0) (1¢=deasxew)
1186C'V ST¥°C $¥9°0 SG0°¢ L8V/L1V STy 81 SY6'¢ S9¢'CC SOSI(J G ‘TOUER] JO JoMQ],
s8Iy (£00 + £0°0) (oz0 + €0°0) 65086:D (c0 + €T0 + ¥¥0) (g1 =deasxew)
444984 S¥1°0 S€C0 S/€°0 €09V S9¢€°0 S6¢°T SG/L'T SOSI(J ¢ ‘TOUBL] JO IoMOT,

PPPSTTN (1070 + +5°T) (s¥'1 + £0°0) 90856:D (Lh0 + 85°S + £€7/5) (0=deasxeu)
96/9S'V SGe'l S¢S SL0°¢ 607V S81°0 N4 %7 S09°¢y S9[qIEIN O ssoesdeuyy

2718 | LSuajog [uonesedorg [peaor, 271s | Suiajog | yuoneredorg [[eiof
ODNITO YIM JSYZSNTdD JAVHOZ qIM DTVDD wo[qoI

SUTPULO(] SHOIUD]]IISTIN ANM:_\NQ\NNQMU puv QNQUU,\Q mwﬁﬁskc\kmﬁ& w@.ﬁﬁkﬁnwsp\v

v'9 2I9EL

47

As can be seen from the results in Table 6.4, the domains stress test
different parts of the systems, allowing us to observe comparative efficiencies
between individual components. It is of interest to note that CCALC was
able to keep the size of the ground Knapsacks of Marbles domain relatively
small compared to ASP. This is likely due to the fact that the Knapsacks of
Marbles action description makes frequent use of rigid constants; CCALC is
able to perform several optimizations when rigid constants are used in action
descriptions, whereas CPLUS2ASP performs fewer optimizations and still has to

include all meta-predicate declarations for all rigid constants.

6.2 Size of Domains

A side effect of the translation of CCALC action descriptions into ASP and the use
of our encoding method and standard library is that the translated domain, while
relatively compact thanks to the use of meta-postulates in the standard library,
will still increase in size as a result of the translation. Table 6.5 demonstrates this
by comparing the word counts of each of the NMCT examples, the Zoo World
domain, and the Traffic World domain before translation (as CPLUS2ASP input),
after translation (as F2LP input), and finally as raw ASP code suitable for use with

CLINGO.

6.3 Analysis

Based on the results outlined in the tables above, CPLUS2ASP demonstrates itself
to be a competitive system compared to CCALC; in many cases CPLUS2ASP can

also outperform CCALC in terms of solving speed by over an order of magnitude.

48

Table 6.5

Sizes of Domains as Cplus2ASP Input, F2LP Input, and Clingo Input

Problem Word Count
CpLUS2ASP Input [F2LP Input® [[cLINGO Input”

Going To Work 77 160 923

Lifting the Table 47 108 867

Monkey and Bananas 216 521 1336

Pendulum 26 83 826

Publishing Papers 64 193 978

Shooting Turkeys 60 157 925

Zoo World || 1023 | 1994 I 3751

Traffic World | 847 [1709 | 3280

“after processing with cplus2asp.bin

bafter processing with F21.p and including the standard library
In addition, further testing for correctness of the solutions for each domain
showed that CPLUS2ASP produced identical solutions to CCALC in all examples
for all queries. CCALC consistently requires far fewer atoms than CPLUS2ASP
to ground domains, but CPLUS2ASP almost always outperforms CCALC when
it comes to the number of rules created in CPLUS2ASP versus the number of

clauses used by CCALC.

As the data shows, when CPLUS2ASP is able to solve problems faster
than CCALG, it is often due to much lower grounding times. The grounding
techniques used by GRINGO make it very efficient, especially with domains that
have numeric computations, allowing it to outperform the grounding methods of
CCALC for those domains. This development presents interesting possibilities,
as prior to this, numerically dense domains were often off-limits to CCALC due
to problems it could have grounding these domains because of their size. With
further optimization, it appears possible to utilize CPLUS2ASP to tackle a wide

variety of reasoning problems involving numeric domains.

49

It should be noted that all of the benchmark tests were only run on
one query from each domain. CCALC has a slight advantage with respect to
grounding when multiple queries are run on the same domain, as its internal
atom and clause shifting mechanisms can efficiently copy the base domain over
multiple queries and time steps. In contrast, CPLUS2ASP must process and
fully ground a domain each time a different query is run, even if the only
change is to alter the range of time steps being considered. This is a current
limitation of the answer set solvers CPLUS2ASP utilizes, and it is expected that
as incremental solvers like ICLINGO (Gebser et al., 2008) improve, they can be
coupled with CPLUS2ASP to potentially allow CPLUS2ASP to use dynamic

grounding methods to emulate the shifting ability of CCALC.

The domain size comparison in Table 6.5 points to another advantage
of using CPLUS2ASP, in particular the automated translator cplus2asp.bin.
The increased word counts of the domains reflect an increase in the difficulty
of translating them, as can be observed from the translation of the simple
transition system in Figure 4.1. The translation and encoding method described
in Chapter 4 can be performed without automated aids, but doing so becomes
prone to human error and requires advanced knowledge of CCALC and F2LP

syntax when translating nontrivial domains.

50

CHAPTER 7

RELATED WORK

CpPLUS2ASP is a new addition to a set of systems designed to transform
action formalisms into ASP. There are three other predecessors to CPLUS2ASP
that indirectly inspired its creation. The first was created by Dogandag et al.
(2001) and turned action language C into the language of SMODELS, an early
implementation of stable model semantics. The work described a complete

encoding method, but the implementation is not publicly available.

Another was the ALM to ASP system! (Gelfond & Inclezan, 2010),
which takes action language ALM and translates it into ASP. ALM (Gelfond &
Inclezan, 2009) can be thought of as a cousin to the Modular Action Description
language (MAD) (Lifschitz & Ren, 2006), with syntax similar to a modified

version of C+ that supports the concept of description-independent modules.

The last inspiration for CPLUS2ASP was COALA? (Gebser, Grote, &
Schaub, 2010), a system that translates a limited verion of C +, in addition to other
similar formalisms like action languages B and AL, into ASP so that they can be
computed by answer set solvers. COALA has many of the same basic features
and abilities of CPLUS2ASP but lacks support for features like multi-valued
constants or non-exogenous actions, which prevents COALA from supporting
constructs like attributes. It also requires the use of a specialized syntax, meaning
native CCALC action descriptions cannot be used with COALA without first
translating them into the input language of COALA. As an example, Figure 7.1

shows the syntax for a simple domain involving opening a closed door. As the

"http://www.webpages.ttu.edu/dincleza/ALM/
http://www.cs.uni-potsdam.de/wv/coala/

51

<action> openDoor.
<fluent> closed.

<caused> closed <if> closed.

<caused> -closed <if> <true> <after> openDoor.

Figure 7.1. Sample Coala Action Description

example shows, COALA action descriptions take inspiration from CCALC action
descriptions, but utilize a significantly different syntax for constant declarations

in addition to a more restrictive format for causal laws.

52

CHAPTER 8

CONCLUSION

We have created an efficient and modular encoding method for C + that enables it
to be translated into the language of ASP. Our experiments demonstrate that this
new translation faithfully captures the features of C +. In addition, we have shown
that using answer set solvers to compute models of translated action descriptions

is generally far faster and more efficient than using CCALC.

The software system CPLUS2ASP automates the process of performing
this translation and calling the necessary programs to produce CCALC-style
output, making this encoding method practical for use by anyone familiar with

CCALC and causal logic.

By transforming CCALC input into the language of ASP, we capture the
best of both worlds: we retain the expressivity and ease of use of C+ while
also taking advantage of the rapid improvement of modern answer set solvers.
Due to the general and modular nature of our translation and encoding method,
future advances in the efficiency of answer set solvers can be easily integrated into

our software system, in many cases automatically improving the capabilities of

CPLUS2ASP.

Work has already begun on enhancing the translator (cplus2asp.bin)
so that it supports more features of the original CCALC system. As answer set
solvers improve, investigations could be made into the possibility of extending the
input language of CPLUS2ASP beyond the capabilities of CCALC, incorporating
concepts such as aggregate expressions and nondefinite causal theories into the

system. Coupled with recent developments in answer set programming such as

53

incremental grounding with the ICLINGO system (Gebser et al., 2008) and hybrid
constraint solving with the CLINGCON system!, CPLUS2ASP’s efficiency could
improve even further, especially with respect to solving speed and the sizes and

types of domains that can be formalized using the system.

As the overall CPLUS2ASP system improves, investigations into repre-
senting new domains and scenarios can be conducted, including topics such as
online reasoning and semantic processing. We hope this work will serve as a
foundation to increase the visibility and popularity of C +, particularly with those

whose specialties lie outside the field of knowledge representation.

"http://www.cs.uni-potsdam.de/clingcon/

54

REFERENCES

Akman, V., Erdogan, S., Lee, J., Lifschitz, V., & Turner, H. (2004). Representing
the Zoo World and the Traffic World in the language of the Causal
Calculator. Artificial Intelligence, 153(1-2), 105-140.

Armando, A., Giunchiglia, E., & Ponta, S. E. (2009). Formal specification and
automatic analysis of business processes under authorization constraints:
an action-based approach. In Proceedings of the 6th international conference
on trust, privacy and security in digital business (trustbus’09).

Artikis, A., Sergot, M., & Pitt, J. (2009). Specifying norm-governed
computational societies. ACM Transactions on Computational Logic, 9(1).

Boenn, G., Brain, M., Vos, M. de, & Fitch, J. (2008). Automatic composition of
melodic and harmonic music by answer set programming. In M. G. de la
Banda & E. Pontelli (Eds.), Proceedings of the twenty-fourth international
conference on logic programming (Vol. 5366, p. 160-174). Springer-Verlag.

Brain, M., Crick, T., Vos, M. de, & Fitch, J. (2006). Toast: Applying answer set
programming to superoptimisation. In Proceedings of 22nd international
conference on logic programming (ICLP) (p. 270-284). Springer.

Caldiran, O., Haspalamutgil, K., Ok, A., Palaz, C., Erdem, E., & Patoglu,
V. (2009). Bridging the gap between high-level reasoning and low-level
control. In Proceedings of international conference on logic programming and
nonmonotonic reasoning (LPNMR).

Chopra, A., & Singh, M. (2003). Nonmonotonic commitment machines.
In Agent communication languages and conversation policies AAMAS 2003

workshop.

Craven, R., & Sergot, M. (2005). Distant causation in C+. Studia Logica, 79(1),
73-96.

Dogandag, S., Alpaslan, F. N., & Akman, V. (2001). Using stable
model semantics (SMODELS) in the Causal Calculator (CCALC). In
Proceedings 10th Turkish Symposium on Artificial Intelligence and Neural
Nerworks (pp. 312-321).

Eiter, T., & Lukasiewicz, T. (2003). Probabilistic reasoning about actions
in nonmonotonic causal theories. In Proceedings nineteenth conference
on uncertainty in artificial intelligence (UAI-2003) (pp. 192-199). Morgan
Kaufmann Publishers.

55

Ferraris, P. (2005). Answer sets for propositional theories. In Proceedings of

international conference on logic programming and nonmonotonic reasoning
(LPNMR) (pp. 119-131).

Ferraris, P. (2007). A logic program characterization of causal theories. In
Proceedings of international joint conference on artificial intelligence ([JCAI)
(pp- 366-371).

Ferraris, P., Lee, J., Lierler, Y., Lifschitz, P., & Yang, F. (2010). Representing
first-order causal theories by logic programs. TPLP. (To appear)

Ferraris, P., Lee, J., & Lifschitz, V. (2011). Stable models and circumscription.
Artificial Intelligence, 175, 236-263.

Finger, J. (1986). Exploiting constraints in design synthesis. Unpublished doctoral
dissertation, Stanford University. (PhD thesis)

Gebser, M., Grote, T., & Schaub, T. (2010). Coala: a compiler from action
languages to ASP. In Proceedings of enropean conference on logics in artificial
intelligence (JELIA).

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., & Thiele,
S. (2008). Engineering an incremental ASP solver. In M. Garcia de la Banda
& E. Pontelli (Eds.), Proceedings of the twenty-fourth international conference
on logic programming (ICLP’08) (Vol. 5366, p. 190-205). Springer-Verlag.

Gelfond, M., & Inclezan, D. (2009). Yet another modular action language. In
Proceedings of the second international workshop on software engineering for
answer set programming® (pp. 64-78).

Gelfond, M., & Inclezan, D. (2010). Reasoning about dynamic domains in modular
action langnage ALM.

Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for
logic programming. In R. Kowalski & K. Bowen (Eds.), Proceedings of

international logic programming conference and symposium (pp. 1070-1080).
MIT Press.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., & Turner, H. (2004).
Nonmonotonic causal theories. Artificial Intelligence, 153(1-2), 49-104.

’http://www.seal9.cs.bath.ac.uk/downloads/sea09proceedings.pdf
Shttp://www.webpages.ttu.edu/dincleza/alm/alm-technical-report-2010.pdf

56

Kim, T.-W. (2009). Implementing and experimenting with answer set programming
based event calculus reasoner. Unpublished master’s thesis, Arizona State
University.

Kim, T.-W., Lee, J., & Palla, R. (2009). Circumscriptive event calculus as answer
set programming. In Proceedings of international joint conference on artificial
intelligence (ITCAI) (p. 823-829).

Lee, J. (2005). Automated reasoning about actions*. Unpublished doctoral
dissertation, University of Texas at Austin.

Lee, J., Lifschitz, V., & Palla, R. (2008a). A reductive semantics for counting and
choice in answer set programming. In Proceedings of the AAAI conference
on artificial intelligence (AAAI) (pp. 472-479).

Lee, J., Lifschitz, V., & Palla, R. (2008b). Safe formulas in the general theory
of stable models (preliminary report). In Proceedings of international
conference on logic programming (ICLP) (pp. 672-676).

Lee, J., & Palla, R. (2009). System F2LP - computing answer sets of first-order
formulas. In Procedings of international conference on logic programming and

nonmonotonic reasoning (LPNMR) (p. 515-521).

Lee, J., & Palla, R. (2010). Situation calculus as answer set programming. In
Proceedings of the AAAI conference on artificial intelligence (AAAI) (pp. 309-
314).

Lifschitz, V., & Ren, W. (2006). A modular action description language. In
Proceedings of national conference on artificial intelligence (AAAI) (pp. 853-
859).

Liu, X., Ramakrishnan, C. R., & Smolka, S. A. (1998). Fully local and
efficient evaluation of alternating fixed points. In Tools and algorithms for
construction and analysis of systems.

McCain, N. (1997). Causality in commonsense reasoning about actions.
Unpublished doctoral dissertation, University of Texas at Austin.

McCarthy,]J., & Hayes, P. (1969). Some philosophical problems from
the standpoint of artificial intelligence. In B. Meltzer & D. Michie

*http://peace.eas.asu.edu/joolee/papers/dissertation.pdf
Sftp://ftp.cs.utexas.edu/pub/techreports/tr97-25.ps.gz

57

(Eds.), Machine intelligence (Vol. 4, pp. 463-502). Edinburgh: Edinburgh
University Press.

Reiter, R. (2001). Knowledge in action: Logical foundations for specifying and
implementing dynamical systems. MIT Press.

Sergot, M., & Craven, R. (2006, July). The deontic component of action language
nC+. In DEON 2006 (Vol. 4048, pp. 222-237).

Shanahan, M. (1995). A circumscriptive calculus of events. Areif Intell., 77(2),
249-284.

Son, T., Pontelli, E., & Sakama, C. (2009). Logic programming for multiagent

planning with negotiation. In Proceedings of 25th international conference
on logic programming (ICLP) (p. 99-114). Springer.

58

APPENDIX A

F2LP STANDARD FILE

59

% Standard description-independent declarations and rules
% that embed CCalc constructs in ASP.

% A derived binary relation between a constant and its domain objects,
% connected via constant_sort and sort_object.
constant_object(V_constant,X_Object) <-
constant_sort(V_constant,X_Sort) &
sort_object(X_Sort,X_Object).

% Description-independent declarations of sorts and objects.

sort(boolean).
#domain boolean(V_boolean).
sort_object(boolean,V_boolean).

boolean(true).
% Time steps

sort(step).
#domain step(V_step).
sort_object(step,V_step).

sort(astep) .
#domain astep(V_astep).
sort_object(astep,V_astep).

% astep is a subsort of step
step(V_astep) .

step (0. .maxstep).
astep(0..maxstep-1).

% Constants hierarchy

% Meta-constants to group categories of constants.
sort(constant) .

#domain constant(V_constant).
sort_object(constant,V_constant).

g

A

% Rigid constants

sort(rigid).

#domain rigid(V_rigid).
sort_object(rigid,V_rigid).
A

% Fluent-based constants.

sort (fluent).
#domain fluent(V_fluent).
sort_object (fluent,V_fluent).

sort(simpleFluent).
#domain simpleFluent(V_simpleFluent).
sort_object(simpleFluent,V_simpleFluent).

sort(inertialFluent).
#domain inertialFluent(V_inertialFluent).
sort_object(inertialFluent,V_inertialFluent) .

sort (sdFluent).

#domain sdFluent(V_sdFluent).
sort_object(sdFluent,V_sdFluent).

60

Yee

% Action-based constants.

sort(action).
#domain action(V_action).
sort_object(action,V_action).

sort (exogenousAction).
#domain exogenousAction(V_exogenousAction).
sort_object(exogenousAction,V_exogenousAction).

sort(abAction).
#domain abAction(V_abAction).
sort_object(abAction,V_abAction).

sort (attribute).

#domain attribute(V_attribute).
sort_object(attribute,V_attribute).
y

Yomm

% Subsort relatioms.

constant (V_fluent).
constant(V_action).

constant (V_rigid).

fluent (V_simpleFluent).
simpleFluent(V_inertialFluent).
fluent (V_sdFluent).
action(V_exogenousAction).
action(V_abAction).
action(V_attribute).

% Sort declaration: atomic formulas

-
sort (fluentAtomicFormula) .

#domain fluentAtomicFormula(V_fluentAtomicFormula).
sort_object(fluentAtomicFormula,V_fluentAtomicFormula).

sort(simpleFluentAtomicFormula).
#domain simpleFluentAtomicFormula(V_simpleFluentAtomicFormula).
sort_object(simpleFluentAtomicFormula,V_simpleFluentAtomicFormula).

sort(inertialFluentAtomicFormula) .
#domain inertialFluentAtomicFormula(V_inertialFluentAtomicFormula).
sort_object(inertialFluentAtomicFormula,V_inertialFluentAtomicFormula) .

sort (sdFluentAtomicFormula).
#domain sdFluentAtomicFormula(V_sdFluentAtomicFormula).
sort_object(sdFluentAtomicFormula,V_sdFluentAtomicFormula) .

sort(rigidAtomicFormula).
#domain rigidAtomicFormula(V_rigidAtomicFormula).
sort_object(rigidAtomicFormula,V_rigidAtomicFormula).

o
Yoo
sort(actionAtomicFormula).

#domain actionAtomicFormula(V_actionAtomicFormula).
sort_object(actionAtomicFormula,V_actionAtomicFormula).

sort (exogenousActionAtomicFormula) .

#domain exogenousActionAtomicFormula(V_exogenousActionAtomicFormula).
sort_object(exogenousActionAtomicFormula,V_exogenousActionAtomicFormula) .

61

sort(abActionAtomicFormula).
#domain abActionAtomicFormula(V_abActionAtomicFormula).
sort_object(abActionAtomicFormula,V_abActionAtomicFormula) .

sort(attributeAtomicFormula).
#domain attributeAtomicFormula(V_attributeAtomicFormula).
sort_object(attributeAtomicFormula,V_attributeAtomicFormula).

—

% Subsort relations.

fluentAtomicFormula(V_simpleFluentAtomicFormula) .
simpleFluentAtomicFormula(V_inertialFluentAtomicFormula).
fluentAtomicFormula(V_sdFluentAtomicFormula) .
actionAtomicFormula(V_exogenousActionAtomicFormula).
actionAtomicFormula(V_abActionAtomicFormula).
actionAtomicFormula(V_attributeAtomicFormula).

% Object declaration: atomic formulas

rigidAtomicFormula(eql(V_rigid,X_Object)) <-
constant_object(V_rigid,X_Object).

simpleFluentAtomicFormula(eql(V_simpleFluent,X_Object)) <-
constant_object(V_simpleFluent,X_Object).

inertialFluentAtomicFormula(eql(V_inertialFluent,X_Object)) <-
constant_object(V_inertialFluent,X_Object).

sdFluentAtomicFormula(eql(V_sdFluent,X_Object)) <-
constant_object(V_sdFluent,X_Object).

actionAtomicFormula(eql(V_action,X_Object)) <-
constant_object(V_action,X_Object).

exogenousActionAtomicFormula(eql(V_exogenousAction,X_Object)) <-
constant_object(V_exogenousAction,X_0bject).

abActionAtomicFormula(eql(V_abAction,X_Object)) <-
constant_object(V_abAction,X_Object).

attributeAtomicFormula(eql(V_attribute,X_Object)) <-
constant_object(V_attribute,X_Object).

% Description-independent rules to encode common CCalc constructs.

% Exogeneity for exogenous actions.
{h(V_exogenousActionAtomicFormula,V_astep)}.
% Negative version for Booleans.
{-h(eql(V_exogenousAction,true),V_astep)} <-
constant_sort(V_exogenousAction,boolean).

% abActions default to false.
{-h(eql(V_abAction,true),V_astep)}.

% Exogeneity for attributes.
{h(V_attributeAtomicFormula,V_astep)}.

62

% Restriction that attributes will take on the value "none"
% if and only if their linked action does not execute.
false <-
not ((h(eql(V_attribute,none),V_astep) -> -h(eql(V_action,true),V_astep)) &
(-h(eql(V_action,true),V_astep) -> h(eql(V_attribute,none),V_astep))) &
action_attribute(V_action,V_attribute).

% Inertia for inertial fluents
{h(V_inertialFluentAtomicFormula,V_astep+1)} <-
h(V_inertialFluentAtomicFormula,V_astep).

% Negative version for Booleans.
{-h(eql(V_inertialFluent,true),V_astep+l)} <-
-h(eql(V_inertialFluent,true),V_astep) &
constant_sort(V_inertialFluent,boolean).

% Exogeneity for simple fluents at time O.

{h(V_simpleFluentAtomicFormula,0)}.

% Negative version for Booleans.

{-h(eql(V_simpleFluent,true),0)} <-
constant_sort(V_simpleFluent,boolean).

% exogenous: Grants exogeneity to a constant.
% Rigids

{h(eql(V_rigid,X_Object))} <-
exogenous(V_rigid) &
constant_object(V_rigid,X_Object).

% Negative version if it’s Boolean.

{-h(eql(V_rigid,true))} <-
exogenous(V_rigid) &
constant_sort(V_rigid,boolean).

% Fluents

{h(eql(V_fluent,X_Object),V_step)} <-
exogenous (V_fluent) &
constant_object(V_fluent,X_Object).

% Negative version if it’s Boolean.

{-h(eql(V_fluent,true),V_step)} <-
exogenous (V_fluent) &
constant_sort(V_fluent,boolean).

% Actions

{h(eql(V_action,X_Object),V_astep)} <-
exogenous(V_action) &
constant_object(V_action,X_Object).

% Negative version if it’s Boolean.

{-h(eql(V_action,true),V_astep)} <-
exogenous(V_action) &
constant_sort(V_action,bocolean).

% inertial: Grants inertia to a (non-rigid) fluent.
{h(eql(V_fluent,X_Object),V_astep+1)} <-
inertial(V_fluent) &

h(eql(V_fluent,X_Object),V_astep) &
constant_object(V_fluent,X_Object).

63

% Negative version if it’s Boolean.

{-h(eql(V_fluent,true),V_astep+1)} <-
inertial(V_fluent) &
-h(eql(V_fluent,true),V_astep) &
constant_sort(V_fluent,boolean).

% noconcurrency: If stated as a fact, prevents
% concurrent execution of Boolean actions.

false <-
noconcurrency &
action(V_action_1) &
not (h(eql(V_action,true),V_astep) &
h(eql(V_action_1,true),V_astep)
-> V_action=V_action_1).

% Existence and uniqueness for every constant relative to its domain.
% Rigids

-h(eql(V_rigid,X_Object_1)) <-
h(eql(V_rigid,X_Object)) &
constant_object(V_rigid,X_0Object) &
constant_object(V_rigid,X_Object_1) &
X_Object !'= X_Object_1 &
not constant_sort(V_rigid,boolean).

% Fluents

-h(eql(V_fluent,X_Object_1),V_step) <-
h(eql(V_fluent,X_0bject),V_step) &
constant_object(V_fluent,X_Object) &
constant_object(V_fluent,X_Object_1) &
X_Object !'= X_Object_1 &
not constant_sort(V_fluent,boolean).

% Actions

-h(eql(V_action,X_Object_1),V_astep) <-
h(eql(V_action,X_0Object),V_astep) &
constant_object(V_action,X_Object) &
constant_object(V_action,X_Object_1) &
X_Object != X_Object_1 &
not constant_sort(V_action,boolean).

% Only complete interpretations allowed.

false <-
{h(V_rigidAtomicFormula),
-h(V_rigidAtomicFormula)}0.

false <-
{h(V_fluentAtomicFormula,V_step),
-h(V_fluentAtomicFormula,V_step)}0.

false <-

{h(V_actionAtomicFormula,V_astep),
-h(V_actionAtomicFormula,V_astep)}O0.

64

% Hide most of the internal predicates to avoid cluttering the answer sets.

#hide sort(step).
#hide sort(astep).
#hide sort(boolean).
#hide step/1.

#hide astep/1.

#hide boolean/1.

#hide sort(constant).

#hide sort(fluent).

#hide sort(action).

#hide sort(abAction).

#hide sort(attribute).
#hide sort(exogenousAction).
#hide sort(inertialFluent).
#hide sort(rigid).

#hide sort(sdFluent).

#hide sort(simpleFluent).
#hide constant/1.

#hide sort_object/2.

#hide constant_object/2.

#hide sort(actionAtomicFormula).

#hide sort(fluentAtomicFormula).

#hide sort(abActionAtomicFormula).

#hide sort(attributeAtomicFormula).
#hide sort(exogenousActionAtomicFormula).
#hide sort(inertialFluentAtomicFormula).
#hide sort(rigidAtomicFormula).

#hide sort(simpleFluentAtomicFormula).
#hide sort(sdFluentAtomicFormula).

#hide actionAtomicFormula/1.

#hide fluentAtomicFormula/1.

#hide abActionAtomicFormula/1.

#hide attributeAtomicFormula/1.

#hide exogenousActionAtomicFormula/1.
#hide inertialFluentAtomicFormula/1.
#hide rigidAtomicFormula/1.

#hide sdFluentAtomicFormula/1.

#hide simpleFluentAtomicFormula/1.

65

