
Answer Set Programming and Other Computing Paradigms

by

Yunsong Meng

A Dissertation Presented in Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy

Approved April 2013 by the
Graduate Supervisory Committee:

Joohyung Lee, Chair
Gail-Joon Ahn

Chitta Baral
Georgios Fainekos
Vladimir Lifschitz

ARIZONA STATE UNIVERSITY

May 2013

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, MI 48106 - 1346

UMI 3559632

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

UMI Number: 3559632

ABSTRACT

Answer Set Programming (ASP) is one of the most prominent and successful knowl-

edge representation paradigms. The success of ASP is due to its expressive non-monotonic

modeling language and its efficient computational methods originating from building propo-

sitional satisfiability solvers. The wide adoption of ASP has motivated several extensions

to its modeling language in order to enhance expressivity, such as incorporating aggre-

gates and interfaces with ontologies. Also, in order to overcome the grounding bottleneck

of computation in ASP, there are increasing interests in integrating ASP with other comput-

ing paradigms, such as Constraint Programming (CP) and Satisfiability Modulo Theories

(SMT).

Due to the non-monotonic nature of the ASP semantics, such enhancements turned

out to be non-trivial and the existing extensions are not fully satisfactory. We observe that

one main reason for the difficulties is rooted in the propositional semantics of ASP, which is

limited in handling complex constructs (such as aggregates and ontologies) and functions

(such as constraint variables in CP and SMT) in natural ways.

This dissertation presents a unifying view on these extensions by viewing them as

instances of formulas with generalized quantifiers and intensional functions. We extend

the first-order stable model semantics by Ferraris, Lee, and Lifschitz to allow generalized

quantifiers, which cover aggregates, DL-atoms, constraints and SMT theory atoms as spe-

cial cases. Using this unifying framework, we study and relate different extensions of ASP.

We also present a tight integration of ASP with SMT, based on which we enhance action

language C+ to handle reasoning about continuous changes. Our framework yields a sys-

tematic approach to study and extend non-monotonic languages.

i

Dedicated to my family

ii

ACKNOWLEDGEMENTS

There are many people who influenced me and assisted along my long journey to

the completion of the Ph.D program. Among them, Joohyung Lee is the people who I would

like to thank most, from the deep in my heart. He provided me the great opportunity to be

working with him for many years and put in tremendous efforts and patience in mentoring

me and guiding me to the right direction. Under his supervision, I have improved a lot both

as a researcher and as a professional.

I am also thankful to the other committee members: Gail-Joon Ahn, Chitta Baral,

Georgios Fainekos and Vladimir Lifschitz. I have greatly benefited from their invaluable

insights and suggestions.

I also learned a lot from the numerous discussions with my my current and former

teammates: Ravi, Mike, Joe, Greg, Yu, Michael, Tae-Won, Sunjin and Joeng-Jin. Many

thanks to all of them. I am grateful to Dan from Siemens and my colleagues from Samsung,

Alan, Doreen, Jie, Yongmei, Justin and Priyang for their help and support. I am also grateful

to my friends Jicheng, Yang, Hongxin, Yin, Liang, Zhibin, Jun, Wenjun and many others

whose names I can not enumerate.

I reserve my deepest love for my wife Hairong. It is only love that can give a girl the

courage and determination to fly to the other side of the earth for me and to build a family

with me in a country with different culture. I cannot complete the work without her supports.

My deepest love also goes to my little boy Derek, who can make me happy for a whole

day with a single kiss. I also thank my parents Liping Meng and Yonghong Peng, and my

parents-in-law Kerang Zhong and Shunsong Xie for their endless support and love.

My dissertation work was partially supported by National Science Foundation under

Grant IIS-0916116 and IIS-0839821, by the Office of the Director of National Intelligence

(ODNI), Intelligence Advanced Research Projects Activity (IARPA), through the US Army

Research Lab and by the South Korea IT R&D program MKE/KIAT 2010-TD-300404-001.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . x

LIST OF FIGURES . xi

CHAPTER

1 INTRODUCTION . 1

2 BACKGROUND . 6

2.1 Answer Set Programming . 6

2.2 Theorem on Loop Formulas . 7

2.3 Extensions of ASP . 8

Aggregates . 8

Description Logics . 10

Constraints & SMT . 11

2.4 HEX Programs & FLP Semantics . 11

2.5 First-Order Stable Model Semantics . 13

2.6 Functional Stable Model Semantics . 15

2.7 Action Language C+ . 16

3 FIRST-ORDER STABLE MODEL SEMANTICS AND FIRST-ORDER LOOP FOR-

MULAS . 17

3.1 First-Order Loop Formulas and Herbrand Models 19

Loop Formula for Non-Disjunctive Programs 19

Loop Formula for Disjunctive Programs . 22

Extension to Arbitrary Sentences . 24

3.2 Comparing First-Order Stable Model Semantics and First-Order Loop For-

mulas . 28

Loop Formulas Relative to an Interpretation 28

A Reformulation of �� . 33

3.3 Representing First-Order Stable Model Semantics by First-Order Loop For-

mulas . 38

Bounded Formulas . 39

iv

CHAPTER Page

Bounded Formulas and Clark’s Equational Theory 39

Bounded Formulas and Normal Form 42

Decidability of Boundedness and Finite Complete Set of Loops . . . 44

Semi-Safe Formulas . 46

3.4 Programs with Explicit Quantifiers . 48

3.5 Extension to Allow Extensional Predicates 51

3.6 Related Work . 56

3.7 Conclusion . 58

3.8 Proofs . 59

Proof of Theorem 3 . 59

Proof of Equivalence between (a) and (b) of Theorem 3 60

Proof of Proposition 3 . 61

Proof of Proposition 4 . 63

Proof of Proposition 5 . 64

Proof of Equivalence between (b) and (c) of Theorem 3 65

Proof of Theorem 2 . 69

Proof of Proposition 6 . 72

Proof of Proposition 7 . 74

Proof of Proposition 8 . 75

Proof of Proposition 9 . 76

Proof of Proposition 11 . 77

Proof of Proposition 10 . 79

Proof of Proposition 13 . 81

Proof of Proposition 16 . 83

4 ON SEMANTICS OF AGGREGATES . 85

4.1 Syntax and Existing Semantics of Programs with Aggregates 86

Syntax of Programs with Aggregates . 86

FLP Semantics . 87

Ferraris Semantics . 88

PDB-SPT Semantics . 89

v

CHAPTER Page

4.2 Reformulation and Comparison of the Semantics of Aggregates 91

A Reformulation of Ferraris Semantics . 91

A Reformulation of FLP Semantics . 91

A Reformulation of PDB-SPT Semantics 93

Relationship among the Semantics . 94

4.3 Loop Formulas for Programs with Aggregates 96

Loop Formulas for Ferraris Semantics . 97

Loop Formulas for FLP semantics . 98

4.4 Syntax and Semantics of Aggregate Formulas 100

4.5 Stable Model Semantics of First-Order Aggregate Formulas 101

Programs with Aggregates as a Special Case 102

4.6 FLP Semantics of First-Order Aggregate Formulas 103

4.7 Comparing FLP and the First-Order Stable Model Semantics 104

4.8 Conclusion . 107

4.9 Proofs . 108

Proof of Proposition 18 . 115

Proof of Proposition 20 . 116

Proof of Proposition 21 . 117

Proofs of Lemma 26 and Proposition 22 . 117

Proofs of Proposition 23 and Proposition 24 118

Proof of Proposition 27 . 119

Proof of Theorem 8 . 120

Proof of Proposition 30 . 122

5 FIRST-ORDER STABLE MODEL SEMANTICS FOR GENERALIZED QUANTI-

FIED FORMULA . 123

5.1 Stable Models of Formulas with Generalized Quantifiers 125

Syntax of Formulas with Generalized Quantifiers 125

Semantics of Formulas with Generalized Quantifiers 126

Stable Models of GQ-Formulas . 129

Reduct-Based Definition . 131

vi

CHAPTER Page

5.2 Extensions of ASP as GQ formulas . 133

Aggregates as GQ-Formulas . 133

Non-monotonic DL-Programs as GQ Formulas 134

Abstract Constraint Atoms as GQ-Formulas 137

Explicit Constraints as GQ-Formulas . 139

5.3 Important Theorems . 141

Strong Equivalence . 141

Splitting Theorem . 142

Completion . 144

Safety for First-order Formulas with Generalized Quantifiers 145

Semi-Safety . 146

Grounding . 148

Safety . 150

Loop Formulas for GQ-Formula . 152

5.4 First-Order FLP Semantics for Programs with Generalized Quantifiers . . . 154

5.5 Revisiting Non-Monotonic DL-programs . 156

5.6 Related Work . 159

Relation to GQ-Stable Models by Eiter et al. 159

Relation to Infinitary Formulas . 160

Relation to Ferraris’ Semantics . 162

5.7 Conclusion . 164

5.8 Proofs . 165

Useful Lemmas . 165

Proof of Proposition 32 . 168

Proof of Proposition 33 . 170

Proof of Theorem 10 . 171

Proof of Proposition 34 . 172

Proof of Proposition 35 . 173

Proof of Proposition 36 . 175

Proof of Proposition 37 . 177

vii

CHAPTER Page

Proofs of Theorems 12 and 13 . 178

Proof of Theorem 14 . 185

Proof of Proposition 38 . 186

Proof of Proposition 39 . 191

Proof of Proposition 40 . 193

Proof of Theorem 15 . 199

Proof of Proposition 41 . 205

Proof of Proposition 42 . 208

Proof of Proposition 43 . 210

Proof of Proposition 44 . 211

Proof of Proposition 45 . 213

6 ANSWER SET PROGRAMMING MODULO THEORIES AND REASONING ABOUT

CONTINUOUS CHANGES . 216

6.1 Answer Set Programming Modulo Theories 218

Syntax . 218

Semantics . 219

An Example . 219

Completion . 220

Comparison with Clingcon . 221

6.2 Enhancing C+ for Continuous Changes . 223

Syntax . 223

Semantics . 224

Reasoning about Continuous Changes in C+ 225

Reasoning about Additive Fluents . 228

Representing Processes in C+ . 234

6.3 Hybrid Automata and C+ . 236

Hybrid Automata . 236

Linear Hybrid Automata in C+ Modulo Theories 239

6.4 Related Work and Conclusion . 245

6.5 Proofs . 247

viii

CHAPTER Page

Useful Lemmas and Theorem . 247

Proof of Theorem 18 . 247

Proof of Theorem 19 . 250

Proof of Proposition 50 . 252

Proof of Proposition 51 . 256

Proof of Proposition 49 . 259

7 Conclusion . 261

BIBLIOGRAPHY . 263

ix

LIST OF TABLES

Table Page

6.1 Experimental Results (Running Time) on Spacecraft Example 232

6.2 Experimental Results (Instance Size) on Spacecraft Example 234

x

LIST OF FIGURES

Figure Page

4.1 Loops and aggregate loop formulas for Π1 . 98

4.2 Loops and aggregate loop formulas for ���(Π1) 99

5.1 The predicate dependency graph of the formula in Example 13 143

6.1 Analogy between SMT and ASPMT . 217

6.2 Car Example in C+ . 227

6.3 Car Example in ASPMT . 228

6.4 A Path in the Transition System of Car Example. 228

6.5 Spacecraft Example in Additive C+ . 232

6.6 Spacecraft Example in Basic C+ . 233

6.7 Spacecraft Example in ASPTM . 233

6.8 Two Taps Water Tank Example C+ . 236

6.9 Two Taps Water Tank Example in ASPTM . 237

6.10 A Path in the Transition System of Two Taps Water Tank Example. 237

6.11 Hybrid Automata for Water Tank System. 238

6.12 Hybrid Automaton of Water Tank (Figure 6.11) in C+ 241

6.13 Water Tank Example in ASPMT . 242

6.14 An execution of the Water Tank Example. 243

6.15 A Path in the Transition System of Water Tank Example. 243

xi

Chapter 1

INTRODUCTION

Applications of Knowledge Representation and Reasoning (KR & R) techniques often mo-

tivate extensions of formalisms to allow new constructs and integrations with different for-

malisms. Such extensions or integrations allow one to take advantage of the expressivity of

each of the component as well as their reasoning capabilities. However, the fundamental

differences among different computing paradigms make the work non-trivial. How to de-

velop an expressive yet efficient integrated system with an intuitive semantics is a constant

research challenge.

The challenge inherently arises in logic programming, a subarea of KR & R. ASP is

one of the most prominent and successful logic programming paradigms. It is based on the

answer set (stable model) semantics of logic programs. Due to the simple syntax, the intu-

itive semantics to handle non-monotonic reasoning, and the availability of efficient solvers,

ASP has been widely used in a variety of reasoning tasks, including building decision sup-

port systems for the Space Shuttle (Nogueira, Balduccini, Gelfond, Watson, & Barry, 2001),

program configuration (Tiihonen, Soininen, Niemelä, & Sulonen, 2003), phylogenetic tree

inference (Brooks, Erdem, Erdoğan, Minett, & Ringe, 2007) and formal analysis of security

policies (Gelfond & Lobo, 2008). Motivated by applications, there are already many exten-

sions of the modeling language of ASP to enhance expressivity and integrations of ASP

with other computing paradigms to improve computation efficiency. However, due to the

non-monotonic nature of the ASP semantics, such enhancements turned out to be non-

trivial and the existing extensions are not fully satisfactory. In the following, we consider the

extension of ASP with aggregates as well as the integration of ASP with description logics,

constraints and SMT theory atoms.

• Aggregates significantly enhance the language of ASP by allowing natural and con-

cise representations of many problems. On the other hand, defining a reasonable

semantics of aggregates under the propositional answer set semantics (Gelfond &

Lifschitz, 1988) turned out to be a non-trivial task. The difficulties result in many in-

1

teresting extensions of the original answer set semantics (Simons, 1999; Niemelä,

Simons, & Soininen, 1999; Pelov, Denecker, & Bruynooghe, 2004; Faber, Leone, &

Pfeifer, 2004; Marek & Truszczynski, 2004; Ferraris, 2005; Son, Pontelli, & Tu, 2007).

However, different extensions have different understandings and characteristics of

non-monotonicity, which make it difficult for one to study and compare the semantics.

An aggregate is better to be understood as a first-order construct instead of a propo-

sitional one. As Lee, Lifschitz, and Palla pointed out in (Lee et al., 2008a), a COUNT

aggregate can be viewed as a shorthand for first-order formulas.

• Description Logics (DLs) are a basis of the Web Ontology Language (OWL). Integrat-

ing DL with logic programs enables us to perform defeasible and closed world rea-

soning using existing ontology knowledge bases. For this reason, there have been

many interests in such integration (Eiter, Lukasiewicz, Schindlauer, & Tompits, 2004;

Rosati, 2005; Heymans, de Bruijn, Predoiu, Feier, & Nieuwenborgh, 2008; Eiter, Ianni,

Lukasiewicz, Schindlauer, & Tompits, 2008a; Feier & Heymans, 2009; Fink & Pearce,

2010; Shen, 2011; Lee & Palla, 2011). However, the integration of ASP and DLs

is not trivial since the semantics of ASP, which is propositional, cannot handle DL

formulas, which are first-order, in a natural way.

• Grounding, which replaces variables with ground terms in all possible ways, is a

process that most ASP solvers rely on. However, grounding w.r.t. a large domain

produces a large set of instances, which becomes a bottleneck in ASP computation.

In order to alleviate this “grounding problem,” there have been several recent efforts to

integrate ASP with constraint solving, or to compute ASP programs using Satisfiability

Modulo Theories (SMT) solvers (Gebser, Ostrowski, & Schaub, 2009; Balduccini,

2009; Janhunen, Liu, & Niemela, 2011; Liu, Janhunen, & Niemelä, 2012), where

functional fluents can be represented by variables in Constraint Satisfaction Problems

or uninterpreted constants in SMT. However, like the traditional ASP, non-monotonicity

of those extensions has to do with predicates only, and nothing to do with functions.

From the above discussion, we observe that one main reason for the difficulties in the

extensions of ASP rooted in its propositional semantics, which cannot handle first-order
2

constructs and functions in natural ways.

We also observe that while the extensions were driven by different motivations and

applications, a common issue is to extend the stable model semantics to incorporate “com-

plex atoms", such as aggregates, DL-atoms, constraint atoms, and SMT theory atoms.

However, a systematic study is still missing. Over the past few decades, many mathe-

matical results on the stable model semantics have been developed, such as the splitting

theorem (Lifschitz & Turner, 1994), the theorem on completion (Clark, 1978; Lloyd & Topor,

1984), the theorem on loop formulas (Lin & Zhao, 2002), the theorem on strong equiva-

lence (Lifschitz, Pearce, & Valverde, 2001) and the theorem on safety (Faber et al., 2004).

On the other hand, these results do not directly apply to the extensions and need to be re-

proven. E.g., the splitting theorem was extended to dl-programs (Eiter, Ianni, Lukasiewicz,

Schindlauer, & Tompits, 2008b), to RASPL-1 programs (Lee et al., 2008a), and to weight

constraint programs (Wang, You, Lin, Yuan, & Zhang, 2010a). The strong equivalence

theorem was extended to programs with weight constraints (Turner, 2003), to monotone-

constraint programs (Liu & Truszczynski, 2006), and to abstract constraints (Liu, Goebel,

Janhunen, Niemelä, & You, 2011). Loop formulas were extended to constraint atoms

in (You & Liu, 2008), to weight constraints and aggregates in (Lee & Meng, 2009; Liu,

2009), and to non-monotonic dl-programs in (Wang, You, Yuan, & Shen, 2010b).

Our observations identify two problems: (1) the propositional answer set semantics

is too restrictive for the extensions of ASP; (2) a common logical framework that captures

the extensions of ASP and a systematic way of studying the extensions are needed.

Recently, the Stable Model semantics was lifted to the first-order level (Ferraris

et al., 2007; Ferraris, Lee, & Lifschitz, 2011a). The new semantics is based on second-

order logic and unifies first-order logic and logic programs. In (Bartholomew & Lee, 2012),

the semantics is further extended to allow intensional functions. These provide a suitable

framework for integrating logic programs with aggregates, DLs, constraints and SMT theory

atoms. The most straightforward integration is to reduce the extended constructs into first-

order formulas. The paper (Lee et al., 2008a) presented a reductive approach to defining

a special class of aggregates. However, it is not always the case that integrated constructs

3

are reducible to first-order formulas.

HEX programs (Eiter, Ianni, Schindlauer, & Tompits, 2005) provide an elegant ap-

proach to a unifying framework. It incorporates different extensions of the stable model se-

mantics in a uniform framework via "external atoms" to interface with external computation

sources. On the other hand, HEX programs are based on the the FLP semantics (Faber,

Pfeifer, & Leone, 2011), which is also limited to the propositional case. Another issue with

the FLP semantics is its semantics properties. For instance, the “conservative extensions"

are not preserved in the semantics. 1 As another example, choice rules (Niemelä & Si-

mons, 2000), which are often useful in the “generate-and-test” organization of a program,

are not supported in the FLP semantics.

This dissertation presents a unifying framework that combines the semantic prop-

erties of the first-order stable model semantics and the versatility of HEX programs. We

present a uniform view on the extensions of ASP by viewing them as instances of general-

ized quantifiers and formulas with intensional functions. Our framework yields a systematic

approach to study and extend non-monotonic languages. In particular, this dissertation

• relates the first-order stable model semantics with the first-order logic and presents

some decidable conditions under which the former can be represented by the latter.

This gives us insight on the precise relationship between the two semantics.

• provides a uniform view on some of the representative semantics of aggregates. This

helps us compare the semantics and allows us to apply the results already estab-

lished for propositional theories to each of the semantics. Based on the reduction,

we present the first-order stable model semantics and the first-order FLP semantics

for aggregate formulas which do not involve grounding. We also study the precise

relationships between the two generalized semantics.

• presents a unifying and reductive view on the extensions of ASP by viewing them

as special cases of formulas with generalized quantifiers under the first-order stable

model semantics. The framework provides a new perspective on the existing exten-

1See the related discussion in http://www.cs.utexas.edu/∼vl/tag/aggregates.

4

sions of the stable model semantics, a way to compare them and even allows them

to be combined in a single language. The unifying framework also saves efforts in

re-proving the theorems for these individual extension. We extend several important

theorems in ASP to formulas with generalized quantifiers, which in turn can be ap-

plied to the particular extensions of the stable model semantics. To compare our

approach with HEX programs, we generalize the first-order FLP semantics to cover

formulas with generalized quantifiers and compare the two semantics in the general

context.

• proposes a framework of tight integration of ASP and SMT as a special case of

functional stable model semantics that assumes background theories. Based on the

framework, we extend and enhance action language C+ (Giunchiglia, Lee, Lifschitz,

McCain, & Turner, 2004) to handle reasoning about continuous changes. By refor-

mulating C+ in terms of ASPMT, we naturally extend the language to overcome the

limitation, and use SMT solvers to compute the language.

The document is organized as follows. Chapter 2 gives the necessary background

information. In Chapter 3, we discuss how first-order stable model semantics is related to

first-order logic. In Chapter 4, we discuss our efforts in reformulating existing semantics on

aggregates and extension of the semantics to the first-order level. In Chapter 5, we extend

the first-order stable model semantics and the first-order FLP semantics to formulas with

generalized quantifiers. We reduce several extensions of ASP to formulas with generalized

quantifiers (GQ-formulas) and generalize some important theorems to handle GQ-formulas.

Chapter 6 presents the tight integration of ASP and SMT. It also discusses how to define

the semantics of action language C+ in terms of the framework. We conclude in Chapter 7.

5

Chapter 2

BACKGROUND

2.1 Answer Set Programming

ASP (Marek & Truszczyński, 1999; Lifschitz, 2008) is a recent form of declarative program-

ming that has emerged from the interaction between two lines of research—nonmonotonic

semantics of negation in logic programming and applications of satisfiability solvers to

search problems. The idea of ASP is to represent the search problem we are interested in

as a logic program whose intended models, called “stable models (a.k.a. answer sets),”

correspond to the solutions of the problem, and then find these models using an an-

swer set solver—a system for computing stable models. Like other declarative computing

paradigms, such as SAT (Satisfiability Checking) and CP (Constraint Programming), ASP

provides a common basis for formalizing and solving various problems, but is distinct from

others in that it focuses on knowledge representation and reasoning: its language is an ex-

pressive nonmonotonic language based on logic programs under the stable model seman-

tics (Gelfond & Lifschitz, 1988; Ferraris et al., 2007), which allows elegant representation of

several aspects of knowledge such as causality, defaults, and incomplete information, and

provides compact encoding of complex problems that cannot be translated into SAT and

CP (Lifschitz & Razborov, 2006). As the mathematical foundation of answer set program-

ming, the stable model semantics originated from understanding the meaning of negation

as failure in Prolog, which has the rules of the form

a1 ← a2, . . . , am, ��� am+1, . . . , ��� an (2.1)

where all ai are atoms and ��� is a symbol for negation as failure, also known as default

negation. Intuitively, under the stable model semantics, rule (2.1) means that if you have

generated a2, . . . , am and it is impossible to generate any of am+1, . . . , an then you may

generate a1. This explanation looks like it contains a vicious cycle, but the semantics is

carefully defined in terms of fixpoint. Formally, a program is called positive if none of the

rules in the program contain the symbol ���. A set of ground atoms X is a stable model

(answer set) of a normal logic program Π if it is the minimal model of ΠX , where ΠX is the

positive program (reduct) obtained by (i) removing all the rules such that for some ��� ai

6

in the negative body, ai ∈ X, and (ii) removing the negative bodies of all the remaining

rules. According to this semantics, variables in answer set programs are understood as

place-holders, to be replaced by the ground terms of the underlying signature. As a result,

all answer sets are Herbrand models of the signature obtained from the program. The

semantics was later extended to programs with classical negation, and disjunction in the

head (Gelfond & Lifschitz, 1991).

Example 1 For program Π that contains three rules

p(a). r(X)← p(X), ��� q(X).

q(b).

Grounding replaces the variable x with each of {a, b}. It results in the following program Π′:

p(a). r(a)← p(a), ��� q(a).

q(b). r(b)← p(b), ��� q(b).

We check that X = {p(a), q(b), r(a)} is an answer set because Π′X is

p(a). r(a)← p(a).

q(b).

and {p(a), q(b), r(a)} is the minimal set that satisfies Π′X .

The language also has useful constructs, such as strong negations, weak con-

straints, and preferences. What distinguishes ASP from other nonmonotonic formalisms is

the availability of several efficient implementations, answer set solvers, such as smodels1,

cmodels2, clasp3, which led to practical nonmonotonic reasoning that can be applied to

industrial level applications.

2.2 Theorem on Loop Formulas

According to the theorem on loop formulas (Lin & Zhao, 2004), the stable models of a logic

program (Gelfond & Lifschitz, 1988) can be characterized as the models of the logic pro-

gram that satisfy all its loop formulas. This idea has turned out to be widely applicable

1http://www.tcs.hut.fi/Software/smodels .
2http://www.cs.utexas.edu/users/tag/cmodels.html .
3http://potassco.sourceforge.net .

7

in relating the stable model semantics to propositional logic, and has resulted in an effi-

cient method for computing answer sets using SAT solvers. Since the original invention

of loop formulas for nondisjunctive logic programs by Lin and Zhao (2004), the theorem

has been extended to more general classes of logic programs, such as disjunctive pro-

grams (Lee & Lifschitz, 2003b), infinite programs and programs containing classical nega-

tion (Lee, 2005; Lee, Lierler, Lifschitz, & Yang, 2010), arbitrary propositional formulas under

the stable model semantics (Ferraris, Lee, & Lifschitz, 2006), and programs containing ag-

gregates (Liu & Truszczynski, 2006; You & Liu, 2008). The theorem has also been applied

to other nonmonotonic formalisms, such as nonmonotonic causal theories (Lee, 2004) and

McCarthy’s circumscription (Lee & Lin, 2006). The notion of a loop was further refined as an

“elementary loop” (Gebser & Schaub, 2005; Gebser, Lee, & Lierler, 2006, 2011). However,

all this work is restricted to the propositional case. Variables contained in the program are

first eliminated by grounding—the process which replaces every variable with every object

constant—and then loop formulas are obtained from the ground program. As a result, loop

formulas were defined as formulas in propositional logic.

Chen, Lin, Wang, and Zhang’s definition (2006) of a first-order loop formula is dif-

ferent in that loop formulas are directly obtained from a non-ground program, so that they

are formulas in first-order logic which retain variables. However, since the semantics of a

logic program that they refer to is based on grounding, their first-order loop formulas are

simply understood as schemas for ground loop formulas, and only Herbrand models of the

loop formulas were considered in this context.

2.3 Extensions of ASP

Wide applications of answer set programming motivated various extensions to the lan-

guage and implementations, for instance, to reason about aggregates, to facilitate interface

with external information source, such as ontologies and to integrate different computing

paradigms such as Constraint Programming and Satisfiability Modulo Theories.

Aggregates

Aggregates are motivated by applications of ASP. They greatly enhance the modeling power

of the language and simplify the representation. On the other hand, defining a reasonable

8

semantics of aggregates under the stable model semantics turned out to be a non-trivial

task. There have been many different semantics proposed, such as a modified definition

of traditional reduct (Faber et al., 2004), an extension of TP operator with “conditional sat-

isfaction” (Son et al., 2007), and an extension of Fitting’s approximating operator ΦP to

Φaggr
P (Pelov, Denecker, & Bruynooghe, 2007). Meanwhile, a few reasonable “reductive”

semantics of aggregates have also been developed. In (Pelov, Denecker, & Bruynooghe,

2003) and (Son & Pontelli, 2007), the authors provided a way to identify aggregates with

nested expressions, which are more complex than the naive approach above, by involving

the notions of “maximal local power set” or “unfolding w.r.t. solutions.” Instead of referring

to nested expressions, Ferraris (2005) proposed to identify an aggregate with conjunctions

of implications under his extension of the answer set semantics for arbitrary propositional

formulas.

While most semantics agree on monotone and anti-monotone aggregates, they

have subtle differences in understanding arbitrary recursive aggregates. We consider three

representative semantics: the semantics from (Pelov et al., 2003; Son et al., 2007) (we

will call it PDB-SPT semantics; Lemma 6 from (Son & Pontelli, 2007) tells that the seman-

tics from (Son et al., 2007) is essentially equivalent to the semantics from (Pelov et al.,

2003)), the semantics from (Faber et al., 2004) (we will call it the FLP semantics), and the

semantics from (Ferraris, 2005) (we will call it the Ferraris semantics). Besides the non-

trivial reduction of aggregates to nested expressions in (Pelov et al., 2003; Son & Pontelli,

2007), non-reductive approaches for the PDB-SPT semantics have been studied by sev-

eral researchers as in (Pelov et al., 2007; Son et al., 2007; Son & Pontelli, 2007; You &

Liu, 2008). The FLP semantics is based on an interesting modification of the traditional

reduct and has been implemented in an answer set solver DLV.4 The Ferraris semantics

appears close to the FLP semantics but is based on reduction to propositional formulas

under the stable model semantics, which is essentially a reformulation of the equilibrium

logic (Pearce, 1997), and is generalized to arbitrary first-order formulas in (Ferraris et al.,

2007). The three semantics mentioned above do not agree with each other.

4http://www.dbai.tuwien.ac.at/proj/dlv/ .

9

Example 2 Consider the following program Π1:

p(2) ← ��� SUM〈{x : p(x)}〉 < 2

p(−1) ← SUM〈{x : p(x)}〉 ≥ 0

p(1) ← p(−1).

(2.2)

This program has no answer sets according to the PDB-SPT semantics, one answer set

{p(−1), p(1)} according to the FLP semantics, and two answer sets {p(−1), p(1)} and

{p(−1), p(1), p(2)} according to the Ferraris semantics.

Description Logics

Description Logics (DLs) are a family of knowledge representation languages. They are

decidable fragments of first-order logic and also the basis of the Web Ontology Language

(OWL), which has greatly facilitated knowledge construction, storage and sharing across

the web. While DLs describe the terminological knowledge, logic programs represent con-

straints and defaults over them. Integrating DL with logic programs would enable one to

perform defeasible and closed world reasoning using existing ontology knowledge bases.

For this reason, there is increasing interest in such integration (Eiter et al., 2004;

Rosati, 2005; Heymans et al., 2008; Eiter et al., 2008a; Feier & Heymans, 2009; Fink &

Pearce, 2010; Shen, 2011; Lee & Palla, 2011). The integrations of description logics with

logic programming usually result in a hybrid knowledge base which is a pair (T ,P) where

T is a knowledge base in description logics of a signature ΣT and P is a logic program of

a signature ΣP . DL-programs (Eiter et al., 2008a) provides an interesting way of integrating

DLs with ASP. In DL-programs, the program P interfaces with T via a special construct,

which represents a query to the ontologies. The queries to T are treated in a way such that

logic programming and description logic inference are technically separated. Compared to

other similar work, this increases flexibility and provides a way to utilize efficient implemen-

tations from both formalisms. DL-programs are implemented in the system DLV-HEX.

There are three alternative approaches for defining the semantics of DL-programs:

the one based on strong (or weak) transformation (Eiter et al., 2004), FLP semantics (Fink

& Pearce, 2010) and well-supported semantics (Shen, 2011).

10

Constraints & SMT

Constraint programming (CP) is another computing paradigm that provides succinct repre-

sentation and a powerful way of solving combinatorial search problems. The computational

methods in CP are effective in reasoning about problems with variables whose values range

over various domains such as arithmetic computations. Observing the grounding bottleneck

in ASP, (Baselice, Bonatti, & Gelfond, 2005) and (Mellarkod, Gelfond, & Zhang, 2008) en-

hanced ASP with constraints and provided a family of extensions of ASP with different con-

straint classes. (Balduccini, 2009) and (Gebser et al., 2009) follow the work and propose

an alternative way of combining ASP and CP in a way that is similar to the “lazy approach"

of SMT solvers (Nieuwenhuis, Oliveras, & Tinelli, 2006). Janhunen et al.(2011) provide an

integration of ASP and SMT theories by translating the integrated program into difference

logic.

Marek and Truszczynski (2004) viewed propositional aggregates as a special case

of abstract constraint atoms. Son et al. (2007) generalized this semantics to account for

arbitrary abstract constraint atoms. Abstract constraint atoms is a generalization of ag-

gregates to represent arbitrary constraints on atoms. A constraint atom (or c-atom follow-

ing (Son et al., 2007)) is of the form (D,C). Intuitively, a c-atom represents a constraint

with a finite set C of admissible solutions over a finite domain D. The semantics of pro-

grams with abstract constraint atoms was first proposed in (Marek & Truszczynski, 2004),

and was further developed in (Liu & Truszczynski, 2006; Son et al., 2007; Shen, You, &

Yuan, 2009). Son, Pontelli and Tu (Son et al., 2007) proposed a semantics of programs

with abstract constraints atoms based on “conditional satisfaction”, which turns out to be

equivalent to the PDB-SPT semantics of aggregates.

2.4 HEX Programs & FLP Semantics

HEX programs (Eiter et al., 2005) provide an approach to a unifying framework. It in-

corporates different extensions of the stable model semantics in a uniform framework via

"external atoms" to interface with external computation sources. HEX programs are well

studied (Eiter, Ianni, Schindlauer, & Tompits, 2006a; Eiter et al., 2008a; Eiter, Fink, Ianni,

11

Krennwallner, & Schüller, 2011) and are implemented in the system DLV-HEX,5 which has

been applied to several applications including biomedical ontologies (Hoehndorf, Loebe,

Kelso, & Herre, 2007) and web query (SPARQL) (Polleres & Schindlauer, 2007). Instead

of the the traditional stable model semantics (Gelfond & Lifschitz, 1988), the semantics of

HEX programs adopts the “FLP semantics” (Faber et al., 2011). The adoption was a key

idea that facilitates incorporating external atoms in HEX programs.

The FLP semantics is based on an interesting modification of the traditional defi-

nition of a reduct by Gelfond and Lifschitz (1988). The FLP-reduct (ΠX) of a program Π

relative to a set X of atoms is obtained from Π by simply removing all rules whose bodies

are not satisfied by X. X is called an FLP-answer set of Π if X is minimal among the sets

of atoms that satisfy ΠX .

Example 1 continued The FLP-reduct of

p(a). r(a)← p(a), ��� q(a).

q(b). r(b)← p(b), ��� q(b).

relative to X = {p(a), q(b), r(a)} is

p(a). r(a)← p(a), ��� q(a).

q(b).
(2.3)

and X is minimal among the sets of atoms satisfying the reduct, and hence is an FLP

answer set.

The FLP semantics diverges from the traditional stable model semantics in some

essential ways. For example, consider a program

p(a)← ��� COUNT〈x.p(x)〉 < 1, (2.4)

and another program which rewrites the first program as

p(a)← ��� q

q ← COUNT〈x.p(x)〉 < 1,
(2.5)

5http://www.kr.tuwien.ac.at/research/systems/dlvhex/

12

where the second rule defines q in terms of the count aggregate. One may expect this

transformation to modify the collection of answer sets in a “conservative” way. That is, each

answer set of (2.5) is obtained from an answer set of (2.4) in accordance with the definition

of q.6 However, this is not the case under the FLP stable model semantics: the former has

∅ as the only FLP answer set while the latter has both {p(a)} and {q} as the FLP answer

sets.

Related to this issue is the anti-chain property that is ensured by the FLP seman-

tics: no FLP answer set is a proper subset of another FLP answer set. This prevents us

from allowing choice rules (Niemelä & Simons, 2000), which are a useful construct in the

“generate-and-test” organization of ASP programming (Lifschitz, 2002).

Also, the extensions of the FLP semantics to allow complex formulas in (Truszczyński,

2010; Bartholomew, Lee, & Meng, 2011) encounter some unintuitive cases. For example,

according to the extensions, {p} is the FLP answer set of p ← p ∨ ¬p , but this has a

circular justification.

2.5 First-Order Stable Model Semantics

The stable model semantics is extended to the first-order level in (Ferraris et al., 2007)

which we will review in the following.

A signature is a set of function constants and predicate constants. Function con-

stants of arity 0 are called object constants. The syntax of a formula is the same as in

first-order logic. We consider the following set of primitive propositional connectives and

quantifiers:

⊥ (falsity), ∧, ∨, →, ∀, ∃ .

Note that negation is not a primitive connective because we ¬F as an abbreviation of

F → ⊥. Similarly, � is an abbreviation of ⊥ → ⊥, and F ↔ G is an abbreviation of

(F → G) ∧ (G → F). An atom of a signature σ is of the form p(t1, . . . , tn) where p is

an n-ary predicate constant in σ and t1, . . . , tn are terms that can be formed from function

6Indeed, this is what happens in expressing a rule with nested expressions like p ← ��� ��� p into p ←
��� q, q ← ��� p by defining q as ��� p.

13

constants in σ and object variables. An atomic formula of σ is either an atoms of σ, an

equality between terms of σ, or the 0-place connective ⊥.

Let p be a list of predicate constants and u be a list of distinct predicate variables

of the same length as p. By u = p we denote the conjunction of the formulas ∀x(ui(x)↔

pi(x)), where x is a list of distinct object variables of the same length as the arity of pi, for

all i = 1, . . . , n. By u ≤ p we denote the conjunction of the formulas ∀x(ui(x) → pi(x))

for all i = 1, . . . , n, and u < p stands for (u ≤ p) ∧ ¬(u = p).

For any first-order sentence F , the stable models of F relative to a list of predicates

p are the models of second-order formula,denoted by ��[F ;p],

F ∧ ¬∃u((u < p) ∧ F ∗(u)), (2.6)

where F ∗(u) is defined recursively:

• pi(t)
∗ = ui(t) for any list t of terms;

• F ∗ = F for any atomic formula F (including ⊥ and equality) that does not contain

members of p;

• (G ∧H)∗ = G∗ ∧H∗; (G ∨H)∗ = G∗ ∨H∗;

• (G→ H)∗ = (G∗ → H∗) ∧ (G→ H);

• (∀xG)∗ = ∀xG∗; (∃xF)∗ = ∃xF ∗.

We will often simply write ��[F] instead of ��[F ;p] when p is the list of all pred-

icate constants occurring in F , and call a model of ��[F] a stable model of F . We dis-

tinguish between the terms “stable models” and “answer sets” as follows.7 By σ(F) we

denote the signature consisting of the function and predicate constants occurring in F . If

F contains at least one object constant, an Herbrand interpretation8 of σ(F) that satisfies

��[F] is called an answer set of F . The answer sets of a logic program Π are defined as

7The distinction is useful because in the first-order setting, stable models are no longer Herbrand interpre-
tations and may not be represented by sets of atoms.

8An Herbrand interpretation of a signature σ (containing at least one object constant) is an interpretation
of σ such that its universe is the set of all ground terms of σ, and every ground term represents itself. An
Herbrand interpretation can be identified with the set of ground atoms to which it assigns the value true.

14

the answer sets of the FOL-representation of Π, which is the conjunction of the universal

closures of implications corresponding to the rules.

Example 1 continued The FOL-representation F of Π is

p(a) ∧ q(b) ∧ ∀x((p(x) ∧ ¬q(x))→ r(x)) (2.7)

and ��[F] is

p(a) ∧ q(b) ∧ ∀x((p(x) ∧ ¬q(x))→ r(x)) ∧ ¬∃uvw(((u, v, w) < (p, q, r)) ∧ u(a) ∧ v(b)

∧∀x(((u(x) ∧ (¬v(x) ∧ ¬q(x)))→ w(x)) ∧ ((p(x) ∧ ¬q(x))→ r(x)))),

which is equivalent to the first-order sentence

∀x(p(x)↔ x = a) ∧ ∀x(q(x)↔ x = b) ∧ ∀x(r(x)↔ (p(x) ∧ ¬q(x))) (2.8)

The stable models of F are any first-order models of (2.8). The only answer set of F is the

Herbrand model {p(a), q(b), r(a)}.

2.6 Functional Stable Model Semantics

The first-order stable model semantics is further extended to allow intensional function

in (Bartholomew & Lee, 2012). We consider the same syntax as in the previous section.

For lists of predicate symbols u and p, expressions u ≤ p and u = p are defined the same

as before. The notation is extended to cover function symbols (constants or variables) v

and c by defining the expression u = c as ∀x(u(x) = c(x)).

Let c be a list of distinct predicate and function constants, and let ĉ be a list of

distinct predicate and function variables corresponding to c. Members of c are called inten-

sional constants. By cpred (cfunc , respectively) we mean the list of all predicate constants

(function constants, respectively) in c, and by ĉpred the list of the corresponding predicate

variables in ĉ.

For any formula F , expression ��[F ; c] is defined as

F ∧ ¬∃ĉ(ĉ < c ∧ F ∗(ĉ)),

where ĉ < c is shorthand for (ĉpred ≤ cpred)∧¬(ĉ = c), and F ∗(ĉ) is defined the same as

in the previous section except that the first two bullets are replaced by the following bullet:
15

• When F is an atomic formula, F ∗ is F ′ ∧ F where F ′ is obtained from F by replac-

ing all intensional (function and predicate) constants c in it with the corresponding

(function and predicate) variables from ĉ;

This definition of a stable model is a proper generalization of the one from (Fer-

raris et al., 2011a): in the absence of intensional function constants, it reduces to the one

in (Ferraris et al., 2011a).

2.7 Action Language C+

One of the main focuses of Artificial Intelligence research involves describing the effects

of actions and automatically generating plans to achieve some given goal. Action lan-

guages (Gelfond & Lifschitz, 1998) are formal models of parts of the natural language that

describe the effects of actions which corresponds to transitions of the form 〈s, a, s′〉. The

transition denotes that action a is executed in state s and s′ is the resulting state of the

action. Action languages provide an intuitive way to describe complex problems instead of

encoding the entire transition system.

There are many efforts to study different aspects of dynamic systems (Pednault,

1994; Gelfond, 1993; Baral, Gelfond, & Provetti, 1997; Giunchiglia & Lifschitz, 1998). Ac-

tion language C+ (Giunchiglia, Lee, Lifschitz, & Turner, 2001) is a well-recognized member

of the action language family. It is based on non-monotonic causal logic (McCain & Turner,

1997). Language C+ is significantly more enhanced than its predecessor C in several

ways, such as being able to represent multi-valued formulas, defined fluents, additive flu-

ents, rigid constants and defeasible causal laws. The Causal Calculator (CCALC) is an

implementation of the C+ language that computes the definite fragment of C+ by turn-

ing it into propositional logic using literal completion. Models of the resulting formulas are

computed using SAT solvers. CCALC has been applied to several challenging problems in-

cluding to provide a group of robots with high-level reasoning (Caldiran, Haspalamutgil, Ok,

Palaz, Erdem, & Patoglu, 2009), to give executable specifications of norm-governed com-

putational societies (Artikis, Sergot, & Pitt, 2003), and to automate the analysis of business

processes (Armando & Compagna, 2002).

16

Chapter 3

FIRST-ORDER STABLE MODEL SEMANTICS AND FIRST-ORDER LOOP FORMULAS

In this chapter, we discuss how first-order loop formulas and the first-order stable model

semantics are related to each other. In general, the first-order stable model semantics is

more expressive than first-order logic. Like circumscription, the concept of transitive closure

can be represented in the former, but it can not be represented using any set of first-order

formulas, even if the set is allowed to be infinite.1 However, as we show in this chapter,

understanding the precise relationship between them gives us insights into the semantics

and computational properties of the stable model semantics.

In order to facilitate the comparison, we first extend the loop formulas for nondis-

junctive programs to disjunctive programs and to arbitrary first-order theories. Then, we

reformulate the �� operator in the style of loop formulas, which characterize a loop by a

second-order formula. From this reformulation, we present some conditions, under which

a first-order theory under the stable model semantics can be equivalently rewritten as first-

order loop formulas.

Based on the studied relationship, we extend the syntax of logic programs to allow

explicit quantifiers. This overcomes some limitations of traditional answer set programs

in reasoning about non-Herbrand models. The semantics of such extended programs is

defined by identifying them as a special class of first-order theories under the stable model

semantics. Such programs inherit from the general language the ability to handle non-

monotonic reasoning under the stable model semantics even in the absence of the unique

name and the domain closure assumptions that are built into the grounding-based answer

set semantics. On the other hand, the restricted syntax of an extended program yields

more succinct loop formulas. Consider the following program Π1 which represents a simple

1Vladimir Lifschitz, personal communication.

17

insurance policy example:

HasWife(x) ← ∃y ������(x, y)

���	
��(x) ← ��
(x), ����
��(x)

����
��(x) ← ��
(x), ���	
��(x)

∃w �
����
�(x,w) ← ����
��(x),
�� ∃z ���
��
�(x, z).

(3.1)

The second and the third rules express that ����
��(x) and ���	
��(x) are synonymous

to each other when x is a ��
. The last rule states that x is eligible for some discount plan

(with the name unknown) if x is married and has no record of accident. The quantifier in

the first rule can be dropped without affecting the meaning, but the other quantifiers cannot.

We will say that a program Π entails a query F (under the stable model semantics) if every

stable model of Π satisfies F . For example,

• Π1 conjoined with Π2 = {��
(���
)} entails each of ¬∃x ����
��(x) and

¬∃xy �
����
�(x, y).

• Π1 ∪ Π2 conjoined with Π3 = {∃y ������(���
, y)} entails neither ¬∃x ����
��(x)

nor ¬∃xy �
����
�(x, y), but entails each of ∃x����
��(x), ∃xy�
����
�(x, y), and

∀xy(�
����
�(x, y)→ x = ���
).

• Π1 ∪Π2 ∪Π3 conjoined with Π4 = {∃z ���
��
�(���
, z)} does not entail

∀xy(�
����
�(x, y)→ x = ���
), but entails ¬∃w �
����
�(���
, w).

In order to provide such non-monotonic reasoning, non-Herbrand models need to

be considered. This is because the names (or identifiers) of discount plans, spouses and

accident records may be unknown. On the other hand, the traditional answer set semantics

is limited to Herbrand models because of grounding. The reasoning process in the example

can be automated using a first-order theorem prover by turning the program into first-order

loop formulas.

This chapter is organized as follows. Section 3.1 reviews the theorem on first-order

loop formulas by Chen et al. (2006) and extends it to disjunctive programs and to arbitrary

first-order sentences, limiting attention to Herbrand stable models. Section 3.2 extends

18

these results to allow non-Herbrand stable models as well (possibly allowing functions)

under a certain semantic condition, and compare the first-order stable model semantics

with loop formulas by reformulating the former in terms of the latter. In Section 3.3, we

present a series of syntactic conditions that imply the semantic condition in Section 3.2.

Section 3.4 provides an extension of logic programs that contain explicit quantifiers and

shows how query answering for such extended programs can sometimes be reduced to

entailment checking in first-order logic via loop formulas. In Section 3.5, the results are

further extended to distinguish between intensional and non-intensional predicates. Related

work is described in Section 3.6, and long proofs are given in Section 3.8.

3.1 First-Order Loop Formulas and Herbrand Models

We extend the definition of a first-order loop formula for a nondisjunctive program (Chen

et al., 2006) to a disjunctive program and to an arbitrary first-order sentence. We first

review Chen et al.’s work in the following.

Loop Formula for Non-Disjunctive Programs

We call a formula negative if every occurrence of every predicate constant in it belongs

to the antecedent of an implication. For instance, any formula of the form ¬F is negative

because this expression is shorthand for F → ⊥. An equality t1 = t2 is also negative

because it contains no predicate constants.

A nondisjunctive program is a finite set of rules of the form

A← B,N, (3.2)

where A is an atom, B is a set of atoms, and N is a negative formula. The rules may

contain function constants of positive arity.2

We will say that a nondisjunctive program is in normal form if, for all rules (3.2) in

it, A is of the form p(x) where x is a list of distinct variables. It is clear that every program

can be turned into normal form using equality in the body. For instance, p(a, b)← q(a) can

be rewritten as p(x, y)← q(a), x = a, y = b.

2The original definition by Chen et al. (2006) does not allow function constants of positive arity.

19

Let Π be a nondisjunctive program and let ����(Π) be a normal form of Π. By

σ(Π) we denote the signature consisting of function and predicate constants occurring in Π.

Given a finite set Y of atoms constructed from symbols in σ(Π) and object variables, we as-

sume that����(Π) does not contain variables in Y , by renaming the variables in����(Π).

The (first-order) external support formula of Y for Π, denoted by ��Π(Y), is the disjunction

of ∨
θ:Aθ∈Y

∃z
(
Bθ ∧Nθ ∧

∧
p(t)∈Bθ

p(t′)∈Y

(t �= t′)

)
(3.3)

for all rules (3.2) in ����(Π),3 where θ is a substitution that maps variables in A to terms

occurring in Y , and z is the list of all variables that occur in

Aθ ← Bθ,Nθ

but not in Y .

The (first-order) loop formula of Y for Π, denoted by ��Π(Y), is the universal clo-

sure of ∧
Y → ��Π(Y). (3.4)

(The expression
∧

Y in the antecedent stands for the conjunction of all elements of Y .)

When Π is a propositional program, ��Π(Y) is equivalent to a conjunctive loop formula as

defined by Ferraris et al. (2006).

The definition of a first-order dependency graph and the definition of a first-order

loop are as follows. We say that an atom p(t) depends on an atom q(t′) in a rule (3.2) if

p(t) is A and q(t′) is in B. The (first-order) dependency graph of Π is an infinite directed

graph (V,E) such that

• V is the set of atoms of signature σ(Π);4

• (p(t)θ, q(t′)θ) is in E if p(t) depends on q(t′) in a rule of Π and θ is a substitution

that maps variables in t and t′ to terms (including variables) of σ(Π).

3For any lists of terms t = (t1, . . . , tn) and t′ = (t′1, . . . , t
′
n) of the same length, t = t′ stands for

(t1 = t′1) ∧ · · · ∧ (tn = t′n).
4Note that V is infinite since infinitely many object variables can be used to form atoms.

20

A nonempty subset L of V is called a (first-order) loop of Π if the subgraph of the

first-order dependency graph of Π induced by L is strongly connected.

Example 3 Let Π be the following program:

p(x)← q(x)

q(y)← p(y)

p(z)← ��� r(z).

(3.5)

The following sets of atoms are first-order loops (among many others): Y1 = {p(u)}, Y2 =

{q(u)}, Y3 = {r(u)}, Y4 = {p(u), q(u)}. Their loop formulas are

��Π(Y1) = ∀u(p(u)→ (q(u) ∨ ¬r(u))),

��Π(Y2) = ∀u(q(u)→ p(u)),

��Π(Y3) = ∀u(r(u)→ ⊥),

��Π(Y4) = ∀u(p(u) ∧ q(u)→ (q(u) ∧ u �= u) ∨ (p(u) ∧ u �= u) ∨ ¬r(u)).

Example 4 Let Π be the one-rule program

p(x)← p(y). (3.6)

Its finite first-order loops are Yk = {p(x1), . . . , p(xk)} where k > 0. Formula ��Π(Yk) is

∀x1 . . . xk
(
p(x1) ∧ . . . ∧ p(xk)→ ∃y(p(y) ∧ (y �= x1) ∧ . . . ∧ (y �= xk))

)
. (3.7)

The following is a reformulation of Theorem 1 from the work of Chen et al. (2006).

Theorem 1 Let Π be a nondisjunctive program that has no function constants of positive

arity, and let I be an Herbrand interpretation of σ(Π) that satisfies Π.5 The following condi-

tions are equivalent to each other:

(a) I is a stable model of Π;

(b) for every nonempty finite set Y of atoms of σ(Π), I satisfies ��Π(Y); 6

5We say that I satisfies Π if I satisfies the FOL-representation of Π.
6Note that Y may contain variables.

21

(c) for every finite first-order loop Y of Π, I satisfies ��Π(Y).

The sets of first-order loop formulas considered in conditions (b) and (c) above

have obvious redundancies. For instance, the loop formula of {p(x)} is equivalent to the

loop formula of {p(y)}; the loop formula of {p(x), p(y)} entails the loop formula of {p(z)}.

Following the definition by Chen et al. (2006), given two sets of atoms Y1 and Y2, we say

that Y1 subsumes Y2 if there is a substitution θ that maps variables in Y1 to terms so that

Y1θ = Y2.

Proposition 1 (Chen et al., 2006, Proposition 7) For any nondisjunctive program Π and

any loops Y1 and Y2 of Π, if Y1 subsumes Y2, then ��Π(Y1) entails ��Π(Y2).

Therefore in condition (c) from Theorem 1, it is sufficient to consider a set Γ of loops

such that, for every loop L of Π, there is a loop L′ in Γ that subsumes L. Chen et al. (2006)

called such Γ a complete set of loops. In Example 3, set {Y1, Y2, Y3, Y4} is a finite complete

set of loops of program (3.5). Program (3.6) in Example 4 has no finite complete set of

loops.

Loop Formula for Disjunctive Programs

A disjunctive program is a finite set of rules of the form

A← B,N, (3.8)

where A and B are sets of atoms, and N is a negative formula. Similar to a nondisjunctive

program, we say that a disjunctive program is in normal form if, for all rules (3.8) in it, all

atoms in A are of the form p(x) where x is a list of distinct variables.

Let Π be a disjunctive program and let ����(Π) be a normal form of Π. Given a

finite set Y of atoms of σ(Π), we first rename variables in ����(Π) so that no variables

in ����(Π) occur in Y . The (first-order) external support formula of Y for Π, denoted by

��Π(Y), is the disjunction of

∨
θ:Aθ∩Y �=∅

∃z
(
Bθ ∧Nθ ∧

∧
p(t)∈Bθ

p(t′)∈Y

(t �= t′) ∧ ¬
(∨
p(t)∈Aθ

(
p(t) ∧

∧
p(t′)∈Y

t �= t′
)))

(3.9)

22

for all rules (3.8) in ����(Π), where θ is a substitution that maps variables in A to terms

occurring in Y or to themselves, and z is the list of all variables that occur in

Aθ ← Bθ,Nθ

but not in Y . The (first-order) loop formula of Y for Π, denoted by ��Π(Y), is the universal

closure of ∧
Y → ��Π(Y).

Clearly, (3.9) is equivalent to (3.3) when Π is nondisjunctive. When Π and Y are propo-

sitional, ��Π(Y) is equivalent to the conjunctive loop formula for a disjunctive program as

defined by Ferraris et al. (2006).

Example 5 Let Π be the program

p(x, y) ; p(y, z) ← q(x)

and let Y = {p(u, v)}. Formula ��Π(Y) is the universal closure of

p(u, v)→ ∃z(q(u) ∧ ¬(p(v, z) ∧ ((v, z) �= (u, v))))

∨ ∃x(q(x) ∧ ¬(p(x, u) ∧ ((x, u) �= (u, v)))).

Similar to the nondisjunctive case, we say that p(t) depends on q(t′) in Π if there

is a rule (3.8) in Π such that p(t) is in A and q(t′) is in B. The definitions of a first-order

dependency graph and a first-order loop are extended to disjunctive programs in a straight-

forward way. Using these extended notions, the following theorem extends Theorem 1 to a

disjunctive program. It is also a generalization of the main theorem by Ferraris et al. (2006)

which was restricted to a propositional disjunctive program.

Theorem 1 d Let Π be a disjunctive program that has no function constants of positive arity,

and let I be an Herbrand interpretation of σ(Π) that satisfies Π. The following conditions

are equivalent to each other:

(a) I is a stable model of Π;
23

(b) for every nonempty finite set Y of atoms of σ(Π), I satisfies ��Π(Y);

(c) for every finite first-order loop Y of Π, I satisfies ��Π(Y).

Extension to Arbitrary Sentences

In this section we extend the definition of a first-order loop formula to an arbitrary first-order

sentence.

As with a propositional loop formula defined for an arbitrary propositional theory

(Ferraris et al., 2006), it is convenient to introduce a formula whose negation is close to ��.

We define formula ���F (Y) (“Negation of (First-order) External Support Formula”), where

F is a first-order formula and Y is a finite set of atoms, as follows. As before we assume

that no variables in Y occur in F , by renaming variables.

• ���pi(t)(Y) = pi(t) ∧
∧

pi(t′)∈Y t �= t′;

• ���t1=t2(Y) = (t1= t2);

• ���⊥(Y) = ⊥;

• ���F∧G(Y) = ���F (Y) ∧���G(Y);

• ���F∨G(Y) = ���F (Y) ∨���G(Y);

• ���F→G(Y) = (���F (Y)→���G(Y)) ∧ (F→G);

• ���∀xG(Y) = ∀x���G(Y);

• ���∃xG(Y) = ∃x���G(Y).

The (first-order) loop formula of Y for F , denoted by ��F (Y), is the universal clo-

sure of ∧
Y → ¬���F (Y). (3.10)

Note that the definition of ��� looks similar to the definition of F ∗ given in Sec-

tion 2.5. When F and Y are propositional, ��F (Y) is equivalent to a conjunctive loop

24

formula for a propositional formula that is defined by Ferraris et al. (2006). The following

lemma tells us that the notion of a loop formula in this section generalizes the notion of a

loop formula for a disjunctive program in the previous section.

Lemma 1 Let Π be a disjunctive program in normal form, F an FOL-representation of Π,

and Y a finite set of atoms. Formula ���F (Y) is equivalent to ¬��Π(Y) under the as-

sumption F .

In order to extend the first-order dependency graph to an arbitrary formula, we

introduce a few notions. We say that an occurrence of a subformula G in a formula F is

positive if the number of implications in F containing that occurrence in the antecedent is

even; it is strictly positive if that number is 0. A rule of a first-order formula F is an implication

that occurs strictly positively in F . We will say that a formula is rectified if it has no variables

that are both bound and free, and if all quantifiers in the formula refer to different variables.

Any formula can be easily rewritten into a rectified formula by renaming bound variables.

We say that an atom p(t) depends on an atom q(t′) in an implication G→ H if

• p(t) has a strictly positive occurrence in H , and

• q(t′) has a positive occurrence in G that does not belong to any negative subformula

of G.7

The definition of a first-order dependency graph is extended to formulas as follows.

The (first-order) dependency graph of a rectified formula F is the infinite directed graph

(V,E) such that

• V is the set of atoms of signature σ(F);

• (p(t)θ, q(t′)θ) is in E if p(t) depends on q(t′) in a rule of F and θ is a substitution

that maps variables in t and t′ to terms of σ(F).

7Recall the definition of a negative formula in Section 2.2.

25

Note that the rectified formula assumption is needed in order to distinguish between

dependency graphs of formulas such as

∀x(p(x)→ q(x))

and

∀x p(x)→ ∀x q(x).

Once the definition of a dependency graph is given, a loop of a first-order formula

is defined in the same way as with a disjunctive program. Theorem 1 can be extended to

first-order sentences using these extended notions.

Theorem 1 f Let F be a rectified sentence that has no function constants of positive arity,

and let I be an Herbrand interpretation of σ(F) that satisfies F . The following conditions

are equivalent to each other:

(a) I is a stable model of F (i.e., I satisfies ��[F]);

(b) for every nonempty finite set Y of atoms of σ(F), I satisfies ��F (Y);

(c) for every finite first-order loop Y of F , I satisfies ��F (Y).

Example 3 (continued) Consider the FOL-representation F of the program in Example 3,

for which {Y1, Y2, Y3, Y4} is a complete set of loops. Under the assumption F ,

• ��F (Y1) is equivalent to the universal closure of

p(u)→ ¬
(
∀x(q(x)→ p(x) ∧ x �= u) ∧ ∀y(p(y) ∧ y �= u→ q(y))

∧ ∀z(¬r(z)→ p(z) ∧ z �= u)
)
;

• ��F (Y2) is equivalent to the universal closure of

q(u)→ ¬
(
∀x(q(x) ∧ x �= u→ p(x)) ∧ ∀y(p(y)→ q(y) ∧ y �= u)

)
;

26

• ��F (Y3) is equivalent to the universal closure of

r(u)→ ⊥;

• ��F (Y4) is equivalent to the universal closure of

p(u) ∧ q(u)→ ¬
(
∀x(q(x) ∧ x �= u→ p(x) ∧ x �= u)

∧ ∀y(p(y) ∧ y �= u→ q(y) ∧ y �= u) ∧ ∀z(¬r(z)→ p(z) ∧ z �= u)
)
.

Proposition 1 can be straightforwardly extended to arbitrary sentences even without

restricting the attention to loops.

Proposition 1 f For any sentence F and any nonempty finite sets of atoms Y1 and Y2

of σ(F), if Y1 subsumes Y2, then ��F (Y1) entails ��F (Y2).

Proof. Note that ��F (Y1) is

∀z
(∧

Y1 → ¬���F (Y1)
)
, (3.11)

where z is the set of all variables in Y1. If Y1 subsumes Y2, by definition, there is a sub-

stitution θ from variables in Y1 to terms in Y2 such that Y1θ = Y2. It is clear that (3.11)

entails

∀z′(∧Y1θ → ¬���F (Y1θ)
)
, (3.12)

where z′ is the set of all variables in Y1θ. (3.12) is exactly ��F (Y2).

Theorem 2 from the work of Ferraris et al. (2006) is a special case of Theorem 1f

when F is restricted to a propositional formula.

Corollary 1 (Ferraris et al., 2006, Theorem 2) For any propositional formula F , the follow-

ing formulas are equivalent to each other under the assumption F .

(a) ��[F];

(b) the conjunction of ��F (Y) for all nonempty sets Y of atoms occurring in F ;

(c) the conjunction of ��F (Y) for all (ground) loops Y of F .

27

3.2 Comparing First-Order Stable Model Semantics and First-Order Loop Formulas

The theorems in the previous section were restricted to Herbrand stable models. This

section extends the results to allow non-Herbrand stable models as well, and compare the

idea of loop formulas with �� by reformulating the latter in the style of loop formulas.

Loop Formulas Relative to an Interpretation

Recall that Theorem 1 and its extensions do not allow function constants of positive arity

and are limited to Herbrand models of the particular signature obtained from the given

theory. Indeed, the statements become wrong if these conditions are dropped.

Example 6 The following program contains a unary function constant f .

p(a)

p(x)← p(f(x)).

The loops of this program are all singleton sets of atoms, and their loop formulas are satis-

fied by the Herbrand model {p(a), p(f(a)), p(f(f(a))), . . . } of the program, but this model

is not stable.

Example 4 (continued) The mismatch can happen even in the absence of function con-

stants of positive arity. Consider the program in Example 4 and an interpretation I such that

the universe is the set of all integers, and pI contains all integers. Interpretation I satisfies

all first-order loop formulas (3.7), but it is not a stable model.

These examples suggest that the mismatch between the first-order stable model

semantics and the first-order loop formulas is related to the presence of infinite paths in

the dependency graph that visits infinitely many vertices. In the following we will make this

idea more precise, and extend Theorem 1f to allow non-Herbrand interpretations under a

certain condition.

First, we define a dependency graph relative to an interpretation. Let F be a rectified

formula whose signature is σ and let I be an interpretation of σ. For each element ξ of the

28

universe |I| of I, we introduce a new symbol ξ�, called an object name. By σI we denote the

signature obtained from σ by adding all object names ξ� as additional object constants. We

will identify an interpretation I of signature σ with its extension to σI defined by I(ξ�) = ξ

(For details, see the work of Lifschitz, Morgenstern, and Plaisted, (2008)).

The dependency graph of F w.r.t. I is the directed graph (V,E) where

• V is the set of all atoms of the form pi(ξ
�) where pi belongs to σ(F) and ξ� is a list

of object names for |I|, and

• (pi(ξ
�), pj(η�)) is in E if there are atoms pi(t), pj(t′) such that pi(t) depends on

pj(t
′) in a rule of F and there is a substitution θ that maps variables in t and t′ to

object names such that (tθ)I = ξ and (t′θ)I = η.

We call a nonempty subset L of V a loop of F w.r.t. I if the subgraph of the de-

pendency graph of F w.r.t. I that is induced by L is strongly connected. We say that F is

bounded w.r.t. I if every infinite path in the dependency graph of F w.r.t. I whose vertices

are satisfied by I visits only finitely many vertices. If F is bounded w.r.t. I, then, clearly, ev-

ery loop L of F w.r.t. I such that I |= L is finite. The definition is extended to a non-rectified

formula by first rewriting it as a rectified formula. It also applies to the program syntax by

referring to its FOL-representation.

Theorem 2 Let F be a rectified sentence of signature σ (possibly containing function con-

stants of positive arity), and let I be an interpretation of σ that satisfies F . If F is bounded

w.r.t. I, then the following conditions are equivalent to each other:

(a) I |= ��[F];

(b) for every nonempty finite set Y of atoms formed from predicate constants in σ(F) and

object names for |I|, I satisfies ��F (Y);

(c) for every finite loop Y of F w.r.t. I, I satisfies ��F (Y).

29

The condition that F is bounded w.r.t. I is sufficient for ensuring the equivalence

among (a), (b), and (c), but it is not a necessary condition. For instance, consider F to be

∀xp(x) ∧ ∀xy(p(x)→ p(y))

and I to be a model of F whose universe is infinite. Formula F is not bounded w.r.t. I, but

I satisfies every loop formula, as well as ��[F].

When I is an Herbrand model of σ(F), the dependency graph of F w.r.t. I is iso-

morphic to the subgraph of the first-order dependency graph of F that is induced by vertices

containing ground atoms. A set of ground atoms of σ(F) is a loop of F iff it is a loop of F

w.r.t. I. Hence Theorem 2 is essentially a generalization of Theorem 1f .

Note that the programs considered in Examples 4 and 6 are not bounded w.r.t. the

interpretations considered there.

Clearly, if the universe of I is finite, then F is bounded w.r.t. I. This fact leads to

the following corollary.

Corollary 2 For any rectified sentence F and any model I of F whose universe is finite,

conditions (a), (b), and (c) of Theorem 2 are equivalent to each other.

In view of Proposition 1f and Corollary 2, if the size of the universe is known to be

a finite number n, it is sufficient to consider at most 2|p| − 1 loop formulas, where p is the

set of all predicate constants occurring in the sentence. Each loop formula is to check the

external support of
⋃

p∈K{p(x1), . . . , p(xnr)} for each K where

• K is a nonempty subset of p;

• r is the arity of p and each xi is a list of variables of the length r such that all variables

in x1, . . . ,xnr are pairwise distinct.

For instance, consider program (3.6). If the size of the universe is known to be 3, it is

sufficient to consider only one loop formula (3.7) where k = 3.

30

Theorem 1f essentially follows from Corollary 2 as the Herbrand universe of σ(F)

is finite when F contains no function constants of positive arity.

Another corollary to Theorem 2 is acquired when F has only “trivial” loops. We say

that a formula F is atomic-tight w.r.t. I if every path in the dependency graph of F w.r.t. I

whose vertices are satisfied by I is finite. Clearly, this is a special case of boundedness

condition, and every loop L of an atomic-tight formula F w.r.t. I such that I |= L is a

singleton. The following is a corollary to Theorem 2, which tells us the condition under

which stable models can be characterized by loop formulas of singleton loops only. By

���[F] (“loop formulas of singletons”) we denote the set of loop formulas

{��F ({p(x)}) | p is a predicate constant in σ(F), and x is a list

of distinct object variables whose length is the same as the arity of p}.
(3.13)

Corollary 3 Let F be a rectified sentence (possibly containing function constants of posi-

tive arity), and let I be a model of F . If F is atomic-tight w.r.t. I, then I satisfies ��[F] iff I

satisfies ���[F].

���[F] is similar to Clark’s completion. In the propositional case, the relationship

between the loop formulas of singletons and completion formulas is studied by Lee (2005).

Below we describe their relationship in the first-order case. A sentence is in Clark normal

form if it is a conjunction of formulas of the form

∀x(G→ p(x)), (3.14)

one for each predicate constant p occurring in F , where x is a list of distinct variables, and

G has no free variables other than x. The completion of a sentence F in Clark normal form,

denoted by ����[F], is obtained from it by replacing each conjunctive term (5.19) with

∀x(p(x)↔ G).

Any nondisjunctive program can be turned into Clark normal form (Ferraris et al., 2011a,

Section 6.1).

31

Corollary 4 Let F be the FOL-representation of a nondisjunctive program Π, and let F ′ be

the Clark normal form of F as obtained by the process described in the work of (Ferraris

et al., 2011a, Section 6.1). If F is atomic-tight w.r.t. an interpretation I, then I |= ��[F] iff

I |= ����[F ′].

Proof. Since F is atomic-tight w.r.t. I, by Corollary 3, I |= ��[F] iff I |= ���[F]. It is

sufficient to show that, for each predicate constant p occurring in F , under the assumption

that F is atomic-tight w.r.t. I,

I |= ∀x
(
p(x)→

∨
p(t′)←B,N∈Π

∃z
(
B ∧N ∧ (x = t′) ∧

∧
p(t)∈B

(t �= x)
))

(3.15)

iff

I |= ∀x
(
p(x)→

∨
p(t′)←B,N∈Π

∃z
(
B ∧N ∧ (x = t′)

))
, (3.16)

where z is the list of all variables in p(t′)← B,N in that are not in x.

Note that (3.15) is equivalent to saying that

I |= ∀x
(
p(x)→

∨
p(t′)←B,N∈Π

∃z
(
B ∧N ∧ (x = t′) ∧

∧
p(t)∈B

(t �= t′)
))

. (3.17)

From the assumption that F is atomic-tight w.r.t. I, it follows that, for any rule p(t′)← B,N

in Π and any atom of p(t) in B, I |= ∀y(t �= t′), where y is the list of all variables in t and

t′ (otherwise we find a singleton loop with a self-cycle, which contradicts that F is atomic

tight w.r.t. I). Consequently, (3.17) is equivalent to (3.16).

For example, let F be the FOL-representation of the program

p(b)← p(a). (3.18)

���[F] is ∀x(p(x) → x = b ∧ p(a) ∧ x �= a), while ����[F] is ∀x(p(x) ↔ x = b ∧ p(a)).

The additional conjunctive term x �= a can be dropped when we consider any interpretation

I such that aI �= bI (Such requirement can be syntactically stated if we add a constraint

← a = b to the program). The proof of this fact is given in Section 3.5.

Corollary 4 generalizes Theorem 11 from the work of Ferraris et al. (2011a) by

referring to atomic-tightness in place of tightness. The program (3.18) is not tight, but is

atomic-tight w.r.t. any model of the program.
32

Theorem 2 tells us that one of the limitations of first-order loop formulas is that, even

if infinitely many first-order loop formulas are considered, they cannot ensure the external

support of a certain infinite set that forms an infinite path in the dependency graph of F

w.r.t. I. In the next section, by reformulating ��[F], we show that the definition of ��[F]

essentially encompasses loop formulas, ensuring the external support of any sets of atoms,

including those “difficult” infinite sets.

A Reformulation of ��

As before, let F be a first-order formula of signature σ, let p = (p1, . . . , pn) be the list of

all predicate constants occurring in F , and let u and v be lists of predicate variables of

the same length as p. We define ����F (u) (“Negation of Second-Order External Support

Formula”) recursively as follows.

• ����pi(t)(u) = pi(t) ∧ ¬ui(t);

• ����t1=t2(u) = (t1= t2);

• ����⊥(u) = ⊥;

• ����F∧G(u) = ����F (u) ∧����G(u);

• ����F∨G(u) = ����F (u) ∨����G(u);

• ����F→G(u) = (����F (u)→����G(u)) ∧ (F→G);

• ����∀xF (u) = ∀x����F (u);

• ����∃xF (u) = ∃x����F (u).

Lemma 2 Let F be a rectified sentence of signature σ, I an interpretation of σ, p the list

of predicate constants occurring in F , q a list of predicate names 8 of the same length as p

and Y a set of atoms formed from predicate constants from σ(F) and object names such

that

pi(ξ
�) ∈ Y iff I |= qi(ξ

�),
8Like object names, for every n > 0, each subset of |I|n has a name, which is an n-ary predicate constant

not from the underlying signature.

33

where ξ� is a list of object names. If Y is finite, then

I |= ����F (q) iff I |= ���F (Y).

Proof. By induction on F . We only list the case when F is an atom. The other cases are

straightforward. Let F be an atom pi(ξ
�).

I |= ����F (q)

iff I |= pi(ξ
�) ∧ ¬qi(ξ�)

iff I |= pi(ξ
�) and pi(ξ

�) /∈ Y

iff I |= pi(ξ
�) and for all η� such that pi(η�) ∈ Y, it holds that ξ� �= η�

iff I |= pi(ξ
�) ∧∧

pi(η
�)∈Y ξ� �= η�

iff I |= ���F (Y).

��[F] can be written in terms of ���� as follows. By �����	
�(u) we denote the

formula

∃x1u1(x
1) ∨ · · · ∨ ∃xnun(x

n),

where each xi is a list of distinct variables whose length is the same as the arity of pi.

Proposition 2 For any sentence F , ��[F] is equivalent to

F ∧ ∀u((u ≤ p) ∧ �����	
�(u)→ ¬����F (u)). (3.19)

Now we represent the notion of a loop by a second-order formula. Given a rectified

formula F , by EF (v,u) we denote

∨
(pi(t),pj(t

′)) :

pi(t) depends on pj(t
′) in a rule of F

∃z(vi(t) ∧ uj(t
′) ∧ ¬vj(t′)),

where z is the list of all object variables in t and t′. By ���	F (u) we denote the second-

order formula

�����	
�(u) ∧ ∀v((v < u) ∧�����	
�(v)→ EF (v,u)). (3.20)

34

Formula (3.20) represents the concept of a loop without referring to the notion of a de-

pendency graph explicitly. This is based on the following observation. Consider a finite

propositional program Π. A nonempty set U of atoms that occur in Π is a loop of Π iff, for

every nonempty proper subset V of U , there is an edge from an atom in V to an atom in

U \ V in the dependency graph of Π (Gebser et al., 2006).

Recall the definition of a dependency graph relative to an interpretation. Let F

be a rectified sentence of signature σ, and let I be an interpretation of σ. The following

proposition describes the relationship between formula (3.20) and a loop of F w.r.t. I.

Proposition 3 Let q be a list of predicate names corresponding to p, and let Y be a set of

atoms in the dependency graph of F w.r.t. I such that

pi(ξ
�) ∈ Y iff I |= qi(ξ

�),

where ξ� is a list of object names. Then I |= ����F (q) iff Y is a loop of F w.r.t. I.

One might expect that, similar to the equivalence between conditions (a) and (c)

from Theorem 2, formula ��[F] is equivalent to the following formula:

F ∧ ∀u((u ≤ p) ∧ ����F (u)→ ¬����F (u)). (3.21)

However, the equivalence does not hold in general, as the following example illustrates.

Example 7 Consider the FOL-representation F of the following program

p(x, y)← q(x, z)

q(x, z)← p(y, z),

and an interpretation I whose universe is the set of all nonnegative integers such that

pI = {(m,m) | m is a nonnegative integer},

qI = {(m,m+1) | m is a nonnegative integer}.

Formula F is not bounded w.r.t. I since the dependency graph of F w.r.t. I contains an

infinite path such as

〈p(0�, 0�), q(0�, 1�), p(1�, 1�), q(1�, 2�), . . .〉. (3.22)
35

The interpretation I satisfies every loop formula of every finite loop of F w.r.t. I, but it is not

a stable model.

In the example, what distinguishes the set

{p(0�, 0�), q(0�, 1�), p(1�, 1�), q(1�, 2�), . . . } (3.23)

from a loop is that, for every loop contained in (3.23), there is an outgoing edge in the de-

pendency graph. This is an instance of what we call “unbounded set.” Given a dependency

graph of F w.r.t. I, we say that a nonempty set Y of vertices is unbounded w.r.t. I if, for

every subset Z of Y that is a loop, there is an edge from a vertex in Z to a vertex in Y \ Z.

The following proposition tells us how an unbounded set can be characterized by a

second-order formula.

Proposition 4 Let q be a list of predicate names corresponding to p, and let Y be a set of

atoms in the dependency graph of F w.r.t. I such that

pi(ξ
�) ∈ Y iff I |= qi(ξ

�),

where ξ� is a list of object names. Then

I |= ��������(q) ∧ ∀v((v ≤ q) ∧ 	���F (v)→ EF (v, q))

iff Y is an unbounded set of F w.r.t. I.

In order to check the stability of a model, we need to check the external support

of every loop and every unbounded set. An extended loop of F w.r.t. I is a loop or an

unbounded set of F w.r.t. I. We define ��������F (u) as

����F (u) ∨ (��	
����(u) ∧ ∀v((v ≤ u) ∧ ����F (v)→ EF (v,u))). (3.24)

From Propositions 3 and 4, it follows that I |= ��������F (q) iff Y is an extended loop of F

w.r.t. I.

If we replace ����F (u) with ��������F (u) in (3.21), the formula is equivalent to

�[F], as the following theorem states.
36

Theorem 3 For any rectified sentence F , the following sentences are equivalent to each

other:

(a) ��[F];

(b) F ∧ ∀u((u ≤ p) ∧ ������	
(u)→ ¬����F (u));

(c) F ∧ ∀u((u ≤ p) ∧ ��	
����F (u)→ ¬����F (u)).

In the following example we use the following fact to simplify the formulas.

Proposition 5 For any negative formula F , formula

����F (u)↔ F

is logically valid.

Example 2 (continued) Consider program (3.5) from Example 3:

p(x)← q(x)

q(y)← p(y)

p(z)← ��� r(z).

Let F be the FOL-representation of the program:

∀x
(
q(x)→ p(x)

)
∧ ∀y

(
p(y)→ q(y)

)
∧ ∀z

(
¬r(z)→ p(z)

)
.

1. ��[F] is equivalent to

F ∧ ¬∃u1u2u3((u1, u2, u3) < (p, q, r))∧

∀x(u2(x)→ u1(x)) ∧ ∀y(u1(y)→ u2(y)) ∧ ∀z(¬r(z)→ u1(z))).

2. Formula in Theorem 3 (b):

F ∧ ∀u(u ≤ p ∧��������(u)→ ¬�	
	F (u))

37

is equivalent to

F ∧ ∀u1u2u3((u1, u2, u3) ≤ (p, q, r) ∧ (∃x u1(x) ∨ ∃x u2(x) ∨ ∃x u3(x))

→ ¬(∀x[q(x) ∧ ¬u2(x)→ p(x) ∧ ¬u1(x)]

∧∀y[p(y) ∧ ¬u1(y)→ q(y) ∧ ¬u2(y)]

∧∀z[¬r(z)→ p(z) ∧ ¬u1(z)])).

(3.25)

3. Formula in Theorem 3 (c): Similar to (3.25) except that

∃xu1(x) ∨ ∃xu2(x) ∨ ∃xu3(x)

in (3.25) is replaced with ��������F (u), which is

����F (u) ∨ [(∃xu1(x) ∨ ∃xu2(x) ∨ ∃xu3(x))

∧ ∀v1v2v3(((v1, v2, v3) ≤ (u1, u2, u3)) ∧ ����F (v)

→ (∃x(v1(x) ∧ u2(x) ∧ ¬v2(x)) ∨ ∃y(v2(y) ∧ u1(y) ∧ ¬v1(y))))],

where ����F (u) is

(∃xu1(x) ∨ ∃xu2(x) ∨ ∃xu3(x))

∧ ∀v1v2v3(((∃x v1(x) ∨ ∃x v2(x) ∨ ∃x v3(x)) ∧ (v1, v2, v3) < (u1, u2, u3))

→ (∃x(v1(x) ∧ u2(x) ∧ ¬v2(x)) ∨ ∃y(v2(y) ∧ u1(y) ∧ ¬v1(y)))).

The proof of Theorem 2 follows from Theorem 3 using the following lemma.

Lemma 3 Let F be a rectified sentence of signature σ (possibly containing function con-

stants of positive arity), and let I be an interpretation of σ that satisfies F . If F is bounded

w.r.t. I,

I |= ∃u(u ≤ p ∧ ��������F (u) ∧ �	�	F (u))

iff there is a finite loop Y of F w.r.t. I such that

I |=
(∧

Y ∧ ��	F (Y)
)
.

3.3 Representing First-Order Stable Model Semantics by First-Order Loop Formulas

We noted in the previous section that if a sentence is bounded w.r.t. a model, then loop

formulas can be used to check the stability of the model. In this section, we provide a few

syntactic counterparts of the boundedness condition.
38

Bounded Formulas

We say that a rectified formula F is bounded if every infinite path in the first-order depen-

dency graph of F visits only finitely many vertices. If F is bounded, then, clearly, every loop

of F is finite. Again, the definition is extended to a non-rectified formula by first rewriting it

as a rectified formula. It also applies to a program by referring to its FOL-representation.

One might wonder if the syntactic notion of boundedness ensures the semantic

notion of boundedness: that is, if a formula is bounded, then it is bounded w.r.t. any inter-

pretation. However, the following example tells us that this is not the case in general.

Example 8 Consider the FOL-representation F of the following program

p(a)← q(x)

q(x)← p(b),
(3.26)

and an interpretation I whose universe |I| is the set of all nonnegative integers, aI = bI =

0, pI = {0} and qI = |I|. Formula (3.26) is bounded according to the above definition, but

not bounded w.r.t. I: the dependency graph of F w.r.t. I contains an infinite path such as

〈p(0�), q(1�), p(0�), q(2�), . . . 〉.

Bounded Formulas and Clark’s Equational Theory

On the other hand, such a relationship holds if the interpretation satisfies Clark’s equational

theory (1978). Clark’s equational theory of a signature σ, denoted by CET σ, is the union

of the universal closures of the following formulas

f(x1, . . . , xm) �= g(y1, . . . , yn), (3.27)

for all pairs of distinct function constants f , g,

f(x1, . . . , xn) = f(y1, . . . , yn)→ (x1 = y1 ∧ . . . ∧ xn = yn), (3.28)

for all function constants f of arity > 0, and

t �= x, (3.29)

where t is any term which contains the variable x.
39

Proposition 6 If a rectified formula F of signature σ is bounded, then F is bounded w.r.t.

any interpretation of σ that satisfies CET σ.

The following lemma relates loops and loop formulas of different notions of depen-

dency graphs.

Proposition 7 For any rectified sentence F of signature σ and for any interpretation I of σ

that satisfies CET σ, I is a model of

{��F (Y) | Y is a finite first-order loop of F}

iff I is a model of

{��F (Y) | Y is a finite loop of F w.r.t. I}.

The following theorem follows from Theorem 2, Proposition 6 and Proposition 7.

Theorem 4 Let F be a rectified sentence of signature σ (possibly containing function con-

stants of positive arity), and let I be an interpretation of σ that satisfies F and CET σ. If F

is bounded, then the following conditions are equivalent to each other:

(a) I |= ��[F];

(b) for every nonempty finite set Y of atoms of σ(F), I satisfies ��F (Y);

(c) for every finite first-order loop Y of F , I satisfies ��F (Y).

Proof. By Proposition 6, if F is bounded then F is bounded w.r.t. any interpretation that

satisfies CET σ. Then the equivalence between (a) and (b) follows from the equivalence

between (a) and (b) of Theorem 2. The equivalence between (a) and (c) follows from the

equivalence between (a) and (c) of Theorem 2 and by Proposition 7.

As every Herbrand interpretation of σ satisfies CET σ, Theorem 4 applies to Her-

brand interpretations as a special case.

40

The theorem also applies to logic programs, since they can be viewed as a special

case of formulas. For example, consider the following program, which is bounded.

p(f(x))← q(x)

q(x)← p(x), r(x)

p(a)

r(a)

r(f(a)).

(3.30)

The set {p(a), p(f(a)), p(f(f(a))), q(a), q(f(a)), r(a), r(f(a))} is an answer set of (3.30).

In accordance with Theorem 4, it is also the Herbrand interpretation of the signature ob-

tained from the program that satisfies the FOL-representation of (3.30) and the loop formu-

las, which are the universal closures of

p(z)→ (q(x) ∧ z = f(x)) ∨ z = a

q(z)→ p(z) ∧ r(z)

r(z)→ z = a ∨ z = f(a).

Consider another example program by Bonatti (2004), where a, . . . , z, nil are object

constants.

������(a)

. . .

������(z)

�����	([x])← ������(x)

�����	([x|y])← ������(x), �����	(y).

(3.31)

The expression [x|y] is a list whose head is x and whose tail is y, which stands for a function

	�
�(x, y). The expression [x] stands for 	�
�(x, nil) where nil is a special symbol for the

empty list. This program is bounded. The only answer set of the program is the only

Herbrand interpretation of the FOL-representation of (3.31) and the universal closures of

������(u)→ u = a ∨ . . . ∨ u = z

�����	(u)→ ∃v (������(v) ∧ u = 	�
�(v, nil))

∨ ∃xy (������(x) ∧ �����	(y) ∧ y �= u ∧ u = 	�
�(x, y)).

41

In fact, the definitions of standard list processing predicates, such as member, append, and

reverse (Bonatti, 2004, Figure 1) are bounded, so they can be represented by first-order

formulas on Herbrand interpretations.9

We say that a formula F is atomic-tight if the first-order dependency graph of F

has no infinite paths. Similar to Proposition 6, if F is atomic-tight, then F is atomic-tight

w.r.t. any interpretation that satisfies CET σ, so that the following statement follows from

Corollary 3.

Corollary 5 Let F be a rectified sentence of signature σ (possibly containing function con-

stants of positive arity), and let I be an interpretation of σ that satisfies CET σ. If F is

atomic-tight, then I satisfies ��[F] iff I satisfies ���[F].

Corollary 5 is an enhancement of Theorem 11 from the work of Ferraris et al. (2011a),

which essentially says that, for any tight sentence F , ��[F] is equivalent to the set of for-

mulas in (3.13). (Tight sentences are defined in a similar way (Ferraris et al., 2011a), but

in terms of a predicate dependency graph, whose vertices are predicate constants instead

of atoms.) Note that every tight sentence is atomic-tight, but the converse is not true. For

example, the FOL-representations of programs (3.30) and (3.31) are atomic-tight, but are

not tight.

The statement of Corollary 5 is restricted to interpretations that satisfy CET σ. In-

deed, the statement becomes wrong if this restriction is dropped. For example, program

(3.26) in Example 8 is atomic-tight, but the non-stable model considered there satisfies all

loop formulas, including those of singleton loops.

Bounded Formulas and Normal Form

Normal form is another syntactic condition that the syntactic notion of boundedness ensures

the semantic notion of boundedness. We say that a formula is in normal form if every strictly

positive occurrence of an atom is of the form p(x), where x is a list of distinct variables. It

is clear that every formula can be turned into normal form using equality.

9They actually satisfy a stronger condition called “finitely recursive” (Bonatti, 2004). See Section 3.6 for
more details.

42

Proposition 8 If a rectified formula F in normal form is bounded, then F is bounded w.r.t.

any interpretation.

Proposition 9 If a rectified sentence F in normal form is bounded, then for any interpreta-

tion I, I is a model of

{��F (Y) | Y is a finite first-order loop of F}

iff I is a model of

{��F (Y) | Y is a finite loop of F w.r.t. I}.

The following theorem follows from Theorem 2, Proposition 8 and Proposition 9.

Theorem 5 Let F be a rectified sentence in normal form (possibly containing function con-

stants of positive arity). If F is bounded, then the following formulas are equivalent to each

other:

(a) ��[F];

(b) {F} ∪ {��F (Y) | Y is a nonempty finite set of atoms of σ(F)};

(c) {F} ∪ {��F (Y) | Y is a finite first-order loop of F}.

Proof. By Proposition 8, if F is bounded then F is bounded w.r.t. any interpretation I.

Then the equivalence between (a) and (b) follows from the equivalence between (a) and (b)

of Theorem 2. The equivalence between (a) and (c) follows from the equivalence between

(a) and (c) of Theorem 2 and by Proposition 9.

Consider a program in normal form

p(x)← x = a, q(a)

q(y)← p(b)
(3.32)

and an interpretation I such that |I| = {1}, aI = bI = 1 and pI = qI = {1}. This

interpretation does not satisfy Clark’s equational theory, and is not a stable model. In

43

accordance with Theorem 5, I does not satisfy the loop formula of the loop {p(b), q(a)},

which is

p(b) ∧ q(a)→ (b = a ∧ q(a) ∧ a �= a) ∨ (p(b) ∧ b �= b).

On the other hand, consider another program in non-normal form that has the same

stable models as (3.32):

p(a)← q(a)

q(y)← p(b)
(3.33)

Program (3.33) has a finite complete set of loops, {{p(z)}, {q(z)}}; their loop formulas are

the universal closures of

p(z)→ z = a ∧ q(a)

q(z)→ p(b)

and I satisfies all loop formulas. This example illustrates the role of normal form assumption

in Theorem 5 (in place of Clark’s equational theory in Theorem 4).

Note that a normal form conversion may turn a bounded sentence into a non-

bounded sentence. For instance, a normal form of the bounded program (3.30) is

p(y)← y = f(x), q(x)

q(x)← p(x), r(x)

p(x)← x = a

r(x)← x = a

r(x)← x = f(a),

(3.34)

which is not bounded.

Unlike in Corollary 5, if a program is in normal form, atomic-tightness is not more

general than tightness. It is not difficult to check that a program in normal form is atomic-

tight iff it is tight.

Decidability of Boundedness and Finite Complete Set of Loops

In general, checking whether F is bounded is not decidable, but it becomes decidable if F

contains no function constants of positive arity. The same is the case for checking whether

F is atomic-tight.

44

Proposition 10 For any rectified sentence F (allowing function constants of positive arity),

(a) checking whether F is bounded is not decidable;

(b) checking whether F is atomic-tight is not decidable.

If F contains no function constants of positive arity,

(c) checking whether F is bounded is decidable;

(d) checking whether F is atomic-tight is decidable.

The proof of Proposition 10 (c) is based on the following fact and the straightforward

extension of Theorem 2 by Chen et al. (2006) to first-order formulas, which asserts that

checking if F has a finite complete set of loops is decidable.

Proposition 11 For any rectified formula F that contains no function constants of positive

arity, F is bounded iff F has a finite complete set of loops.

Note that Proposition 11 does not hold if F is allowed to contain function constants

of positive arity. For instance,

p(x)← p(f(x))

is not bounded, but has a finite complete set of loops {{p(x)}}.

The following corollary follows from Theorem 4 and Proposition 11.

Corollary 6 Let F be a rectified sentence of signature σ that has no function constants of

positive arity, and let I be an interpretation of σ that satisfies F and CET σ. If F has a finite

complete set of loops, then conditions (a), (b), and (c) of Theorem 4 are equivalent to each

other.

The following corollary follows from Theorem 5 and Proposition 11.

45

Corollary 7 Let F be a rectified sentence in normal form that has no function constants

of positive arity. If F has a finite complete set of loops, formulas in (a), (b), and (c) of

Theorem 5 are equivalent to each other.

Semi-Safe Formulas

Semi-safety is another decidable syntactic condition that ensures that ��[F] can be ex-

pressed by first-order sentences.

We assume that there are no function constants of positive arity. According to Lee,

Lifschitz, and Palla (2009), a semi-safe sentence has the “small predicate property”: the

relation represented by any of its predicate constants p can hold for a tuple of arguments

only if each member of the tuple is represented by an object constant occurring in F . We

will show that any semi-safe sentence under the stable model semantics can be turned into

a sentence in first-order logic.

First, we review the notion of semi-safety by Lee et al. (2009).10 As a preliminary

step, we assign to every rectified formula F a set��(F) of its restricted variables as follows:

• For an atomic formula F ,

– if F is an equality between two variables, then ��(F) = ∅;

– otherwise, ��(F) is the set of all variables occurring in F ;

• ��(G ∧H) = ��(G) ∪ ��(H);

• ��(G ∨H) = ��(G) ∩ ��(H);

• ��(G→ H) = ∅;

• ��(QvG) = ��(G) \ {v} where Q ∈ {∀, ∃}.

We say that a variable x is restricted in a quantifier-free formula F if x ∈ ��(F). F

is semi-safe if every strictly positive occurrence of every variable x belongs to a subformula

G→ H where x is restricted in G.

10The definition here is slightly more general in that it does not refer to prenex form. Instead we require a
formula to be rectified.

46

If a sentence has no strictly positive occurrence of a variable, then it is obviously

semi-safe. The FOL-representation of a disjunctive program is semi-safe if, for each rule (3.8)

of the program, every variable occurring in the head of the rule occurs in B as well.

Example 9 The FOL-representation of (3.6) is not semi-safe. Formula

p(a) ∧ q(b) ∧ ∀xy((p(x) ∨ q(y))→ p(y))

is not semi-safe, while

p(a) ∧ q(b) ∧ ∀xy((p(x) ∧ q(y))→ p(y)) (3.35)

is semi-safe.

For any finite set c of object constants, ��c(x) stands for the formula

∨
c∈c

x = c.

The small predicate property can be expressed by the conjunction of the sentences

∀v1, . . . , vn
(
p(v1, . . . , vn)→

∧
i=1,...,n

inc(vi)
)

for all predicate constants p occurring in F , where v1, . . . , vn are distinct variables. We

denote this conjunction of the sentences by ���c. By c(F) we denote the set of all object

constants occurring in F .

Proposition 12 (Lee et al., 2009) For any semi-safe sentence F , formula ��[F] entails

���c(F).

For example, for the semi-safe sentence (3.35), ��[(3.35)] entails

∀x
(
p(x)→ (x = a ∨ x = b)) ∧ ∀x(q(x)→ (x = a ∨ x = b)

)
. (3.36)

The following proposition tells us that for a semi-safe sentence F , formula ��[F]

can be equivalently rewritten as a first-order sentence.

47

Theorem 6 Let F be a rectified sentence that has no function constants of positive arity.

If F is semi-safe, then ��[F] is equivalent to the conjunction of F , ���c(F) and a finite

number of first-order loop formulas.

Proof. If F is semi-safe, then ��[F] entails ���c(F). So it is sufficient to prove that under

the assumption ���c(F), ��[F] is equivalent to the conjunction of F and a finite number

of first-order loop formulas. It follows from I |= ���c(F) that F is bounded w.r.t. I. Since

every finite loop of F w.r.t. I can be represented by a finite set of atoms whose terms are

object variables, it follows from Theorem 2 that I satisfies ��[F] iff I satisfies the loop

formulas of those sets.

For example, ��[(3.35)] is equivalent to the conjunction of F , (3.36) and the uni-

versal closures of

p(z) → z = a ∨ (p(x) ∧ q(z) ∧ z �= x)

q(z) → z = b

Note that the condition on a finite complete set of loops in Corollaries 6 and 7, and

the condition on semi-safety in Theorem 6 do not entail each other. For instance, formula

(3.35) is semi-safe, but has no finite complete set of first-order loops, while ∃x p(x) has a

finite complete set of loops {{p(x)}}, but it is not semi-safe. Also program (3.1) has a finite

complete set of loops, but it is not semi-safe due to w in the fourth rule.

3.4 Programs with Explicit Quantifiers

In the following we extend the syntax of a logic program by allowing explicit quantifiers. A

rule with quantifiers is of the form

H ← G, (3.37)

where G and H are first-order formulas such that every occurrence of every implication

in G and H belongs to a negative formula. A program with quantifiers is a finite set of rules

with quantifiers. The semantics of such a program is defined by identifying the program

with its FOL-representation under the stable model semantics. By restricting the syntax of

a program like the one above, in comparison with the syntax of an arbitrary formula, we are

able to write a more succinct loop formulas, as we show below.

48

Let F be a formula and Y a finite set of atoms. By FY we denote the formula

obtained from F by replacing every occurrence of every atom p(t) in F that does not belong

to a negative formula with p(t)∧∧p(t′)∈Y t �= t′. Let Π be a program with quantifiers. Given

a finite set Y of atoms of σ(Π), we first rename variables in Π so that no variables in Π

occur in Y . We define the formula ���Π(Y) (“External Support Formula for Programs with

Quantifiers”) to be the disjunction of

∃z(GY ∧ ¬HY) (3.38)

for every rule (3.37) such that H contains a strictly positive occurrence of a predicate con-

stant that occurs in Y , and z is the list of all free variables in the rule that do not occur

in Y .

The loop formula of Y for Π is the universal closure of∧
Y → ���Π(Y). (3.39)

The following proposition tells us that (3.39) is equivalent to (3.10) when the notions

are applied to a program with explicit quantifiers. It also shows that (3.39) is a generalization

of the definition of a loop formula for a disjunctive program.

Proposition 13 Let Π be a program with quantifiers, F the FOL-representation of Π, and

Y a finite set of atoms. Under the assumption Π, formula ���Π(Y) is equivalent to

¬���F (Y). If Π is a disjunctive program in normal form, then ���Π(Y) is also equiv-

alent to ��Π(Y) under the assumption Π.

Note that the size of (3.39) for each Y is polynomial to the size of the given program.

This is not the case when we apply (3.10) to the FOL-representation of the program, due to

the expansion of ��� for nested implications. On the other hand, the syntactic condition

imposed on the rule with quantifiers avoids such an exponential blow up, as the following

lemma tells us.

Lemma 4 Let F be a formula such that every occurrence of an implication in F belongs to

a negative formula and let Y be a set of atoms. ���F (Y) is equivalent to FY .
49

Proof. By induction on F .

Example 3 (continued) Under the assumption Π,

• ��Π(Y1) is equivalent to the universal closure of

p(u)→ (∃x(q(x) ∧ ¬(p(x) ∧ x �= u)) ∨ ∃z(¬r(z) ∧ ¬(p(z) ∧ z �= u))).

• ��Π(Y2) is equivalent to the universal closure of

q(u)→ ∃y(p(y) ∧ ¬(q(y) ∧ y �= u)).

• ��Π(Y3) is equivalent to the universal closure of

r(u)→ ⊥.

• ��Π(Y4) is equivalent to the universal closure of

(p(u) ∧ q(u))→ (∃x((q(x) ∧ x �= u) ∧ ¬(p(x) ∧ x �= u))

∨ ∃y((p(y) ∧ y �= u) ∧ ¬(q(y) ∧ y �= u))

∨ ∃z(¬r(z) ∧ ¬(p(z) ∧ z �= u))).

A finite set Γ of sentences entails a sentence F under the stable model semantics

(symbolically, Γ |=�� F), if every stable model of Γ satisfies F .

If ��[F] can be reduced to a first-order sentence, as described in Theorem 5 and

Theorem 6, then

Γ |=�� F iff Γ ∪Δ |= F,

where Δ is the set of first-order loop formulas required (and possibly including ���c(F)

when Theorem 6 is applied). This fact allows us to use first-order theorem provers to

reason about query entailment under the stable model semantics.

Example 10 Consider program (3.1), which has the following finite complete set of loops:

{���(u)}, {�����	(u, v)}, {
����
	(u)}, {�����	�(u)}, {�����	��(u, v)}, {��������(u, v)},
50

and {�������(u),��		��
(u)}. Their loop formulas for Π1 ∪Π2 ∪Π3 are equivalent to the

universal closure of

���(u)→ ¬
(
���(John) ∧ John �= u

)
;

�
����(u, v)→ ¬
(
∃y

(
�
����(John, y) ∧ (John, y) �= (u, v)

))
;

�������(u)→ ∃x
(
∃y �
����(x, y) ∧ ¬(�������(x) ∧ x �= u)

)
∨ ∃x

(
���(x) ∧��		��
(x) ∧ ¬(�������(x) ∧ x �= u)

)
;

��		��
(u)→ ∃x
(
���(x) ∧ �������(x) ∧ ¬(��		��
(x) ∧ x �= u)

)
;

����
���(u, v)→ ⊥;

��������(u, v)→

∃x
(
��		��
(x) ∧ ¬∃z����
���(x, z) ∧ ¬(∃w(��������(x,w) ∧ (x,w) �= (u, v)))

)
;

��		��
(u) ∧ �������(u)→

∃x
(
∃y �
����(x, y) ∧ ¬(�������(x) ∧ (x �= u))

)
∨ ∃x

(
���(x) ∧��		��
(x) ∧ x �= u ∧ ¬(�������(x) ∧ x �= u)

)
∨ ∃x

(
���(x) ∧ �������(x) ∧ x �= u ∧ ¬(��		��
(x) ∧ x �= u)

)
.

These loop formulas, conjoined with the FOL-representation of Π1 ∪ Π2 ∪ Π3, entail under

first-order logic each of ∃x ��		��
(x) and ∀xy(��������(x, y)→ x = ����). We verified

the answers using a first-order theorem prover Vampire 11.

3.5 Extension to Allow Extensional Predicates

The results in the earlier sections can be extended to distinguish between intensional and

non-intensional (a.k.a. extensional) predicates in view of Proposition 14 below, which

characterizes ��[F ;p] in terms of ��[F]. By ��(F) we denote the list of all predicate

constants occurring in F ; by ����	
(p) we denote the conjunction of “choice formulas”

11http://www.vampire.fm .

51

∀x(p(x) ∨ ¬p(x)) for all predicate constants p in p, where x is a list of distinct object vari-

ables; by �����(p) we denote the conjunction of ∀x¬p(x) for all predicate constants p in p.

We sometimes identify a list with the corresponding set when there is no confusion.

Proposition 14 For any list p of predicate constants, formula ��[F ;p] is equivalent to

��[F ∧ ������(
(F)\p) ∧ ��
��(p\	
(F))] (3.40)

and to

��[F¬¬ ∧ ������(
(F)\p) ∧ ��
��(p\	
(F))], (3.41)

where F¬¬ is obtained from F by replacing every atom of the form q(t) in F such that q

does not belong to p by ¬¬q(t).

This proposition allows us to extend the results established for ��[F] to ��[F ;p].

For instance, Theorem 3 can be extended to ��[F ;p] by first rewriting it into the form

��[G], where G is

F¬¬ ∧ �	
���(
�(F)\p) ∧ �����(p\
�(F)). (3.42)

In the next three corollaries, σ is a signature, F is a rectified sentence of σ (possibly

containing function constants of positive arity), p is any finite list of predicate constants from

σ, and G is (3.42).

The first corollary follows from Theorem 2 and Proposition 14.

Corollary 8 For any interpretation I of σ that satisfies F , if G is bounded w.r.t. I, then the

following conditions are equivalent to each other:

(a) I |= ��[F ;p];

(b) for every nonempty finite set Y of atoms formed from predicate constants in p and

object names for |I|, I satisfies ��F (Y);

(c) for every finite loop Y of G w.r.t. I whose predicate constants are contained in p, I

satisfies ��F (Y).
52

The next corollary follows from Theorem 4 and Proposition 14.

Corollary 9 If G is bounded, then, for any interpretation I of σ that satisfies F and CET σ,

the following conditions are equivalent to each other:

(a) I |= ��[F ;p];

(b) for every nonempty finite set Y of atoms of σ(G) whose predicate constants are

contained in p, I satisfies ��F (Y);

(c) for every finite first-order loop Y of G whose predicate constants are contained in p,

I satisfies ��F (Y).

The last corollary follows from Theorem 5 and Proposition 14.

Corollary 10 If G is in normal form and is bounded, then the following formulas are equiv-

alent to each other:

(a) ��[F ;p];

(b) {F}∪{��F (Y) | Y is a nonempty finite set of atoms of σ(G) whose predicate constants are contained in p

(c) {F}∪{��F (Y) | Y is a finite first-order loop of G whose predicate constants are contained in p}.

Example 11 Consider Example 10 again, assuming that ��� and ���	
� are extensional.

Let F be the FOL-presentation of Π1 ∪ Π2 ∪ Π3 and let G be the formula (3.42). The loops

of G are the same as the loops of F . The loop formulas remain the same as before except

for the following loop formulas of ���(u) and ���	
�(u, v):

���(u)→ ¬
(
���(John) ∧ John �= u

)
∨ ∃x¬

(
(���(x) ∧ x �= u) ∨ ¬���(x)

)
;

���	
�(u, v)→ ¬
(
∃y

(
���	
�(John, y) ∧ (John, y) �= (u, v)

))
∨

∃xy ¬
(
(���	
�(x, y) ∧ (x, y) �= (u, v)) ∨ ¬���	
�(x, y)

)
.

These two formulas are tautologies. As a result, the loop formulas of all loops, conjoined

with G, entail ∃xy�

��	��(x, y), but no longer entail ∀xy (�

��	��(x, y)→ x = ����).
53

In general, there are no loops of G that contain both intensional and extensional

predicates. Also every loop of G that contains an extensional predicate is a singleton, and

the loop formula of such a loop is a tautology.

Corollary 3 is extended to allow extensional predicates as in the following. By

���[F ;p], we mean the conjunction of F with all loop formulas in

{��F ({p(x)}) | p is a predicate constant in p, and x is a list

of distinct object variables whose length is the same as the arity of p}.

We say that a formula F is p-atomic-tight w.r.t. I if every infinite path in the de-

pendency graph of F w.r.t. I whose vertices are satisfied by I contains an atom whose

predicate constant is not in p.

Corollary 11 Let F be a rectified sentence (possibly containing function constants of posi-

tive arity), and let I be a model of F . If F is p-atomic-tight w.r.t. I, then I satisfies ��[F ;p]

iff I satisfies ���[F ;p].

The definition of semi-safety is extended to distinguish between intensional and

non-intensional predicates as follows. Let F be a formula that has no function constants of

positive arity. To every first-order formula F we assign a set ��p(F) of restricted variables

relative to p as follows.

• For an atomic formula F (including equality and ⊥),

– if F is an equality between two variables, or is an atom whose predicate constant

is not in p, then ��p(F) = ∅;

– otherwise, ��p(F) is the set of all variables occurring in F ;

• ��p(G ∧H) = ��p(G) ∪ ��p(H);

• ��p(G ∨H) = ��p(G) ∩RVp(H);

• ��p(G→ H) = ∅.

• ��p(QvG) = ��p(G) \ {v} where Q ∈ {∀, ∃}.
54

We say that a variable x is p-restricted in a first-order formula F if x ∈ ��p(F). We

say that F is semi-safe relative to p if every strictly positive occurrence of every variable x

belongs to a subformula G→ H , where x is p-restricted in G.

The small predicate property is generalized as follows. Formula ���p
c is the con-

junction of the sentences

∀v1, . . . , vn
(
p(v1, . . . , vn)→

∧
i=1,...,n

inc(vi)
)

for all predicate constants p in p, where v1, . . . , vn are distinct variables.

Proposition 15 (Lee et al., 2009) For any semi-safe sentence F relative to p, formula

��[F ;p] entails ���p
c(F).

The following proposition tells us that for a semi-safe sentence F , formula ��[F ;p]

can be equivalently rewritten as a first-order sentence.

Theorem 7 Let F be a rectified sentence that has no function constants of positive arity. If

F is semi-safe relative to p, then ��[F ;p] is equivalent to the conjunction of F , ���p
c(F)

and a finite number of first-order loop formulas.

Proof. Let F be a sentence of the signature σ. If F is semi-safe relative to p, then

��[F ;p] entails ���p
c(F), so it is sufficient to prove that under the assumption ���p

c(F),

��[F ;p] is equivalent to the conjunction of F and a finite number of first-order loop for-

mulas. By Proposition 14, ��[F ;p] is equivalent to ��[G], where G is (3.42). Consider

any interpretation I of σ that satisfies G and ���p
c(F). Note that the dependency graph

of G w.r.t. I contains no outgoing edges from a vertex whose predicate constant does not

belong to p. Together with the fact that I |= ���
p
c(F), we conclude that each path in the

dependency graph whose vertices are satisfied by I visits only finitely many vertices. Con-

sequently, G is bounded w.r.t. I. Since every finite loop of G w.r.t. I can be represented

by a finite set of atoms whose terms are object variables, it follows from Theorem 2 that I

satisfies ��[G] iff I satisfies the loop formulas of those sets.

55

3.6 Related Work

The notion of a bounded program is related to the notion of a finitely recursive program

studied by Bonatti (2004), where a different definition of a dependency graph was consid-

ered. The atom dependency graph of a nondisjunctive ground program defined in (Bonatti,

2004) is a directed graph such that the vertices are the set of ground atoms, and the edges

go from the atom in the head to atoms in the body of every rule, including those in the

negative body. A program is called finitely recursive if, for every atom, there are only finitely

many atoms reachable from it in the atom dependency graph. It is clear that every finitely

recursive program is bounded, but the converse does not hold. For instance, the program

p(x)← ��� p(f(x))

is bounded, but is not finitely recursive because there are infinite paths that involve negative

edges. Also the program

p(a)← q(f(x))

is bounded, but is not finitely recursive because infinitely many atoms q(f(a)), q(f(f(a))), . . .

can be reached from p(a) in the atom dependency graph. Like bounded programs, checking

finitely recursive programs is undecidable in the presence of function constants of positive

arity.

Lin and Wang (2008) extended answer set semantics with functions by extending

the definition of a reduct, and also provided loop formulas for such programs. We can

provide an alternative account of their results by considering the notions there as special

cases of our definitions. For simplicity, we assume non-sorted languages.12 Essentially,

they restricted attention to a special case of non-Herbrand interpretations such that object

constants form the universe, and ground terms other than object constants are mapped to

object constants. According to Lin and Wang, an LW-program P consists of type definitions

and a set of rules. Type definitions introduce the domains for a many-sorted signature con-

sisting of some object constants, and includes the evaluation of each function symbol of

positive arity that maps a list of object constants to an object constant. Since we assume
12Lin and Wang (2008) considers essentially many-sorted languages. The result of this section can be

extended to that case by considering many-sorted �� (Kim, Lee, & Palla, 2009).

56

non-sorted languages, we consider only a single domain (universe). We say that an inter-

pretation I is a P -interpretation if the universe is the set of object constants specified by P ,

object constants are evaluated to itself, and ground terms other than object constants are

evaluated conforming to the type definitions of P .

Proposition 16 Let P be an LW-program and let F be the FOL-representation of the set of

rules in P . The following conditions are equivalent to each other:

(a) I is an answer set of P according to (Lin & Wang, 2008);

(b) I is a P -interpretation that satisfies ��[F];

(c) I is a P -interpretation that satisfies F and the loop formulas of Y for all loops Y of F

w.r.t. I.

The equivalence between (b) and (c) follows from Proposition 2 since the universe

is finite. The equivalence between (a) and (c) follows from the fact that LW answer sets can

be characterized by loop formulas that are defined by Lin and Wang (2008) and that these

loop formulas are essentially the same as the loop formulas in (c).

Since the proposal of the first-order stable model semantics, there have been some

papers about first-order definability of ��[F]. Zhang and Zhou (2010) show that, for a

nondisjunctive program Π that has no function constants of positive arity, its first-order sta-

ble model semantics can be reformulated by a progression based semantics. They also

showed that the programs whose answer sets can be found by a finite progression are ex-

actly those that can be represented by first-order formulas. Some researchers have paid

special attention to first-order definability of ��[F] on finite structures. Chen, Zhang, and

Zhou (2010) show a game-theoretic characterization for the first-order indefinability of first-

order answer set programs on finite structures. Asuncion, Lin, Zhang, and Zhou (2010)

show first-order definability on finite structures by turning programs into modified comple-

tion using new predicates to record levels. Chen, Lin, Zhang, and Zhou (2011) present a

condition called “loop-separable,” which is more refined than finite complete set of loops

under which the finite answer sets of a program can be captured by first-order sentences.
57

However, like the condition of finite complete set of loops, this condition is disjoint with

semi-safety. The following program is semi-safe but not loop-separable:

p(x)← p(y), q(x, y).

However, all this work is limited to nondisjunctive programs that contain no function con-

stants of positive arity. Our work is not limited to finite structures, and considers function

constants of positive arity as well. Nonetheless the above papers on first-order definability

are closely related to our work and more insights would be gained from the relationship

between them.

The use of first-order theorem provers for the stable model semantics was already

investigated by Sabuncu and Alpaslan (2007), but their results are limited in several ways.

They considered nondisjunctive logic programs with “trivial” loops only, in which case the

stable model semantics is equivalent to the completion semantics. They also restricted

attention to Herbrand models.

3.7 Conclusion

This chapter relates first-order logic and first-order stable model semantics via first-order

loop formulas. We identify three decidable conditions under which the formulas under

the first-order stable model semantics can be represented by formulas in first-order logic.

The discovered relationship provides useful insights into first-order reasoning with stable

models. This allows us to compute non-Herbrand stable models using first-order theorem

provers.

58

3.8 Proofs

The proofs are presented in the order of dependencies. Theorem 3 is the main theorem.

The proof of Theorem 2 uses Theorem 3. The proofs of Theorems 4 and 5 follow from

Theorem 2. The proof of Lemma 1 follows from Proposition 13.

In the following, unless otherwise noted, F is a rectified first-order sentence, p is

the list of distinct predicate constants p1, . . . , pn occurring in F , symbols u, v are lists of

distinct predicate variables of the same length as p, and symbols q, r are lists of distinct

predicate names of the same length as p.

Proof of Theorem 3

Theorem 3 For any rectified sentence F , the following sentences are equivalent to each

other:

(a) ��[F];

(b) F ∧ ∀u((u ≤ p) ∧ ������	
(u)→ ¬����F (u));

(c) F ∧ ∀u((u ≤ p) ∧ ��	
����F (u)→ ¬����F (u)).

The notation that we use in the proof involves predicate expressions (Lifschitz,

1994, Section 3.1) of the form

λxF (x), (3.43)

where F (x) is a formula. If e is (3.43) and G(p) is a formula containing a predicate constant

p of the same arity as the length of x then G(e) stands for the result of replacing each

atomic part of the form p(t) in G(p) with F (t), after renaming the bound variables in G(p)

in the usual way, if necessary. For instance, if G(p) is p(a) ∨ p(b) then G(λy(x = y)) is

x = a ∨ x = b. Substituting a tuple e of predicate expressions for a tuple p of predicate

constants is defined in a similar way.

Lemma 5 Let v be the list of λyi(pi(y
i) ∧ ¬ui(yi)). The following formulas are logically

valid:
59

• u ≤ p→ (F ∗(u)↔ ����F (v));

• u ≤ p→ (F ∗(v)↔ ����F (u)).

Proof. By induction.

Proof of Equivalence between (a) and (b) of Theorem 3

It is sufficient to show that

∃u(u < p ∧ F ∗(u))

is equivalent to

∃v(v ≤ p ∧��������(v) ∧�	
	F (v)).

From left to right: Take u such that u<p∧F ∗(u). Let v be the list of λyi(pi(y
i) ∧ ¬ui(yi)).

• Clearly, v ≤ p holds.

• From u < p, it follows that there are x and i such that pi(x) ∧ ¬ui(x), from which∨
i ∃xivi(x

i) follows, so that ��������(v) follows.

• By Lemma 5, �	
	F (v) follows from u < p and F ∗(u).

From right to left: Take v such that v ≤ p ∧ ��������(v) ∧ �	
	F (v). Let u be the list

of λyi(pi(y
i) ∧ ¬vi(yi)).

• Clearly, u ≤ p holds. Moreover ¬(u = p) holds. Indeed, if u = p, then ∀xi¬vi(xi)

follows, which contradicts the assumption ��������(v). Consequently, u < p fol-

lows.

• By Lemma 5, F ∗(u) follows from v ≤ p and �	
	F (v).

60

Proof of Proposition 3

Lemma 6 Let I be an interpretation of σ that contains σ(F), and let q, r be lists of predicate

names corresponding to p. Let Z and Y be sets of atoms in the dependency graph of F

w.r.t. I such that

pi(ξ
�) ∈ Y iff I |= qi(ξ

�)

and

pi(ξ
�) ∈ Z iff I |= ri(ξ

�),

where ξ� is a list of object names. Then

I |= r ≤ q ∧ EF (r, q)

iff Z is a subset of Y and there is an edge from an atom in Z to an atom in Y \ Z in the

dependency graph of F w.r.t. I.

Proof. From left to right: Assume I |= r ≤ q ∧EF (r, q). The fact that Z is a subset of Y

follows from the assumption that I |= r ≤ q and the construction of Z and Y . Since

I |=
∨

(pi(t),pj(t
′)) : pi(t) depends on pj(t

′)
in a rule of F

∃z(ri(t) ∧ qj(t
′) ∧ ¬rj(t′)),

where z is the list of all object variables in t and t′, there is a substitution θ that maps object

variables in t and t′ to object names such that

I |=
∨

(pi(t),pj(t
′)) : pi(t) depends on pj(t

′)
in a rule of F

ri(tθ) ∧ qj(t
′θ) ∧ ¬rj(t′θ).

Consequently, there are atoms pi(t), pj(t′) such that pi(t) depends on pj(t
′) in a rule of F

and I |= ri(tθ)∧qj(t′θ)∧¬rj(t′θ). From I |= ri(tθ) and the construction of Z, it follows that

pi(((tθ)
I)�) belongs to Z. Also from I |= qj(t

′θ)∧¬rj(t′θ), it follows that that pj(((t′θ)I)�)

belongs to Y \Z. Therefore, there is an edge from an atom in Z to an atom in Y \Z in the

dependency graph of F w.r.t. I.

From right to left: Assume that Z is a subset of Y and there is an edge from an atom pi(ξ
�)

in Z to an atom pj(η
�) in Y \ Z in the dependency graph of F w.r.t. I. Clearly, I |= r ≤ q.

61

From the assumption that pi(ξ�) ∈ Z, pj(η�) ∈ Y \ Z and the construction of Y

and Z, it follows that I |= ri(ξ
�)∧ qj(η

�)∧¬rj(η�). From the definition of the dependency

graph w.r.t. I, it follows that there are pi(t), pj(t′) such that pi(t) depends on pj(t
′) in a

rule of F with a substitution θ that maps object variables in t and t′ to object names such

that (tθ)I = ξ and (t′θ)I = η.

Consequently,

I |=
∨

(pi(t),pj(t
′)) : pi(t) depends on pj(t

′)
in a rule of F

ri(tθ) ∧ qj(t
′θ) ∧ ¬rj(t′θ),

which is equivalent to saying that

I |=
∨

(pi(t),pj(t
′)) : pi(t) depends on pj(t

′)
in a rule of F

∃z(ri(t) ∧ qj(t
′) ∧ ¬rj(t′)),

where z is the list of all variables in t and t′.

Lemma 7 A graph (V,E) is strongly connected iff, for any nonempty proper subset U of

V , there is an edge from U to V \ U .

Proof. Follows from the definition of a strongly connected graph.

Proposition 3 Let q be a list of predicate names corresponding to p, and let Y be a set of

atoms in the dependency graph of F w.r.t. I such that

pi(ξ
�) ∈ Y iff I |= qi(ξ

�),

where ξ� is a list of object names. Then I |= ����F (q) iff Y is a loop of F w.r.t. I.

Proof. From left to right: Assume that I |= ����F (q). From I |= �������	(q), it follows

that Y is nonempty.

Take any nonempty proper subset Z of Y . Let r be the list of predicate names such

that

I |= ri(ξ
�) iff pi(ξ

�) ∈ Z.
62

It is clear that

I |= ��������(r) ∧ r < q.

Consequently, from I |= 	���F (q), it follows that I |=
F (r, q). By Lemma 6, there is an

edge from an atom in Z to an atom in Y \ Z. Consequently, by Lemma 7, Y induces a

strongly connected subgraph and thus a loop of F w.r.t. I.

From right to left: Let Y be loop of F w.r.t. I and q a list of predicate names such that

I |= qi(ξ
�) iff pi(ξ

�) ∈ Y.

Since Y is nonempty, I |= ��������(q).

Consider any list of predicate names r such that

I |= ��������(r) ∧ r < q.

Let Z be a set of vertices in the dependency graph of F w.r.t. I such that

pi(ξ
�) ∈ Z iff I |= ri(ξ

�).

Clearly, Z is a nonempty proper subset of Y . Since Y induces a strongly connected sub-

graph, by Lemma 7, there is an edge from an atom in Z to an atom in Y \Z. Consequently

by Lemma 6, I |= EF (r, q).

Proof of Proposition 4

Proposition 4 Let q be a list of predicate names corresponding to p, and let Y be a set of

atoms in the dependency graph of F w.r.t. I such that

pi(ξ
�) ∈ Y iff I |= qi(ξ

�),

where ξ� is a list of object names. Then

I |= ��������(q) ∧ ∀v((v ≤ q) ∧ 	���F (v)→ EF (v, q))

iff Y is an unbounded set of F w.r.t. I.

Proof. From left to right: Assume

I |= ��������(q) ∧ ∀v(v ≤ q ∧ 	���F (v)→ EF (v, q)). (3.44)
63

Since I |= ��������(q), it is clear that Y is nonempty.

Take any subset Z of Y that is a loop of F w.r.t. I. Let r be a list of predicate names

such that

I |= ri(ξ
�) iff pi(ξ

�) ∈ Z.

Since Z is a subset of Y , it is clear that I |= r ≤ q. Since Z is a loop of F w.r.t. I, by

Proposition 3, I |= 	���F (r). Consequently, from (3.44) it follows that I |=
F (r, q). By

Lemma 6, there is an edge from an atom in Z to an atom in Y \ Z. Therefore, Y is an

unbounded set of F w.r.t. I.

From right to left: Let Y be an unbounded set of F w.r.t. I. Since Y is nonempty, it is clear

that I |= ��������(q).

Take any list of predicate names r such that I |= r ≤ q∧	���F (r). Let Z be a set

of vertices in the dependency graph of F w.r.t. I such that

pi(ξ
�) ∈ Z iff I |= ri(ξ

�).

By Proposition 3, Z is a loop of F w.r.t. I. It is clear that Z is a subset of Y . Since Y is an

unbounded set of F w.r.t. I, there is an edge from Z to Y \ Z. Consequently by Lemma 6,

I |= EF (r, q).

Proof of Proposition 5

Proposition 5 For any negative formula F , formula

����F (u)↔ F

is logically valid.

Proof. The proof follows immediately from the following two lemmas, which can be proved

by induction.

Lemma 8 For any formula F ,

����F (u)→ F

is logically valid.
64

Lemma 9 Let F be a formula, and let SF be the set of pi(t) that has a strictly positive

occurrence in F . Formula

F ∧
∧

pi(t)∈SF

∀z¬vi(t)→ ����F (v) (3.45)

is logically valid, where z is the tuple of variables in t that are not free in F .

Proof of Equivalence between (b) and (c) of Theorem 3

Lemma 10 Let F be a rectified formula, let S+
F be the set of all atoms pi(t) that have a

positive occurrence in F that does not belong to a negative formula, and let S−
F be the set

of all atoms pi(t) that have a negative occurrence in F that does not belong to a negative

formula.13 The following formulas are logically valid, where z is the list of all variables in t

that are not free in F .

(a) (v ≤ u) ∧∧
pi(t)∈S+

F
∀z(ui(t)→vi(t)) ∧ ����F (v)→����F (u);

(b) (v ≤ u) ∧∧
pi(t)∈S−

F
∀z(ui(t)→vi(t)) ∧ ����F (u)→����F (v).

Proof. Both parts are proved simultaneously by induction on F .

Case 1: F is an atom pi(t).

Part (a): ����F (v) entails ����F (u) under the assumption

∧
pi(t)∈S+

F

∀z(ui(t)→vi(t)).

Part (b): ����F (u) entails ����F (v) under the assumption v ≤ u.

Case 2: F is ⊥ or an equality. It is clear since ����F (v) and ����F (u) are the same as

F .

Case 3: F is G ∧H or G ∨H . Follows from I.H.

Case 4: F is G→ H .

13Note that we distinguish between formula being negative and an occurrence being negative. See at the
end of Section 2.5.

65

Part (a): Assume

(v ≤ u) ∧
∧

pi(t)∈S+
F

∀z(ui(t)→ vi(t)). (3.46)

We need to show that

(����G(v)→ ����H(v)) ∧ (G→ H)

entails

(����G(u)→ ����H(u)) ∧ (G→ H).

Note that ∧
pi(t)∈S−

G

∀z(ui(t)→ vi(t))

and ∧
pi(t)∈S+

H

∀z(ui(t)→ vi(t))

are entailed by formula (3.46). By I.H.,����G(u) entails����G(v) and����H(v) entails

����H(u).

Part (b): Similar to Part (a).

Case 5: F is ∀xG

Part (a): Assume

(v ≤ u) ∧
∧

pi(t)∈S+
F

∀z(ui(t)→vi(t)) ∧ ∀x����G(v).

From the assumption ����G(v), G follows by Lemma 8. Also

∧
pi(t)∈S+

G

∀z′(ui(t)→vi(t))

follows, where z′ is the list of all variables in t that are not free in G, so that by I.H. on G,

����G(u) holds from the assumption. Since x is not free in the assumption, ∀x����G(u)

holds as well.

Part (b): Similar to Part (a).

Case 6: F is ∃x G.
66

Part (a): Assume

(v ≤ u) ∧
∧

pi(t)∈S+
F

∀z(ui(t)→vi(t)) ∧ ∃x����G(v). (3.47)

Take x such that

(v ≤ u) ∧
∧

pi(t)∈S+
F

∀z(ui(t)→vi(t)) ∧����G(v). (3.48)

From ����G(v), by Lemma 8, G follows. Also

∧
pi(t)∈S+

G

∀z′(ui(t)→vi(t))

follows, where z′ is the list of all variables in t that are not free in G. By I.H. on G,����G(u)

holds under the assumption (3.48). Consequently, ∃x����G(u) holds from the same as-

sumption. Since x is not free in (3.47), we conclude that ∃x����G(u) holds from the

assumption (3.47).

Part (b): Similar to Part (a).

Lemma 11 For any rectified formula F ,

(v ≤ u) ∧ ¬EF (v,u) ∧ ����F (u)→ ����F (v)

is logically valid.

Proof. By induction on F .

Case 1: F is an atom pi(t). ����F (u) entails ����F (v) under the assumption v ≤ u.

Case 2: F is ⊥ or equality. It is clear since ����F (v) and ����F (u) are the same as F .

Case 3: F is G ∧H or G ∨H . Follows from I.H.

Case 4: F is G→ H . Assume

(v ≤ u) ∧ ¬EF (v,u) ∧����F (u)
67

and ����G(v). From ����F (u), by Lemma 8, we conclude G → H . From ����G(v),

by Lemma 8, G follows, and consequently H .

Assume ¬����H(v) for the sake of contradiction. By Lemma 9, from H and

¬����H(v), it follows that ∨
pi(t) : pi(t) occurs strictly positively in H

∃xvi(t) (3.49)

, where x is the list of variables in t that are not free in H .

Since F is rectified, the variables in F can be partitioned into three sets: the list of

variables x that are not free in H , the list of variables y that are not free in G, and the rest.

Note that ¬EF (v,u) entails∧
(pi(t),pj(t

′)) : pi(t) depends on pj(t
′) in a rule G→H in F

pi(t) occurs in H,pj(t
′) occurs in G

(
∃xvi(t)→ ∀y(uj(t′)→ vj(t

′))
)
, (3.50)

where x is the list of all variables in t that are not free in H , and y is the list of all variables

in t′ that are not free in G. From (3.49) and (3.50), we conclude∧
pj(t′) : pj(t′) occurs positively and not in a negative subformula of G

∀y(uj(t′)→ vj(t
′)).

From this, together with the assumption (v ≤ u) and ����G(v), by Lemma 10 (a),

����G(u) follows. Thus ����H(u) follows from ����F (u) and ����G(u). Since

¬�F (v,u) entails ¬�H(v,u), by I.H. on H , ����H(v) follows, which contradicts the as-

sumption.

Case 5: F is ∀xG or ∃xG. Follows from I.H.

Lemma 12

��������(u)→ ∃v(v ≤ u ∧ 	
������F (v) ∧ ¬EF (v,u))

is logically valid.

Proof. Take any list q of predicate names, and any interpretation I that satisfies������	
(q).

Let Y be a set of vertices in the dependency graph of F w.r.t. I such that

pi(ξ
�) ∈ Y iff I |= qi(ξ

�).
68

Consider the subgraph G of the dependency graph of F w.r.t. I that is induced by Y . If Y

is an unbounded set w.r.t. I, by Proposition 4, I |= ��������F (q). So

I |= q ≤ q ∧ ��������F (q) ∧ ¬EF (q, q).

Otherwise, consider the graph G′ that is obtained from G by collapsing strongly connected

components of G, i.e., the vertices of G′ are the strongly connected components of G and

G′ has an edge from V to V ′ if G has an edge from a vertex in V to a vertex in V ′. Since

we assumed that Y is not an unbounded set w.r.t. I, there exists a vertex Z in G′ that has

no outgoing edges. Consider the list of predicate names r such that

I |= ri(ξ
�) iff pi(ξ

�) ∈ Z.

It is clear that I |= r ≤ q. By Proposition 3, I |= ����F (r) thus I |= ��������F (r). Since

there is no edge from Z to Y \ Z, by Lemma 6, I |= ¬EF (r, q). Consequently, the claim

follows.

Proof of Equivalence Between (b) and (c) of Theorem 3

From (b) to (c): Clear from that the formula ��������F (u) → ��	
����(u) is logically

valid.

From (c) to (b): Assume

F ∧ ∀v(v ≤ p ∧ ��������F (v)→ ¬�
�
F (v)).

Take any u such that u ≤ p ∧ ��	
����(u). By Lemma 12, it follows from ��	
����(u)

that there exists v such that v ≤ u ∧ ��������F (v) ∧ ¬EF (v,u). It is clear that v ≤ p

follows from v ≤ u and u ≤ p. It follows from the assumption that ¬�
�
F (v). Then by

Lemma 11, ¬�
�
F (u) follows from v ≤ u and ¬EF (v,u).

Proof of Theorem 2

Lemma 3 Let F be a rectified sentence of signature σ (possibly containing function con-

stants of positive arity), and let I be an interpretation of σ that satisfies F . If F is bounded

w.r.t. I,

I |= ∃u(u ≤ p ∧ ��������F (u) ∧ �	�	F (u))
69

iff there is a finite loop Y of F w.r.t. I such that

I |=
(∧

Y ∧ ���F (Y)
)
.

Proof. From left to right: Assume

I |= q ≤ p ∧ ��������F (q) ∧�	�	F (q)

for some list of predicate names q. Consider Y to be the set of vertices in the dependency

graph of F w.r.t. I such that

pi(ξ
�) ∈ Y iff I |= qi(ξ

�).

Since I |= ��������F (q), by Proposition 3 and Proposition 4, it follows that Y is an ex-

tended loop of F w.r.t. I. Since I |= qi(ξ
�) for all pi(ξ�) ∈ Y and I |= q ≤ p, it follows that

I satisfies every atom in Y . Together with the assumption that F is bounded w.r.t. I, this

implies that set Y is finite. Since I |= �	�	F (q) and Y is finite, by Lemma 2, it follows that

I |= ��	F (Y).

From right to left: Consider any finite loop Y of F w.r.t. I. Assume

I |=
∧

Y ∧��	F (Y).

Let q be a list of predicate names such that

I |= qi(ξ
�) iff pi(ξ

�) ∈ Y.

• I |= q ≤ p follows from the construction of q and I |= ∧
Y .

• Since Y is a loop of F w.r.t. I, by Proposition 3, I |= ����F (q), and consequently,

I |= ��������F (q).

• From I |= ��	F (Y), by Lemma 2, I |= �	�	F (q).

Consequently, I |= ∃u(u ≤ p ∧ ��������F (u) ∧�	�	F (u)).

70

Theorem 2 Let F be a rectified sentence of signature σ (possibly containing function

constants of positive arity), and let I be an interpretation of σ that satisfies F . If F is

bounded w.r.t. I, then the following conditions are equivalent to each other:

(a) I satisfies ��[F];

(b) for every nonempty finite set Y of atoms formed from predicate constants in σ(F) and

object names for |I|, I satisfies ��F (Y);

(c) for every finite loop Y of F w.r.t. I, I satisfies ��F (Y).

Proof. Between (a) and (c): By Theorem 3 and Lemma 3.

Between (b) and (c):

• From (b) to (c): Clear.

• From (c) to (b): Assume that I satisfies ��F (L) for every finite loop L of F w.r.t I.

Consider any nonempty finite set Y of atoms formed from predicate constants in σ(F)

and object names such that I |= ∧
Y . Let q be a list of predicate names such that

I |= qi(ξ
�) iff pi(ξ

�) ∈ Y.

Since Y is nonempty, it is clear that ������	
(q) follows. In view of Lemma 12,

there is a list of predicate names r such that

I |= r ≤ q ∧ ��	
����F (r) ∧ ¬EF (r, q). (3.51)

Consider Z to be the set of vertices in the dependency graph of F w.r.t. I such that

pi(ξ
�) ∈ Z iff I |= ri(ξ

�).

Since I |= ��	
����F (r), by Proposition 3 and Proposition 4, Z is an extended loop

of F w.r.t. I. Clearly, I |= ∧
Z since Z ⊆ Y and I |= ∧

Y . Since F is bounded

w.r.t. I, and Z is satisfied by I, it follows that Z is a finite loop of F w.r.t. I. Since

I |= r ≤ q ∧ ¬EF (r, q), Z is a subset of Y and, by Lemma 6, there is no edge
71

from Z to Y \ Z in the dependency graph of F w.r.t. I. Since I |= ��F (Z), we

conclude that I |= ¬���F (Z), and by Lemma 2, I |= ¬����F (r). From (3.51) and

that I |= ¬����F (r), by Lemma 11, we have I |= ¬����F (q). By Lemma 2 again,

I |= ¬���F (Y). Consequently, I |= ��F (Y).

Proof of Proposition 6

Proposition 6 If a rectified formula F of signature σ is bounded, then F is bounded w.r.t.

any interpretation of σ that satisfies CET σ.

Lemma 13 For any terms t1 and t2 of signature σ, any interpretation I that satisfies CET σ,

and any substitution θ from object variables in t1 and t2 to object names such that (t1θ)I =

(t2θ)
I , Robinson’s unification algorithm (Robinson, 1965), when applied to t1 and t2, returns

a most general unifier (mgu) γ of t1 and t2 such that

(a) t1γ = t2γ, and

(b) for every variable x in t1 or t2, (xγθ)I = (xθ)I .

Proof. From the assumptions, by Lemma 5.1 from (Kunen, 1987), t1 and t2 are unifiable,

in which case Robinson’s algorithm returns a mgu for t1 and t2 that maps variables occur-

ring in t1 and t2 into terms. Given this, part (b) can be proven by induction.

The proof of Proposition 6 follows from the following lemma.

Lemma 14 Let F be a rectified sentence of signature σ, and let I be an interpretation of σ

that satisfies CET σ. For any path

〈p1(ξ�1), p2(ξ�2), . . . , pk(ξ�k), pk+1(ξ�k+1)〉 (3.52)

in the dependency graph of F w.r.t I, there is a path

〈p1(u1), p2(u2), . . . , pk(uk), pk+1(uk+1)〉
72

in the first-order dependency graph of F with a substitution θ that maps object variables in

ui to object names such that (uiθ)
I = ξi for all i.

Proof. Each edge (pi(ξ
�
i), pi+1(ξ

�
i+1)) in (3.52) is obtained from a pair of atoms (pi(ti), pi+1(t

′
i))

and a substitution θi such that pi(ti) depends on pi+1(t
′
i) in a rule of F , and

(t1θ1)
I = ξ1, (t′iθi)

I = (ti+1θi+1)
I = ξi+1(1 ≤ i < k), (t′kθk)

I = ξk+1. (3.53)

For simplicity we assume that each pair (pi(ti), pi+1(t
′
i)) considered above has no common

variables with another pair by first renaming variables. This allows us to use one substitution

θ = θ1 . . . θk in place of individual θi in the rest of the proof.

We will show by induction that, for each j where j ∈ {1 . . . k}, there are substitu-

tions σj
i (1 ≤ i ≤ j) from variables in ti and t′i to terms such that

(a) 〈p1(t1)σj
1, p2(t2)σ

j
2, . . . , pj(tj)σ

j
j , pj+1(t

′
j)σ

j
j 〉 is a path in the first-order dependency

graph of F , and

(b) (tiσ
j
i θ)

I = ξi for all 1 ≤ i ≤ j, and (t′jσ
j
jθ)

I = ξj+1.

When j = 1, we take σj
i to be an identity substitution. Clearly, conditions (a) and

(b) are satisfied.

Otherwise, by I.H. we assume that, for some j in {1, . . . , k−1}, there are substitu-

tions σj
1, . . . , σ

j
j such that conditions (a) and (b) are satisfied. We will prove that there are

substitutions σj+1
i (1 ≤ i ≤ j+1) from variables in ti and t′i to terms such that

(a’) 〈p1(t1)σj+1
1 , p2(t2)σ

j+1
2 , . . . , pj+1(tj+1)σ

j+1
j+1, pj+2(t

′
j+1)σ

j+1
j+1〉 is a path in the first-order

dependency graph of F , and

(b’) (tiσ
j+1
i θ)I = ξi for all 1 ≤ i ≤ j+1, and (t′j+1σ

j+1
j+1θ)

I = ξj+2.

From I.H., we have (t′jσ
j
jθ)

I = ξj+1 and from (3.53) we have (tj+1θ)
I = ξj+1.

By Lemma 13 there is a substitution γ from variables in t′jσ
j
j or tj+1 to terms such that

t′jσ
j
jγ = tj+1γ and for any variable x in t′jσ

j
j or tj+1,

(xγθ)I = (xθ)I . (3.54)
73

We define σj+1
i as

• σj
i γ when 1 ≤ i ≤ j and

• γ when i = j+1.

It is easy to check that condition (a’) is satisfied. To check that condition (b’) is satisfied,

consider any variable x in the set

{t1σj
1, t2σ

j
2, . . . , tjσ

j
j , t

′
jσ

j
j , tj+1, t

′
j+1}. (3.55)

If x is in t′jσ
j
j or tj+1, by (3.54), (xγθ)I = (xθ)I . Otherwise, since γ does not change the

variables that are not in t′jσ
j
j or tj+1, (xγθ)I = (xθ)I . Consequently, for any variable x in

(3.55), we get (xγθ)I = (xθ)I . It remains to check the following.

• For 1 ≤ i ≤ j, (tiσ
j+1
i θ)I = (tiσ

j
i γθ)

I = (tiσ
j
i θ)

I . The last one is equal to ξi by I.H.

• (tj+1σ
j+1
j+1θ)

I = (tj+1γθ)
I = (tj+1θ)

I . The last one is equal to ξj+1 by (3.53).

• (t′j+1σ
j+1
j+1θ)

I = (t′j+1γθ)
I = (t′j+1θ)

I . The last one is equal to ξj+2 by (3.53).

Proof of Proposition 7

Proposition 7 For any rectified sentence F of signature σ and for any interpretation I of

σ that satisfies CET σ, I is a model of

{��F (Y) | Y is a finite first-order loop of F}

iff I is a model of

{��F (Y) | Y is a finite loop of F w.r.t. I}.

The proof follows immediately from the following fact and Lemma 15.

74

Fact 1 Let F be a rectified sentence of signature σ, and let I be an interpretation of σ. For

any first-order loop Y of F and any substitution θ that maps variables in Y to object names,

Y ′ = {pi(ξ�) | pi(t) ∈ Y θ, tI = ξ} is a loop of F w.r.t. I.

Lemma 15 Let F be a rectified sentence of signature σ, and let I be an interpretation of

σ. If I satisfies CET σ, then, for any finite loop Y ′ of F w.r.t. I, there is a finite loop Y of

F with a substitution θ that maps variables in Y to object names such that Y ′ = {pi(ξ�) |

pi(t) ∈ Y, (tθ)I = ξ}.

Proof. Without loss of generality, consider a path

〈p1(ξ�1), p2(ξ�2), . . . , pk(ξ�k), p1(ξ�1)〉

(k ≥ 1) in the dependency graph of F w.r.t. I that consists of the vertices in Y ′. Since

I |= CET σ, by Lemma 14, there is a path

〈p1(u1), p2(u2), . . . , pk(uk), p1(uk+1)〉

in the first-order dependency graph of F with a substitution θ that maps variables in ui

to object names such that (uiθ)
I = ξi for all 1 ≤ i ≤ k, and (uk+1θ)

I = ξ1. Since

(uk+1θ)
I = (u1θ)

I , by Lemma 13, there is a unifier γ for uk+1 and u1 such that, for any

variable x in uk+1 or u1, (xγθ)I = (xθ)I . Consequently,

{p1(u1γ), p2(u2γ), . . . , pk(ukγ)}

induces a finite strongly connected subgraph such that (uiγθ)
I = (uiθ)

I = ξi.

Proof of Proposition 8

Proposition 8 If a rectified formula F in normal form is bounded, then F is bounded w.r.t.

any interpretation.

The proof follows from the following lemma.

Lemma 16 Let F be a rectified sentence of signature σ in normal form, and let I be an

interpretation of σ. For any path

〈p1(ξ�1), p2(ξ�2), . . . , pk(ξ�k), pk+1(ξ�k+1)〉
75

in the dependency graph of F w.r.t I, there exists a path

〈p1(u1), p2(u2), . . . , pk(uk), pk+1(uk+1)〉

in the first-order dependency graph of F with a substitution θ that maps object variables in

ui to object names such that (uiθ)
I = ξi for all i, and u1 is a list of object variables.

Proof. The proof is similar to the proof of Lemma 14 except that we do not require that

I satisfy CET σ. Instead, the existence of a unifier γ for t′jσ
j
j and tj+1 is ensured by the

assumption on normal form that tj+1 is a list of variables and the assumption that t′jσ
j
j

contains none of those variables (due to variable renaming).

Proof of Proposition 9

Proposition 9 If a rectified sentence F in normal form is bounded, then for any interpre-

tation I, I is a model of

{��F (Y) | Y is a finite first-order loop of F}

iff I is a model of

{��F (Y) | Y is a finite loop of F w.r.t. I}.

The proof follows from Fact 1 and the following lemma.

Lemma 17 If a rectified sentence F in normal form is bounded, then for any finite loop Y ′

of F w.r.t. I, there is a finite loop Y of F with a substitution θ that maps variables in Y to

object names such that Y ′ = {pi(ξ�) | pi(t) ∈ Y, (tθ)I = ξ}.

Proof. Let Y ′ be a finite loop of F w.r.t. I. Without loss of generality, there is a path

〈p1(ξ�1), p2(ξ�2), . . . , pk(ξ�k), p1(ξ�1)〉

(k ≥ 1) in the dependency graph of F w.r.t. I that consists of the vertices in Y ′. Since F is

in normal form, by Lemma 16, there are a path

〈p1(u1), p2(u2), . . . , pk(uk), p1(uk+1)〉 (3.56)
76

in the first-order dependency graph of F , where u1 consists of object variables only, and

a substitution θ that maps variables in ui to object names such that (uiθ)
I = ξi for all

1 ≤ i ≤ k, and (uk+1θ)
I = ξ1. There are two cases to consider.

• Case 1: There is a unifier γ for u1 and uk+1 that maps variables in u1 to terms in uk+1

so that u1γ = uk+1. It follows that, for any variable x in uk+1 or u1, (xγθ)I = (xθ)I .

Consequently,

{p1(u1γ), p2(u2γ), . . . , pk(ukγ)}

induces a finite strongly connected subgraph such that (uiγθ)
I = (uiθ)

I = ξi.

• Case 2: There is no such unifier γ.

Consider another path

〈p1(v1), p2(v2), . . . , pk(vk), p1(vk+1)〉

that is obtained similar to (3.56) except that the variables in the path are disjoint from

the variables in (3.56). Clearly, there is a unifier γ′ for uk+1 and v1 that maps the

variables v1 to terms, so that

〈p1(u1), p2(u2), . . . , pk(uk), p1(v1γ
′), p2(v2γ

′), . . . , pk(vkγ
′)〉

is another path in the first-order dependency graph of F . It is clear that using the

same construction repeatedly, we can form an infinite path that visits infinitely many

vertices in the first-order dependency graph. But this contradicts the assumption that

F is bounded.

Proof of Proposition 11

We will use the following lemma in this section and the next section, which extends Theo-

rem 2 of (Chen et al., 2006) that provides a few equivalent conditions for a program to have

a finite complete set of loops to a disjunctive program and a sentence.

77

Lemma 18 (Chen et al., 2006, Theorem 2) For any formula F that contains no function

constants of positive arity, the following conditions are equivalent:

(a) F has a finite complete set of loops.

(b) There is a nonnegative integer N such that for every loop L of F , the number of

variables in L is bounded by N .

(c) For any loop L of F and any atom A1 and A2 in L, the variables occurring in A1 are

identical to the variables occurring in A2.

(d) For any loop L of ������σ(F)∪{c1,c2}(F) where c1, c2 are two new object constants,

there are no two atoms A1 and A2 in L such that A1 mentions c1 but A2 does not or

A1 mentions c2 but A2 does not.

Proposition 11 For any rectified formula F that contains no function constants of positive

arity, F is bounded iff F has a finite complete set of loops.

Proof. From left to right: Assume that F is bounded. Then every loop of F is finite. It

follows that there exists a nonnegative integer N such that the number of variables in any

loop is bounded by N . By Lemma 18 (b), F has a finite complete set of loops.

From right to left: Assume that F has a finite complete set of loops and, for the sake of

contradiction, assume that it is not bounded. Without loss of generality, there is an infinite

path

〈p1(t1)σ1, p2(t2)σ2, . . .〉 (3.57)

in the first-order dependency graph of F that visits infinitely many vertices, where pi(ti) are

atoms occurring in F and σi are substitutions.

Since F is a finite string, it contains finitely many atoms. It follows that there is an

atom pi(ti) occurring in F with arbitrarily many substitutions σ such that atoms pi(ti)σ are

contained in (3.57). Without loss of generality, consider the path

〈pi(ti)σi, pi+1(ti+1)σi+1, . . . , pi(ti)σk〉
78

that is contained in (3.57), where σk and σi agree on substituting object constants for vari-

ables in ti. Since tiσi and tiσk contain no function constant, there exists a substitution σ0

that maps variables in tiσk to terms in tiσi so that tiσkσ0 = tiσi. Consequently,

{pi(xi)σiσ0, pi+1(xi+1)σi+1σ0, . . . , pi(xi)σkσ0}

is a loop of F . Since the length of the path is arbitrarily large, there are arbitrarily many

variables occurring in the loop. By Lemma 18 (b), it follows that F has no finite complete

set of loops.

Proof of Proposition 10

Proposition 10 For any rectified sentence F (allowing function constants of positive arity),

(a) checking whether F is bounded is not decidable;

(b) checking whether F is atomic-tight is not decidable.

If F contains no function constants of positive arity,

(c) checking whether F is bounded is decidable;

(d) checking whether F is atomic-tight is decidable.

Proof of Part (a) and (b): We show the proof of Part (a) first. The proof repeats, with

minor modifications, the argument from the proof of Theorem 26 from (Bonatti, 2004), which

considers the following program ΠM to simulate deterministic Turing machines M.

t(s, L, v, [V | R], C)← t(s′, [v′ | L], V, R,C+1) for all instr.〈s, v, v′, s′, right〉

t(s, L, v, [], C)← t(s′, [v′ | L], b, [], C+1) for all instr.〈s, v, v′, s′, right〉

t(s, [V | L], v, R,C)← t(s′, L, V, [v′ | R], C+1) for all instr.〈s, v, v′, s′, left〉

t(s, [], v, R,C)← t(s′, [], b, [v′ | R], C+1) for all instr.〈s, v, v′, s′, left〉

t(s, L, v,R,C) for all final states s.

The Halting problem can be reduced to the problem of checking bounded formulas. More

precisely, we show that ΠM is bounded iff M terminates from every configuration.

We first establish the following facts:
79

(i) for every non-terminating computation of M on input x, there is a corresponding infi-

nite path in the first-order dependency graph of ΠM that visits infinitely many vertices;

(ii) if there is an infinite path in the first-order dependency graph of ΠM, then there is

an infinite path starting with a legal encoding of an input and corresponds to a non-

terminating computation of M.

Fact (i) is immediate from the definition of ΠM: Note that the step counter (the last

argument of t) ensures that the dependency graph is acyclic. Then, whenever M falls into

a cycle, the dependency graph contains an infinite acyclic path that visits infinitely many

vertices and hence the program is not bounded.

Fact (ii) can be proven as follows. Assume that there is an infinite path in the de-

pendency graph. We observe that the first argument of every vertex in the path must be a

legal state and the third argument of every vertex must be a legal tape value. Otherwise,

there is no outgoing edge from the vertices in the dependency graph of ΠM. So only the

second, fourth and fifth arguments can contain variables or illegal values which were ob-

tained from substitutions from the variables L, R, V and C. In this case, we can easily

find substitutions from these variables or illegal values to legal values and apply them uni-

formly along the path, so that we obtain another infinite path starting from the vertex that

correctly encodes a configuration of M and thus M has a corresponding non-terminating

computation.

The claim follows immediately from the two facts: ifM does not terminate on some

computation, then by (i), ΠM is unbounded. If ΠM is unbounded, then by (ii), M does not

terminate.

The same proof works for Part (b) as well. This is because the step counter (the last

argument of t) ensures that the dependency graph is acyclic. Consequently, every infinite

path in the dependency graph visits infinitely many vertices, so that ΠM is atomic-tight iff

ΠM is bounded.

Proof of Part (c): In view of the equivalence between (a) and (d) in Lemma 18, checking

80

whether a formula F containing no function constants of positive arity has a finite complete

set of loops can be done by examining a finite number of loops from a finite dependency

graph, which is decidable. By Proposition 11, it follows that checking whether F is bounded

is decidable.

Proof of Part (d): For any sentence F that has no function constants of positive arity and

any finite set c of object constants, ������c(F) is defined recursively. If F is an atomic

formula then������c(F) is F . The function ������c commutes with all propositional con-

nectives; quantifiers turn into finite conjunctions and disjunctions over all object constants

occurring in c.

Lemma 19 Let c be the set consisting of all object constants occurring in F , and possi-

bly a new object constant if F contains no object constants. F has a non-trivial loop iff

������c(F) has a non-trivial loop.

Proof. In order to check whether F is atomic-tight, we first check whether F is bounded,

which is decidable. If F is not bounded, then F is not atomic-tight. Otherwise, in view of

Lemma 19, checking whether F is atomic-tight is the same as checking whether������c(F)

is atomic-tight. Since F contains no function constants of positive arity, the dependency

graph of ������c(F) is finite. So it is decidable to check whether the dependency graph

of ������c(F) has a non-trivial loop.

Proof of Proposition 13

Lemma 20 Let F be a formula and Y a set of atoms. If no predicate constant occurring in

Y occurs strictly positively in F , then ��	F (Y) is equivalent to F .

Proof. By induction.

Proposition 13 Let Π be a program with quantifiers, F the FOL-representation of Π,

and Y a finite set of atoms. Under the assumption Π, formula
�	Π(Y) is equivalent to

81

¬���F (Y). If Π is a disjunctive program in normal form, then ���Π(Y) is also equivalent

to ��Π(Y) under the assumption Π.

Proof. Between ���Π(Y) and ¬���F (Y): ¬���F (Y) is

¬
∧

H←G∈Π
∀x[(G→ H) ∧ (���G(Y)→ ���H(Y))]. (3.58)

Under the assumption F , formula (3.58) is equivalent to

∨
H←G∈Π

∃x(���G(Y) ∧ ¬���H(Y)). (3.59)

In view of Lemma 20, if H does not contain any strictly positive occurrence of a

predicate constant that belongs to Y , ���H(Y) is equivalent to H . Also, it follows from

Lemma 2 and Lemma 8 that ���G(Y) implies G. So ���G(Y) ∧ ¬���H(Y) conflicts

the assumption G → H when H does not contain any strictly positive occurrence of a

predicate constant that belongs to Y . As a result, under the assumption F , formula (3.59)

is equivalent to the disjunction of

∃x(���G(Y) ∧ ¬���H(Y)) (3.60)

for all rules H ← G, where H contains a strictly positive occurrence of a predicate constant

that belongs to Y . Note that G and H are formulas such that every occurrence of an

implication in G and H belongs to a negative formula. By Lemma 4, (3.60) is equivalent to

���Π(Y).

Between ���Π(Y) and ��Π(Y): When Π is a disjunctive program, ���Π(Y) is the dis-

junction of

∃z
(
B ∧N ∧

∧
p(t)∈B

p(t′)∈Y

(t �= t′) ∧ ¬
(∨
p(t)∈A

(p(t) ∧
∧

p(t′)∈Y
t �= t′)

))
(3.61)

over all rules (3.8) such that A contains a predicate constant that occurs in Y , where z is a

list of variables in (3.8) but not in Y . On the other hand, ��Π(Y) is the disjunction of

∃z′
(
Bσ ∧Nσ ∧∧

p(t)∈Bσ

p(t′)∈Y

(t �= t′)

∧¬
(∨

p(t)∈Aσ(p(t) ∧
∧

p(t′)∈Y t �= t′)
)) (3.62)

82

over all rules (3.8) such that A contains a predicate constant that occurs in Y and Aσ∩Y �=

∅, where z′ is a list of variables in Aσ ← Bσ,Nσ but not in Y .

It is clear that (3.62) implies (3.61). To prove that (3.61) implies (3.62), assume

B ∧N ∧
∧

p(t)∈B

p(t′)∈Y

(t �= t′) ∧ ¬
(∨
p(t)∈A

(p(t) ∧
∧

p(t′)∈Y
t �= t′)

)
(3.63)

and consider two cases.

If
∧

p(t′)∈Y t �= t′ for all p(t) ∈ A, then (3.63) is equivalent to

B ∧N ∧
∧

p(t)∈B

p(t′)∈Y

(t �= t′) ∧ ¬
∨

p(t)∈A
p(t)

which contradicts the assumption Π.

Otherwise, there exists p(t) ∈ A and p(t′) ∈ Y such that t = t′. Since Π is in normal form,

there exists σ that maps t to t′, so that Aσ ∩ Y �= ∅. Consequently, (3.63) is equivalent to

Bσ ∧Nσ ∧
∧

p(t)∈Bσ

p(t′)∈Y

(t �= t′) ∧ ¬
(∨
p(t)∈Aσ

(p(t) ∧
∧

p(t′)∈Y
t �= t′)

)
.

Thus the claim follows.

Proof of Proposition 16

Proposition 16 Let P be an LW-program and let F be the FOL-representation of the set

of rules in P . The following conditions are equivalent to each other:

(a) I is an answer set of P in the sense of (Lin & Wang, 2008);

(b) I is a P -interpretation that satisfies ��[F];

(c) I is a P -interpretation that satisfies F and the loop formulas of Y for all loops Y of F

w.r.t. I.

Given a program Π, ����(Π) is a normal form of Π and ������(Π) is a ground

program obtained from Π as described in (Lin & Wang, 2008). The proof of Proposition 16

follows from the following lemma. We refer readers to (Lin & Wang, 2008) for the definition

of 	
(·, ·, ·) defined there.
83

Lemma 21 For any program Π and any set Y of ground atoms, ��Norm(Π)(Y) is equivalent

to
∨

p(c)∈Y �� (p(c), Y,������(Π)).

Proof. By definition, ��Norm(Π)(Y) is

∨
p(x)←B,N,x=t is in Norm(Π)

θ:p(x)θ∈Y

∃z
(
Bθ ∧Nθ ∧ xθ = tθ ∧

∧
q(t)∈Bθ

q(t′)∈Y

(t �= t′)

)
, (3.64)

where x is a list of distinct object variables, θ is a substitution that maps variables in x

to object constants occurring in Y , and z is the list of all variables that occur in the rule

p(x)θ ← Bθ,Nθ,xθ = tθ. (3.64) is equivalent to

∨
p(t)←B,N∈Π

p(c)∈Y

∃z′
(
B ∧N ∧ t = c ∧

∧
q(t)∈B

q(t′)∈Y

(t �= t′)

)
, (3.65)

where z′ is the list of all variables that occur in the rule p(t) ← B,N . In turn, (3.65) is

equivalent to

∨
p(d)←B′,N′∈Ground(Π)

p(c)∈Y

(
B′ ∧N ′ ∧ d = c ∧

∧
q(tg)∈B′
q(t′)∈Y

(tg �= t′)

)
. (3.66)

Note that when d does not cover c, there exists di ∈ d such that di mentions only constants

and pre-interpreted functions and di can not be evaluated to ci independent of interpreta-

tions. In that case, d = c is equivalent to ⊥. Thus (3.66) is equivalent to

∨
p(c)∈Y

∨
p(d)←B′,N′∈Ground(Π)

p(d) can cover p(c)

(
B′ ∧N ′ ∧ d = c ∧

∧
q(tg)∈B′
q(t′)∈Y

(tg �= t′)

)
, (3.67)

which is essentially
∨

p(c)∈Y ��(p(c), Y,������(Π)).

84

Chapter 4

ON SEMANTICS OF AGGREGATES

In this chapter we study and reformulate different semantics of aggregates by viewing them

as short-hands for propositional formulas in the stable model semantics. For the FLP se-

mantics, a novel reductive reformulation in terms of propositional formulas is presented.

For the PDB-SPT semantics and the Ferraris semantics, which already have propositional

formula characterization of aggregates, we show that each semantics can be reformulated

according to the other’s approach. Such uniform characterization has some merits. First,

it provides new insights into each of the semantics and helps us compare and relate them.

Second, all the important results already established for the propositional stable model se-

mantics, such as the strong equivalence (Lifschitz et al., 2001; Ferraris, 2005) and loop

formulas (Ferraris et al., 2006), can be immediately applied to programs with aggregates

by first representing them as the corresponding propositional formulas. Third, while it does

not appear immediate to extend to disjunctive programs, the non-reductive approaches for

the PDB-SPT semantics, such as the Tp operator based one with conditional satisfaction,

or Φaggr
p operator based one, the extension is straightforward in the reductive approach.

The reductive approach also guides us to define loop formulas in the form of “aggre-

gate formulas,” in which aggregates are treated like usual formulas. In (Liu & Truszczynski,

2006; You & Liu, 2008), the authors show that such loop formulas can be encoded as

Pseudo-Boolean (PB) constraints and can be effectively computed by PB solvers. How-

ever, the result of (Liu & Truszczynski, 2006) is limited to monotone and convex constraints,

and the PDB-SPT semantics. Here we present aggregate loop formulas for the Ferraris and

the FLP semantics guided by the reductive approach. This part is also a further extension

of the idea of unfounded sets for the FLP semantics studied in (Faber, 2005), where the

author provided a model-theoretic account of loop formulas but left the definition of loops

and loop formulas as future work.

We also present generalizations of the Ferraris semantics and FLP semantics. This

is done by extension and modification of the stable model operator �� given in (Ferraris,

Lee, & Lifschitz, 2011b) and by adopting the notion of satisfaction extended to aggregates

85

as in the FLP semantics. The generalizations avoid grounding and fixpoints and allows

non-Herbrand models to be considered. This allows us to show how the FLP semantics is

related to the first-order stable model semantics. When we consider Herbrand models, the

two generalized semantics agree with their propositional counter-part. We study the precise

relationship which properly generalizes the results in the propositional case.

In the next section we first review the syntax and three representative semantics

of programs with aggregates. In Section 4.2, we show our reformulations and compare

the three semantics based on the reformulations. In Section 4.3 we extended the theorem

on loop formulas to allow aggregates for the two semantics. Section 4.4 introduces the

syntax and semantics of aggregate formulas. In Section 4.5 and Section 4.6, we provide

the first-order semantics of aggregates for the Ferraris semantics and the FLP semantics

that applies to aggregate formulas. Section 4.7 compares and relates the two semantics.

4.1 Syntax and Existing Semantics of Programs with Aggregates
Syntax of Programs with Aggregates

Following (Lee & Meng, 2009; Ferraris & Lifschitz, 2010), by a number we understand an

element of some fixed set Num. For example, Num is Z ∪ {+∞,−∞}, where Z is the set

of integers. An aggregate function is a partial function from the class of multisets to Num.

The domain of an aggregate function is defined as usual. For instance, COUNT is defined

for any multisets; SUM, TIMES, MIN and MAX are defined for multisets of numbers; SUM

is undefined for multisets containing infinitely many positive integers and infinitely many

negative integers.

An aggregate is of the form

OP〈x.F (x)〉 � b (4.1)

where

• OP is a symbol for an aggregate function op;

• x is a nonempty list of distinct object variables;

• F (x) is an arbitrary quantifier-free formula;

86

• � is a symbol for a binary relation over integers, such as ≤, ≥, <, >, =, �=;

• b is an integer constant.

A more general definition of an aggregate is presented later.

A rule (with aggregates) is an expression of the form

A1; . . . ;Al ← E1, . . . , Em, ��� Em+1, . . . , ��� En (4.2)

(l ≥ 0; n ≥ m ≥ 0), where each Ai is an atomic formula and each Ei is an atomic formula

or an aggregate. A program (with aggregates) is a finite set of rules.

Example 2 continued In the following, we will revisit the program Π1 from Section 2.3.

p(2) ← ��� SUM〈x.p(x)〉 < 2

p(−1) ← SUM〈x.p(x)〉 ≥ 0

p(1) ← p(−1).

FLP Semantics

The FLP semantics (Faber et al., 2004) is based on a modified definition of traditional reduct

and the notion of satisfaction extended to aggregates.1

Notation: Given a multiset of object constants {{c1, . . . , cn}} and an integer constant b,

OP〈{{c1, . . . , cn}}〉 � b

if

• multiset {{c1, . . . , cn}} is in the domain of the aggregate function op (corresponding to

OP), and

• op({{c1, . . . , cn}}) � b.2

1The syntax from (Faber et al., 2004) is more restrictive than what we consider here: There F (x) in (4.1)
is required to be a conjunction of atoms.

2Here, we abuse the notation. We identify an integer constant with the corresponding integer, and � with
the corresponding relation.

87

OP〈{{c1, . . . , cn}}〉 �� b if it is not the case that OP〈{{c1, . . . , cn}}〉 � b.

For any list of object constants c, by c[1] we denote the first element of c. Consider

any aggregate (4.1) occurring in Π and any Herbrand interpretation I of σ(Π). Let SI be

the multiset consisting of all c[1] such that

• c is a list of object constants of σ(Π) whose length is the same as the length of x,

and

• I satisfies F (c).

We say that I satisfies the aggregate expression (4.1) if OP〈SI〉 � b. For instance, an Her-

brand interpretation {p(a)} satisfies COUNT〈x.p(x)〉 > 0 but does not satisfy SUM〈x.p(x)〉 >

0 because {{a}} is not in the domain of SUM.

The definition of the FLP reduct and FLP answer set is the same as in Section 2.4.

the FLP reduct of Π relative to I is obtained from Π by removing every rule whose body is

not satisfied by I. Set I is an FLP answer set of Π if it is minimal among the sets of atoms

that satisfy the FLP reduct of Π relative to I. For example, in program Π1, the FLP reduct of

Π1 relative to {p(−1), p(1)} contains the last two rules only. Set {p(−1), p(1)} is minimal

among the sets of atoms that satisfy the reduct, and thus is an FLP answer set of Π1. One

can check that this is the only FLP answer set.

Ferraris Semantics

The Ferraris semantics (Ferraris, 2005) is to understand an aggregate as an abbreviation

of a propositional formula. The semantics from (Ferraris, 2005) can be extended to allow

variables as follows.

Let E = OP〈x.F (x)〉 � b be an aggregate occurring in Π, let OΠ(E) be the set

of all lists of object constants of σ(Π) whose length is the same as the length of x, and

let CΠ(E) be the set of all subsets C of OΠ(E) such that OP〈{{c[1] : c ∈ C}}〉 �� b. For

instance, in program Π1, for E1 = SUM〈x.p(x)〉 < 2, set OΠ1(E1) is {−1, 1, 2}, and

CΠ1(E1) is {{2}, {1, 2}, {−1, 1, 2}}. Similarly, for E2 = SUM〈x.p(x)〉 ≥ 0, set CΠ1(E2) is

{{−1}}.
88

By ���Π(E) we denote

∧
C∈CΠ(E)

(∧
c∈C

F (c)→
∨

c∈OΠ(E)\C
F (c)

)
. (4.3)

For instance, ���Π1(E1) is

(p(2)→ p(−1) ∨ p(1)) ∧ (p(1) ∧ p(2)→ p(−1)) ∧ (p(−1) ∧ p(1) ∧ p(2)→ ⊥).

By ���(Π) we denote the propositional formula obtained from Π by replacing every

aggregate E in it by ���Π(E).3 The Ferraris answer sets of Π are defined as the answer

sets of ���(Π). For example, the Ferraris answer sets of Π1 are the answer sets of the

following formula ���(Π1):4

(¬((p(2)→p(−1)∨p(1)) ∧ (p(1)∧p(2)→p(−1)) ∧ (p(−1)∧p(1)∧p(2)→⊥))→ p(2))

∧ ((p(−1)→p(1)∨p(2))→ p(−1))

∧ (p(−1)→ p(1)).

(4.4)

This formula has two answer sets: {p(−1), p(1)} and {p(−1), p(1), p(2)}.

PDB-SPT Semantics

Under the semantics proposed in (Pelov et al., 2003), an aggregate can be identified with a

nested expression in the form of disjunctions over conjunctions, but unlike the naive attempt

given in the introduction, it involves the notion of a “(maximal) local power set.”5

Given a set A of some sets, a pair 〈B, T 〉 where B, T ∈ A and B ⊆ T is called a

local power set (LPS) of A if every set S such that B ⊆ S ⊆ T belongs to A as well. A

local power set is called maximal if there is no other local power set 〈B′, T ′〉 of A such that

B′ ⊆ B and T ⊆ T ′.

Under the PDB-SPT semantics, a negation in front of an aggregate expression is

eliminated by a “classically equivalent” transformation. Program ���(Π) is obtained from a

3Strictly speaking, ���Π(E) is a ground formula of a first-order signature. However, since answer sets
are Herbrand interpretations, we can view it as a propositional formula under the corresponding propositional
signature. In the following, we identify a ground formula with a propositional formula in this sense, unless
otherwise noted.

4We underline the parts of a formula that correspond to aggregates.
5We saw the term first in (You & Liu, 2008). Notice that a maximal local power set is not in fact a set.

89

program Π by replacing ��� Ei in each rule (4.2) in Π where Ei = OP〈x.F (x)〉 � b with

OP〈x.F (x)〉 �� b (�� is the symbol for the relation complementary to �). Clearly, ���(Π)

contains no negation in front of any aggregate expression. For instance, the first rule of

���(Π1) is

p(2)← SUM〈x.p(x)〉 ≥ 2.

Let E = OP〈x.F (x)〉 � b be an aggregate occurring in ���(Π), let ��Π be the set of all

ground atoms that can be constructed from σ(Π), and let IΠ(E) be the set of all Herbrand

interpretations I of σ(Π) such that I satisfies E (satisfaction as defined in Section 4.1). For

instance, for program Π1, ��Π1 is {p(−1), p(1), p(2)}, and, for E1 = SUM〈x.p(x)〉 ≥ 2,

IΠ1(E1) is

{{p(2)}, {p(1), p(2)}, {p(−1), p(1), p(2)}},

and, for E2 = SUM〈x.p(x)〉 ≥ 0, IΠ1(E2) is

{∅, {p(1)}, {p(2)}, {p(−1), p(1)}, {p(−1), p(2)}, {p(1), p(2)}, {p(−1), p(1), p(2)}}.

The maximal local power sets of IΠ1(E1) are

〈{p(2)}, {p(1), p(2)}〉, 〈{p(1), p(2)}, {p(−1), p(1), p(2)}〉,

and the maximal local power sets of IΠ1(E2) are

〈∅, {p(1), p(2)}〉, 〈{p(1)}, {p(−1), p(1), p(2)}〉, 〈{p(2)}, {p(−1), p(1), p(2)}〉.

By ���	
��Π(E) we denote∨
〈B,T 〉 is a maximal LPS of IΠ(E)

(∧
A∈B

A ∧
∧

A∈HBΠ\T
¬A

)
. (4.5)

For instance, ���	
��Π1(E1) is (p(2) ∧ ¬p(−1)) ∨ (p(1) ∧ p(2)).

By ���	
��(Π) we denote the propositional formula obtained from ���(Π) by

replacing all aggregates E in it by ���	
��Π(E). The PDB-SPT answer sets of Π are

defined as the answer sets of ���	
��(Π). For example, Π1 has no PDB-SPT answer

sets, and neither does the following formula ���	
��(Π1):

(((p(2) ∧ ¬p(−1)) ∨ (p(1) ∧ p(2)))→ p(2))

∧ ((¬p(−1) ∨ p(1) ∨ p(2))→ p(−1))

∧ (p(−1)→ p(1)).

(4.6)

90

Note that the original semantics defined in (Pelov et al., 2003; Son et al., 2007) is limited to

programs with nondisjunctive heads. It is not immediate how the nonreductive approaches

to defining PDB-SPT semantics (Son et al., 2007; Pelov et al., 2007) can be extended to

allow disjunction in the heads, while it is straightforward here.

4.2 Reformulation and Comparison of the Semantics of Aggregates
A Reformulation of Ferraris Semantics

The propositional formula representation of an aggregate according to the Ferraris seman-

tics can be written in a more compact way by considering maximal local power sets as in

the PDB-SPT semantics. Let E be an aggregate occurring in Π. By ��������Π(E) we

denote ∧
〈B,T 〉 is a maximal LPS of CΠ(E)

(∧
c∈B

F (c)→
∨

c∈OΠ(E)\T
F (c)

)
. (4.7)

Lemma 22 ��������Π(E) is strongly equivalent to ���Π(E).

This fact provides an alternative characterization of the Ferraris semantics. We define

the MLPS-Ferraris answer sets same as the Ferraris answer sets except that we refer to

��������Π(E) in place of ���Π(E).

Proposition 17 The MLPS-Ferraris answer sets of Π are precisely the Ferraris answer sets

of Π.

For example, in program Π1, the maximal local power sets of CΠ1(E1) are 〈{2}, {1, 2}〉,

〈{1, 2}, {−1, 1, 2}〉. The maximal local power set of CΠ1(E2) is 〈{−1}, {−1}〉. Formula (4.4)

is strongly equivalent to the following shorter formula

(¬((p(2)→p(−1)) ∧ (p(1)∧p(2)→⊥))→ p(2))

∧ ((p(−1)→p(1)∨p(2))→ p(−1))

∧ (p(−1)→ p(1)).

A Reformulation of FLP Semantics

The FLP semantics can also be defined by reduction to propositional formulas. As with the

PDB-SPT semantics, before turning a program to the propositional formula representation

91

for the FLP semantics, we eliminate the negation in front of an aggregate using the classi-

cally equivalent transformation ���(Π) (Section 4.1). Let E be an aggregate occurring in

���(Π). By IΠ(E) we denote the set of all Herbrand interpretations I of σ(Π) such that I

does not satisfy E (as defined in Section 4.1). Clearly IΠ(E) and IΠ(E) partition ��Π. By

���Π(E) we denote ∧
I∈IΠ(E)

(∧
A∈I

A→
∨

A∈��Π\I

A
)
. (4.8)

By ���(Π) we denote the propositional formula obtained from ���(Π) by replacing all ag-

gregates E in it by ���Π(E). For example, for program Π1, set IΠ1(E1) is {∅, {p(−1)}, {p(1)}, {p(−1), p(1)}, {p(

and IΠ1(E2) is {{p(−1)}}, so that ���(Π1) is

(((p(−1)∨p(1)∨p(2)) ∧ (p(−1)→p(1)∨p(2)) ∧ (p(1)→p(−1)∨p(2))

∧(p(−1)∧p(1)→p(2)) ∧ (p(−1)∧p(2)→p(1)))→ p(2))

∧ ((p(−1)→p(1)∨p(2))→ p(−1))

∧ (p(−1)→ p(1)).

The following proposition tells us that the FLP semantics can be characterized by proposi-

tional formulas.

Proposition 18 The answer sets of ���(Π) are precisely the FLP answer sets of Π (as

defined in Section 4.1)

Similar to (4.7), formula ���Π(E) can be rewritten using the notion of maximal

local power sets, which provides yet another characterization of the FLP semantics. This is

due to the following lemma. By ���	
���Π(E) we denote

∧
〈B,T 〉 is a maximal LPS of IΠ(E)

(∧
A∈B

A→
∨

A∈��Π\T

A
)
. (4.9)

Lemma 23 ���Π(E) is strongly equivalent to ��������Π(E).

Formula���	
���(Π) is defined the same as ���(Π) except that we refer to���	
���Π(E)

in place of ���Π(E). For example, Lemma 23 tells us that ���(Π1) has the same answer

92

sets as the following formula ��������(Π1):

((p(2) ∧ (p(−1)→p(1)))→p(2))

∧ ((p(−1)→p(1)∨p(2))→p(−1))

∧ (p(−1)→p(1)).

(4.10)

While the Ferraris semantics and the FLP semantics can be characterized either

with or without involving the concept of local power sets, this is not the case with the PDB-

SPT semantics. In other words, in the definition of a PDB-SPT answer set, if we replace

(4.5) with the formula ∨
I∈IΠ(E)

(∧
A∈I

A ∧
∧

A∈HB\I
¬A

)
, (4.11)

then the resulting definition is no longer equivalent. Note that (4.5) and (4.11) are classically

equivalent but are not strongly equivalent.

A Reformulation of PDB-SPT Semantics

Consider the following formula modified from ���Π(E) by simply eliminating implications

in favor of negations and disjunctions as in classical logic. By �������Π(E) we denote

∧
I∈IΠ(E)

(∨
A∈I

¬A ∨
∨

A∈	
Π\I

A
)
. (4.12)

�������Π(E) is classically equivalent to ���Π(E), but is not strongly equivalent. How-

ever, interestingly, the following holds.

Lemma 24 �������Π(E) is strongly equivalent to ��	�
��Π(E).

This fact provides a simple reformulation of the PDB-SPT semantics, without involving the

notion of local power sets. We define �������(Π) in the same way as ��
����(Π)

except that we refer to �������Π(E) in place of ��
����Π(E).

Proposition 19 The answer sets of �������(Π) are precisely the PDB-SPT answer sets

of Π.

93

For instance, the PDB-SPT answer sets of Π1 are the same as the answer sets of the

following formula:

(((p(−1)∨p(1)∨p(2)) ∧ (¬p(−1)∨p(1)∨p(2)) ∧ (¬p(1)∨p(−1)∨p(2))

∧(¬p(−1)∨¬p(1)∨p(2)) ∧ (¬p(−1)∨¬p(2)∨p(1)))→ p(2))

∧ ((¬p(−1)∨p(1)∨p(2))→ p(−1))

∧ (p(−1)→ p(1)).

(4.13)

Similar to the Ferraris and the FLP semantics, maximal local power sets can be

used instead, as the following lemma states.

Lemma 25 �������Π(E) is strongly equivalent to

∧
〈B,T 〉 is a maximal LPS of IΠ(E)

(∨
A∈B

¬A ∨
∨

A∈�	Π\T

A
)
. (4.14)

Again note the similarity between (4.9) and (4.14). They are classically equivalent to each

other, but are not strongly equivalent.

Relationship among the Semantics

The following proposition shows how one formula is stronger than another formula under

the stable model semantics. As before p is the list of distinct predicate constants occurring

in F or G, and q is a list of new, distinct predicate constants of the same length as p.

Proposition 20 If formulas F ↔ G and

q < p→ (F ∗(q)→ G∗(q))

are logically valid, then
�[G;p]→
�[F ;p] is logically valid.

The proposition implies that, for the two formulas F and G that satisfies the condition, every

answer set of G is an answer set of F .

The characterizations of each semantics in terms of the uniform framework of

propositional formulas give new insights into their relationships. Note that the propositional

94

formula representations of an aggregate according to each semantics are classically equiv-

alent (under the Herbrand models of σ(Π)), but not strongly equivalent, which accounts for

the difference in the semantics.

Proposition 21 For any program Π and any aggregate E occurring in Π and any set X

of ground atoms of σ(Π), X |= E iff X |= �������Π(E) iff X |= ���Π(E) iff X |=

�	
Π(E).

The relationship between the PDB-SPT semantics and the FLP semantics is known

as follows.

Proposition 22 (Son & Pontelli, 2007, Theorem 2) Every PDB-SPT answer set of Π is an

FLP answer set of Π.

The converse does not hold as illustrated by program Π1. An alternative proof of Proposi-

tion 22 follows from Propositions 20, 21 and the following lemma.

Lemma 26

(q ≤ p)→ (�������Π(E)∗(q)→ ���Π(E)∗(q))

is logically valid.

For program Π1, its only FLP answer set is a Ferraris answer set. Indeed, such

relationship holds if the program is “semi-positive.” We call a program semi-positive if,

for every aggregate (4.1) occurring in it, F (x) is a quantifier-free formula that contains no

implications (this, in particular, means that there are no negations since we treat ¬G as

shorthand for G→ ⊥). For example, Π1 is semi-positive.

Proposition 23 For any semi-positive program Π, every FLP answer set of Π is a Ferraris

answer set of Π.

95

However, the relationship does not hold for arbitrary programs. For instance, the

following non-semi-positive program

p(a)← COUNT〈x.¬¬p(x) ∨ q(x)〉 �= 1

q(b)← p(a)

p(a)← q(b)

has no Ferraris answer sets while it has only one FLP answer set {p(a), q(b)}.

The following proposition is a slight extension of Theorem 3 from (Ferraris, 2005),

which describes a class of programs whose FLP answer sets coincide with Ferraris answer

sets.

Proposition 24 For any semi-positive program Π, the FLP answer sets of Π are precisely

the Ferraris answer sets of ���(Π).

4.3 Loop Formulas for Programs with Aggregates

Loop formulas in the previous chapter do not consider aggregates. You and Liu (2008)

define loop formulas for programs with aggregates according to the PDB-SPT semantics.

Their loop formulas contain aggregates, but the result can be explained by a reductive ap-

proach in the following simple way. A set of ground atoms is a loop of Π according to

their definition iff it is a loop of �������(Π) according to (Ferraris et al., 2006). If we re-

place aggregates in their loop formulas with their propositional formula representations, the

resulting formulas are essentially identical to loop formulas of �������(Π) according to

(Ferraris et al., 2006). As shown in (Liu & Truszczynski, 2006; You & Liu, 2008), an advan-

tage of loop formulas containing aggregates is that such loop formulas can be compactly

encoded in pseudo-Boolean constraints, which allows pseudo-Boolean solvers to be used

for computing answer sets.

In this section we define loop formulas for programs with aggregates for the two

other semantics.

96

Loop Formulas for Ferraris Semantics

We assume that Π contains no function constants of positive arity and no free variables.

Let us identify rule (4.2) with

A← B,C,N (4.15)

where A = {A1, . . . , Al}, B is the set of all atoms Ei where 1 ≤ i ≤ m, and C is the set of

all aggregates Ej where 1 ≤ j ≤ m, and N is the set of all remaining expressions ��� Ek

(m+1 ≤ k ≤ n) in the body.

Remind that loop formulas for arbitrary first-order formulas are defined using the

notion of ���, which can be extended to cover aggregates in a straightforward way. For

any aggregate E = OP〈x.F 〉 � b and any finite set Y of ground atoms, formula ���E(Y)

is defined recursively as

OP〈x.���F (Y)〉 � b ∧ E.

For instance, in program Π1, formula ���E2({p(−1), p(1)}) is

SUM〈x.p(x) ∧ x �=−1 ∧ x �=1〉 ≥ 0 ∧ SUM〈x.p(x)〉 ≥ 0.

For any finite set Z of expressions, by Z∧ and Z∨ we denote the conjunction and,

respectively, disjunction of the elements of Z. We define the external support formula of a

finite set Y of ground atoms for Π, denoted by ��Π(Y), as the disjunction of

B∧ ∧
∧
E∈C

���E(Y) ∧N∧ ∧ ¬(A \ Y)∨

for all rules (4.2) in Π such that A∩Y �= ∅ and B∩Y = ∅. For instance, if Y is {p(−1), p(1)},

the external support formula of Y for Π1 is

p(−1) ∧ p(1)→ (SUM〈x.p(x) ∧ x �=−1 ∧ x �=1〉 ≥ 0) ∧ SUM〈x.p(x)〉 ≥ 0.

The aggregate loop formula of Y for Π, denoted by ��Π(Y), is

Y ∧ → ��Π(Y).

This definition extends the definition of a loop formula given in (Liu & Truszczynski, 2006),

which is limited to programs with monotone aggregates.
97

Loops Aggregate loop formulas

{p(−1)} p(−1)→ SUM〈x.p(x) ∧ x �=−1〉 ≥ 0 ∧ SUM〈x.p(x)〉 ≥ 0

{p(1)} p(1)→ p(−1)
{p(2)} p(2)→ ¬SUM〈{x.p(x)}〉 < 2

{p(−1), p(1)} p(−1) ∧ p(1)→ SUM〈x.p(x) ∧ x �=−1 ∧ x �=1〉 ≥ 0
∧SUM〈x.p(x)〉 ≥ 0

Figure 4.1: Loops and aggregate loop formulas for Π1

The Ferraris dependency graph of Π is the directed graph such that

• its vertices are the ground atoms of σ(Π);

• for every rule (4.15) in Π, an edge goes from each element of A to p(t) if

– p(t) is an element of B, or

– if there are an monotone or non-monotone aggregate E = OP〈x.F 〉 � b oc-

curring in C and a substitution θ such that p(t′) has a positive occurrence in Fi

that does not belong to any negative subformula of Fi for some 1 ≤ i ≤ n and

p(t′)θ = p(t).

For example, Π1 has four loops: {p(−1)}, {p(1)}, {p(2)}, {p(−1), p(1)}. Figure 4.1

shows the aggregate loop formulas of all loops.

Proposition 25 For any set X of ground atoms of σ(Π) that satisfies Π, the following

conditions are equivalent to each other.

(a) X is a Ferraris answer set of Π;

(b) for every nonempty set Y of ground atoms of σ(Π), X satisfies the aggregate loop

formula of Y for Π;

(c) for every loop Y of Π, X satisfies the aggregate loop formula of Y for Π;

Loop Formulas for FLP semantics

In view of Proposition 24, Proposition 25 can be applied to FLP semantics as well. We

assume that, for every aggregate (4.1) occurring in the program, F (x) is a conjunction of

atoms. Notice that, under this assumption, ���(Π) is a semi-positive program.
98

Proposition 26 For any set X of ground atoms of σ(Π) that satisfies Π, the following

conditions are equivalent to each other.

(a) X is an FLP answer set of Π;

(b) for every nonempty set Y of ground atoms of σ(Π), X satisfies the aggregate loop

formula of Y for ���(Π);

(c) for every loop Y of ���(Π), X satisfies the aggregate loop formula of Y for ���(Π).

Figure 4.2 shows the aggregate loop formulas of all loops for ���(Π1). Notice that

the loops of ���(Π) may be different from the loops of Π.

Loops Aggregate loop formulas

{p(−1)} p(−1)→ SUM〈x.p(x) ∧ x �=−1〉 ≥ 0 ∧ SUM〈x.p(x)〉 ≥ 0

{p(1)} p(1)→ p(−1)
{p(2)} p(2)→ ¬SUM〈x.p(x) ∧ x �=2〉 < 2 ∧ ¬SUM〈x.p(x)〉 < 2

{p(−1), p(1)} p(−1) ∧ p(1)→ SUM〈x.p(x) ∧ x �=−1 ∧ x �=1〉 ≥ 0
∧SUM〈x.p(x)〉 ≥ 0

{p(−1), p(2)} p(−1) ∧ p(2)→ (¬SUM〈x.p(x) ∧ x �=−1 ∧ x �=2〉 < 2
∧¬SUM〈x.p(x)〉 < 2)

∨(SUM〈x.p(x) ∧ x �=−1 ∧ x �=2〉 ≥ 0
∧SUM〈x.p(x)〉 ≥ 0)

Figure 4.2: Loops and aggregate loop formulas for ���(Π1)

Faber (2005) defined the notion of external support for the FLP semantics as fol-

lows.6 Given sets X and Y of ground atoms, Y is called FLP externally supported by Π

w.r.t. X if there is a rule (4.2) in Π such that

• A ∩ Y �= ∅,

• (A \ Y) ∩X = ∅,

• X \ Y |= E1 ∧ · · · ∧ Em,

• X |= E1 ∧ · · · ∧ Em ∧ ¬Em+1 ∧ · · · ∧ ¬En.

Proposition 27 Y is FLP externally supported by Π w.r.t. X iff X satisfies ��Pos(Π)(Y).

6More precisely, that paper defined the negation of this concept, unfoundedness.

99

4.4 Syntax and Semantics of Aggregate Formulas

Below we lift up the syntax and semantics of aggregate programs from Section 4.1 to more

general cases. We will introduce a slightly more general definition of an aggregate and

define aggregate formulas as an extension of first-order formulas by treating aggregates as

a base case in addition to (standard) atomic formulas (including equality) and ⊥ (falsity).

We assume that the signature σ contains symbols for all numbers, and some col-

lection of comparison operators that stands for binary relations over numbers. We assume

that symbols for aggregate functions are not part of the signature.

Following (Lee & Meng, 2009; Ferraris & Lifschitz, 2010), we define an aggregate

formula as an extension of a first-order formula by adding the following clause.

•

OP〈x1.F1, . . . ,x
n.Fn〉 � b (4.16)

is first-order formula with aggregates where

– OP is an aggregate function;

– x1, . . . ,xn are nonempty lists of distinct object variables;

– F1, . . . , Fn are arbitrary first-order formulas with aggregates;

– � is a comparison operator;

– b is a term.

For instance,

(SUM〈x.p(x)〉 ≥ 1 ∨ ∃y q(y))→ r(x)

is an aggregate formula.

We say that an occurrence of a variable v in an aggregate formula H is bound if the

occurrence is in a part of H of the form (4.16) where v is in at least one of xi, or in a part

of H of the form QvG. Otherwise it is free. We say that v is free in H if H contains a free

occurrence of v. An aggregate sentence is an aggregate formula with no free variables.

100

The definition of an interpretation is the same as in first-order logic. We consider

only the interpretations such that each number and each comparison operator is interpreted

as itself. The definition of satisfaction in first-order logic is extended to aggregate sentences

as follows. For any interpretation I of the underlying signature, satisfaction is extended to

cover aggregate (4.16) that contains no free variables as follows. For any set X of n-tuples

(n ≥ 1), let msp(X) be the multiset consisting of all ξ1 such that (ξ1, . . . , ξn) ∈ X for at

least one (n-1)-tuple (ξ2, . . . , ξn), with the multiplicity equal to the number of such (n-1)-

tuples (and to +∞ if there are infinitely many of them). Using this notation, we define:

• (x1 . . . xn.F (x1, . . . , xn))
I is

msp({(ξ1, . . . , ξn) ∈ |I|n : F (ξ∗1 , . . . , ξ
∗
n)

I = ����});

• (OP〈x1.F1, . . . ,x
n.Fn〉 � b)I equals TRUE if the join α of the multisets (x1.F1)

I , . . . , (xn.Fn)
I

belongs to the domain of OP and satisfies the condition OP(α) � bI .

With this extension, the recursive definition of satisfaction for an aggregate sentence is

given in the same way as in first-order logic. We say that an aggregate sentence F is logi-

cally valid if every interpretation satisfies it. For instance, an Herbrand interpretation {p(a)}

satisfies COUNT〈x.p(x)〉 > 0 but does not satisfy SUM〈x.p(x)〉 > 0 because multiset {{a}}

is not in the domain of SUM. Consider the aggregate

SUM〈x.p(x)〉 ≥ 0

and an Herbrand interpretation I = {p(−1), p(1)}. SI is {{−1, 1}} and SUM(SI) = 0 ≥ 0,

so I satisfies SUM〈x.p(x)〉 ≥ 0.

4.5 Stable Model Semantics of First-Order Aggregate Formulas

In this section we provide a general definition of a stable model that applies to arbitrary

“aggregate formulas” in the style of the definition in Section 2.5, by extending the notion F ∗

to aggregates in a way similar to other connectives.

For any aggregate sentence F and any list of predicate constants p, expression

��[F ;p] stands for (2.6) where F ∗(u) is extended to aggregates as

101

•
(OP〈x1.F1, . . . ,x

n.Fn〉 � b)∗ =

(OP〈x1.F ∗
1 , . . . ,x

n.F ∗
n〉 � b) ∧ (OP〈x1.F1, . . . ,x

n.Fn〉 � b).

By a p-stable model of F we mean a model of ��[F ;p] (under the extended notion

of satisfaction). As before, we use ��[F] in place of ��[F ;p] when p is the list of all

predicate constants occurring in F .

The Theorem on strong equivalence (Lifschitz et al., 2001; Ferraris, 2005) can

be extended to aggregate formulas in a straightforward way using the extended notion of

satisfaction. In the statement of the proposition below, p stands for the list of all predicate

constants that occur in F or G, and q is a list of new, distinct predicate constants, of the

same length as p.

Proposition 28 Aggregate formulas F and G are strongly equivalent to each other iff the

formula

(q ≤ p)→ (F ∗(q)↔ G∗(q)) (4.17)

is logically valid.

Programs with Aggregates as a Special Case

The AF-representation (“Aggregate Formula representation”) of (4.2) is the universal closure

of the aggregate formula

E1 ∧ · · · ∧ Em ∧ ¬Em+1 ∧ · · · ∧ ¬En → A1 ∨ · · · ∨Al. (4.18)

The AF-representation of Π is the conjunction of the AF-representation of its rules.

The stable models of Π are defined as the models of ��[F], where F is an AF-

representation of Π. The following proposition shows that this definition is a proper gener-

alization of the Ferraris semantics.

Proposition 29 Let Π be a program that contains no function constants of positive arity

and let F be its AF-representation. The Herbrand models of ��[F] whose signature is

σ(Π) are precisely the Ferraris answer sets of Π.

102

4.6 FLP Semantics of First-Order Aggregate Formulas

In this section, we will extend the FLP semantics to a general program with aggregates,

which contains rules of the form

H ← B (4.19)

where H and B are aggregate formulas.

The AF-representation (“Aggregate Formula representation”) of a finite general pro-

gram Π with aggregates is the conjunction of the universal closures of the aggregate for-

mulas

B → H

for all rules H ← B in Π.

Let Π be a finite program whose rules have the form (4.19). The FOL-representation

ΠFOL of Π is the conjunction of the universal closures of B → H for all rules (4.19) in Π.

By ���[Π;p] we denote the second-order formula

ΠFOL ∧ ¬∃u(u < p ∧Π�(u)) (4.20)

where Π�(u) is defined as the conjunction of

∀x(B ∧B(u)→H(u)) (4.21)

for all rules H ← B in Π, where x is the list of all (free) variables in H ← B.7

We will often simply write ���[Π] instead of ���[Π;p] when p is the list of all

predicate constants occurring in Π, and call a model of ���[Π] an FLP-stable model of Π.

Example 2 continued The AF-representation of Π1, denoted by F , is the following:

(¬(SUM〈x.p(x)〉<2)→ p(2))

∧ (SUM〈x.p(x)〉≥0→ p(−1))

∧ (p(−1)→ p(1)) .

(4.22)

The FLP-stable models of Π1 are the models of

F ∧ ¬∃u(u < p ∧Π�(u)) (4.23)
7Note that we assume that Π is finite in order to avoid infinite conjunctions in the FOL representation.

103

where Π�(u) is

(¬(SUM〈x.p(x)〉<2) ∧ ¬(SUM〈x.u(x)〉<2)→ u(2))

∧ (SUM〈x.p(x)〉≥0 ∧ SUM〈x.u(x)〉≥0→ u(−1))

∧ (p(−1) ∧ u(−1)→ u(1)) .

(4.24)

The following theorem tells us that our semantics is a proper generalization of the

semantics from (Faber et al., 2011).

Theorem 8 Let Π be a finite disjunctive program with aggregates that contains at least one

object constant. The FLP-answer sets of Π in the sense of (Faber et al., 2011) are precisely

the Herbrand models of ���[Π] whose signature is σ(Π).

It is known that the FLP semantics from (Faber et al., 2011) has the anti-chain

property: no FLP-answer set is a proper subset of another FLP-answer set. This property

is still preserved in our generalized semantics.

Proposition 30 For any finite general program Π, if I is an Herbrand interpretation of σ(Π)

that satisfies ���[Π], then I is a minimal model of Π.

4.7 Comparing FLP and the First-Order Stable Model Semantics

Disregarding aggregates, the main difference among ��� and �� has to do with the treat-

ment of an implication. It is known that they coincide for programs whose rules have the

form (4.2) (Faber et al., 2011, Theorem 3.6), (Truszczyński, 2010, Theorem 3). However,

this is not the case for more general classes of programs (having rules of the form (4.18)),

or for arbitrary formulas. In fact, none of them is stronger than the other, as the following

example shows.

Example 12 For propositional signature {p} and programP1 = {p← p ∨ ¬p}, whose FOL-

representation is F1 = p ∨ ¬p→ p, each of ���[P1] has {p} as the only model, and

��[F1] has no models.

104

Formula F1 is strongly equivalent (in the sense of (Ferraris et al., 2011a)) to F2 = (p→ p) ∧ (¬p→ p).

Again, ��[F2] has no models. Neither does ���[P2], where P2 is the program correspond-

ing to F2.

For program P3 = {p ∨ ¬p← �}, whose FOL-representation is F3 = � → p ∨ ¬p,

��[F3] has two models: ∅ and {p}, while ���[P3] has only one model: ∅.

Formula F3 is strongly equivalent to F4 = ¬¬p → p. ���[P4] (P4 is the program

corresponding to F4) has only one model: ∅, while ��[F4] has the same models as ��[F3]

.

The following theorem presents a class of programs for which the FLP semantics

and the stable model semantics coincide. Following (Ferraris & Lifschitz, 2010), we say that

an aggregate function OP is monotone w.r.t. � if for any multisets α, β such that α ⊆ β,

• if OP(α) is defined then so is OP(β), and

• for any n ∈Num, if OP(α) � n then OP(β) � n.

We consider two numbers, k and m, for an occurrence of a predicate constant or

any other subexpression in a formula F ,

• k: the number of implications in F that contain that occurrence in the antecedent;

• m: the number of aggregates (4.16) containing that occurrence such that OP is not

monotone w.r.t. �.

We call an occurrence of a subexpression in F strictly positive if k + m for that

occurrence in F is 0. For example, in formula (p → q) → p, the second occurrence of p is

strictly positive. In ¬(SUM〈x.p(x)〉 < 2), the occurrence of p is not strictly positive (for that

occurrence, k = m = 1).

We first define two notions. We call an aggregate formula semi-positive relative to p

if, for every aggregate OP〈x1.F1, . . . ,x
n.Fn〉 � b in it, every occurrence of every predicate

105

p from p is strictly positive in each Fi (1 ≤ i ≤ n). We say that an aggregate formula F is

canonical relative to a list p of predicate constants if

• F is semi-positive relative to p;

• for every occurrence of every predicate constant p from p in F , we have that k+m ≤

1;

• if a predicate constant p from p occurs in the scope of a strictly positive occurrence

of ∃ or ∨ in F , then the occurrence of p is strictly positive in F .

For any canonical formula, the following result holds:

Proposition 31 For any aggregate formula F , if F is canonical relative to p, then formula

(u ≤ p) ∧ F → (F ∗(u)↔ F (u))

is logically valid.

In Proposition 31, when F is a first-order formula, it is easy to see that ����[F ;p]

and ��[F ;p] are equivalent to each other. This fact is used in (Kim et al., 2009; Lee &

Palla, 2010) to compute the circumscriptive action formalisms using ASP solvers. Here we

generalize the result to formulas containing aggregates and use it to relate the ��� to the

�� operator.

Theorem 9 Let Π be a finite general program with aggregates and let F be the AF-representation

of Π. For every rule (4.18) in Π, if B is canonical relative to p and every occurrence of p

from p in H is strictly positive in H , then ���[Π;p] is equivalent to ��[F ;p].

Among the programs in Example 12, only P2 satisfies the condition of Theorem 9.

For another example, in program Π1, ¬(sum〈x.p(x)〉 < 2) is not canonical relative to {p}.

In fact, {p(−1), p(1), p(2)} is an Herbrand interpretation that satisfies ��[(4.22)], but it

does not satisfy ���[Π1].

106

Theorem 9 is a generalization of Proposition 24. When is syntax of rule in ���(Π)

is limited to the form

A1; . . . ;Al ← E1, . . . , En,

it is clear that (1) for the body E1, . . . , En, the number k +m ≤ 1; (2) every occurrence of

predicate constant in the head is strictly positive in it. If Π is semi-positive, then it follows

that the condition of Theorem 9 is satisfied as thus ���[Π;p] is equivalent to ��[F ;p].

4.8 Conclusion

The chapter investigated the semantics of aggregates in both propositional level and first-

order level.

We presented a reductive approach to understand the existing semantics of aggre-

gates in terms of propositional formulas and related different semantics in terms of the un-

derlying general language. The reformulations give us insights into each of the semantics.

The reduction to propositional formulas allows the established results for the propositional

formula under the stable model semantics, such as the strong equivalence and loop formu-

las (Ferraris et al., 2006), to be applied to the semantics of aggregates, which saves efforts

of extending such results to each semantics. Guided by the reduction, we defined the loop

formulas of a program that contain aggregates.

The reductive approach led us to the general semantics of aggregates presented in

Section 4.5 and Section 4.6. which extends the definition of a stable model of a first-order

formula to an aggregate formula, using a notion of satisfaction extended from the one used

in the FLP semantics. The semantics do not refer to grounding and allow one to reason

about non-Herbrand models. They appear to be natural in defining arbitrary recursive and

nested aggregates. We also present the precise relationship between the two generalized

semantics.

107

4.9 Proofs

We omit the proof of Proposition 28 since the proof requires minor rewriting from the proof

of Theorem 9 from (Ferraris et al., 2011b). The proof of Proposition 29 is immediate from

Lemma 30. Proposition 25 is a special case of Theorem 15 in Section 5.3. The proof of

Proposition 26 is immediate from Propositions 24 and 25. Theorem 9 is a special case of

Proposition 41 in Section 5.4. Below we provide the remaining proofs.

In the following, Π is a program that contains no free variables, E = OP〈x.F (p,x)〉 �

b is an aggregate expression occurring in Π, p is the list of predicate constants occurring

in Π and q is a list of new, distinct predicate constants of the same length as p, X and Y

are sets of ground atoms of σ(Π) such that Y ⊆ X. By Y p
q we denote the set of ground

atoms obtained from Y by substituting the members of new predicate constants q for the

corresponding members of p.

We will often use the following lemmas from (Ferraris et al., 2011b), each of which

can be proven by induction.

Lemma 27 Formula

(q ≤ p) ∧ F ∗(q)→ F

is logically valid.

Lemma 28 Formula

(q ≤ p)→ ((¬F)∗(q)↔ ¬F)

is logically valid.

Lemma 29 Let E = OP〈x : F (p,x)〉 � b be an aggregate expression, and let S be the

set of all lists c of object constants of σ(Π) whose length is |x| such that

X ∪ Y p
q |= F ∗(q, c).

Then

X ∪ Y p
q |= OP〈x : F ∗(q,x)〉 � b

108

iff

OP〈{{c[1] : c ∈ S}}〉 � b.

Proof. Clear from the definitions.

Lemma 30 X ∪ Y p
q |= E∗(q) iff X ∪ Y p

q |= ���Π(E)∗(q).

Proof. It is sufficient to show that

X ∪ Y p
q |= OP〈x : F ∗(q,x)〉 � b

iff

X ∪ Y p
q |=

∧
C∈CΠ(E)

(∧
c∈C

F ∗(q, c)→
∨

c∈OΠ(E)\C
F ∗(q, c)

)
.

From left to right: Assume X ∪ Y p
q |= OP〈x : F ∗(q,x)〉 � b. Let S be the set of all lists c

of object constants of σ(Π) whose length is |x| such that

X ∪ Y p
q |= F ∗(q, c).

By Lemma 29, it follows from X∪Y p
q |= OP〈x : F ∗(q,x)〉 � b that OP〈{{c[1] : c ∈ S}}〉 � b.

Consequently, S is not in CΠ(E).

Consider any C in CΠ(E) such that

X ∪ Y p
q |=

∧
c∈C

F ∗(q, c).

Clearly, C is a subset of S. Furthermore C is a strict subset since S is not in CΠ(E).

Consequently,

X ∪ Y p
q |=

∨
c∈OΠ(E)\C

F ∗(q, c).

From right to left: Assume

X ∪ Y p
q |=

∧
C∈CΠ(E)

(∧
c∈C

F ∗(q, c)→
∨

c∈OΠ(E)\C
F ∗(q, c)

)
.

109

Again let S be the set of all lists c of object constants of σ(Π) of length |x| such that

X ∪ Y p
q |= F ∗(q, c). Clearly, S is not in CΠ(E). Since

X ∪ Y p
q �|=

∧
c∈S

F ∗(q, c)→
∨

c∈OΠ(E)\S
F ∗(q, c).

Consequently,

OP〈{{c[1] : c ∈ S}}〉 � b.

By Lemma 29, we conclude that

X ∪ Y p
q |= OP〈x : F ∗(q,x)〉 � b.

Lemma 31 Let F be a ground formula that contains no implications. We have that X ∪

Y p
q |= F ∗(q) iff Y |= F .

Proof. By induction on F .

Lemma 32 Let F be a ground formula such that, for every subformula of the form G→ H ,

neither G nor H contains implications. Then X ∪ Y p
q |= F ∗(q) iff X |= F and Y |= F .

Proof. By induction on F . We consider when F is G → H . It is sufficient to show that

under the assumption that X |= F ,

X ∪ Y p
q |= G∗(q)→ H∗(q) iff Y |= G→ H.

Since neither G nor H contains an implication, by Lemma 31,

X ∪ Y p
q |= G∗(q) iff Y |= G

and

X ∪ Y p
q |= H∗(q) iff Y |= H.

110

Lemma 33

q ≤ p→
((∨

〈B,T 〉 is an LPS of IΠ(E)

(∧
A∈B

A∧
∧

A∈��Π\T

¬A
))∗

(q)↔ �������Π(E)∗(q)

)

is logically valid.

Proof. In view of Lemma 28, it is sufficient to show that for any maximal LPS 〈B, T 〉 of

IΠ(E), the formula ∨
B′,T ′:

B⊆B′⊆T ′⊆T

(∧
A∈B′

A∗(q) ∧
∧

A∈��Π\T ′

¬A
)

(4.25)

is equivalent to ∧
A∈B

A∗(q) ∧
∧

A∈��Π\T

¬A.

From right to left: Clear.

From left to right: Assume (4.25). There is a tuple 〈B′, T ′〉 such that B ⊆ B′ ⊆ T ′ ⊆ T and

∧
A∈B′

A∗(q) ∧
∧

A∈��Π\T ′

¬A.

Since B ⊆ B′ and HBΠ \ T ⊆ HBΠ \ T ′,

∧
A∈B

A∗(q) ∧
∧

A∈��Π\T

¬A.

follows.

Lemmas 22, 23, 24, 25 can be jointly reformulated as follows. We call formula (4.14)

�������	�
��Π(E).

The following formulas are logically valid.

(a) (��������Π(E)∗(q)↔ ���Π(E)∗(q));

(b) (��������Π(E)∗(q)↔ ���Π(E)∗(q));

(c) q ≤ p→ (�	
����Π(E)∗(q)↔ ������
Π(E)∗(q));

111

(d) q ≤ p→ (������������Π(E)∗(q)↔ �������Π(E)∗(q)).

The proof of Proposition 17 is immediate from (a); the proof of Proposition 19 is

immediate from (c).

Logical validity of (a): It is sufficient to show that for any two subsets B, T of OΠ(E) such

that B is a subset of T , formula

∧
B⊆S⊆T

(∧
c∈S

F ∗(q, c)→
∨

c∈OΠ(E)\S
F ∗(q, c)

)
(4.26)

is equivalent to ∧
c∈B

F ∗(q, c)→
∨

c∈OΠ(E)\T
F ∗(q, c).

From right to left: Clear from the facts that B ⊆ S and OΠ(E) \ T ⊆ OΠ(E) \ S.

From left to right: Assume (4.26) and
∧

c∈B F ∗(q, c). Consider several cases, each of

which corresponds to a set S such that B ⊆ S ⊆ T and

∧
c∈S

F ∗(q, c) ∧
∧

c∈T\S
¬F ∗(q, c). (4.27)

It follows from (4.26) and the first conjunctive term of (4.27) that

∨
c∈OΠ(E)\S

F ∗(q, c).

From this and the second conjunctive term of (4.27), we conclude that

∨
c∈OΠ(E)\T

F ∗(q, c).

Logical validity of (b). Similar to (a).

Logical validity of (c). In view of Lemma 28 and Lemma 33, it is sufficient to prove that,

under the assumption q ≤ p,

∧
I∈IΠ(E)

(∨
A∈I

¬A ∨
∨

A∈��Π\I

A∗(q)
)

(4.28)

112

is equivalent to ∨
〈B,T 〉 is an LPS of IΠ(E)

(∧
A∈B

A∗(q) ∧
∧

A∈��Π\T

¬A
)
. (4.29)

From right to left: Assume (4.29). There exists an LPS 〈B, T 〉 of IΠ(E) such that

(∧
A∈B

A∗(q) ∧
∧

A∈��Π\T

¬A
)
. (4.30)

Consider any I in IΠ(E). Since 〈B, T 〉 is an LPS of IΠ(E), it is not the case that B ⊆ I ⊆

T . Therefore two cases are possible.

Case 1: There is an atom A that belongs to B ∩ (HBΠ \ I). From (4.30), A∗(q) follows, so

that (∨
A∈I

¬A ∨
∨

A∈��Π\I

A∗(q)
)

(4.31)

follows.

Case 2: There is an atom A that belongs to I ∩ (HBΠ \ T). From (4.30), ¬A follows, so

that (4.31) follows.

From left to right: Assume (4.28). Consider several cases, each of which corresponds to

sets Y , X of atoms that belong to ��Π. The assumption characterizing each case is that

(∧
A∈Y

A∗(q) ∧
∧

A∈��Π\Y

¬A∗(q)
)

(4.32)

and (∧
A∈X

A ∧
∧

A∈��Π\X

¬A
)
. (4.33)

By Lemma 27, it follows that Y is a subset of X. Take any set S of ground atoms such that

Y ⊆ S ⊆ X. Clearly, ∧
A∈S

A

follows from (4.33) and ∧
A∈��Π\S

¬A∗(q),

113

follows from (4.32), so that we get

(∧
A∈S

A ∧
∧

A∈��Π\S

¬A∗(q)
)
.

In view of (4.28), it follows that S is not in IΠ(E), that is, S is in IΠ(E). Since this holds for

every S such that Y ⊆ S ⊆ X, it follows that 〈Y,X〉 is an LPS of IΠ(E).

Logical validity of (d). It is sufficient to show that, under the assumption q ≤ p, for any

two subsets B and T of ��Π such that B is a subset of T , formula

∧
B⊆S⊆T

(∨
A∈S

¬A ∨
∨

A∈��Π\S

A∗(q)
)

(4.34)

is equivalent to ∨
A∈B

¬A ∨
∨

A∈��Π\T

A∗(q).

From right to left: Clear from the facts that B ⊆ S and ��Π \ T ⊆ ��Π \ S.

From left to right: Assume (4.34) and
∧

A∈B A. Consider several cases, each of which

corresponds to a set S such that B ⊆ S ⊆ T and

∧
A∈S

A ∧
∧

A∈T\S
¬A. (4.35)

It follows from (4.34) and the first conjunctive term of (4.35) that

∨
A∈��Π\S

A∗(q). (4.36)

From the second conjunctive term of (4.35), by Lemma 27,

∧
A∈T\S

¬A∗(q).

From this and (4.36) we conclude that

∨
A∈��Π\T

A∗(q).

114

Proof of Proposition 18

Lemma 34 X |= E iff X |= ���Π(E).

Proof. From left to right: Assume that X |= E. Consider any I in IΠ(E) such that

X |= ∧
A∈I A. Clearly, I ⊆ X. From the facts that X |= E and I ∈ IΠ(E), we conclude

that X �= I. Consequently, I ⊂ X. So there is an atom A such that A ∈ X and A �∈ I. In

other words, X |= ∨
A∈��Π\I A.

From right to left: Assume X |= ���Π(E), that is,

X |=
∧

I∈IΠ(E)

(∧
A∈I

A→
∨

A∈��Π\I

A
)
.

It follows that X �∈ IΠ(E). Indeed, it is clear that

X �|=
∧
A∈X

A→
∨

A∈��Π\X

A.

Consequently, X |= E.

Proposition 18 The answer sets of ���(Π) are precisely the FLP answer sets of Π (as

defined in Section 4.1).

Proof. Without loss of generality, let us assume that the program Π contains no negation

in front of aggregate expressions. This is because Π and ���(Π) are equivalent under the

FLP semantics.

Let X be a set of ground atoms of σ(Π). If X �|= Π, then X is not an FLP answer

set of Π. Also, in view of Lemma 34, X is not an answer set of ���(Π).

Assume that X |= Π. Let

A1; . . . ;Ak ← Ak+1, . . . , Am, E1, . . . , El, ��	 Am+1, . . . , ��	 An (4.37)

be any rule in Π, where all Ai are standard atoms and all Ei are aggregate expressions.

115

In view of Lemma 28, it is sufficient to show that, for any subset Y of X, set Y

satisfies the FLP-reduct of (4.37) relative to X iff X ∪ Y p
q satisfies

A∗
k+1(q) ∧ . . . ∧A∗

m(q) ∧ ���(E1)
∗(q) ∧ . . . ∧ ���(El)

∗(q)

∧¬Am+1 ∧ . . . ∧ ¬An → A∗
1(q) ∨ . . . ∨A∗

k(q).
(4.38)

Case 1: X does not satisfy some Ai for k+1 ≤ i ≤ m or satisfies some Ai for m+1 ≤ i ≤ n.

It is clear that the FLP reduct of this rule is empty and X∪Y p
q does not satisfy the antecedent

of (4.38), in view of Lemma 27.

Case 2: X does not satisfy some Ei for 1 ≤ i ≤ l. Again the reduct is empty. By Lemma 34,

X �|= ���Π(Ei), and consequently, X ∪ Y p
q �|= ���Π(Ei)

∗(q) by Lemma 27.

Case 3: X satisfies the body of rule (4.37). The reduct is (4.37) itself. Under this condition,

it is sufficient to prove that Y satisfies

A1; . . . ;Ak ← Ak+1, . . . , Am, . . . , E1, . . . , El

iff X ∪ Y p
q satisfies

A∗
k+1(q) ∧ . . . A∗

m(q) ∧ ���Π(E1)
∗(q) ∧ · · · ∧ ���Π(El)

∗(q)→ A∗
1(q) ∨ . . . ∨A∗

k(q).

The claim follows from Lemmas 32 and 34.

Proof of Proposition 20

Proposition 20 If formulas F ↔ G and

q < p→ (F ∗(q)→ G∗(q))

are logically valid, then ��[G;p]→ ��[F ;p] is logically valid.

Proof. Since F is equivalent to G,

��[G;p] = G ∧ ¬∃u((u < p) ∧G∗(u))

⇔ F ∧ ¬∃u((u < p) ∧G∗(u)).

Since u < p→ (F ∗(u)→ G∗(u)) is logically valid, the last formula entails F ∧ ¬∃u((u <

p) ∧ F ∗(u)) which is exactly ��[F ;p].

116

Proof of Proposition 21

Proposition 21 For any program Π and any aggregate expression E occurring in Π and

any set X of ground atoms of σ(Π), X |= E iff X |= �������Π(E) iff X |= ���Π(E) iff

X |= �	
Π(E).

Proof. Clearly, ���Π(E) is classically equivalent to �������Π(E), and, by Lemma 24,

to ��	�
��Π(E). According to Lemma 34, X |= ���Π(E) iff X |= E. Also, as a special

case of Lemma 30 when Y =X, we get X |= E iff X |= ��
Π(E).

Proofs of Lemma 26 and Proposition 22

Lemma 26

(q ≤ p)→ (�������Π(E)∗(q)→ ���Π(E)∗(q))

is logically valid.

Proof. In view of Lemma 24 and Lemma 28, it is sufficient to prove that, under the as-

sumption q ≤ p,

∧
I∈IΠ(E)

(∨
A∈I ¬A ∨

∨
A∈�	Π\I A

∗(q)
)

→ ∧
I∈IΠ(E)

(
(
∧

A∈I A→
∨

A∈�	Π\I A) ∧ (
∧

A∈I A
∗(q)→ ∨

A∈�	Π\I A
∗(q))

)
is logically valid. Assume

∧
I∈IΠ(E)

(∨
A∈I

¬A ∨
∨

A∈�	Π\I

A∗(q)
)

and consider any I in IΠ(E).

Case 1:
∨

A∈I ¬A. It follows from Lemma 27 that,

∨
A∈I

¬A→
∨
A∈I

¬A∗(q)

is logically valid. Thus we get

(∨
A∈I

¬A ∨
∨

A∈�	Π\I

A
)
∧
(∨

A∈I
¬A∗(q) ∨

∨
A∈�	Π\I

A∗(q)
)
. (4.39)

117

Case 2:
∨

A∈��Π\I A
∗(q). By Lemma 27,

∨
A∈��Π\I

A∗(q)→
∨

A∈��Π\I

A

Thus we get (4.39).

Proposition 22 Every PDB-SPT answer set of Π is an FLP answer set of Π.

Proof. Clearly, �������(Π) is equivalent to �	�(Π). In view of Lemma 28 it is sufficient

to prove that

(q ≤ p)→ (�������Π(E)∗(q)→ �	�Π(E)∗(q))

which is Lemma 26.

Proofs of Proposition 23 and Proposition 24

Proposition 24 For any semi-positive program Π, the FLP answer sets of Π are precisely

the Ferraris answer sets of ���(Π).

Proof. It is sufficient to show that, for any aggregate expression E occurring in a semi-

positive program �
�(Π),

X ∪ Y p
q |= ��
Π(E)∗(q)

iff

X ∪ Y p
q |= �	�Π(E)∗(q)

Since ��
Π(E) and �	�Π(E) are conjunctions of implications G → H where each of G

and H contains no implications, by Lemma 32, the above is equivalent to saying that

X |= ��
Π(E), Y |= ��
Π(E)

iff

X |= �	�Π(E), Y |= �	�Π(E)

This claim follows from Proposition 21.

Proposition 23 For any semi-positive program Π, every FLP answer set of Π is a Ferraris

answer set of Π.
118

Proof. According to Proposition 21, for every Herbrand model X of σ(Π), X |= ���Π(E)

iff X |= ���Π(E). Let E be OP〈x : F (x)〉 �� b. In view of the proof of Proposition 24, it

is sufficient to show that for any aggregate expression E in the negative body of (4.2), if

X ∪ Y p
q satisfies ������(Π)(E)∗(q), then it satisfies (¬���Π(E))∗(q) as well.

By Lemma 27,

if X ∪ Y p
q |= ������(Π)(E)∗(q) then X ∪ Y p

q |= ������(Π)(E). (4.40)

Since E contains no implications, in view of the proof of Proposition 24,

X ∪ Y p
q |= ������(Π)(E) iff X ∪ Y p

q |= ���Π(E). (4.41)

It is clear that

X ∪ Y p
q |= ���Π(E) iff X ∪ Y p

q |= ¬���Π(E). (4.42)

By Lemma 28,

X ∪ Y p
q |= ¬���Π(E) iff X ∪ Y p

q |= (¬���Π(E))∗(q).

Proof of Proposition 27

Lemma 35 For any aggregate formula F and any sets of ground atoms X, Y , under the

unique name assumption,

X |= ����F (Y) iff X ∪ (X \ Y)pq |= F ∗(q).

Proof. By induction on F .

Proposition 27 Y is FLP externally supported by Π w.r.t. X iff X satisfies ��Pos(Π)(Y).

The proof follows immediately from the following lemma.

Lemma 36 If E contains no implications in it, then under the unique name assumption,

X |= ����E(Y) iff X |= E and X \ Y |= E.

119

Proof. By Lemma 35,

X |= ���E(Y) iff X ∪ (X \ Y)pq |= ���Π(E)∗(q).

By Lemma 32,

X ∪ (X \ Y)pq |= ���Π(E)∗(q) iff X |= ���Π(E) and (X \ Y) |= ���Π(E).

By Proposition 21,

X |= ���Π(E) and (X \ Y) |= ���Π(E) iff X |= E and (X \ Y) |= E.

Proof of Theorem 8

For any disjunctive program Π with aggregates, we represent a ground disjunctive rule with

aggregates in ���	
�(Π) as

H(p)← B(p) (4.43)

where p is a list of distinct predicate constants in σ(Π), and H(p) is a disjunction of atoms

in the head and B(p) is a conjunction of literals and aggregate expressions in the body.

Let q be a list of new distinct predicate constants of the same length as p. By H(q) we

denote the formula obtained from H(p) by replacing every predicate constant p from p

by the corresponding predicate constant q in q. Similarly we define B(q). Given a set Y

of ground atoms, we denote by Y p
q the set of atoms obtained from Y by substituting the

members of q for the corresponding members of p.

Lemma 37 Let Π be a disjunctive program with aggregates. For any Herbrand interpreta-

tions X, Y of σ(Π), and any ground rule

H(p)← B(p)

in ������(Π),

Y |= (H(p)← B(p))X

iff

X ∪ Y p
q |= B(p) ∧B(q)→ H(q). (4.44)

120

Proof. Case 1: X satisfies B(p). (H(p)← B(p))X is H(p)← B(p). On the other hand,

(4.44) is equivalent to saying that Y p
q |= B(q)→ H(q), which in turn is equivalent to saying

that Y |= B(p)→ H(p).

Case 2: X does not satisfy B(p). (H(p)← B(p))X is equivalent to�; it is clear that (4.44)

holds.

Lemma 38 For any finite ground program Π, X |= ΠFOL iff X satisfies ΠX .

Proof. Immediate from the definition of ΠX .

Theorem 8 Let Π be a finite disjunctive program with aggregates that contains at least one

object constant. The FLP-answer sets of Π in the sense of (Faber et al., 2011) are precisely

the Herbrand models of ���[Π] whose signature is σ(Π).

Proof. Let x be the list of variables occurring in Π and let H(x) ← B(x) be a rule of Π.

In view of Lemma 38, X is an ��� answer set of Π iff

(i) X |= ΠFOL, and

(ii) no proper subset Y of X satisfies (�����	(Π))X .

On the other hand, X is a Herbrand model of ���[Π] iff

(i’) X |= ΠFOL, and

(ii’) X does not satisfy ∃u(u < p ∧Π�(u)).

Condition (ii) can be reformulated as: no proper subset Y of X satisfies every rule

(H(t) ← B(t))X where H(t) → B(t) ∈ �����	(Π). Condition (ii’) can be reformulated

as: there is no proper subset Y of X such that, for every rule H(x) ← B(x) in Π and

for every tuple t of ground terms, X ∪ Y p
q satisfies (H(t) ← B(t))�(q). By Lemma 37, it

follows that (ii) is equivalent to (ii’).

121

Proof of Proposition 30

Proposition 30 For any finite general program Π with aggregates, if X is an Herbrand

interpretation of σ(Π) that satisfies ���[Π], then X is a minimal model of Π.

Proof. Assume that X is an Herbrand interpretation of σ(Π) that satisfies ���[Π] and Y

is any proper subset of X. Note that

X |= ΠFOL ∧ ¬∃u(u < p ∧Π�(u))

iff X |= ΠFOL and, for every proper subset Z of X,

X ∪ Zp
q �|= Π�(q).

Consequently, there exists a rule H ← B in �����	(Π) such that X ∪Y p
q |= B(q)∧B and

X ∪ Y p
q �|= H(q). Since B(q) and H(q) do not contain any predicate from p, it follows that

X |= B, Y |= B and Y �|= H . Consequently, Y does not satisfy �����	(Π).

122

Chapter 5

FIRST-ORDER STABLE MODEL SEMANTICS FOR GENERALIZED QUANTIFIED

FORMULA

Applications of answer set programming motivated various recent extensions to the stable

model semantics, for instance, to incorporate aggregates (Faber et al., 2011; Ferraris, 2005;

Son & Pontelli, 2007) and abstract constraint atoms (Marek & Truszczynski, 2004), and to

facilitate interface with external information source, such as ontology descriptions (Eiter

et al., 2008a). While the extensions were driven by different motivations and applications, a

common underlying issue is to extend the stable model semantics to incorporate “complex

atoms,” such as aggregates, abstract constraint atoms and dl-atoms. However, a systematic

study is still missing. As we showed in the introduction, many mathematical results on the

stable model semantics (e.g. splitting theorem, the theorem on completion, the theorem

on loop formulas, the theorem on strong equivalence and the theorem on safety) were

re-proven for each of the extension.

HEX programs (Eiter et al., 2005) provide an elegant solution to incorporate such

different extensions in a uniform framework via “external atoms.” The idea is to define

the meaning of external atoms in terms of external functions. For example, aggregate

COUNT〈x.p(x, a)〉 ≥ 3 is modelled by a binary external function f#count such that given an

Herbrand interpretation I, f#count(I, a, 3) = 1 iff the cardinality of the set {c | c ∈ |I|, I |=

p(c, a)} is ≥ 3. Once the notion of satisfaction is extended to cover external atoms, the

stable models of HEX programs are defined as minimal models of the “FLP-reduct” (Faber

et al., 2011). The adoption of the FLP reduct instead of the traditional Gelfond-Lifschitz

reduct was a key idea to incorporate external atoms in HEX programs. HEX programs are

well studied (Eiter et al., 2006a, 2008a, 2011), and was implemented in the system dlv-

hex.1 On the other hand, as we discussed in Section 2.4, FLP semantics is limited to the

propositional case and it suffers from some unintuitiveness.

So one wonders: is it possible to combine the versatility of HEX programs and the

semantic properties of the first-order stable model semantics? How is the new semantics

1http://www.kr.tuwien.ac.at/research/systems/dlvhex/

123

related to the HEX semantics? These are the subjects of this chapter.

It is hinted in (Ferraris & Lifschitz, 2010) that aggregates may be viewed in terms of

generalized quantifiers—a generalizations of the standard quantifiers, ∀ and ∃, introduced

by Mostowski (1957). We follow up on that suggestion, and present an alternative approach

to HEX programs by understanding external atoms in terms of generalized quantifiers. Our

semantics avoids the above issues with the FLP semantics, and allows natural extensions

to several important theorems about the first-order stable model semantics from (Ferraris

et al., 2011a), such as the splitting theorem, the theorem on completion and the theorem on

strong equivalence, to formulas with generalized quantifiers (GQ-formulas), which in turn

can be applied to the individual extensions. This saves efforts in re-proving the theorems

for these individual cases. It also allows us to combine the individual extensions in a single

language as in the following example.

Example 13 Consider an extension of nonmonotonic dl-programs (T ,Π) that allows ag-

gregates. The ontology description T specifies that every married man has a spouse who

is a woman and similarly for married woman:

��� �������� � ∃�	
���
�
���

�
��� �������� � ∃�	
���
���.

The following program Π counts the number of people who are eligible for an insurance

discount:

����
���(x)← �
� ��������(x),

#dl[��� ���,������� ���,�
��� ��� ,������� ��� ; ∃�	
���.�](x).

����
���(x)← ����
���(y), ������(y, x), �
� ��������(x).

���������
���(z)← COUNT〈x.����
���(x)〉 = z.

The first rule describes that everybody who has a spouse and has no accident is eligible

for a discount. The second rule describes that everybody who has no accident and has a

family member with a discount is eligible for a discount. We will see that our method can

provide the semantics of this combination.

124

Interestingly, our approach allows us to discover two new extensions of the stable

model semantics, yet another semantics of logic programs with abstract constraints, and

yet another semantics of nonmonotonic dl-programs, both of which are again special cases

of GQ-formulas, and, distinct from the previous definitions, are close to the first-order stable

model semantics.

To compare with the HEX semantics, we extend the first-order FLP semantics for

programs with aggregate further to programs containing generalized quantifiers, which can

be viewed as extending HEX programs to the first-order level. We relate the FLP semantics

and the first-order stable model semantics in the general context of programs with general-

ized quantifiers.

This chapter is organized as follows. In Section 5.1, we review the syntax and the

semantics of GQ-formulas. We also present two equivalent stable models semantics, one

based on the SM operator and the other based on grounding and reduct. Section 5.2 shows

that extension of the stable model semantics, such as logic programs with aggregates, con-

straints, and nonmonotonic dl-atoms, can be viewed as special cases of GQ-formulas. In

Section 5.3, we extend important theorems in answer set programming, such as the split-

ting theorem, the theorem on completion, and the theorem on strong equivalence, theorem

on safety and theorem on loop formulas to GQ-formulas. In Section 5.4, we extend the

first-order FLP semantics to cover programs with generalized quantifiers and relate it to the

first-order stable model semantics. Section 5.5 proposes a new semantics for nonmono-

tonic dl-programs. Section 5.6 relates the proposed semantics to the existing semantics of

logic programs with generalized quantifiers and to the stable model semantics of infinitary

formula. Section 5.7 concludes this chapter.

5.1 Stable Models of Formulas with Generalized Quantifiers
Syntax of Formulas with Generalized Quantifiers

We follow the definition of a formula with generalized quantifiers from (Westerståhl, 2008),

which allows Lindström quantifiers (Lindström, 1966) without the isomorphism closure con-

dition.

We assume a set Q of symbols for generalized quantifiers. Each symbol in Q is

125

associated with a tuple of nonnegative integer 〈n1, . . . , nk〉 (k ≥ 0, and each ni is ≥ 0),

called the type. A formula (with the set Q of generalized quantifiers) is defined in a recursive

way.

• an atomic formula is a formula;

• if F1, . . . , Fk are formulas and Q is a generalized quantifier of type 〈n1, . . . , nk〉, then

Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)) (5.1)

is a formula, where each xi (1 ≤ i ≤ k) is a list of distinct object variables whose

length is ni.

We say that an occurrence of a variable x in a formula F is bound if it belongs to a

subformula of F that has the form Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)), where x is in some

xi. Otherwise it is free. We say that x is free in F if F contains a free occurrence of x. A

sentence is a formula with no free variables.

We assume that Q contains a type 〈〉 quantifier Q⊥, a type 〈0〉 quantifier Q¬, type

〈0, 0〉 quantifiers Q∧, Q∨, Q→, and type 〈1〉 quantifiers Q∀, Q∃. Each of them corresponds

to the standard logical connectives and quantifiers, ⊥,¬,∧,∨,→, ∀, ∃. These generalized

quantifiers will often be written in the familiar form. For example, we write F ∧G in place of

Q∧[][](F,G), and write ∀xF (x) in place of Q∀[x](F (x)).

Semantics of Formulas with Generalized Quantifiers

An interpretation I of a signature σ consists of a nonempty set U , called the universe of I,

and a mapping cI for each function or predicate constant c in σ. For each function constant

f of σ whose arity is n, f I is an element of U if n is 0, and is a function from from Un to U

otherwise. For each predicate constant p of σ whose arity is n, pI is an element of {t,f} if

n is 0, and is a function from Un to {t,f} otherwise. For each generalized quantifier Q of

type 〈n1, . . . , nk〉, QU is a function from P(Un1) × · · · × P(Unk) to {t,f}, where P(Uni)

denotes the power set of Uni .

126

Example 14 Besides the standard connectives and quantifiers, the following are other ex-

amples of generalized quantifiers.

• type 〈1〉 quantifier Q≤2 such that QU
≤2(R) = t iff the cardinality of R is ≤ 2; 2

• type 〈1〉 quantifier Qmajority such that QU
majority(R) = t iff the cardinality of R is

greater than the cardinality of U \R;

• type 〈2, 1, 1〉 reachability quantifier Qreach such that QU
reach(R1, R2, R3) = t iff there

are some u, v ∈ U such that R2 = {u}, R3 = {v} and (u, v) belongs to the transitive

closure of R1.

Consider an interpretation I of a first-order signature σ. σI is defined the same as

before: signature obtained from σ by adding names for every element in the universe of I.

Given a sentence F of σI , F I is defined recursively as follows:

• p(t1, . . . , tn)
I = pI(tI1, . . . , t

I
n),

• (t1 = t2)
I = (tI1 = tI2),

• For a generalized quantifier Q of type 〈n1, . . . , nk〉,

(Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))
I = QU ((x1.F1(x1))

I , . . . , (xk.Fk(xk))
I),

where (xi.Fi(xi))
I = {ξ ∈ Uni | (Fi(ξ

∗))I = t}.

We assume that, for the standard logical connectives and quantifiers Q, functions

QU have the standard meaning:

• QU
∀ (R) = t iff R = U ;

• QU
∃ (R) = t iff R ∩ U �= ∅;

• QU
∧ (R1, R2) = t iff R1 = R2 = {ε};3

• QU
∨ (R1, R2) = t iff R1 = {ε} or R2 =

{ε};

• QU
→(R1, R2) = t iff R1 is ∅ or R2 is

2It is clear from the type that R is any subset of U . We will skip such explanation.
3ε denotes the empty tuple. For any interpretation I, U0 = {ε}. For I to satisfy Q∧[][](F,G), both (ε.F)I

and (ε.G)I have to be {ε}, which means that F I = GI = t.

127

{ε};

• QU
¬ (R) = t iff R = ∅.

• QU
⊥() = f .

We say that an interpretation I satisfies a sentence F , or is a model of F , and write

I |= F , if F I = t. A sentence F is logically valid if every interpretation satisfies F .

Example 15 Program Π1 in Example 2 is identified with the following GQ-formula F1:

(¬Q(SUM,<)[x][y](p(x), y=2)→ p(2))

∧ (Q(SUM,>)[x][y](p(x), y=−1)→ p(−1))

∧ (p(−1)→ p(1)) .

Consider two Herbrand interpretations of the universe U = {−1, 1, 2}: I1 = {p(−1), p(1)}

and I2 = {p(−1), p(1), p(2)}. We have (Q(SUM,<)[x][y](p(x), y = 2))I1 = t since

• (x.p(x))I1 = {−1, 1} and (y.y=2)I1 = {2};

• QU
(SUM,<)({−1, 1}, {2}) = t.

Similarly, (Q(SUM,>)[x][y](p(x), y=−1))I2 = t since

• (x.p(x))I2 = {−1, 1, 2} and (y.y=−1)I2 = {−1};

• QU
(SUM,>)({−1, 1, 2}, {−1}) = t.

Consequently, both I1 and I2 satisfy F1.

We say that a generalized quantifier (5.1) is monotone in the i-th argument position

if the following holds for any interpretation I: if QU (R1, . . . , Rk) = t and Ri ⊆ R′
i ⊆ Uni ,

then QU (R1, . . . , Ri−1, R
′
i, Ri+1, . . . , Rk) = t. Similarly, we say that Q is anti-monotone in

the i-th argument position if the following holds for any interpretation I: if QU (R1, . . . , Rk) =

t and R′
i ⊆ Ri ⊆ Uni , then QU (R1, . . . , Ri−1, R

′
i, Ri+1, . . . , Rk) = t. We call an argument

position of Q monotone (anti-monotone) if Q is monotone (anti-monotone) in that argument

position.

128

Let M be a subset of {1, . . . , k}. We say that Q is monotone in M if Q is monotone

in the i-th argument position for all i in M . It is easy to check that both Q∧ and Q∨ are

monotone in {1, 2}. Q→ is anti-monotone in {1} and monotone in {2}; Q¬ is anti-monotone

in {1}. In Example 14, Q≤2 is anti-monotone in {1} and Qmajority is monotone in {1}. We

will see later that (anti-)monotonicity play an important role in the properties of stable models

for formulas with generalized quantifiers.

Stable Models of GQ-Formulas

For any first-order formula F and any list of predicates p = (p1, . . . , pn), formula ��[F ;p]

is defined as

F ∧ ¬∃u((u < p) ∧ F ∗(u)), (5.2)

where F ∗(u) is defined recursively:

• pi(t)
∗ = ui(t) for any list t of terms;

• F ∗ = F for any atomic formula F that does not contain members of p;

•

(Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))
∗ =

Q[x1] . . . [xk](F
∗
1 (x1), . . . , F

∗
k (xk)) ∧ Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)).

(5.3)

As in Section 2.5, for a sentence F , the models of ��[F ;p] are called the p-stable

models of F and we write ��[F] in place of ��[F ;p] when p is the list of all predicate

constants occurring in F , and call p-stable models simply stable models.

Proposition 32 Let M be a subset of {1, . . . , k} and let Q[x1] . . . [xk](F1(x1), . . . , Fk(xk))

be a formula such that no predicate constant from p occurs in Fj for all j ∈ {1, . . . , k} \M .

(a) If Q is monotone in M , then

u ≤ p→ ((Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))
∗

↔ Q[x1] . . . [xk](F
∗
1 (x1), . . . , F

∗
k (xk)))

is logically valid.
129

(b) If Q is anti-monotone in M , then

u ≤ p→ ((Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))
∗

↔ Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))

is logically valid.

Proposition 32 allows us to simplify the formula F ∗(u) in (5.2) without affecting the

models of (5.2). In formula (5.3), if Q is monotone in all argument positions, we can drop

the second conjunctive term in view of Proposition 32 (a). Similarly, if Q is anti-monotone in

all argument positions, we can drop the first conjunctive term in view of Proposition 32 (b).

For instance, recall that each of Q∧, Q∨, Q∀, Q∃ is monotone in all its argument positions,

and Q¬ is anti-monotone in {1}. If F is a standard first-order formula, then (5.3) can be

equivalently rewritten as

• (¬F)∗ = ¬F ;

• (F ∧G)∗ = F ∗ ∧G∗; (F ∨G)∗ = F ∗ ∨G∗;

• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);

• (∀xF)∗ = ∀xF ∗; (∃xF)∗ = ∃xF ∗.

This is almost the same as the definition of F ∗ in Section 2.5, except for (¬F)∗.4 The

only propositional connective which is neither monotone nor anti-monotone in all argument

positions is Q→, for which the simplification does not apply.

Example 15 continued For GQ-sentence F1 considered earlier, ��[F1] is

F1 ∧ ¬∃u(u < p ∧ F ∗
1 (u)) , (5.4)

where F ∗
1 (u) is equivalent to the conjunction of F1 and

(¬Q(SUM,<)[x][y](p(x), y=2)→ u(2))

∧ ((Q(SUM,>)[x][y](p(x), y=−1) ∧ Q(SUM,>)[x][y](u(x), y=−1))→ u(−1))

∧ (u(−1)→ u(1)) .

I1 and I2 considered earlier satisfy (5.4) and thus are stable models of F1.

4¬F is understood as F → ⊥ in (Ferraris et al., 2011a), but this difference does not affect stable models.

130

Reduct-Based Definition

We present a reduct-based definition of stable models for GQ-formulas. We also assume a

set Q of generalized quantifiers, which contain all propositional connectives and standard

quantifiers.

A ground GQ-formula w.r.t. I is defined recursively as follows:

• p(ξ�1 , . . . , ξ
�
n), where p is a predicate constant of σ and ξ�i are object names of σI , is

a ground GQ-formula w.r.t. I;

• for any Q ∈ Q of type 〈n1, . . . , nk〉, if each Si is a set of pairs of the form ξ�.F where

ξ� is a list of object names in σI whose length is ni and F is a ground GQ-formula

w.r.t. I, then

Q(S1, . . . , Sk)

is a ground GQ-formula w.r.t. I.

The following definition of grounding turns any GQ-sentence into a ground GQ-

formula w.r.t. an interpretation:

Let F be a GQ-sentence of a signature σ, and let I be an interpretation of σ. By

grI [F] we denote the ground formula w.r.t. I, which is obtained by the following process:

• grI [p(t1, . . . , tn)] = p((tI1)
�, . . . , (tIn)

�);

• grI [t1 = t2] =

⎧⎪⎪⎨⎪⎪⎩
� if tI1 = tI2, and

⊥ otherwise;

• grI [�] = �; grI [⊥] = ⊥;

• grI [Q[x1] . . . [xk](F1(x1), . . . , Fk(xk))] = Q(S1, . . . , Sk)

where Si = {ξ�.grI [Fi(ξ
�)] | ξ� is a list of object names of σI whose length is the

same as ni }.

131

For any interpretation I and any ground GQ-formula F w.r.t. I, the satisfaction

relation I |= F is defined recursively as follows.

For any interpretation I and any ground formula F w.r.t. I, the truth value of F under

I, denoted by F I , is defined recursively as follows.

• p(ξ�1 , . . . , ξ
�
n)

I = pI(ξ1, . . . , ξn);

• �I = t; ⊥I = f ;

• Q(S1, . . . , Sk)
I = QU (SI

1 , . . . , S
I
k) where SI

i = {ξ | ξ�.F (ξ�) ∈ Si, F (ξ�)I = t}.

Example 15 continued For Herbrand interpretation I1 = {p(−1), p(1)}, formula grI1 [F1]

is 5

(¬Q(SUM,<)({−1.p(−1), 1.p(1), 2.p(2)}, {−1.⊥, 1.⊥, 2.�})→ p(2))

∧ (Q(SUM,>)({−1.p(−1), 1.p(1), 2.p(2)}, {−1.�, 1.⊥, 2.⊥})→ p(−1))

∧ (p(−1)→ p(1)) .

(5.5)

I1 satisfies Q(SUM,<)({−1.p(−1), 1.p(1), 2.p(2)}, {−1.⊥, 1.⊥, 2.�}) because I1 |= p(−1),

I1 |= p(1), I1 �|= p(2), and

QU
(SUM,<)({−1, 1}, {2}) = t.

I1 satisfies Q(SUM,>)({−1.p(−1), 1.p(1), 2.p(2)}, {−1.�, 1.⊥, 2.⊥}) because

QU
(SUM,>)({−1, 1}, {−1}) = t.

Consequently, I1 satisfies (5.5).

Proposition 33 Let σ be a signature that contains finitely many predicate constants, let σp

be the set of predicate constants in σ, let I = 〈If , Ip〉 be an interpretation of σ, and let F

be a GQ-sentence of σ. Then I |= F iff Ip |= grI [F].

For any ground formula F w.r.t. I, the reduct of F relative to I, denoted by F I , is

obtained by replacing each maximal subformula that is not satisfied by I with ⊥. It can also

be defined recursively as follows.
5For simplicity, we write −1, 1, 2 instead of their object names (−1)�, 1�, 2�.

132

• (p(ξ�1 , . . . , ξ
�
n))

I =

⎧⎪⎪⎨⎪⎪⎩
p(ξ�1 , . . . , ξ

�
n) if I |= p(ξ�1 , . . . , ξ

�
n),

⊥ otherwise;

• �I = �; ⊥I = ⊥;

• (Q(S1, . . . , Sk))
I =

⎧⎪⎪⎨⎪⎪⎩
Q(S

I
1 , . . . , S

I
k) if I |= Q(S1, . . . , Sk),

⊥ otherwise;

where S
I
i = {ξ�.(F (ξ�))I | ξ�.F (ξ�) ∈ Si}.

Theorem 10 Let σ be a signature that contains finitely many predicate constants, let σp be

the set of predicate constants in σ, let I = 〈If , Ip〉 be an interpretation of σ, and let F be a

GQ-sentence of σ. I |= ��[F ;σp] iff Ip is a minimal set of atoms that satisfies (�� I [F])I .

Example 15 continued The interpretation I1 considered before can be identified as the

tuple 〈If , {p(−1), p(1)}〉 where If is empty. The reduct (grI1 [F1])
I1 is

(⊥ → ⊥)

∧ (Q(SUM,>)({−1 : p(−1), 1 : p(1), 2 : ⊥}, {−1 : �, 1 : ⊥, 2 : ⊥})→ p(−1))

∧ (p(−1)→ p(1)) .

We can check that {p(−1), p(1)} is a minimal model of the reduct.

5.2 Extensions of ASP as GQ formulas

In this section, we show that aggregate formulas, programs with abstract or explicit con-

straints, nonmonotonic dl-programs can be viewed as special cases of GQ formulas.

Aggregates as GQ-Formulas

We identify expression (4.16), which is

OP〈x1.F1, . . . ,x
n.Fn〉 � b

with the GQ-formula

Q(OP,�)[x1] . . . [xn][y](F1(x1), . . . , Fn(xn), y = b) , (5.6)

where, for any interpretation I, QU
(OP,�) is a function that maps P(U |x1|)×· · ·×P(U |xn|)×

P(U) to {t,f} such that QU
(OP,�)(R1, . . . , Rn, Rn+1) = t iff

133

• OP(α) is defined, where α is the join of the multisets msp(R1), . . . ,msp(Rn),

• Rn+1 = {bI}, where bI ∈ Num, and

• OP(α) � bI ;

The following proposition states that this definition is equivalent to the definition

from (Ferraris & Lifschitz, 2010).

Proposition 34 Let F be a first-order sentence with aggregates whose signature is σ, and

let p be a list of predicate constants. For any expansion I of σbg to σ, I is a p-stable model

of F in the sense of (Ferraris & Lifschitz, 2010) iff I is a p-stable model of F in our sense.

Non-monotonic DL-Programs as GQ Formulas

Let C be a set of object constants, and let PT and PΠ be disjoint sets of predicate constants.

A nonmonotonic dl-program (Eiter et al., 2008a) is a pair (T ,Π), where T is a theory in

description logic (DL) of signature 〈C,PT 〉 and Π is a generalized normal logic program of

signature 〈C,PΠ〉 such that PT ∩ PΠ = ∅. We assume that Π contains no variables by

applying grounding w.r.t. C. A generalized normal logic program is a set of nondisjunctive

rules that can contain queries to T in the form of “dl-atoms.” A dl-atom is of the form

DL[S1op1p1, . . . , Skopkpk; Query](t) (k ≥ 0), (5.7)

where Si ∈ PT , pi ∈ PΠ, and opi ∈ {�, −∪, −∩}; Query(t) is a dl-query as defined in (Eiter

et al., 2008a). A ������� is of the form

a← b1, . . . , bm, ��	 bm+1, . . . , ��	 bn , (5.8)

where a is an atom and each bi is either an atom or a dl-atom. We identify rule (5.8) with

a← B,N , (5.9)

where B is b1, . . . , bm and N is ��	 bm+1, . . . , ��	 bn. An Herbrand interpretation I satisfies

a ground atom A relative to T if I satisfies A. An Herbrand interpretation I satisfies a

ground dl-atom (5.7) relative to T if T ∪⋃k
i=1Ai(I) entails Query(t), where Ai(I) is

134

• {Si(e) | pi(e) ∈ I} if opi is �,

• {¬Si(e) | pi(e) ∈ I} if opi is −∪,

• {¬Si(e) | pi(e) �∈ I} if opi is −∩.

A ground dl-atom A is monotonic relative to T if, for any two Herbrand interpreta-

tions I and I ′ such that I ⊆ I ′, I |=T A implies I ′ |=T A. Similarly, a ground dl-atom A

is anti-monotonic relative to T if, for any two Herbrand interpretations I and I ′ such that

I ⊆ I ′, I ′ |=T A implies I |=T A.

Given a dl-program (T ,Π) and an Herbrand interpretation I of 〈C,PΠ〉, the weak

dl-transform of Π relative to T , denoted by wΠI
T , is the set of rules

a← B′ (5.10)

where a← B,N is in Π, I |=T B ∧N , and B′ is obtained from B by removing all dl-atoms

in it. Similarly, the strong dl-transform of Π relative to T , denoted by sΠI
T , is the set of rules

(5.10), where a ← B,N is in Π, I |=T B ∧ N and B′ is obtained from B by removing all

nonmonotonic dl-atoms in it. The only difference between these two definitions is whether

monotonic dl-atoms in the positive body remain in the reduct or not.

An Herbrand interpretation I is a weak (strong, respectively) answer set of (T ,Π)

if I is minimal among the sets of atoms that satisfy wΠI
T (sΠ

I
T , respectively).

Here we understand dl-programs as a special case of GQ formulas. Consider a dl-

program (T ,Π) such that Π is ground. Under the strong answer set semantics, we identify

every dl-atom (5.7) in Π with

Q(5.7)[x1] . . . [xk](p1(x1), . . . , pk(xk)) (5.11)

if it is monotonic relative to (T ,Π), and

¬¬Q(5.7)[x1] . . . [xk](p1(x1), . . . , pk(xk)) (5.12)

otherwise.

135

Given an interpretation I, QU
(5.7) is a function that maps P(U |x1 |)× · · · × P(U |xk|)

to {t,f} such that, QU
(5.7)(R1, . . . , Rk) = t iff T ∪ ⋃k

i=1Ai(Ri) entails Query(t), where

Ai(Ri) is

• {Si(ξi) | ξi ∈ Ri} if opi is �,

• {¬Si(ξi) | ξi ∈ Ri} if opi is −∪,

• {¬Si(ξi) | ξi ∈ U |xi| \Ri} if opi is −∩.

We say that I is a strong answer set of (T ,Π) if I satisfies ��[Π;PΠ].

Similarly a weak answer set of (T ,Π) is defined by identifying every dl-atom (5.7)

in Π with (5.12) regardless whether A is monotonic or not.

Example 13 continued The dl-atom

#dl[��� ���,������� ���,	
��� ��� ,������� ��� ; ∃�

���.�](�����)
(5.13)

is identified with the generalized quantified formula

Q(5.13)[x1][x2][x3][x4](��(x1),��(x2),��(x3),��(x4)) (5.14)

where, for any interpretation I, QU
(5.13) is a function that maps P(U)×P(U)×P(U)×P(U)

to {t,f} such that QU
(5.13)(R1, R2, R3, R4) = t iff T ∪ {���(c) | c ∈ R1} ∪ {	
���(c) |

c ∈ R3}∪ {�������(c) | c ∈ R2 ∪R4} entails ∃x�

���(�����, x).

Consider an Herbrand interpretation I = {mw(alice)}, which satisfies (5.13). I

also satisfies (5.14) since (x.mw(x))I = {alice} and T ∪{Woman(alice),Married(alice)}

entails ∃xSpouse(alice, x).

The following proposition tells us that the definitions of a strong answer set and a

weak answer set given here are equivalent to the definitions from (Eiter et al., 2008a).

Proposition 35 For any dl-program (T ,Π), an Herbrand interpretation is a strong (weak,

respectively) answer set of (T ,Π) in the sense of (Eiter et al., 2008a) iff it is a strong (weak,

respectively) answer set of (T ,Π) in our sense.

136

Abstract Constraint Atoms as GQ-Formulas

Abstract constraint atoms is a generalization of aggregates to represent arbitrary constraints

on atoms. Intuitively, a constraint A represents a condition on models of the program con-

taining A. The definition of A includes an explicit description of conditions interpretations

have to meet in order to satisfy it.

Formally, let σ be a propositional signature, D be a finite set of atoms of σ and C

be a subset of the power set P(D). An abstract constraint atom (or c-atom following (Son

et al., 2007)) is of the form (D,C). Intuitively, a c-atom represents a constraint with a finite

set C of admissible solutions over a finite domain D. Given a propositional signature σ, for

any interpretation I of σ, we say that I satisfies an c-atom (D,C) if I∩D ∈ C. Consider the

c-atom ({a, b}, {{ }, {b}, {a, b}}). For any interpretation I, I satisfies the c-atom iff a �∈ I.

Son, Pontelli and Tu (Son et al., 2007) proposed a semantics of program with ab-

stract constraints atoms based on a extended definition of satisfaction, namely “conditional

satisfaction.” Lemma 6 from (Son & Pontelli, 2007) shows that the definition is equivalent

to the semantics of aggregates by Pelov, Denecker, Bruynooghe (Pelov et al., 2007), which

translate aggregates into nested expressions. We will just present the reductive semantics

which involves the notion of a “(maximal) local power set.”.

For any c-atom (D,C), by ���(D,C)6 (Son & Pontelli, 2007) we denote the for-

mula ∨
〈B,T 〉 is a maximal LPS of C

(∧
pi∈B

pi ∧
∧

pi∈D\T
¬pi

)
. (5.15)

By ���(Π) we denote the propositional formula obtained from �����	(Π) by re-

placing all c-atoms (D,C) in it by ���(D,C). The ��� answer sets of Π are defined as

the answer sets of ���(Π) in the sense of �
.

Example 16 The following example is from (Liu, Pontelli, Son, & Truszczynski, 2010). Con-

6Here we understand a c-atom as an aggregate

137

sider the following program Π.

a. b.

c← ((a, b, c), {{a}, {a, c}, {a, b, c}}).

��� (Π) is the formula

a ∧ b ∧ (((a ∧ ¬b) ∨ (a ∧ c))→ c).

It is easy to check that there is no ��� answer sets of Π.

We view c-atoms as a special case of generalized quantifiers containing no vari-

ables, and this provides an alternative semantics of c-atoms that is different from (Son

et al., 2007). An abstract constraint 〈D,C〉, where D is (p1, . . . , pn), can be viewed as a

GQ-formula

QC [] . . . [] D , (5.16)

where, for any interpretation I of σ, QU
C is a function that maps P({ε}) × · · · × P({ε}) to

{t,f} such that QU
C(R1, . . . , Rn) = t iff {pi | 1 ≤ i ≤ n, Ri = {ε}} ∈ C.

The following lemma follows immediately from the definition:

Lemma 39 For any c-atom 〈D,C〉 of σ and any interpretation I of σ, I satisfies 〈D,C〉 in

the sense of (Son et al., 2007) iff I |= (5.16).

A propositional formula with c-atoms extends the standard syntax of a propositional

formula by treating c-atoms as a base case in addition to standard atoms. The stable model

semantics of such a formula is defined by understanding the formula as shorthand for the

corresponding GQ-formula as described in Lemma 50.

Example 16 continued Consider the formula F that corresponds to Π

a ∧ b ∧ ((a, b, c), {{a}, {a, c}, {a, b, c}})→ c.

For new atoms d,e,f , formula F ∗(d, e, f) is

d ∧ e ∧ ((a, b, c), {{a}, {a, c}, {a, b, c}})→ c)∧

((a, b, c), {{a}, {a, c}, {a, b, c}}) ∧ ((d, e, f), {{d}, {d, f}, {d, e, f}})→ f).

138

Any subset X of {a, b, c} is an answer set of F iff X satisfies F and for any proper subset

Y of X, X ∪ Y abc
def does not satisfy F ∗(d, e, f). (Here Y abc

def is the set obtained from Y by

replacing a, b, c with d, e, f .)

We can check that {a, b} is the only answer set of F . Indeed, {a, b} satisfies F and

each of {a, b}, {a, b, d}, {a, b, e} does not satisfy F ∗(d, e, f).

Given a c-atom (5.16), we define its propositional formula representation as

∧
C∈P(D)\C

(∧
p∈C

p→
∨

p∈D\C
p

)
. (5.17)

For any propositional formula F with c-atoms, by ���(F), we denote the usual propositional

formula obtained from F by replacing every c-atom (5.16) with (5.17).

The following proposition tells us that c-atoms in a formula can be rewritten as

propositional formulas under the stable model semantics from (Ferraris, 2005).

Proposition 36 For any propositional formula F with c-atoms and any propositional inter-

pretation X, X is an answer set of F iff X is an answer set of ���(F).

Example 16 continued For the formula F above, ���(F) is

a ∧ b ∧ (((a ∨ b ∨ c) ∧ (b→ a ∨ c) ∧ (c→ a ∨ b) ∧ (a ∧ b→ c) ∧ (b ∧ c→ a))→ c).

We check that {a, b} is the only answer set of ���(F) in accordance with Proposition 36.

Explicit Constraints as GQ-Formulas

Let σbg be a background signature consisting of function and predicate constants, and let σ

be a superset of σbg. As before, we designate some ground terms that can be constructed

from σ \ σbg as constraint variables. An explicit constraint is a formula formed from a

background signature σbg allowing elements of V also used as terms. Let C be the set

of all explicit constraints. Like SMT theories (Biere, Biere, Heule, van Maaren, & Walsh,

2009), we assume that the evaluation of constants in σbg is pre-determined. For instance,

numbers are evaluated as themselves, built-in functions (e.g., +, −), and built-in predicates

(e.g., ≤, >) have their intended meanings. Formally, a background interpretation Ibg is a
139

fixed interpretation of σbg. Given a constraint satisfaction problem (V,D,C), we assume

that all elements d in ���(v), where v ∈ V , are object constants in σbg such that dIbg = d.

Example 17 Take σbg to be the signature that contains all integers and arithmetic func-

tions + and sq(uare). Let V be {side1(obj), side2(obj), side3(obj)}. The domain of every

constraint variable is the set of all integers.

sq(side1(obj)) + sq(side2(obj)) = sq(side3(obj))

∧ triangle(obj)→ rightTriangle(obj)

is a formula with explicit constraints.

For any formula F of σ and any list of intensional predicates p = (p1, . . . , pn) whose

members belong to σ \ σbg, formula ��[F ;p] is defined as

F ∧ ¬∃u(u < p ∧ F ∗(u)),

where F ∗(u) is defined as before.

An explicit constraint c, where v1, . . . , vn is the list of all constraint variables that

occurs in it, can be viewed as a generalized quantified formula

Qc[x1] . . . [xn](x1 = v1, . . . , xn = vn), (5.18)

where for any interpretation I that conforms to (V,D,C), QI
c(R1, . . . , Rn) = t iff each Ri

is some singleton set {di} such that di ∈ ���(vi) and I |= c′ where c′ is obtained from c

by replacing every vi with di (1 ≤ i ≤ n).

Example 17 continued The explicit constraint c1

sq(side1(obj)) + sq(side2(obj)) = sq(side3(obj))

is understood as the generalized quantified formula

Qc1 [x1][x2][x3](x1=side1(obj), x2=side2(obj), x3=side3(obj)),

where QI
c1(R1, R2, R3) = t iff each Ri is a singleton set {di} such that di is an integer and

sq(d1) + sq(d2) = sq(d3).
140

The GQ-representation (“Generalized Quantified Formula representation”) of a for-

mula F with constraints (denoted by FGQ) is the formula obtained from F by identifying all

constraints c by their corresponding generalized quantified formula (5.18).

Proposition 37 Let (V,D,C) be a constraint satisfaction problem, let F be a sentence of

signature σ with explicit constraints of signature σbg such that σbg ⊆ σ, let p be a list of

predicates whose members belong to σ \ σbg. For any expansion I of an interpretation of

σbg to σ that conforms to (V,D,C), I |= ��[F ; p] iff I |= ��[FGQ; p].

5.3 Important Theorems

In this section, we extend some important theorems of the programs under the stable mod-

els semantics to formulas with generalized quantifiers.

Strong Equivalence

Strong equivalence (Lifschitz et al., 2001) is an important notion that allows us to substitute

one subformula for another subformula without affecting the stable models. In the following,

we extend the theorem on strong equivalence GQ-formulas.

About GQ-formulas F and G we say that F is strongly equivalent to G if, for any

formula H , any occurrence of F in H , and any list p of distinct predicate and function

constants, ��[H;p] is equivalent to ��[H ′;p], where H ′ is obtained from H by replacing

the occurrence of F by G. In this definition, H is allowed to contain object, function and

predicate constants that do not occur in F , G; Theorem 11 below shows, however, that this

is not essential.

Theorem 11 Let F and G be GQ-formulas, let p be the list of all predicate constants occur-

ring in F or G and let u be a list of distinct predicate variables corresponding to p. Formulas

F and G are strongly equivalent to each other iff the formula

(u ≤ p)→ (F ∗(u)↔ G∗(u))

is logically valid.

141

Example 18 The program (2.3) can be identified with the formula F

(¬q → p(a)) ∧ (COUNT〈x.p(x)〉 < 1→ q),

and is strongly equivalent to the following formula G:

(¬COUNT〈x.p(x)〉 < 1→ p(a)) ∧ (COUNT〈x.p(x)〉 < 1→ q).

One can check that F ∗(u, v) and G∗(u, v) are equivalent to each other.

Splitting Theorem

The splitting method(Lifschitz & Turner, 1994; Janhunen & Oikarinen, 2004; Ferraris, Lee,

Lifschitz, & Palla, 2009a) can reduce the task of computing the stable models of a logic pro-

gram to similar tasks for smaller programs. In this section, we extend the splitting theorem

from (Ferraris, Lee, Lifschitz, & Palla, 2009b) to GQ-formulas.

Let F be a GQ-formula. We say that an occurrence of p in F is mixed if there is

some generalized quantifier Q that contains the occurrence in its argument position which

is neither monotone nor anti-monotone. Let l be the number of generalized quantifiers Q

in F such that the occurrence of p belongs to an anti-monotone argument position of Q. If

the occurrence is not mixed then we call it positive in F if l is even, and negative otherwise.

The occurrence is strictly positive in F if l = 0. We call an occurrence of predicate constant

semi-positive if it is positive or mixed. Similarly, it is semi-negative if it is negative or mixed.

We say that F is negative on p if there is no strictly positive occurrence of a predi-

cate constant from p in F . An occurrence of a predicate constant or a subformula of F is

p-negated in F if it is contained in a subformula of F that is negative on p.

The predicate dependency graph of F relative to a list p of intensional predicates

(denoted by ��p[F]) is a directed graph such that

• the vertices are the members of p, and

• there is an edge from p to q if there is a strictly positive occurrence of a subformula

G = Q[x1] . . . [xk](F1, . . . , Fk) such that

– p has a strictly positive occurrence in G, and
142

– q has a semi-positive, non-p-negated occurrence in a non-monotone argument

position of Q.

A loop of F (relative to a list p of intensional predicates) is a nonempty subset l

of p such that the subgraph of ��p[F] induced by l is strongly connected. It is clear that

the strongly connected components of ��p[F] can be characterized as the maximal loops

of F .

Example 13 continued Figure 5.1 shows the dependency graph of F relative to {��������,

	
���
 ,��,�� ,
�������, ����	��������}.

Figure 5.1: The predicate dependency graph of the formula in Example 13

Theorem 12 Let F be a GQ-sentence, and let p be a tuple of distinct predicate constants.

If l1, . . . , ln are all the loops of F relative to p then

��[F ;p] is equivalent to ��[F ; l1] ∧ · · · ∧ ��[F ; ln].

The following theorem extends the splitting theorem from (Ferraris et al., 2009b) to

GQ-sentences.

Theorem 13 Let F , G be GQ-sentences, and let p, q be disjoint tuples of distinct predicate

constants. If

143

• each strongly connected component of ��pq[F ∧ G] is a subset of p or a subset of

q,

• F is negative on q, and

• G is negative on p

then

��[F ∧G;pq] is equivalent to ��[F ;p] ∧ ��[G; q].

Example 13 continued ��[F ; ������	
, 	���
������	
] is equivalent to

��[G1; ������	
] ∧ ��[G2; 	���
������	
],

where G1 is the conjunction of the first two implications in F and G2 is the last implication.

Completion

A GQ-formula F is in Clark normal form if it is a conjunction of sentences of the form

∀x(G→ p(x)), (5.19)

one for each intensional predicate p, where x is a list of distinct object variables, and G has

no free variables other than x. The completion (relative to p) of a GQ-formula F in Clark

normal form, denoted by ����[F], is obtained by replacing each conjunctive term (5.19)

with

∀x(p(x)↔ G).

We say that a GQ-formula is tight on p if its (predicate) dependency graph relative

to p is acyclic.

Theorem 14 For any GQ-formula F in Clark normal form that is tight on p, ��[F ;p] is

equivalent to the completion of F relative to p.

Example 13 continued Let F ′ be the formula obtained from F by dropping the sec-

ond implication. The Clark normal form of F ′ is tight on {��������, ��	
���������}. So
144

��[F3; ������	
, 	���
������	
] is equivalent to

∀x(������	
(x)↔ ¬������	
(x)∧

#dl[��	 ���,������� ���,����	 ��� ,������� ��� ; ∃������.�](x))

∧ ∀y(���
������	
(y)↔ COUNT〈x.discount(x)〉 = y).

Safety for First-order Formulas with Generalized Quantifiers

The condition of safety ensures that answer sets computations are not affected by the

choice of domain. This in turn justifies domain-independent reasoning using the grounding

mechanisms.

According to the traditional definition of safety in ASP, a rule in a program is safe

if every variable occurring in it also occurs in the positive part of the body. A program is

safe if all the rules in it are safe. Answer set solvers accept only safe rules as input. Eiter,

Ianni, Schindlauer, and Tompits (2006b) extended the result of safety to programs with

external atoms. According to the paper, external atoms can be used to restrict variables

in very limited cases. For example, the following program is not safe if we view aggregate

expressions as external atoms

p(y)← COUNT 〈x.q(x, y)〉 ≥ 2.

The problem is that, when defining safety, external atoms are treated as black boxes: the

properties of each different external atoms are not considered.

On the other hand, Lee, Lifschitz, and Palla (2008b) define the meaning of counting

and choice by reducing these constructs to first-order formulas and defines the concept of a

safe program based on the reduction. According to (Lee et al., 2008b), the above program

is safe. However, the approach does not apply to arbitrary aggregates.

Example 19 For instance, the following program Π should be safe but is not covered by

the approach in (Lee et al., 2008b):

q(2, 1).

p(y)← SUM〈x.q(x, y)〉 ≥ 2.

The answer set of the program is {q(2, 1), p(1)} no matter which domain we choose.
145

In this section, we show that how the theorem on Safety can be extended to cover GQ-

formulas. We consider only the first order formulas with generalized quantifiers which con-

tains no function constant of positive arity.

Semi-Safety

We say that a generalized quantifier Q of type 〈n1, . . . , nk〉 is conjunctive w.r.t. an argu-

ment set M if for every interpretation I, any subsets R1 ⊆ P(|I||x1|), . . . , Rk ⊆ P(|I||xk|),

QI(R1, . . . , Rk) = t implies that Ri �= ∅ for every i ∈ M . Similarly, Q is disjunctive w.r.t.

an argument set M if for every interpretation I, any subsets R1 ⊆ P(|I||x1|), . . . , Rk ⊆

P(|I||xk|), QI(R1, . . . , Rk) = t implies that Ri �= ∅ for some i ∈M .

Given a GQ-formula F , we first rename all variables such that all bound and free

variables are disjoint. Then we extend the definition of restricted variables (Lee et al.,

2008a) to cover GQ-formula as follows.

• For an atomic formula F ,

– if F is an equality between two variables then ��(F) = ∅;

– otherwise, ��(F) is the set of all variables occurring in F .

• For any GQ-formula F of the form Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)),

��(F) =
⋃

M⊆{1,...,k}
��M (F)

where ��M (F) is defined as follows:

– If Q is conjunctive w.r.t. M , then

��M (F) =
⋃
i∈M

(��(Gi) \ xi);

– else, if Q is disjunctive w.r.t. M , then

��M (F) =
⋂
i∈M

(��(Gi) \ xi);

– otherwise, ��M (F) = ∅.

146

A formula F is semi-safe if every strictly positive occurrence of every variable x

that does not follow a generalized quantifier is contained in a subformula F in the form of

G→ H , such that x ∈ ��(G)

Example 19 continued The program Π

q(2, 1).

p(y)← SUM〈x.q(x, y)〉 ≥ 2.

is sami-safe. This is because it can be viewed as the generalized quantified formula F

q(2, 1) ∧ ∀y(p(y)← Q(SUM,≥2)[x] (q(x, y)))

where for any interpretation I, QU
(SUM,≥2) is a function that maps P(U) to {t,f} such that

QU
(SUM,≥2)(R) = t iff

• SUM(R) is defined, and

• SUM(R) ≥ 2.

Since Q(SUM,≥2) is conjunctive w.r.t. {1}. As a result,

��(Q(SUM,≥2)[x] (q(x, y))) = {y}.

Note that the representation of an aggregate is more restricted the one we pre-

sented in Section 5.2 in that the bound, 2, of the aggregate is now within a generalized

quantifier instead of occurring as a term in the generalized quantified formula. This under-

standing representation disallows variable bounds. On the other hand, if we understand

SUM〈x.q(x, y)〉 ≥ 2 as Q(SUM,≥)[x][z] (q(x, y), z = 2) as in Section 5.2, Q(SUM,≥) is

not conjunctive w.r.t. {1}. We can not conclude that the program is safe according to the

representation.

For any finite set c of object constants, ��c(x1, . . . , xm) stands for the formula

∧
1≤j≤m

∨
c∈c

xj = c.

147

By ���c we denote the conjunction of the sentences

∀x
(
pi(x)→ ��c(x)

)
for all predicate constants pi occurring in F , where x is a list of distinct object variables

whose length is the same as the arity of p.

For any set c of object constants, ec denotes the list of predicate expressions con-

sisting of

λx
(
pi(x) ∧ ��c(x)

)
for all pi in F .

For any formula F , let c(F) be the set of all object constants in F and σ(F) be the

set of all object and predicate constants in F .

Proposition 38 For semi-safe sentence F , �� [F] |= ��� c(F).

Example 19 continued ���{1,2} is

∀xy(q(x, y)→ ((x = 1 ∨ x = 2) ∧ (y = 1 ∨ y = 2)))

According to the above proposition, ��[F] |= ���{1,2}.

Grounding

Let F = Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)) be a generalized quantified formula and c a

set of object constants containing σ(F). By Oi
c, we denote the set of all lists of object

constants of c whose length is the same as the length of xi. Cc(F) is the set of all tuples

of the form (R1, . . . , Rk) such that

• Ri ⊆ Oi
c, and

• Qc(R1, . . . , Rk) = f .

For any sentence F and any nonempty finite set c of object constants, the variable-

free formula ���	�
c[F] are defined as follows.
148

• If F is an atomic formula, ������c[F] = F ;

• If F is Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)), ������c[F] is

∧
(R1,...,Rk)∈Cc(F)

(∧
1≤i≤k
di∈Ri

������c[Gi(di)]→
∨

1≤i≤k

di∈Oi
c\Ri

������c[Gi(di)]

)
.

Proposition 39 For any GQ sentence F , any signature σ such that σ(F) ⊆ σ and any

Herbrand interpretation X of σ, let c be the set of all object constants in σ, if c is finite, then

X |= �� [F] iff X |= �� [������c[F]].

Example 20 Consider the generalized quantified formula E1 = Q∧(G1, G2). For any finite

set of object constants c, Cc(E1) is {(∅, ∅), (ε, ∅), (∅, ε)}. ������c[E1] is

(������c[G1] ∨������c[G2])

∧ (������c[G1]→ ������c[G2])

∧ (������c[G2]→ ������c[G1])

which is strongly equivalent to

������c[G1] ∧������c[G2].

For another example, consider the generalized quantified formula

E2 = Q(SUM,≥2)[x] (q(x)).

Let the set of object constants c = {1, 2}. Cc(E2) is {∅, {1}}. ������c[E2] is

(q(1) ∨ q(2)) ∧ (q(1)→ q(2)).

Note that the later is exactly the formula representation of the aggregate SUM〈x.q(x)〉 ≥ 2

according to (Ferraris, 2005).

Consider the generalized quantified formula

E3 = Qmajor[x] (p(x))

149

such that for any interpretation I and any R ⊆ |I|, QI
major(R) = t iff |R| ≥ |I|/2. Let the

set of object constants c = {a, b, c}. O1
c = {a, b, c}. Cc(E3) is {(∅), ({a}), ({b}), ({c})}.

������c[E3] is

(p(a) ∨ p(b) ∨ p(c)) ∧ (p(a)→ p(b) ∨ p(c))

∧ (p(b)→ p(a) ∨ p(c)) ∧ (p(c)→ p(a) ∨ p(b)).

Safety

Given a GQ-formula, we first rename all variables such that all bound variables are disjoint.

The following transformation is a refomulation of the transformation defined in [Cabalar et

al., 2009].

• ¬⊥ �→ �, ¬� �→ ⊥,

• ⊥ ∧ F �→ ⊥, F ∧ ⊥ �→ ⊥, � ∧ F �→ F, F ∧ � �→ F,

• ⊥ ∨ F �→ F, F ∨ ⊥ �→ F, � ∨ F �→ �, F ∨ � �→ �,

• ⊥ → F �→ �, F → � �→ �, � → F �→ F ,

• Qx.� �→ �, Qx.⊥ �→ ⊥ for Q ∈ {∀, ∃}.

We say that x is positively weakly restricted in the formula G if the formula obtained

from G by

• first replacing every atomic formula containing x by ⊥,

• then apply the transformation above

the result is �; x is negatively weakly restricted in G if the result is ⊥.

A semi-safe sentence with aggregates F is safe if, for every (non-strictly positive)

occurrence of a variable x in F ,

• every occurrence of each of every variable x that is quantified by ∀ or ∃ in F is

contained in a subformula G→ H that satisfies two conditions

150

– if x is quantified by ∀ that has positive occurrence or ∃ that has negative occur-

rence, then the occurrence is either

∗ positively weakly restricted in a formula G that is positive in F , or

∗ negatively weakly restricted in a formula G that is negative in F .

– if x is quantified by ∃ that has positive occurrence or ∀ that has negative occur-

rence, then the occurrence is either

∗ positively weakly restricted in a formula G that is negative in F , or

∗ negatively weakly restricted in a formula G that is positive in F .

• for GQ-formula of the form

Q[x1] . . . [xk](G1(x1), . . . , Gk(xk))

such that Q is neither Q∀ nor Q∃, every variable in xi belongs to ��(Gi).

Proposition 40 For any safe GQ sentence F and any nonempty finite set c of object con-

stants containing c(F), �� [F] is equivalent to �� [������c[F]].

Example 21 Consider the formula F1

p(a) ∧ p(b) ∧ ∀x(p(x)→ (q(x) ∨ ¬q(x)))

∧ COUNT〈y.q(y)〉 ≤ 1→ r.

The formula is semi-safe because only the variable x has strictly positive occur-

rences (in the second conjunctive terms) and they are contained in the implication where

x ∈ 	
 (p(x)). As a result, the following holds

∀x(p(x)→ x = a ∨ x = b)

∀x(q(x)→ x = a ∨ x = b).

F1 is also safe because x is quantified by ∀ that has positive occurrence and is

negatively weakly restricted in p(x) that is negative in F1. The variable y is not quantified

by ∀ or ∃ and it belongs to 	
 (q(y)).

151

As a result, F1 has the same answer sets as ������{a,b}(F1) which is the following

formula

p(a) ∧ p(b)

∧(p(a)→ (q(a) ∨ ¬q(a)))

∧(p(b)→ (q(b) ∨ ¬q(b)))

∧((q(a) ∧ q(b))→ ⊥)→ r.

Loop Formulas for GQ-Formula

In this section we extend the definition of a first-order loop formula to a GQ-sentence.

As with a propositional loop formula defined for an arbitrary propositional theory

(Ferraris et al., 2006), it is convenient to introduce a formula whose negation is close to ��.

We define formula ���F (Y) (“Negation of (First-order) External Support Formula”), where

F is a first-order formula and Y is a finite set of atoms, as follows. We assume that no

variables in Y occur in F , by renaming variables.

• ���pi(t)(Y) = pi(t) ∧
∧

pi(t′)∈Y t �= t′;

• ���F (Y) = F for any atomic formula F that does not contain members of p;

•
���Q[x1]...[xk](G1(x1),...,Gk(xk))(Y) =

Q[x1] . . . [xk](���G1(x1)(Y), . . . ,���Gk(xk)(Y))

∧ Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)).

.

The (first-order) loop formula of Y for F , denoted by ��F (Y), is the universal clo-

sure of ∧
Y → ¬���F (Y). (5.20)

Let F be a GQ-formula and p be the list of all predicates that occur in F . We say

that an occurrence of a predicate constant or subformula in a formula F is mixed if there is

some generalized quantifier Q that contains the occurrence in its argument position which

is neither monotone nor anti-monotone. Let l be the number of generalized quantifiers Q in

F such that the occurrence of p belongs to an anti-monotone argument position of Q. If the

occurrence is not mixed then we call it positive in F if l is even, and negative otherwise. The

152

occurrence is strictly positive in F if l = 0. We call an occurrence of a predicate constant

or a subformula semi-positive if it is positive or mixed. Similarly, it is semi-negative if it is

negative or mixed. We say that F is negative on p if there is no strictly positive occurrence

of a predicate constant from p in F . An occurrence of a predicate constant or a subformula

of F is p-negated in F if it is contained in a subformula of F that is negative on p.

We will say that a GQ-formula is rectified if it has no variables that are both bound

and free, and if all quantifiers in the formula refer to different variables. Any formula can be

easily rewritten into a rectified formula by renaming bound variables.

Let F = Q[x1] . . . [xk](G1, . . . , Gk) be a rectified generalized formula. We say that

an atom p(t) depends on an atom q(t′) in F if

• p(t) has a strictly positive occurrence in F , and

• q(t′) has a semi-positive, non-p-negated occurrence in a non-monotone argument

position of Q.

The definition of a first-order atomic dependency graph is extended to formulas as

follows. The (first-order) atomic dependency graph of a rectified GQ-formula F is the infinite

directed graph (V,E) such that

• V is the set of atoms of signature σ(F);

• (p(t)θ, q(t′)θ) is in E if p(t) depends on q(t′) in a strictly positive occurrence of a

subformula of F and θ is a substitution that maps variables in t and t′ to terms of

σ(F).

A loop of F is a nonempty subset L of V such that the subgraph induced by L is

strongly connected. It is clear that the strongly connected components can be characterized

as the maximal loops of F .

Example 13 continued The dependency graph of F contains the following finite loops

{������(u)}, {��(u)}, {��(u)}, {����	
��(u)}, {�
��������
��(u)} and {	����
��(u1), . . . , 	����
��(un)}

for any n ≥ 1.
153

��F ({������	
(u1), . . . , ������	
(un)}) is the following formula

∧
1≤i≤n ������	
(ui)→

(
(������	
(y) ∧∧

1≤i≤n y �= ui ∧ ��
���(y, x) ∧ ¬������	
(x))∨

(¬������	
(x) ∧Q(5.13)[x1][x2][x3][x4](

(x1),

(x2),
�(x3),
�(x4)))

)

Theorem 15 Let F be a rectified GQ-sentence that has no function constants of positive

arity, and let X be an Herbrand interpretation of σ(F) that satisfies F . The following condi-

tions are equivalent to each other:

(a) X is a stable model of F (i.e., I satisfies ��[F]);

(b) for every nonempty finite set Y of atoms of σ(F), X satisfies ��F (Y);

(c) for every finite first-order loop Y of F , X satisfies ��F (Y).

5.4 First-Order FLP Semantics for Programs with Generalized Quantifiers

To compare to the HEX semantics, we first extend the first-order FLP semantics for pro-

grams with aggregate further to programs containing generalized quantifiers, which can be

viewed as extending HEX programs to the first-order level. We then relate the FLP se-

mantics and the first-order stable model semantics in the general context of programs with

generalized quantifiers.

A (general) rule is of the form

H ← B (5.21)

where H and B are arbitrary GQ-formulas. A (general) program is a finite set of rules.

The definition of ���[Π;p] is the same as the one for formulas with aggregates

in Section 4.6. Let Π be a finite program whose rules have the form (5.21). The GQ-

representation ΠGQ of Π is the conjunction of the universal closures of B → H for all

rules (5.21) in Π. By ���[Π;p] we denote the second-order formula

ΠGQ ∧ ¬∃u(u < p ∧Π�(u))

154

where Π�(u) is defined as the conjunction of the universal closures of

B ∧B(u)→H(u)

for all rules H ← B in Π.

We will often simply write ���[Π] instead of ���[Π;p] when p is the list of all

predicate constants occurring in Π, and call a model of ���[Π] an FLP-stable model of Π.

Example 15 continued For GQ-formula F1 considered earlier, ���[F1] is

F1 ∧ ¬∃u(u < p ∧ F�
1 (u)) , (5.22)

where F�
1 (u) is

(¬Q(SUM,<)[x][y](p(x), y=2) ∧ ¬Q(SUM,<)[x][y](u(x), y=2)→ u(2))

∧ (Q(SUM,>)[x][y](p(x), y=−1) ∧ (Q(SUM,>)[x][y](u(x), y=−1)→ u(−1))

∧ (p(−1) ∧ u(−1)→ u(1)) .

I1 considered earlier satisfies (5.22) but I2 does not.

Consider the following one-rule program Π

p(a)← ��� ��� p(a).

Both ∅ and {p(a)} satisfy ��[Π; p], but only ∅ satisfies ���[Π; p]. Even in the absence of

double negations, the two semantics may still disagree. For example,

p(a)← ��� Q≤0[x] p(x) (5.23)

has the same Herbrand stable models as the above, as Q≤0 behaves the same as negation.

We show the class of programs for which the FLP semantics and the stable model

semantics coincide, which extends the one in the previous chapter. We say that a formula

F with generalized quantifiers is canonical relative to a list p of predicate constants if

• for every occurrence of every predicate constant p from p in F , the number of non-

monotone arguments that contain the occurrence is ≤ 1;

155

• if a predicate constant p from p occurs in the scope of a strictly positive occurrence

of a generalized quantifier Q in F such that Q �∈ {Q→, Q∧, Q∀}, then the occurrence

of p is strictly positive and not mixed in F .

Proposition 41 Let Π be a finite general program and let F be the GQ-representation of

Π. For every rule (5.21) in Π, if B is canonical relative to p and every occurrence of p from

p in H is strictly positive and not mixed in H , then ���[Π;p] is equivalent to ��[F ;p].

For example, program (5.23) does not satisfy the condition in Proposition 41 since

Q≤0[x] p(x) is not monotone in {1}.

The definition of a formula being canonical relative to a list of predicate constants is

simplified in that, instead of the two numbers k and m, we only need to consider the number

of nonmonotone arguments. This is because the antecedence of an implication is also a

nonmonotone argument of the generalized quantifier Q→. The generality of GQ-formulas

identifies the property of connective that the theorem relies on.

5.5 Revisiting Non-Monotonic DL-programs

Eiter et al. (2008b) note that weak answer set semantics produce counterintuitive answer

sets with circular justifications by self-supporting loops. This are caused by the removal

of dl-atoms when forming the reduct. To overcome this problem, authors refer to strong

answer sets. However, Shen (2011) notes that both strong and weak answer set semantics

suffer from circular justifications too.

Example 22 (Shen, 2011) Consider (T ,Π), where T = ∅ and Π is the program

p(a)← #dl[c � p, b −∩ q; c � ¬b](a) , (5.24)

in which the dl-atom is neither monotonic nor anti-monotonic. The dl-program has two

strong (weak, respectively) answer sets: ∅ and {p(a)}. According to (Shen, 2011), the

second answer set is circularly justified:

p(a)⇐ #dl[c � p, b −∩ q; c � ¬b](a)⇐ p(a) ∧ ¬q(a).

Indeed, sΠ{p(a)}
T (wΠ{p(a)}

T , respectively) is p(a)←, and {p(a)} is its minimal model.
156

From the above example, we observe that the issue is related to the fact that both

strong and weak answer set semantics do not distinguish between anti-monotonic and non-

anti-monotonic dl-atoms. In view of the Theorem on Loop Formulas, the former does not

contribute to loops, but the latter does. As a result, non-anti-monotonic dl-atoms should par-

ticipate in enforcing minimality of answer sets and should not be removed when forming the

reduct. This suggests the following alternative definition of the semantics of dl-programs. In-

stead of removing every nonmonotonic dl-atoms in forming the reduct under strong answer

set semantics, we remove only anti-monotonic dl-atoms from the bodies, but leave non-anti-

monotonic dl-atoms. In other words, the dl-transform of Π relative to T and an Herbrand

interpretation I of 〈C,PΠ〉, denoted by ΠI
T , is the set of rules (5.10), where a← B,N is in

Π, I |=T B ∧ N and B′ is obtained from B by removing all anti-monotonic dl-atoms in it.

We say that an Herbrand interpretation I is an answer set of (T ,Π) if I is minimal among

the sets of atoms that satisfy ΠI
T .

Example 22 continued {p(a)} is not an answer set of (T ,Π) according to the new defini-

tion. Π{p(a)}
T is (5.24) itself, and ∅, a proper subset of {p(a)} satisfies it.

This new definition can be also characterized in terms of generalized quantifiers.

In fact, the characterization is simpler than those for the other two semantics. We simply

identify (5.7) with (5.11) regardless of the (anti-)monotonicity of the dl-atom.

Proposition 42 For any dl-program (T ,Π), and any Herbrand interpretation X of 〈C,PΠ〉,

X is an answer set of (T ,Π) as defined here iff X satisfies ��[Π;p] when we identify

every dl-atom (5.7) in Π with (5.11).

In (Shen, 2011), the author proposed the semantics based on conditional satisfac-

tion to resolve the circular justification of the above mentioned semantics. However, the

semantics are sometimes too strong and rule out some intuitive answer sets.

Example 23 Consider the dl-program (T ,Π) such that T is empty, and Π is the following

157

program containing a nonmonotonic dl-atom:

p(x)← q(x).

q(x)← p(x).

p(a)← #dl[B −∩ p, C � q; ¬B � C](a).

According to the first two rules, either p(a) and q(a) are both true or both false. In any of

the cases, the dl-atom in the third rule is satisfied. As a result, p(a) is true. So the answer

set should be {p(a), q(a)}. However, {p(a), q(a)} is not an answer set according to (Shen,

2011).

Fink and Pearce (2010) proposed another semantics of nonmonotonic dl-programs

by viewing them as special cases of HEX programs. Their semantics can be generalized to

the first-order case using the FLP operator we introduced before. The following proposition

makes this claim clear.

Proposition 43 For any dl-program (T ,Π), and any Herbrand interpretation X of 〈C,PΠ〉,

X satisfies ���[ΠGQ;PΠ] relative to T iff X is an answer set of (T ,Π) according to Fink

and Pearce.

The following proposition states that the relationship between the two semantics. It

follows immediately from Proposition 41.

Proposition 44 For any dl-program (T ,Π), and any Herbrand interpretation X of 〈C,PΠ〉,

if every occurrence of nonmonotonic dl-atoms is in the positive body of a rule, then X is an

answer set of (T ,Π) in the sense of (Fink & Pearce, 2010) iff X is an answer set of (T ,Π)

in our sense.

The following example shows why the condition in the statement is essential.

Example 24 Consider the dl-program (T ,Π) such that T is empty, and Π is the following

single rule program containing a nonmonotonic dl-atom:

p(a)← ��� #dl[C −∩ p; ¬C](a).
158

While ∅ and {p(a)} are answer sets according to us, only ∅ is the answer set according to

(Fink & Pearce, 2010).

As in other FLP-based semantics, the semantics by Fink and Pearce suffers from

unintuitive cases.

Example 24 continued Consider a rewriting of the program

p(a)← q.

q ← ��� #dl[C −∩ p; ¬C](a)

both ∅ and {p(a)} are answer sets according to (Fink & Pearce, 2010).

5.6 Related Work
Relation to GQ-Stable Models by Eiter et al.

In fact, the incorporation of generalized quantifiers in logic programming was considered

earlier in (Eiter, Gottlob, & Veith, 1997a, 1997b). The authors extended logic programs by

allowing “GQ-atoms,” a special class of generalized quantified formula (5.1) that have the

form

Q[x1] . . . [xk](s1(x1), . . . , sk−1(xk−1),xk = v), (5.25)

where s1, . . . sk−1 are predicate constants, and v is a list of variables. They consider that

rules have the form

A← B,N, (5.26)

where A is a (normal) atom, B is a set of atoms and GQ-atoms and N is a set of atoms

and GQ-atoms preceded by “���.”

Let Π be such a finite program, and X an Herbrand interpretation of σ(Π), the

signature consisting of object and predicate constants occurring in Π. We assume that Π

has no free variables. The EGV-reduct of Π relative to X is the set of rules

A← B′

where A← B,N in Π, X |= B ∧N , and B′ is obtained from B by removing all GQ-atoms

in it. X is an EGV-answer set of Π if X is minimal among the sets of atoms that satisfy the

EGV-reduct of Π relative to X.
159

Under this semantics, both GQ-atoms and their negations are treated like negative

literals. However, this often leads to unintuitive results.

Example 25 For instance, according to (Eiter et al., 1997a), program

p(a)← ∀x p(x) (5.27)

has two EGV-answer sets, ∅ and {p(a)}. The latter is “unfounded.” In our semantics, {p(a)}

is not stable, while ∅ is.

The semantics of programs by Eiter et al. can be easily expressed in terms of our

semantics by prepending ¬¬ to generalized quantifiers. Let ΠGQ be the formula represen-

tation of Π and let (ΠGQ)¬¬ be the formula obtained from ΠGQ by inserting ¬¬ in front of

every GQ-atom.

Proposition 45 For any program Π and any Herbrand interpretation X of σ(Π), X is an

EGV-answer set of Π iff X |= ��[(ΠGQ)¬¬].

The two semantics coincide if Π is “tight.” A program is tight if its formula represen-

tation is tight.

Corollary 12 For any tight program Π and any Herbrand interpretation X of σ(Π), X is an

EGV-answer set of Π iff X |= ��[ΠGQ].

Relation to Infinitary Formulas

The study on infinitary logic can be dated back to the 18th century (Moore, 1997). In (Scott,

1958) and (Tarski, 1958), infinitary propositional and predicate languages were introduced.

The completeness theorem for the infinitary languages were proven in (Karp, 1964). Truszczyn-

ski (2012) extended reduct proposed by (Ferraris, 2005) to allow infinitary propositional for-

mula for defining first-order stable models. In the following, we review the definitions in

(Truszczynski, 2012).

Let A be a propositional signature. The set of infinitary formula is defined as follows.
160

• F0 = A ∪ {⊥}.

• Fi+1, where i ≥ 0, consists of the expression H∧ and H∨, for all subsets H of

F0 ∪ . . . ,∪Fi, and of expressions F → G, where F,G ∈ F0 ∪ . . . ∪ Fi.

We denote Linf
A =

⋃∞
i=0Fi and call elements of Linf

A infinitary formulas (over A).

Let I be a subset of A and an infinitary formula F , we define I |= F by induction:

• I �|= ⊥

• For every p ∈ A, I |= p if p ∈ I

• I |= H∨ if there is a formula F ∈ H such that I |= F

• I |= H∧ if for every formula F ∈ H, I |= F

• I |= G→ H if I �|= G or I |= H .

The concept of reduct is extended to infinitary formulas.

• ⊥I = ⊥

• For every p ∈ A, pI = ⊥ if I �|= p; otherwise pI = p

• (H∨)I = ⊥ if I �|= H∨; otherwise, (H∨)I = {GI | G ∈ H}∨

• (H∧)I = ⊥ if I �|= H∧; otherwise, (H∧)I = {GI | G ∈ H}∧

• (G→ H)I = ⊥ if I �|= G→ H ; otherwise (G→ H)I = GI → HI .

Let F be an infinitary formula and I an interpretation. I is a stable model of F if I

is a minimal model of F I .

Let F be a first-order sentence. The first-order stable model of F can be defined

in terms of grounding into infinitary formula. The Truszczynski grounding of F w.r.t. I,

denoted by grTI [F], is similar to the grounding we defined before except that the last bullet

is replaced by the following two bullets:

161

• grTI [∃xF (x)] = {grTI [F (ξ�)] | ξ ∈ |I|}∨

• grTI [∀xF (x)] = {grTI [F (ξ�)] | ξ ∈ |I|}∧.

The following corollary is immediate from Theorem 2 and Proposition 3 in (Truszczyn-

ski, 2012).

Corollary 13 Let σ be a signature that contains finitely many predicate constants, let σp

be the set of predicate constants in σ, let I = 〈If , Ip〉 be an interpretation of σ, and let F

be a first-order sentence of σ. Ip is a minimal set of atoms that satisfies (�� I [F])I iff Ip is

a minimal set of atoms that satisfies (��TI [F])I .

Relation to Ferraris’ Semantics

Let F = Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)) be a GQ-formula of σ and I an interpretation

of a signature σ. F ′ = Q(S1, . . . , Sk) is a ground GQ-formula of F w.r.t. I. By Oi
I = {ξ� |

ξ�.F (ξ�) ∈ Si}. CI(F
′) is the set of all tuples of the form (R1, . . . , Rk) such that

• Ri ⊆ Oi
I , and

• Q(R1, . . . , Rk)
I = f .

The infinitary formula representation of F ′, denoted by ���[F ′] are defined recur-

sively as follows.

• If F ′ is an atomic formula, ���[F ′] = F ′;

• If F ′ is Q(S1, . . . , Sk), ���[F ′] is

{H∧
1 → H∨

2 | (R1, . . . , Rk) ∈ CI(F
′)}∧

where H1 = {���[Gi(ξ
�)] | 1 ≤ i ≤ k, ξ� ∈ Ri} and H2 = {���[Gi(ξ

�)] | 1 ≤ i ≤

k, ξ� ∈ Oi
I \Ri}.

When I is the Herbrand interpretation of σ(F), the Ferraris formula representation

of F ′, denoted by ���[F ′] are defined recursively as follows.

162

• If F ′ is an atomic formula, ���[F ′] = F ′;

• If F ′ is Q(S1, . . . , Sk), ���[F ′] is∧
(R1,...,Rk)∈CI(F ′)

(∧
1≤i≤k,ξ�∈Ri

���[Gi(ξ
�)]→

∨
1≤i≤k,ξ�∈Oi

I\Ri

���[Gi(ξ
�)]

)

Example 26 Consider the generalized quantified formula F1 = Q∧(p, q). For any interpre-

tation I, F ′
1 is Q∧({p}, {q}). CI(F

′
1) is {(∅, ∅), ({ε}, ∅), (∅, {ε})}. ��� [F ′

1] is

{{p, q}∨, {p}∧ → {q}∨, {q}∧ → {p}∨}∧.

��� [F ′
1] is

(p ∨ q) ∧ (p→ q) ∧ (q → p).

Consider the generalized quantified formula

F2 = Qmajor[x] (p(x))

such that for any interpretation J and any R ⊆ |J |, QJ
major(R) = t iff |R| ≥ |J |/2. Consider

I such that |I| = {a, b, c}. F ′
2 = Qmajor({a�.p(a�), b�.p(b�), c�.p(c�)}). O1

I = {a�, b�, c�}.

CI(F
′
2) is {∅, {a�}, {b�}, {c�}}. ��� [F ′

2] is

{{p(a), p(b), p(c)}∨, {p(a)}∧ → {p(b), p(c)}∨,

{p(b)}∧ → {p(a), p(c)}∨, {p(c)}∧ → {p(a) ∨ p(b)}∨}∧

��� [F ′
2] is

(p(a) ∨ p(b) ∨ p(c)) ∧ (p(a)→ p(b) ∨ p(c))

∧ (p(b)→ p(a) ∨ p(c)) ∧ (p(c)→ p(a) ∨ p(b))

Proposition 46 Let σ be a signature that contains finitely many predicate constants, let

I = 〈If , Ip〉 be an interpretation of σ, let F be a first-order sentence of σ, F ′ be the ground

GQ-formula of F w.r.t. I and Jp be any subset of Ip. Jp |= F ′ iff Jp |= ��� [F ′].

Proposition 47 Let σ be a signature that contains finitely many predicate constants, let

I = 〈If , Ip〉 be an interpretation of σ, let F be a first-order sentence of σ and let F ′ be the

ground GQ-formula of F w.r.t. I. Ip is a minimal set of atoms that satisfies (F ′)I . iff Ip is

a minimal set of atoms that satisfies (��� [F ′])I .
163

Proposition 48 Let σ be a signature that contains finitely many predicate constants, let F

be a first-order sentence of σ, let I = 〈If , Ip〉 be an Herbrand interpretation of σ(F), and

let F ′ be the ground GQ-formula of F w.r.t. I. Ip is a minimal set of atoms that satisfies

(��� [F ′])I iff Ip is a minimal set of atoms that satisfies (��� [F ′])I .

5.7 Conclusion

We presented different reformulations of the stable model semantics and FLP semantics

for formulas containing generalized quantifiers, and showed that several recent extensions

of the stable model semantics can be viewed as special cases of this formalism. The

reformulations help us understand the relationship between the FLP semantics and the

first-order stable model semantics, and their extensions. For the class of programs where

the two semantics coincide, the system dlv-hex can be viewed as an implementation of the

stable model semantics of GQ-formulas.

The generality of the formalism is useful in providing a principled way to study and

compare the different extensions of the stable model semantics. Indeed, it led us to define

yet another semantics of logic programs with abstract constraints, and yet another seman-

tics of nonmonotonic dl-programs, both of which are in the spirit of the first-order stable

model semantics. The unifying framework also saves efforts in re-proving the theorems

for these individual extension. We extend several important theorems in ASP to formulas

with generalized quantifiers, which in turn can be applied to the particular extensions of the

stable model semantics.

164

5.8 Proofs

We omit the proof of Theorem 11 since the proof is a rewriting from the proof of Theorem 9

from (Ferraris et al., 2011b).

Useful Lemmas

Lemma 40 Let F be a GQ-formula. Formula

(u ≤ p) ∧ F ∗(u)→ F

is logically valid.

Proof. By induction on F .

Lemma 41 Let F be a GQ-formula. Formula

q = p→ (F ∗(q)↔ F ∗(p))

is logically valid.

Proof. By induction on F .

To facilitate the proofs, we introduce the following notion. Let Q be a generalized

quantifier and let I be an interpretation. We say that QU is monotone in the i-th argu-

ment position if the following holds: if QU (R1, . . . , Rk) = t and Ri ⊆ R′
i ⊆ |I||xi|, then

QU (R1, . . . , Ri−1, R
′
i, Ri+1, . . . , Rk) = t. Similarly, we say that QU is anti-monotone in the

i-th argument position if the following holds: if QU (R1, . . . , Rk) = t and R′
i ⊆ Ri ⊆ |I||x

i|,

then QU (R1, . . . , Ri−1, R
′
i, Ri+1, . . . , Rk) = t. Clearly, Q is monotone (anti-monotone) in

the i-th argument position iff QU is monotone (anti-monotone) in the i-th argument position

for any interpretation I. Similarly, we define that QU is monotone (anti-monotone) in some

set of argument positions.

Lemma 42 Consider GQ sentences

F = Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)),
165

G = Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)),

any subset M of {1, . . . , k}, and any interpretation I.

(a) If QU is monotone in M , then

I |=
(∧

i∈M ∀xi(Fi(xi)→ Gi(xi))∧∧
i∈{1,...,k}\M ∀xi(Fi(xi)↔ Gi(xi))

)
→ (F → G).

(b) If QU is anti-monotone in M , then

I |=
(∧

i∈M ∀xi(Fi(xi)→ Gi(xi))∧∧
i∈{1,...,k}\M ∀xi(Fi(xi)↔ Gi(xi))

)
→ (G→ F).

Proof.

(a): Assume

I |=
∧
i∈M

∀xi(Fi(xi)→ Gi(xi)) ∧
∧

i∈{1,...,k}\M
∀xi(Fi(xi)↔ Gi(xi))

and I |= F . Consider (xi.Fi)
I = {ξ | I |= Fi(ξ

∗)} and (xi.Gi)
I = {ξ | I |= Gi(ξ

∗)} for

each i in {1, . . . , k}.

• If i ∈M , it follows from I |= ∀xi(Fi(xi)→ Gi(xi)) that (xi.Fi)
I ⊆ (xi.Gi)

I .

• If i ∈ {1, . . . , k} \ M , it follows from I |= ∀xi(Fi(xi) ↔ Gi(xi)) that (xi.Fi)
I =

(xi.Gi)
I .

From I |= F , by definition, QU ((x1.F1)
I , . . . , (xk.Fk)

I) = t. Since QU is monotone in M ,

it follows that QU ((x1.G1)
I , . . . , (xk.Gk)

I) = t. Thus I |= G.

(b): Similar to (a).

The following lemma follows immediately from Lemma 42.

166

Lemma 43 Let M be a subset of {1, . . . , k} and Q a generalized quantifier. Consider

formulas

F (x) = Q[x1], . . . , [xk](F1(x1,x), . . . , Fk(xk,x)),

G(x) = Q[x1], . . . , [xk](G1(x1,x), . . . , Gk(xk,x)),

where x is a list of all free variables in F and G.

(a) If Q is monotone in M , then(∧
i∈M ∀xi(Fi(xi,x)→ Gi(xi,x))∧∧

i∈{1,...,k}\M ∀xi(Fi(xi,x)↔ Gi(xi,x))

)
→ (F (x)→ G(x))

is logically valid.

(b) If Q is anti-monotone in M , then(∧
i∈M ∀xi(Fi(xi,x)→ Gi(xi,x))∧∧

i∈{1,...,k}\M ∀xi(Fi(xi,x)↔ Gi(xi,x))

)
→ (G(x)→ F (x))

is logically valid.

Lemma 44 If F is negative on p then

(u ≤ p)→ (F ∗(u)↔ F)

is logically valid.

Proof. By induction on F .

Case 1: F is an atomic formula. If F is of the form pi(t) then pi �∈ p since F is negative

on p. Consequently, F ∗(u) is the same as F . Otherwise, F ∗(u) is the same as F by

definition.

Case 2: F is of the form (5.1). In view of Lemma 40, it is sufficient to show that

(u ≤ p)→ (F → F ∗(u)) (5.28)
167

is logically valid. Let ���� be the set of all anti-monotone argument positions of Q.

• Consider any Fi, where i ∈ {1, . . . , k}\����. Since F is negative on p, it follows that

Fi is negative on p. By I.H.,

(u ≤ p)→ (F ∗
i (u)↔ Fi)

is logically valid.

• Consider any Fi, where i ∈ ����. By Lemma 40,

(u ≤ p)→ (F ∗
j (u)→ Fj)

is logically valid.

From the two bullets, by Lemma 43 (b), we conclude (5.28).

Proof of Proposition 32

An interpretation I of a signature σ can be represented as a pair 〈J,X〉, where J is the

restriction of I to the function constants in σ, and X is the set of the atoms, formed using

predicate constants from σ and the names of elements of |I|, which are satisfied by I.

When I is an Herbrand interpretation, we often omit J and represent I by X.

By σ+ we denote the signature obtained from σ by adding new predicate con-

stants q, one per each member of p. About an atomic formula formed using a predicate

constant from σ+ and names of elements of |I| we say that it is a p-atom if its predicate

constant belongs to p, and that it is a q-atom otherwise. For any set X of p-atoms we

denote by Xp
q the set of the q-atoms that are obtained from the elements of X by replacing

their predicate constants by the corresponding predicate constants from q.

Lemma 45 Let M be a subset of {1, . . . , k} and let Q[x1] . . . [xk](F1(x1), . . . , Fk(xk))

be a sentence such that Fj is negative on p for all j in {1, . . . , k} \ M . Consider any

interpretation I = 〈J,X〉 and any subset Y of X.

168

(a) If QU is monotone in M , then

〈J,X ∪ Y p
q 〉 |= (Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))

∗(q)

↔ Q[x1] . . . [xk](F
∗
1 (x1), . . . , F

∗
k (xk)).

(b) If QU is anti-monotone in M , then

〈J,X ∪ Y p
q 〉 |= (Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))

∗(q)

↔ Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)).

Proof. (a) It is sufficient to show that

〈J,X ∪ Y p
q 〉 |= Q[x1] . . . [xk](F

∗
1 (x1), . . . , F

∗
k (xk))

→ Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)).
(5.29)

• For every i ∈ {1, . . . , k} \M , Fi is negative on p. By Lemma 44, 〈J,X ∪ Y p
q 〉 |=

F ∗
i (q)↔ Fi.

• For every i ∈M , by Lemma 40, 〈J,X ∪ Y p
q 〉 |= F ∗

i (q)→ Fi.

From the above two facts, by Lemma 42(a), we conclude (5.29).

(b) It is sufficient to show that

〈J,X ∪ Y p
q 〉 |= Q[x1] . . . [xk](F1(x1), . . . , Fk(xk))

→ Q[x1] . . . [xk](F
∗
1 (x1), . . . , F

∗
k (xk)).

(5.30)

• For every i ∈ {1, . . . , k} \M , Fi is negative on p. By Lemma 44, 〈J,X ∪ Y p
q 〉 |=

F ∗
i (q)↔ Fi.

• For every i ∈M , by Lemma 40, 〈J,X ∪ Y p
q 〉 |= F ∗

i (q)→ Fi.

From the above two facts, by Lemma 42(b), we conclude (5.30).

We now prove a slightly more general version of Proposition 32.

Proposition 32′ Let M be a subset of {1, . . . , k} and let Q[x1] . . . [xk](F1(x1), . . . , Fk(xk))

be a formula such Fj is negative on p for all j ∈ {1, . . . , k} \M .
169

(a) If Q is monotone in M , then

u ≤ p→ ((Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))
∗

↔ Q[x1] . . . [xk](F
∗
1 (x1), . . . , F

∗
k (xk)))

is logically valid.

(b) If Q is anti-monotone in M , then

u ≤ p→ ((Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))
∗

↔ Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))

is logically valid.

Proof. Clear from Lemma 45.

Proof of Proposition 33

Proposition 33 Let σ be a signature that contains finitely many predicate constants, let σp

be the set of predicate constants in σ, let I = 〈If , Ip〉 be an interpretation of σ, and let F

be a GQ-sentence of σ. Then I |= F iff Ip |= grI [F].

Proof. By induction on F .

Case 1: F is p(t1, . . . , tk). grI [p(t1, . . . , tk)] = p((tI
f

1)∗, . . . , (tI
f

k)∗).

I |= F iff p((tI
f

1)∗, . . . , (tI
f

k)∗) ∈ Ip iff Ip |= grI [p(t1, . . . , tk)].

Case 2: F is t1 = t2. I |= F iff tI
f

1 = tI
f

2 iff grI [F] is � iff Ip |= grI [F].

Case 3: F is of the form (5.1). By definition, I |= F iff

QU ((x1.F1(x1))
I , . . . , (xk.Fk(xk))

I) = t, (5.31)

where (xi.Fi(xi))
I = {ξ ∈ Uni | I |= Fi(ξ

∗)}. By I.H.

(xi.Fi(xi))
I = {ξ ∈ Uni | Ip |= grI [Fi(ξ

∗)]}.

The later is the same as the set SI
i = {ξ | I |= F, ξ.F ∈ Si} where

Si = {xiθ.grI [F (xi)θ] | θ is a substitution from variables in xi to names}.

As a result, (5.31) iff QU (SI
1 , . . . , S

I
k) = t.

170

Proof of Theorem 10

Theorem 10 Let σ be a signature that contains finitely many predicate constants, let σp be

the set of predicate constants in σ, let I = 〈If , Ip〉 be an interpretation of σ, and let F be a

GQ-sentence of σ. I |= ��[F ;σp] iff Ip is a minimal set of atoms that satisfies (�� I [F])I .

Proof. It is sufficient to show that for any Jp ⊆ Ip,

〈If , Jq ∪ Ip〉 |= F ∗(q)

iff

Jp |= (��I [F])I .

This is proven by induction on F .

Case 1: F is p(t1, . . . , tk). Clear.

Case 2: F is t1 = t2. Clear from definition.

Case 3: F is of the form (5.1). F ∗ is

Q[x1] . . . [xk](F
∗
1 (x1), . . . , F

∗
k (xk)) ∧Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)).

grI [F] is

QU (S1, . . . , Sk)

where Si = {xiθ.grI [F (xiθ)] | θ is a substitution from xi to names}.

Consider two cases:

Case 3.1: Ip �|= grI [F]. (��I [F])I is ⊥. From Ip �|= grI [F], by Proposition 33, 〈If , Ip〉 �|=

F follows. By Lemma 40, 〈If , Jq ∪ Ip〉 �|= F ∗(q).

Case 3.2: Ip |= grI [F]. (��I [F])I is QU (S′
1, . . . , S

′
k) where each S′

i = {xiθ.(grI [Fi(xiθ)])
I |

θ is a substitution from xi to names}. By I.H. for each 1 ≤ i ≤ k,

Jp |= (grI [Fi(xiθ)])
I

171

iff

〈If , Jq ∪ Ip〉 |= (Fi(xiθ))
∗(q).

Let

S′′
i = {xiθ | Jp |= (grI [Fi(xiθ)])

I , θ is a substitution from xi to names}

and

S∗
i = {xiθ | 〈If , Jq ∪ Ip〉 |= (Fi(xiθ))

∗(q), θ is a substitution from xi to names}.

It is clear that S′′
i = S∗

i . As a result,

QU (S′′
1 , . . . , S

′′
k) = t (5.32)

iff

QU (S∗
1 , . . . , S

∗
k) = t. (5.33)

(5.32) is equivalent to saying that Jp |= (��I [F])I and (5.33) is equivalent to saying

that 〈If , Jq ∪ Ip〉 |= F ∗(q).

Proof of Proposition 34

Lemma 46 let E be an aggregate expression (4.16) that contains no free variables, let

EGQ be the GQ-representation of E, and let I be an interpretation. I |= E iff I |= EGQ.

Proof. Let α be the join of the multisets msp(x1.F1)
I , . . . ,msp(xn.Fn)

I . By definition,

I |= E iff (i) OP(α) is defined, (ii) bI ∈Num, and (iii) OP(α) � bI .

The three conditions hold iff QI
(OP,�)((x1.F1)

I , . . . , (xn.Fn)
I , {bI}) = t, which is

the same as saying that I |= EGQ.

Proposition 34 Let F be an aggregate sentence of σ, let FGQ be the GQ-representation

of F , and let p be a list of predicate constants. For any expansion I of σbg to σ, I |=

��[F ;p] (according to Ferraris and Lifschitz) iff I |= ��[FGQ;p].

Proof. In view of Theorem 11, we will prove that for any aggregate formula F , F ∗ is

equivalent to (FGQ)∗. It is sufficient to prove that, for any aggregate expression

OP〈x1.F1(x1,p), . . . ,xn.Fn(xn,p)〉 � b
172

that contains no free variables, any interpretation I = 〈J,X〉, and any subset Y of X,

〈J,X ∪ Y p
q 〉 satisfies

OP〈x1.F1(x1,p), . . . ,xn.Fn(xn,p)〉 � b

∧ OP〈x1.F
∗
1 (x1, q), . . . ,xn.F

∗
n(xn, q)〉 � b

(5.34)

iff 〈J,X ∪ Y p
q 〉 satisfies

Q(OP,�) [x1] . . . [xn][y](F1(x1,p), . . . , Fn(xn,p), y = b)∧

Q(OP,�) [x1] . . . [xn][y](F
∗
1 (x1, q), . . . , F

∗
n(xn, q), y = b).

(5.35)

By Lemma 46, 〈J,X ∪ Y p
q 〉 satisfies the first (second) conjunctive term of (5.34) iff

〈J,X ∪ Y p
q 〉 satisfies the first (second) conjunctive term of (5.35).

Proof of Proposition 35

Lemma 47 For any dl-program (T ,Π), any dl-atom (5.7) in Π that contains no free vari-

ables and any Herbrand interpretation I of 〈C,PΠ〉, I |=T (5.7) iff I |= (5.11) iff I |= (5.12).

Proof. It is sufficient to consider a GQ-formula of the form (5.11) since (5.12) is equivalent

to (5.11).

By definition, I |=T (5.7) iff T ∪⋃k
i=1Ai(I) entails Query(t). Note that pi(e) ∈ I

iff e ∈ {c | I |= pi(c)} and pi(e) �∈ I iff e ∈ |I||e| \ {c | I |= pi(c)}. Consequently, Ai(I) is

the same as Ai(Ri), which is defined as

• {Si(e) | e ∈ Ri} if opi is ⊕,

• {¬Si(e) | e ∈ Ri} if opi is !,

• {¬Si(e) | e ∈ |I||e| \Ri} if opi is ",

where Ri = {c | I |= pi(c)}. Clearly, T ∪⋃k
i=1Ai(I) entails Query(t) iff T ∪⋃k

i=1Ai(Ri)

entails Query(t) iff I |= (5.11).

Given a dl-program (T ,Π), we denote s(Π)XT as the strong reduct of Π relative to

T . For a set X of dl-atoms, we denote XsGQ as the set of atoms obtained from X by
173

identifying each dl-atom as (5.11) if it is monotonic and (5.12) otherwise. Similarly, XwGQ

is the set of atoms obtained from X by identifying each dl-atom as (5.12).

Lemma 48 For any dl-program (T ,Π), any Herbrand interpretations X, Y of 〈C,PΠ〉 such

that Y ⊆ X, and any rule p(t)← B,N in Π,

Y |=T s(p(t)← B,N)XT

iff

X ∪ Y p
q |=T (BsGQ ∧N sGQ)∗(q)→ q(t). (5.36)

Proof. By Lemma 44, (N sGQ)∗(q) is equivalent to N sGQ. We partition B into two sets:

the set B1 of all monotonic dl-atoms and the set B2 of all non-monotonic dl-atoms.

It is clear from (5.12) that BsGQ
2 is negative on p. By Lemma 44 again, (BsGQ

2)∗(q)

is equivalent to BsGQ
2 . Thus (5.36) is equivalent to saying that

X ∪ Y p
q |=T (BsGQ

1)∗(q) ∧BsGQ
2 ∧N sGQ → q(t). (5.37)

Consider two cases.

Case 1: X |=T B2∧N . Then s(p(t)← B,N)XT is p(t)← B1. By Lemma 47, Y |=T B1 →

p(t) iff

Y p
q |=T (BsGQ

1)(q)→ q(t). (5.38)

From Y ⊆ X and that all dl-atoms in B1 are monotonic, it follows that Y p
q |=T (BsGQ

1)(q)

implies X |=T BsGQ
1 . So (5.38) is equivalent to

X ∪ Y p
q |=T (BsGQ

1)(q) ∧BsGQ
1 → q(t),

which is also equivalent to (5.37) under the assumption that X |=T B2 ∧N .

Case 2: X �|=T B2 ∧N . Then s(p(t)← B,N)XT is equivalent to �. On the other hand, by

Lemma 47, X �|=T BsGQ
2 ∧N sGQ. So we get (5.37).

Lemma 49 For any dl-program (T ,Π) and any Herbrand interpretation X of 〈C,PΠ〉, X |=

ΠsGQ iff X |=T sΠX
T .

174

Proof. Immediate from the definition of sΠX
T , X |=T sΠX

T iff X |=T Π. By Lemma 47,

X |=T Π iff X |= ΠsGQ .

Proposition 35 For any dl-program (T ,Π), the weak (strong, respectively) answer sets

of (T ,Π) are precisely the Herbrand interpretations of 〈C,PΠ〉 that satisfy ��[PwGQ;PΠ]

(��[PsGQ;PΠ], respectively) relative to T .

Proof. We only prove the case for strong answer sets. The proof for weak answer sets is

similar.

Let X be an Herbrand interpretation of 〈C,PΠ〉. X is a strong answer set of (T ,Π)

iff

(i) X |=T sΠX
T , and

(ii) no proper subset Y of X satisfies sΠX
T relative to T .

On the other hand, X |= ��[P sGQ;PΠ] iff

(i′) X |= ΠsGQ, and

(ii′) X does not satisfy ∃u(u < PΠ ∧ (ΠsGQ)∗(u)).

By Lemma 49, (i) is equivalent to (i′). Assume (i′). Condition (ii) can be reformulated

as: no proper subset Y of X satisfies s(p(t)← B,N)XT relative to T for every rule p(t)←

B,N ∈ Π. Under the assumption (i′), condition (ii′) can be reformulated as: there is no

proper subset Y of X such that X ∪ Y p
q |=T (BsGQ ∧ N sGQ)∗(q) → q(t) for every rule

p(t)← B,N in Π. By Lemma 48, (ii) is equivalent to (ii′).

Proof of Proposition 36

Lemma 50 For any c-atom (D,C) of σ, let I be an interpretation of σ. I satisfies (D,C) iff

I |= (5.16).

175

Proof. I |= (D,C) iff I ∩D ∈ C iff R ∈ C where R = I ∩D. Consider R1, . . . , Rn such

that Ri = {ε} if pi ∈ R and Ri = ∅ otherwise. R = I ∩D iff QI
C(R1, . . . , Rn) = t.

Lemma 51 For any c-atom (D,C),

QC [] . . . []D (5.39)

is equivalent to ∧
C∈P(D)\C

(∧
p∈C

p→
∨

p∈D\C
p
)
. (5.40)

Proof. Consider any subset X of {p1, . . . , pn}. It is sufficient to prove that Xp
q |= (5.39)

iff Xp
q |= (5.40).

From left to right: Assume Xp
q |= (5.39). It is follows from Lemma 50 that X |= (D,C). As

a result, X �∈ P(D) \ C. Consider any C ∈ P(D) \ C such that Xp
q |=

∧
p∈C q. It is clear

that C ⊆ X and C �= X (since X �∈ P(D) \ C). Consequently,

Xp
q |=

∨
p∈D\C

q.

From right to left: Assume Xp
q |= (5.40). Clearly, X �∈ P(D) \ C. So X |= (D,C) and, by

Lemma 50, Xp
q |= (5.39).

Lemma 52 For any c-atoms (D,C), (5.16) is strongly equivalent to (5.17).

Proof. In view of Theorem 11, it is sufficient to prove that for any list (q1, . . . , qn) of new

atoms such that (q1, . . . , qn) ≤ (p1, . . . , pn),

QC [] . . . [](p1, . . . , pn) ∧QC [] . . . [](q1, . . . , qn) (5.41)

is equivalent to ∧
C∈P(D)\C

(∧
p∈C p→ ∨

p∈D\C p
)
∧∧

C∈P(D)\C
(∧

p∈C q → ∨
p∈D\C q

)
.

(5.42)

176

Consider any subset X of {p1, . . . , pn} and any subset Y of X, we will show that X∪Y p
q |=

(5.41) iff X ∪ Y p
q |= (5.42). It follows from Lemma 51 that X satisfies the first conjunctive

term of (5.41) iff X satisfies the first conjunctive term of (5.42). Similarly, Y p
q satisfies the

second conjunctive term of (5.41) iff Y p
q satisfies the second conjunctive term of (5.42).

Proposition 36 For any propositional formula F with c-atoms and any propositional inter-

pretation X, X is an answer set of F iff X is an answer set of ���(F).

Proof. Clear from Lemma 52.

Proof of Proposition 37

Lemma 53 Let (V,D,C) be a constraint satisfaction problem, c an explicit constraint in C,

and I an expansion of an interpretation of σbg to σ that conforms to (V,D,C). I satisfies c

iff I |= (5.18).

Proof. Clear from definition.

Proposition 37 Let (V,D,C) be a constraint satisfaction problem, let F be a sentence of

signature σ with explicit constraints of signature σbg such that σbg ⊆ σ, let p be a list of

predicates whose members belong to σ \ σbg. For any expansion I of an interpretation of

σbg to σ that conforms to (V,D,C), I |= ��[F ; p] iff I |= ��[FGQ; p].

Proof. Let I = 〈J,X〉 as defined before. Consider any subset Y of X. We will prove

that for any formula F with explicit constraints, 〈J,X ∪ Y p
q 〉 |= F ∗(q) iff 〈J,X ∪ Y p

q 〉 |=

(FGQ)∗(q). It is sufficient to prove that, for any explicit constraint c ∈ C, 〈J,X ∪ Y p
q 〉 |=

c∗(q) iff 〈J,X ∪ Y p
q 〉 |= (Qc[x1] . . . [xn](x1 = v1, . . . , xn = vn))

∗(q). It is clear that that

both c and Qc[x1] . . . [xn](x1 = v1, . . . , xn = vn) are negative on p. By Lemma 44, 〈J,X ∪

Y p
q 〉 |= c∗(q) is equivalent to I |= c and 〈J,X ∪ Y p

q 〉 |= (Qc[x1] . . . [xn](x1 = v1, . . . , xn =

vn))
∗(q) is equivalent to I |= Qc[x1] . . . [xn](x1 = v1, . . . , xn = vn). So the claim follows

from Lemma 53.

177

Proofs of Theorems 12 and 13

Lemma 54 If every occurrence of every predicate constant from p2 in F is p-negated in F ,

then

(u1,u2) ≤ (p1,p2)→ (F ∗(u1,u2)↔ F ∗(u1,p2)) (5.43)

is logically valid.

Proof. By induction on F .

Case 1: F is an atomic formula.

• If F is of the form p(t) then p �∈ p2 since every occurrence of every predicate constant

from p2 in F is p-negated in F . Clearly, F ∗(u1,u2) is the same as F ∗(u1,p2).

• Otherwise, it is clear that both F ∗(u1,u2) and F ∗(u1,p2) are the same as F .

Case 2: F is of the form (5.1).

• If F is negative on p, by Lemma 44, both F ∗(u1,u2) and F ∗(u1,p2) are equivalent

to F .

• Otherwise, F is not negative on p. Consider any Fi where i ∈ {1, . . . , k}. Note

that every occurrence of every predicate constant from p2 in F is contained in a

subformula of F that is negative on p. Since F is not negative on p, such subformula

can not be F . It follows that every occurrence of every predicate constant from p2 in

Fi is p-negated in Fi. By I.H.,

(u1,u2) ≤ (p1,p2)→ (F ∗
i (u1,u2)↔ F ∗

i (u1,p2))

is logically valid. Consequently, (5.43) is logically valid.

178

Lemma 55 Let p be the list of all intensional predicates and let p1, p2 be a partition of p,

and let u1, u2 be disjoint lists of distinct predicate variables of the same length as p1, p2

respectively.

(a) If every semi-positive occurrence of every predicate constant from p2 in F is p-

negated in F , then

((u1,u2) ≤ (p1,p2)) ∧ F ∗(u1,p2)→ F ∗(u1,u2)

is logically valid.

(b) If every semi-negative occurrence of every predicate constant from p2 in F is p-

negated in F , then

((u1,u2) ≤ (p1,p2)) ∧ F ∗(u1,u2)→ F ∗(u1,p2)

is logically valid.

Proof. Both parts are proven simultaneously by induction on F .

Case 1: F is an atomic formula pi(t).

(a) Since every semi-positive occurrence of every predicate constant from p2 in F is

p-negated in F , predicate constant pi is not in p2, so F ∗(u1,p2) is the same as

F ∗(u1,u2).

(b) Clear from (u1,u2) ≤ (p1,p2).

Case 2: F is t1 = t2 or ⊥. Clear since both F ∗(u1,p2) and F ∗(u1,u2) are the same as F .

Case 3: F is of the form (5.1). Without loss of generality, we partition the set of all argument

positions of Q into three sets: the set of monotone argument positions ���, the set of anti-

monotone argument positions ���� and the rest of argument positions ����	.

(a) If F is negative on p, by Lemma 44, both F ∗(u1,u2) and F ∗(u1,p2) are equivalent to

F . Otherwise, assume (u1,u2) ≤ (p1,p2).

179

• Consider any Fi, where i ∈ ���. Note that every semi-positive occurrence of predi-

cates from p2 in F is p-negated in F . Since F is not negative on p, such subformula

can not be F . It follows that every semi-positive occurrence of predicates from p2 in

Fi is p-negated in Fi. By I.H. (a),

((u1,u2) ≤ (p1,p2)) ∧ F ∗
i (u1,p2)→ F ∗

i (u1,u2) (5.44)

is logically valid.

• Consider any Fi, where i ∈ �����. Note that every semi-positive occurrence of

predicates from p2 in F is p-negated in F . Since F is not negative on p, such

subformula can not be F . It follows that every occurrence of predicates from p2 in Fi

is p-negated in Fi. By Lemma 54,

((u1,u2) ≤ (p1,p2))→ (F ∗
i (u1,p2)↔ F ∗

i (u1,u2)) (5.45)

is logically valid.

• Consider any Fi, where i ∈ ��	�. Note that every semi-positive occurrence of predi-

cates from p2 in F is p-negated in F . Since F is not negative on p, such subformula

can not be F . It follows that every semi-negative occurrence of predicates from p2 in

Fi is p-negated in Fi. By I.H. (b),

((u1,u2) ≤ (p1,p2)) ∧ F ∗
i (u1,u2)→ F ∗

i (u1,p2) (5.46)

is logically valid.

Since Q is monotone in ��� and anti-monotone in ��	�, by Lemma 43 (a) and

Lemma 43 (b),

((u1,u2) ≤ (p1,p2)) ∧ F ∗(u1,p2)→ F ∗(u1,u2)

follows from (5.44), (5.45) and (5.46).

(b) If F is negative on p, by Lemma 44, both F ∗(u1,u2) and F ∗(u1,p2) are equivalent to

F . Otherwise, assume (u1,u2) ≤ (p1,p2).

180

• Consider any Fi, where i ∈ ���. Note that every semi-negative occurrence of pred-

icates p2 in F is p-negated in Fi. Since F is not negative on p, such subformula can

not be F . It follows that every semi-negative occurrence of predicates from p2 in Fi

is p-negated in Fi. By I.H. (b),

((u1,u2) ≤ (p1,p2)) ∧ F ∗
i (u1,u2)→ F ∗

i (u1,p2) (5.47)

is logically valid.

• Consider any Fi, where i ∈ �����. Note that every semi-negative occurrence of

predicates from p2 in F is p-negated in F . Since F is not negative on p, such

subformula can not be F . It follows that every occurrence of predicates from p2 in Fi

is p-negated in Fi. By Lemma 54,

((u1,u2) ≤ (p1,p2))→ (F ∗
i (u1,p2)↔ F ∗

i (u1,u2)) (5.48)

is logically valid.

• Consider any Fi where i ∈ ��	�. Note that every semi-negative occurrence of predi-

cates from p2 in F is p-negated in F . Since F is not negative on p, such subformula

can not be F . It follows that every semi-positive occurrence of predicates from p2 in

Fi is p-negated in Fi. By I.H. (a),

((u1,u2) ≤ (p1,p2)) ∧ F ∗
i (u1,p2)→ F ∗

i (u1,u2) (5.49)

is logically valid.

Since Q is monotone in ��� and anti-monotone in ��	�, by Lemma 43(a) and

Lemma 43(b),

((u1,u2) ≤ (p1,p2)) ∧ F ∗(u1,u2)→ F ∗(u1,p2)

follows from (5.47), (5.48) and (5.49).

Lemma 56 Let p1, p2 be disjoint lists of distinct predicate constants such that ��p1p2
[F]

has no edges from predicate constants in p1 to predicate constants in p2, and let u1, u2

181

be disjoint lists of distinct predicate variables of the same length as p1, p2 respectively.

Formula

((u1,u2) ≤ (p1,p2)) ∧ F ∗(u1,u2)→ F ∗(u1,p2)

is logically valid.

Proof. By induction on F .

Case 1: F is an atomic formula.

• If F is of the form p(t), where p ∈ p1, then both F ∗(u1,u2) and F ∗(u1,p2) are u(t).

• If F is of the form p(t) where p ∈ p2, clear from Lemma 40 and the assumption

u2 ≤ p2.

• Otherwise, F ∗(u1,u2) and F ∗(u1,p2) are the same as F .

Case 2: F is of the form (5.1). Without loss of generality, we partition the set of all argument

positions of Q into three sets: the set of monotone argument positions ���, the set of anti-

monotone argument positions ����, and the rest of argument positions ����	.

SubCase 2.1: Fi is negative on p1 for each i ∈ ���∪����	. Then F is negative on

p1. Assuming

((u1,u2) ≤ (p1,p2)) ∧ F ∗(u1,u2),

by Lemma 40, we get F , or equivalently F ∗(p1,p2), and by Lemma 44, we get

F ∗(u1,p2).

SubCase 2.2: Fi is not negative on p1 for some i ∈ ��� ∪����	.

– Consider any Fj where j ∈ ���� ∪ ����	. Since
�p1p2
[F] has no edges

from predicates in p1 to predicates in p2, every semi-positive occurrence of

predicates from p2 in Fj is p-negated in Fj . By Lemma 55 (a),

((u1,u2) ≤ (p1,p2)) ∧ F ∗
j (u1,p2)→ F ∗

j (u1,u2) (5.50)

is logically valid.
182

– Consider any Fj where j ∈ ��� ∪�����. Since the occurrence of Fj is strictly

positive in F , �	p1p2
[Fj] is a subgraph of�	p1p2

[F]. It follows that�	p1p2
[Fj]

has no edges from predicate constants in p1 to predicate constants in p2. By

I.H.,

((u1,u2) ≤ (p1,p2)) ∧ F ∗
j (u1,u2)→ F ∗

j (u1,p2) (5.51)

is logically valid.

From (5.50) and (5.51), it follows that

((u1,u2) ≤ (p1,p2))→ (F ∗
i (u1,u2)↔ F ∗

i (u1,p2)) (5.52)

is logically valid for every i ∈ �����.

Assume (u1,u2) ≤ (p1,p2), and

Q[x1] . . . [xk](F
∗
1 (u1,u2), . . . , F

∗
k (u1,u2)). (5.53)

Let F ′ be the formula obtained from (5.53) by replacing F ∗
i (u1,u2) with F ∗

i (u1,p2)

for every i ∈ ��� ∪�����. Since Q is monotone in ���, by Lemma 43 (a), formula

F ′ follows from (5.51) and (5.52). Since Q is anti-monotone in
���, by Lemma 43

(b),

Q[x1] . . . [xk](F
∗
1 (u1,p2), . . . , F

∗
k (u1,p2))

follows from F ′ and (5.50).

Lemma 57 For any GQ formula F and any nonempty set Y of intensional predicates, there

exists a subset Z of Y such that

(a) Z is a loop of F , and

(b) the predicate dependency graph of F has no edges from predicate constants in Z to

predicate constants in Y \ Z.

183

The proof is essentially the same as the proof of Lemma 4 in (Ferraris et al., 2006).

Theorem 12 Let F be a GQ sentence, and let p be a tuple of distinct predicate constants.

If l1, . . . , ln are all the loops of F relative to p then

��[F ;p] is equivalent to ��[F ; l1] ∧ · · · ∧ ��[F ; ln].

Proof. It is sufficient to prove the logical validity of the formula

∃u((u < p) ∧ F ∗(u))

↔ ∃u1((u1 < l1) ∧ F ∗(ũ1))

∨ · · · ∨ ∃un((un < ln) ∧ F ∗(ũn)),

where each ui is the part of u that corresponds to the part li of p, and ũi is the list of

symbols obtained from p by replacing every intensional predicate p that belongs to li with

the corresponding predicate variable u.

From right to left: Clear.

From left to right: Assume ∃u((u < p) ∧ F ∗(u)) and take u such that (u < p) ∧ F ∗(u).

Consider several cases, each corresponding to a nonempty subset Y of p. The assumption

characterizing each case is that u < p for each member p of p that belongs to Y , and that

u = p for each p that does not belong to Y . By Lemma 57, there is a loop li of F that

is contained in Y such that the dependency graph ��p[F] has no edges from predicate

constants in li to predicate constants in Y \ li. Since li is contained in Y , from the fact that

u < p for each p in Y we can conclude that

ui < li. (5.54)

Let u′ be the list of symbols obtained from p by replacing every member p that belongs

to Y with the corresponding variable u. Under the assumption characterizing each case,

u = u′, so that F ∗(u) ↔ F ∗(u′). Consequently, we can derive F ∗(u′). It follows from

Lemma 56 that the formula

(u′ ≤ p) ∧ F ∗(u′)→ F ∗(ũi)
184

is logically valid, so that we further conclude that F ∗(ũi). In view of (5.54), it follows that

∃ui((ui < li) ∧ F ∗(ũi)).

Theorem 13 Let F , G be GQ sentences, and let p, q be disjoint tuples of distinct predicate

constants. If

• each strongly connected component of ��pq[F ∧ G] is a subset of p or a subset of

q,

• F is negative on q, and

• G is negative on p

then

��[F ∧G;pq] is equivalent to ��[F ;p] ∧ ��[G; q].

Proof. Same as the proof in (Ferraris et al., 2009b).

Proof of Theorem 14

Theorem 14 For any GQ formula F in Clark normal form that is tight on p, ��[F ;p] is

equivalent to the completion of F relative to p.

Proof. Since F is tight on p, the loops of F relative to p are singletons only. By Theo-

rem 13, ��[F ;p] is equivalent to the conjunction of ��[∀xi(Gi(xi)→ pi(xi)); pi] for each

pi ∈ p, which, under the assumption F , is equivalent to

∀ui(ui < pi → ∃xi(G
∗
i (xi) ∧ ¬ui(xi))). (5.55)

Since F is tight on p, it follows that Gi(xi) is negative on pi. By Lemma 44, G∗
i (xi) is

equivalent to Gi(xi). Consequently, (5.55) is equivalent to

∀ui(ui < pi → ∃xi(Gi(xi) ∧ ¬ui(xi))). (5.56)

It is sufficient to prove that, under the assumption

∀xi(Gi(xi)→ pi(xi)), (5.57)
185

formula (5.56) is equivalent to ∀xi(pi(xi)→ Gi(xi)).

From left to right: Assume (5.56) and, for the sake of contradiction, assume that there exists

x such that

pi(x) ∧ ¬Gi(x). (5.58)

Take ui such that

∀xi(ui(xi)↔ Gi(xi)). (5.59)

From (5.57), (5.58), and (5.59), we conclude ui < pi. From (5.56), ∃xi(Gi(xi) ∧ ¬ui(xi)))

follows, which contradicts with (5.59).

From right to left: Assume ∀xi(Gi(xi)↔ pi(xi)). We further assume that ui < pi for some

ui. From ui < pi, ∃xi(pi(xi) ∧ ¬ui(xi)) follows. Consequently, ∃xi(Gi(xi) ∧ ¬ui(xi))

follows.

Proof of Proposition 38

Lemma 58 For any generalized quantifiers Q of the type 〈n1, . . . , nk〉 and any formula F

in the form

Q[x1] . . . [xk](G1(x1,y1), . . . , Gk(xk,yk)),

(a) If Q is conjunctive w.r.t. M for some M ⊆ {1, . . . , k}, then

F →
∧
i∈M

∃xiGi(xi,yi)

is logically valid;

(b) If Q is disjunctive w.r.t. M for some M ⊆ {1, . . . , k}, then

F →
∨
i∈M

∃xiGi(xi,yi)

is logically valid.

Proof. Consider any interpretation I and the lists of object names γi of the same length

as xi for i ∈M .

186

(a): For sake of contradiction, we assume

I |= Q[x1] . . . [xk](G1(x1,γ1), . . . , Gk(xk,γk)) (5.60)

but

I |=
∨
i∈M

∀xi¬Gi(xi,γi). (5.61)

From (5.61), there is i such that i ∈M and (xi.Gi(xi,γi))
I = ∅. By assumption,

I �|= Q[x1] . . . [xk](G1(x1,γ1), . . . , Gk(xk,γk))

which contradicts (5.60).

(b): For sake of contradiction, we assume

I |= Q[x1] . . . [xk](G1(x1,γ1), . . . , Gk(xk,γk)) (5.62)

but

I |=
∧
i∈M

∀xi¬Gi(xi,γi). (5.63)

From (5.63), (xi.Gi(xi,γi))
I = ∅ for every i ∈M . By assumption,

I �|= Q[x1] . . . [xk](G1(x1,γ1), . . . , Gk(xk,γk))

which contradicts (5.62).

Lemma 59 For any GQ-formula F ,

F ∗(ec)→ ��c(�� (F))

is logically valid, where c is any set of object constants containing c(F).

Proof. By induction on F .

Case 1: F is an atomic formula p(t) or t1 = t2, it is clear from definition of eC .

Case 2: If F is a GQ-formula of the form

Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)).

187

• If Q is conjunctive w.r.t. M for some M ⊆ {1, . . . , k}, by Lemma 58(a), F ∗(ec)

implies ∧
i∈M

∃xiGi(xi) ∧
∧
i∈M

∃xiGi(xi)
∗(ec)

which in turn implies ∧
i∈M

∃xiGi(xi)
∗(ec).

By I.H. ∧
i∈M

��c(��(Gi(xi)) \ xi)

follows. It follows that

��c(
⋃
i∈M

(��(Gi(x
i)) \ xi)),

which is exactly ��c(��M (F)).

• If Q is disjunctive w.r.t. M for some M ⊆ {1, . . . , k}, by Lemma 58(b), F ∗(ec) implies∨
i∈M

∃xiGi(xi) ∧
∨
i∈M

∃xiGi(xi)
∗(ec)

which in turn implies ∨
i∈M

∃xiGi(xi)
∗(ec).

By I.H. ∨
i∈M

��c(��(Gi(xi)) \ xi)

follows. It follows that

��c(
⋂
i∈M

(��(Gi(x
i)) \ xi)),

which is exactly ��c(��M (F)).

• Otherwise, ��M (F) = ∅.

As a result,

��c(
⋃

M⊆{1,...,k}
��M (F))

follows.

A variable x in a GQ-formula F is semi-safe in F if every strictly positive occurrence

of x that does not follow any generalized quantifier is contained in a subformula Q→(G1, G2)
188

such that x is in ��(G1). It is clear that a GQ-formula is semi-safe iff all variables occurring

in it are semi-safe. By ��(F) we will denote the set of the variables of F that are not

semi-safe.

Lemma 60 For any GQ-formula F (x) such that all unsafe variables �� (F) are free in

F (x), let x be all the free variables in F (x) and c be a finite set of object constants con-

taining c(F)

F (x) ∧ ��c(�� (F))→ F (x)∗(ec) (5.64)

is logically valid.

Proof. By induction on F .

Case 1: F (x) is an atomic formula. Since all variables in F (x) are unsafe, it is trivial.

Case 2: F is a GQ-formula of the form

Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)).

• If Q is Q→, assume

G1 → G2 , (5.65)

��c(��(F)). (5.66)

Further, we assume that G∗
1(ec). From the assumption G∗

1(ec), by Lemma 40, we get

G1. Consequently, G2 follows from (5.65).

Also, from the assumption G∗
1(ec), by Lemma 59,

��c(��(G1)). (5.67)

Note that ��(G2) ⊆ ��(G1 → G2)∪��(G1). Consequently, from (5.66) and (5.67),

��c(��(G2)) (5.68)

follows. Then by I.H., G∗
2(ec) follows from G2 and (5.68).

189

• Otherwise, since all unsafe variables are free, it follows that��(F) =
⋃

1≤i≤k ��(Gi)

because the variables xi must be safe in Gi. Assume F ∧ ��c(��(F)). By I.H.

Gi(xi) ∧ ��c(��(Gi))→ Gi(xi)
∗(ec)

is logically valid. By Lemma 40,

Gi(xi)
∗(ec)→ Gi(xi)

is logically valid. So under the assumption ��c(��(F)), both

Gi(xi)
∗(ec)↔ Gi(xi)

for every 1 ≤ i ≤ k and

F (x)↔ F (x)∗(ec)

are logically valid.

Proposition 38 For semi-safe sentence F , �� [F] |= ��� c(F).

Proof. We will prove a more general claim that, for any semi-safe GQ-sentence F , formula

��[F] entails ���c(F). Clearly, any safe sentence is a special case of such sentence.

We will show that F ∧ ¬���c(F) entails

∃u(u < p ∧ F ∗(u)).

Assume F and ¬���c(F). It is sufficient to show that

ec(F) < p ∧ F ∗(ec(F)) (5.69)

holds.

Note that Formula

∧
p∈p

(
∀x

(
(p(x) ∧ ��c(F)(x))→ p(x)

))
190

is logically valid. Assume for the sake of contradiction,∧
p∈p
∀x

(
p(x)→ (p(x) ∧ ��c(F)(x))

)
. (5.70)

Formula (5.70) entails ���c(F), which contradicts the assumption ¬���c(F). Consequently,

we conclude ec(F) < p. By Lemma 60, the second conjunctive term of (5.69) follows from

the assumption about F .

Proof of Proposition 39

Lemma 61 For any GQ-formula F of the form Q[x1] . . . [xk](G1(p,x1), . . . , Gk(p,xk))

that contain no free variables and any finite set c of object constants containing σ(F),

Q[x1] . . . [xk](G
∗
1(q,x1) ∧ ��c(x1), . . . , G

∗
k(q,xk) ∧ ��c(xk)) (5.71)

is equivalent to ∧
(R1,...,Rk)∈Cc(E)

(∧
1≤i≤k
di∈Ri

G∗
i (q,di)→

∨
1≤i≤k

di∈Oi
c\Ri

G∗
i (q,di)

)
. (5.72)

Proof. Consider any interpretation I. We identify I as 〈If , X〉 where If is the interpreta-

tion of functions and X is a set of ground atoms forms from predicate constants in p and

elements in the universe. Let Y be a subset of X. It is sufficient to prove that when F

contains no free variable, 〈If , X ∪ Y p
q 〉 |= (5.71) iff 〈If , X ∪ Y p

q 〉 |= (5.72).

From left to right: Assume 〈If , X ∪ Y p
q 〉 |= (5.71). let R′

i be the set of all lists di of object

constants such that

〈If , X ∪ Y p
q 〉 |= G∗

i (q,di) ∧ ��c(di).

Clearly, di ∈ Oi
c. From (5.71), Qc(R′

1, . . . , R
′
k) = t follows. Consequently, (R′

1, . . . , R
′
k) is

not in Cc(F). Consider any (R1, . . . , Rk) in Cc(F) such that

〈If , X ∪ Y p
q 〉 |=

∧
1≤i≤k
di∈Ri

G∗
i (q,di).

Clearly, each Ri is a subset of R′
i. Furthermore, there is an index j such 1 ≤ j ≤ k and Rj

is a strict subset of R′
j since (R′

1, . . . , R
′
k) is not in Cc(F). Consequently,

〈If , X ∪ Y p
q 〉 |=

∨
1≤i≤k

di∈Oi
c\Ri

G∗
i (q,di).

191

From right to left: Assume (5.72). Again let R′
i be the set of all lists di of object constants

such that 〈If , X ∪ Y p
q 〉 |= G∗

i (q,di). Clearly, (R′
1, . . . , R

′
k) is not in Cc(F). Since

〈If , X ∪ Y p
q 〉 �|=

∧
1≤i≤k

di∈R′
i

G∗
i (q,di)→

∨
1≤i≤k

di∈Oi
c\R′

i

G∗
i (q,di).

Consequently, Qc(R′
1, . . . , R

′
k) = t. As a result, we conclude (5.71).

The following corollary immediately follows.

Corollary 14 For any GQ-formula F of the form Q[x1] . . . [xk](G1(p,x1), . . . , Gk(p,xk))

that contain no free variables and any finite set c of object constants containing σ(F), let X

and Y Herbrand interpretations of c such that Y ⊆ X. The following holds

X ∪ Y p
q |= Q[x1] . . . [xk](G

∗
1(q,x1), . . . , G

∗
k(q,xk))

iff

X ∪ Y p
q |=

∧
(R1,...,Rk)∈Cc(E)

(∧
1≤i≤k
di∈Ri

G∗
i (q,di)→

∨
1≤i≤k

di∈Oi
c\Ri

G∗
i (q,di)

)
.

Proposition 39 For any GQ sentence F , any signature σ such that σ(F) ⊆ σ and any

Herbrand interpretation X of σ, let c be the set of all object constants in σ, if c is finite, then

X |= �� [F] iff X |= �� [������c[F]].

Proof. It is sufficient to prove that for any subset Y of X, X ∪ Y p
q |= F ∗(q) iff X ∪ Y p

q |=

(������c[F])∗(q). This is proven by induction.

• F is an atomic formula, clear since ������c[F] is the same as F .

• F is a GQ-formula of the form Q[x1] . . . [xk](G1(p,x1), . . . , Gk(p,xk)). By Corol-

lary 14, X ∪ Y p
q |= Q[x1] . . . [xk](G

∗
1(q,x1), . . . , G

∗
k(q,xk)) iff

X ∪ Y p
q |=

∧
(R1,...,Rk)∈Cc(E)

(∧
1≤i≤k
di∈Ri

G∗
i (q,di)→

∨
1≤i≤k

di∈Oi
c\Ri

G∗
i (q,di)

)
.

By I.H. the later is the same as saying

X∪Y p
q |=

∧
(R1,...,Rk)∈Cc(E)

(∧
1≤i≤k
di∈Ri

������c[G
∗
i (q,di)]→

∨
1≤i≤k

di∈Oi
c\Ri

������c[G
∗
i (q,di)]

)
.

192

Proof of Proposition 40

Lemma 62 Let F be a generalized quantified formula of the form Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)).

Formulas ∧
(R1,...,Rk)∈Cc(E)

(∧
1≤i≤k
di∈Ri

Gi(di)→
∨

1≤i≤k

di∈Oi
c\Ri

Gi(di)
)

(5.73)

and ∧
〈B,T 〉 is an MLPS of Cc(E)

(∧
Ri∈B
di∈Ri

Gi(di)→
∨

Ri∈T

di∈Oi
c\Ri

Gi(di)
)

(5.74)

are strongly equivalent.

Proof. It is sufficient to show that for any two subsets B, T of Oi
c such that B is a subset

of T , formula ∧
B⊆S⊆T

(∧
Ri∈S
di∈Ri

Gi(di)→
∨

Ri∈S

di∈Oi
c\Ri

Gi(di)
)

(5.75)

is equivalent to ∧
Ri∈B
di∈Ri

Gi(di)→
∨

Ri∈T

di∈Oi
c\Ri

Gi(di)

in the Logic of Here-and-There.

From right to left: Clear from the facts that B ⊆ S ⊆ T .

From left to right: Assume (5.75). Consider several cases, each of which corresponds to

S such that B ⊆ S ⊆ T . The assumption characterizing each case is that each Ri ∈ S

contains all di such that Gi(di) holds. Consequently, we have

∧
Ri∈S
di∈Ri

Gi(di) ∧
∧

Ri∈T,R′
i
∈S

di∈Ri\R′
i

¬Gi(di). (5.76)

It follows from (5.75) and (5.76) that

∨
Ri∈S

di∈Oi
c\Ri

Gi(di).

193

From this and the second conjunctive term of (5.76), we conclude that

∨
Ri∈T

di∈Oi
c\Ri

Gi(di).

Lemma 63 For any GQ-formula F and list of predicates p, if x ∈ �� (F), then

F → ��c(x)

follows from ���c.

Proof. By induction on F .

Case 1: F is an atomic formula p(t) or t1 = t2, it is clear from ���c.

Case 2: F is a GQ-formula Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)).

• F is G1 ∧ G2. If x ∈ ��(G ∧ H), then x ∈ ��(G) or x ∈ ��(H). In either case,

��c(x) follows from F and I.H.

• F is G1 ∨ G2. If x ∈ ��(G ∨ H), then x ∈ ��(G) and x ∈ ��(H). Thus ��c(x)

follows from I.H.

• F is ∀xG(x) or ∃xG(x). ��(F) = ��(G) \ x. So ��c(��(F)) follows from G(x)

and I.H.

• Otherwise, clear since ��(F) = ∅.

Lemma 64 Let F be a GQ-formula.

• If a variable x is positively weakly restricted in F , let F ∗(q)A⊥ be the formula obtained

from F ∗(q) by replacing every atomic formula A or A∗(q) in it such that x ∈ �� (A)

by ⊥ and apply the transformation, F ∗(q)A⊥ is equivalent to �;
194

• If a variable x is negatively weakly restricted in F , let F ∗(q)A⊥ be the formula obtained

from F ∗(q) by replacing every atomic formula A or A∗(q) in it such that x ∈ �� (A)

by ⊥ and apply the transformation, F ∗(q)A⊥ is equivalent to ⊥.

Proof. We will only prove the second bullet. Proof of the first bullet is similar. By induction

on F .

Case 1: F is an atomic formula p(t). F ∗(q) is q(t). F ∗(q)A⊥ is ⊥.

Case 2: F is an atomic formula t1 = t2. F ∗(q) is F . Clear from the definition of negatively

weakly restricted.

Case 3: F is a GQ-formula Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)).

• F is G1 ∧G2. F ∗(q) is G∗
1(q) ∧G∗

2(q). x is negatively weakly restricted in G1 or G2.

So F ∗(q)A⊥ is ⊥ from I.H.

• F is G1 ∨ G2. F ∗(q) is G∗
1(q) ∨ G∗

2(q). x is negatively weakly restricted in both G1

and G2. So F ∗(q)A⊥ is ⊥ from I.H.

• F is G1 → G2. F ∗(q) is (G∗
1(q)→ G∗

2(q))∧(G1 → G2). Since x is negatively weakly

restricted in G1 → G2, it is clear that (G1 → G2)
A
⊥ is ⊥. As a result, x is negatively

weakly restricted in G2 and positively weakly restricted in G1. By I.H., G∗
1(q)

A
⊥ is �

and G∗
2(q)

A
⊥ is ⊥. So F ∗(q)A⊥ is equivalent to ⊥.

• F is ∀xG(x) or ∃xG(x). Clear from I.H.

• Otherwise, there is no way for F ∗(q)A⊥ to be ⊥.

Lemma 65 For any GQ-formula F where all bound variables are disjoint,

(a) if x is positively weakly restricted in F , then

q ≤ p ∧ ¬��c(x)→ (F ∗(q, x)↔ �)
195

is derivable from ���c.

(b) if x is negatively weakly restricted in F , then

q ≤ p ∧ ¬��c(x)→ (F ∗(q, x)↔ ⊥)

is derivable from ���c.

Proof. We will only prove it for (a), proof of (b) is similar. Since q ≤ p, by Lemma 63, for

any atomic formula A such that x ∈ ��(A), A ↔ ⊥ follows from ���c. Also, it follows

from Lemma 40 that A∗(q)↔ ⊥ is derivable from ���c. So F ∗(q) is equivalent to F ∗(q)A⊥,

where F ∗(q)A⊥ is obtained from F ∗(q) by replacing every atomic formula A or A∗(q) by ⊥.

In view of Lemma 64, since x is positively weakly restricted in F , F ∗(q)A⊥ ↔ �.

Proposition 40 For any safe GQ sentence F and any nonempty finite set c of object

constants containing c(F), �� [F] is equivalent to �� [���	�
c[F]].

Proof of Proposition 40 immediately follows from the following lemma.

Lemma 66 For any safe GQ-sentence F , and for any nonempty finite set c of object con-

stants containing c(F),

q ≤ p→
(
F ∗(q)↔ (���	�
c[F])∗(q)

)
is logically valid.

Proof. By induction on F .

Case 1: F is an atomic formula or 0-place connectives. Trivial since ����	
c[F] is itself.

Case 2: F is a GQ-formula Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)).

• F is ∀xF (p, x). ∀xF ∗(q, x) can be rewritten as

∀x(�	c(x)→ F ∗(q, x)) ∧ ∀x(¬�	c(x)→ F ∗(q, x)),

196

and consequently as

∧
c∈c

F ∗(q, c) ∧ ∀x(¬��c(x)→ F ∗(q, x)). (5.77)

Note that x is quantified by ∀ which has positive occurrence. Consider the maximal

positive subformula G(x) of F (x) such that x is positively weakly restricted in G(x).

By Lemma 65 (a), for each of these subformulas, the implication

q ≤ p ∧ ¬��c(x)→ (G∗(q, x)↔ �)

is derivable from ���c. Also, when q is p,

¬��c(x)→ (G(x)↔ �)

follows from ���c. As a result, under the assumption ���c, (5.77) can be equiva-

lently rewritten as ∧
c∈c

F ∗(q, c) ∧ ∀x(¬��c(x)→ S∗
1(q)). (5.78)

where S∗
1(q) is the formula obtained from F ∗(q, x) by replacing each of these G∗(q, x)

with � and then replacing G with �. Now consider the maximal negative subformula

H(x) of S1 such that x is negatively weakly restricted in H(x). By Lemma 65 (b), for

each of these subformulas, the implication

q ≤ p ∧ ¬��c(x)→ (H∗(q, x)↔ ⊥)

is derivable from ���c. Also, when q is p,

¬��c(x)→ (H(x)↔ ⊥)

follows from ���c. As a result, under the assumption ���c, (5.78) can be equiva-

lently rewritten as ∧
c∈c

F ∗(q, c) ∧ ∀x(¬��c(x)→ S∗
2(q)) (5.79)

where S∗
2(q) is the formula obtained from S∗

1(q) by replacing each of these H∗(q, x)

with ⊥ and then replacing H with ⊥.

We claim that x does not occur in S∗
2(q). Indeed, consider any occurrence of x in S1.

Since ∀xF (x) is safe, in view of the fact that if a subformula G is positive (negative) in
197

F , then G∗(q) is also positive (negative) in F ∗(q), by the construction of S∗
1(q), that

occurrence is in a negative subformula H ′(x) of S1, which is obtained from a negative

subformula H(x) of F (x) in which x is negatively weakly restricted, by replacing some

of its subformulas by �. Clearly, x is negatively weakly restricted in H ′(x) as well. By

the construction of S∗
2(q), a formula that contains H ′(x) or H ′∗(q, x) is replaced by

⊥.

It follows that S∗
2(q) can be obtained from F ∗(q, c) in the same way as it was obtained

from F ∗(q, x), that is by replacing some subformulas that are positive in F ∗(q, c) with

� and then replacing some subformulas that are negative in the resulting formula

with ⊥. Consequently, F ∗(q, c)→ S∗
2(q) follows and so is F ∗(q, c)→ ∀x(¬��c(x)→

S∗
2(q)). Thus the second conjunctive term of (5.79) can be dropped. So (5.79) is

equivalent to ∧
c∈c

F ∗(q, c). (5.80)

(5.80) can be viewed as

∧
d∈c

(∧
d∈∅

F ∗(q, d)→
∨

d∈c\(c\{d})
F ∗(q, d)

)
.

By Lemma 62, the later is equivalent to

∧
S⊂c

(∧
d∈S

F ∗(q, d)→
∨

d∈c\S
F ∗(q, d)

)
. (5.81)

By I.H. (5.81) is equivalent to

∧
S⊂c

(∧
d∈S

������c[F
∗(q, d)]→

∨
d∈c\S

������c[F
∗(q, d)]

)
which is exactly ������c[∀xF (p, x)].

• F is ∃xF (p, x). Similar to the first case.

• Otherwise, every variable in xi belongs to �	(Gi). By Lemma 63

Gi(p,xi)→ ��c(xi)

is logically valid. So F is equivalent to

Q[x1] . . . [xk](G1(p,x1) ∧ ��c(xk)), . . . , Gk(p,xk) ∧ ��c(xk))).
198

By Lemma 61,

Q[x1] . . . [xk](G
∗
1(q,x1) ∧ ��c(x1), . . . , G

∗
k(q,xk) ∧ ��c(xk))

is equivalent to

∧
(R1,...,Rk)∈Cc(E)

(∧
1≤i≤k
di∈Ri

G∗
i (q,di)→

∨
1≤i≤k

di∈Oi
c\Ri

G∗
i (q,di)

)
.

By I.H. the later is equivalent to

∧
(R1,...,Rk)∈Cc(E)

(∧
1≤i≤k
di∈Ri

������c[G
∗
i (q,di)]→

∨
1≤i≤k

di∈Oi
c\Ri

������c[G
∗
i (q,di)]

)
.

Proof of Theorem 15

Proof Between (a) and (b) of Theorem 15:

Let c be the set of all object constants in σ(F). By Proposition 39, X |= �	[F] iff

X |= �	[������c[F]]. According to Theorem 1f in (Lee & Meng, 2011), X |= �	[������c[F]]

iff X satisfies
�������c[F](Y) for every nonempty finite set Y of atoms of σ(F). As a

result, it is sufficient to prove that when F contains no free variables, for any nonempty finite

set Y of atoms of σ(F), X |= �
�F (Y) iff X |= �
�������c[F](Y). We will prove it by

induction.

Case 1: F is an atomic formula. Clear since ������c[F] is the same as F .

Case 2: F is of the form Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)). ������c[F] is

∧
(R1,...,Rk)∈Cc(F)

(∧
1≤i≤k
di∈Ri

������c[Gi(di)]→
∨

1≤i≤k

di∈Oi
c\Ri

������c[Gi(di)]

)
.

�
�������c[F](Y) is the conjunction of ������c[F] and

∧
(R1,...,Rk)∈Cc(F)

(∧
1≤i≤k
di∈Ri

�
�������c[Gi(di)]
(Y)→

∨
1≤i≤k

di∈Oi
c\Ri

�
�������c[Gi(di)]
(Y)

)
.

(5.82)

199

On the other hand, ���F (Y) is the conjunction of F and

Q[x1] . . . [xk](���G1(x1)(Y), . . . ,���Gk(xk)(Y)) (5.83)

It follows from the proof of Proposition 39 that X |= �����	c[F] iff X |= F . By

I.H. X |= ���Gi(di)(Y) iff X |= ��������	c[Gi(di)]
(Y) for each 1 ≤ i ≤ k and any

di ∈ c(F)|xi|. As a result, X |= (5.83) iff

X |= Q[x1] . . . [xk](��������	c[G1(x1)]
(Y), . . . ,��������	c[Gk(xk)]

(Y))

which, by Corollary 14, iff X |= (5.82).

Proof Between (ba) and (c) of Theorem 15: By Theorem 2 in (Lee & Meng, 2011), (b) is

equivalent to (b′)

(b′) for every nonempty finite set Y of ground atoms of σ(F), X satisfies
�F (Y);

It is also clear that (c) is equivalent to (c′)

(c′) for every finite ground loop Y of F , X satisfies
�F (Y).

We will show that (b′) is equivalent to (c′).

Lemma 67 For any GQ-formula F and any set Y of atoms, ���F (Y) implies F .

Proof. By induction on F .

Lemma 68 For any GQ-formula F and any set Y of ground atoms, let SF be the set of all

atoms that has strictly positive occurrences in F . If for every substitution θ from variables in

SF to ground terms in Y , SF θ ∩ Y = ∅ then ���F (Y) is equivalent to F .

Proof. By induction on F .

Case 1: F is pi(t). ���F (Y) is

pi(t) ∧
∧

pi(d)∈Y
t �= d. (5.84)

200

Since every substitution θ from variables in SF to ground terms in Y , SF θ∩Y = ∅. It follows

that t �= d is logically valid for every pi(d) ∈ Y . As a result, (5.84) is equivalent to pi(t).

Case 2: F is an atomic formula that does not contain members of p. It is clear since

���F (Y) = F .

Case 3: F is of the form Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)). ���F (Y) is

Q[x1] . . . [xk](���G1(x1)(Y), . . . ,���Gk(xk)(Y))

∧ Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)).
(5.85)

Without loss of generality, we partition the set of all argument positions of Q into three sets:

the set of monotone argument positions ���, the set of antimonotone argument positions

���	 and the rest of argument positions �	
��.

(a) Consider any i ∈ ��� ∪�	
��. Note that SGi ⊆ SF . Since for every substitution

θ from variables in SF to ground terms in Y , SF θ ∩ Y = ∅, it is immediate that

SGiθ ∩ Y = ∅. By I.H. ���Gi(xi)(Y) is equivalent to Gi(xi).

(b) Consider any i ∈ ���	. By Lemma 67, ���Gi(xi)(Y) implies Gi(xi).

From (a) and (b), by Lemma 43(b), Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)) implies

Q[x1] . . . [xk](���G1(x1)(Y), . . . ,���Gk(xk)(Y)).

As a result, (5.85) is equivalent to F .

Lemma 69 For any GQ-formula F , set Y of ground atoms, and subset Z of Y , let S+
F be

the set of all atoms that has semi-positive non-p-negated occurrences in F and S−
F be the

set of all atoms that has semi-negative non-p-negated occurrences in F .

(a) If for every substitution θ from variables in S+
F to ground terms in Y , S+

F θ∩(Y \Z) = ∅

then ���F (Z) implies ���F (Y);

(b) If for every substitution θ from variables in S−
F to ground terms in Y , S−

F θ∩(Y \Z) = ∅

then ���F (Y) implies ���F (Z).
201

Proof. Both parts are proved simultaneously by induction on F .

Case 1: F is pi(t).

Part (a): ���F (Z) is

pi(t) ∧
∧

pi(d)∈Z
t �= d. (5.86)

Since every substitution θ from variables in S+
F to ground terms in Y , S+

F θ ∩ (Y \Z) = ∅. It

follows that t �= d is logically valid for every pi(d) ∈ Y \ Z. As a result, (5.86) is equivalent

to

pi(t) ∧
∧

pi(d)∈Y
t �= d,

which is exactly ���F (Y).

Part (b): Clear from Z ⊆ Y .

Case 2: F is an atomic formula that does not contain members of p. It is clear since

���F (Y) = ���F (Z) = F .

Case 3: F is of the form Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)). Without loss of generality, we

partition the set of all argument positions of Q into three sets: the set of monotone argument

positions ���, the set of antimonotone argument positions ���	 and the rest of argument

positions �	
��.

Part (a): If F is negated on p, then by Lemma 68, ���F (Y) and ���F (Z) are both

equivalent to F . Otherwise,

• Consider any i ∈ ���∪�	
��. Note that S+
Gi
⊆ S+

F . It follows that S+
Gi
θ∩(Y \Z) = ∅.

By I.H.(a) ���Gi(xi)(Z) implies ���Gi(xi)(Y).

• Consider any i ∈ ���	∪�	
��. Note that S−
Gi
⊆ S+

F . It follows that S−
Gi
θ∩(Y \Z) = ∅.

By I.H.(b) ���Gi(xi)(Y) implies ���Gi(xi)(Z).

From the above two bullets, we conclude

• for any i ∈ ���, ���Gi(xi)(Z) implies ���Gi(xi)(Y);

202

• for any i ∈ �����, ���Gi(xi)(Z) is equivalent to ���Gi(xi)(Y);

• for any i ∈ 	
��, ���Gi(xi)(Y) implies ���Gi(xi)(Z).

By Lemma 43, ���F (Z), which is

Q[x1] . . . [xk](���G1(x1)(Z), . . . ,���Gk(xk)(Z)) ∧ Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)),

implies ���F (Y), which is

Q[x1] . . . [xk](���G1(x1)(Y), . . . ,���Gk(xk)(Y)) ∧ Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)).

Part (b): Similar to (a).

Lemma 70 For any GQ-formula F and any nonempty set Y of atoms, there exists a subset

Z of Y such that

(a) Z is a loop of F , and

(b) the dependency graph of F has no edges from atoms in Z to atoms in Y \ Z.

Lemma 71 Let F be a GQ-formula, Y be a set of ground atoms of σ(F) and Z a nonempty

subset of Y such that the dependency graph of F has no edges from atoms in Z to atoms

in Y \ Z. ���F (Y) implies ���F (Z).

Proof. By induction on F .

Case 1: F is pi(t). Clear from Z ⊆ Y .

Case 2: F is an atomic formula that does not contain members of p. It is clear since

���F (Y) = F .

Case 3: F is of the form Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)). Without loss of generality, we

partition the set of all argument positions of Q into three sets: the set of monotone argument

positions ��
, the set of antimonotone argument positions 	
�� and the rest of argument

positions �����.

Consider two subcases.
203

3.1: Let SF be the set of all atoms that has strictly positive occurrences in F . If for every

substitution θ from variables in F to ground terms in Y , SF θ∩Y = ∅ then, by Lemma

68, both ���F (Z) and ���F (Y) are equivalent to F .

3.2: Otherwise, there is a substitution θ from variables in SF to ground terms in Y such

that SF θ ∩ Y �= ∅.

– Consider any i ∈ ���� ∪��	
�. Let S+
Gi

be the set of all atoms that has semi-

positive non-p-negated occurrences in Gi. Since there are no edges from Z to

Y \ Z in the dependency graph of F , it follows that for any substitution θ′ from

variables in S+
Gi

to ground terms in Y S+
F θθ

′ ∩ (Y \ Z) = ∅. By Lemma 69 (a),

���Fθ(Z) implies ���Fθ(Y). Since this holds for any such substitution θ, so

we derive ���F (Z) implies ���F (Y).

– Consider any i ∈ ��� ∪ ��	
�. Note that the dependency graph of Gi is a

subgraph of the dependency graph of F . It follows that the dependency graph

of Gi has no edges from atoms in Z to atoms in Y \Z. By I.H. ���F (Y) implies

���F (Z).

From the above two bullets, we conclude

– for any i ∈ ���, ���Gi(xi)(Y) implies ���Gi(xi)(Z);

– for any i ∈ ��	
�, ���Gi(xi)(Z) is equivalent to ���Gi(xi)(Y);

– for any i ∈ ����, ���Gi(xi)(Z) implies ���Gi(xi)(Y).

By Lemma 43, ���F (Y), which is

Q[x1] . . . [xk](���G1(x1)(Y), . . . ,���Gk(xk)(Y))∧Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)),

implies ���F (Z), which is

Q[x1] . . . [xk](���G1(x1)(Z), . . . ,���Gk(xk)(Z))∧Q[x1] . . . [xk](G1(x1), . . . , Gk(xk)).

204

Proof Between (b′) and (c′). It is clear that (b′) implies (c′). To prove the other direction,

for the sake of contradiction, assume (c′) and that (b′) does not hold. Let Y be a nonempty

subset of X such that

X |= Y ∧ (5.87)

and

X |= ���F (Y). (5.88)

By Lemma 70, there there exists a subset Z of Y such that Z is a loop of F , and the

dependency graph of F has no edges from Z to Y \ Z. From (5.87), we conclude that

X |= Z∧. By Lemma 71, (5.88) implies that X |= ���F (Z). This conflicts with (c’).

Proof of Proposition 41

Lemma 72 Let F be a formula with generalized quantifiers. If every occurrence of every

predicate constant pi from p in F is strictly positive and not mixed in F , the formula

u ≤ p→ (F ∗(u)↔ F (u))

is logically valid.

Proof. By induction on F .

Case 1: F is an atomic formula.

• If F is an atom pi(t) where pi ∈ p, F ∗(u) is exactly F (u).

• Otherwise, both F ∗(u) and F (u) are the same as F .

Case 2: F is of the form (5.1). Since every predicate from p in F is strictly positive and not

mixed in F , it follows that every predicate from p occurs in a monotone argument position

in F . By Proposition 32(a),

u ≤ p→ ((Q[x1] . . . [xk](F1(x1), . . . , Fk(xk)))
∗

↔ Q[x1] . . . [xk](F
∗
1 (x1), . . . , F

∗
k (xk)))

205

is logically valid. Consider each Fi where 1 ≤ i ≤ k. Note that every occurrence of every

predicate constant p from p in Fi is strictly positive and not mixed in Fi. By I.H.

u ≤ p→ (F ∗
i (u)↔ Fi(u))

is logically valid. So the claim follows.

Lemma 73 Let p be a list of predicate constants. If F is canonical relative to p, then the

formula

u ≤ p→
(
F ∗(u)↔ (F (u) ∧ F)

)
is logically valid.

Proof. By Lemma 40,

u ≤ p→
(
F ∗(u)→ F

)
is logically valid. It is sufficient to prove that under the assumption of F ,

u ≤ p→
(
F ∗(u)↔ F (u)

)
is logically valid. This can be proven by induction on F .

Case 1: F is an atomic formula.

• F is an atom pi(t) where pi ∈ p, F ∗(u) is exactly F (u).

• Otherwise, F ∗(u) and F (u) are the same as F .

Case 2: F is of the form (5.1). Consider the following subcases.

• Q �∈ {Q→, Q∧, Q∀}. Consider each Fi where 1 ≤ i ≤ k. Since every predicate

constant pi from p in Fi is strictly positive and not mixed in Fi, by Lemma 72,

u ≤ p→ (F ∗
i (u)↔ Fi(u))

is logically valid. So under the assumption F , the formula F ∗(u) is equivalent to

F (u).
206

• Q ∈ {Q∧, Q∀}, clear from I.H.

• Q is Q→. Assume (u ≤ p) ∧ (F1 → F2). It is sufficient to show

(F ∗
1 (u)→ F ∗

2 (u))↔ (F1(u)→ F2(u))). (5.89)

Since F1 → F2 is canonical relative to p, every occurrence of every predicate con-

stant pi from p in F1 is strictly positive and not mixed in F1, so that, by Lemma 72,

F ∗
1 (u) is equivalent to F1(u).

– Case 1: ¬F1. By Lemma 40, ¬F ∗
1 (u). The claim follows since ¬F ∗

1 (u) is

equivalent to ¬F1(u).

– Case 2: F2. By I.H. F ∗
2 (u) is equivalent to F2(u). The claim follows since F ∗

1 (u)

is equivalent to F1(u).

Proposition 41 Let Π be a finite general program and let F be the GQ-representation of

Π. For every rule (5.21) in Π, if B is canonical relative to p and every occurrence of p from

p in H is strictly positive and not mixed in H , then ���[Π;p] is equivalent to ��[F ;p].

Proof. It is sufficient to show that under the assumption u < p and Π, for each rule (5.21)

in Π,

B(u) ∧B → H(u)

is equivalent to

(B∗(u)→ H∗(u)) ∧ (B → H).

From the fact that B is canonical relative to p, by Lemma 73,

B∗(u)↔ (B(u) ∧B).

Also, since every occurrence of pi from p in H is strictly positive and not mixed in H , by

Lemma 72, H∗(u)↔ H(u) follows.

207

Proof of Proposition 42

Lemma 74 For any dl-program (T ,Π), any dl-atom A of the form (5.7) in Π that contains

no free variables, A is monotonic (anti-monotonic) relative to T iff QU
A is motonone (anti-

monotone) in {1, . . . , k} for all Herbrand interpretations I of 〈C,PΠ〉.

Proof. We will show the case of monotonic dl-atoms. The case of anti-monotonic dl-atoms

is similar.

From left to right: Assume that A is monotonic relative to T . We further assume QU
A(R1, . . . , Rk) =

t, where Rj ⊆ |I||xj | for 1 ≤ j ≤ k. Consider any i ∈ {1, . . . , k} and any R′
i ⊆ |I||xi| such

that Ri ⊆ R′
i, we will show that QU

A(R1, . . . , Ri−1, R
′
i, Ri+1, . . . , Rk) = t.

Let I ′ be the Herbrand interpretation

I ∪ {pi(d) | d ∈ R′
i \Ri},

whose signature is the same as I. It is clear that I ⊆ I ′. Also, by Lemma 47, I |=T A

follows from QU
A(R1, . . . , Ri, . . . , Rk) = t. Since A is monotonic relative to T , I ′ |=T A

and by Lemma 47, QU
A(R1, . . . , Ri−1, R

′
i, Ri+1, . . . , Rk) = t. Since I and I ′ have the same

universe, QU
A(R1, . . . , Ri−1, R

′
i, Ri+1, . . . , Rk) = t follows.

From right to left: Assume that QU
A is monotone in {1, . . . , k} for all Herbrand interpretations

I of 〈C,PΠ〉. Consider any Herbrand interpretations J , J ′ of 〈C,PΠ〉 such that J ⊆ J ′ and

assume that J |=T A. We will show that J ′ |=T A.

Let Ri = {d ∈ |J ||xi| | (pi(d))J = t} and R′
i = {d ∈ |J ′||xi| | (pi(d))J

′
= t} for

each 1 ≤ i ≤ k. From J |=T A, by Lemma 47, QU
A(R1, . . . , Rk) = t. Since J ⊆ J ′, it

follows that Ri ⊆ R′
i for each 1 ≤ i ≤ k. From the fact that QU

A is monotone in {1, . . . , k},

QU
A(R

′
1, . . . , R

′
k) = t follows. By Lemma 47, J ′ |=T A.

Lemma 75 For any dl-program (T ,Π), any Herbrand interpretations X, Y of 〈C,PΠ〉 such

that Y ⊆ X, and any rule p(t)← B,N in Π,

Y |=T (p(t)← B,N)XT
208

iff

X ∪ Y p
q |= (BGQ)∗(q) ∧ (NGQ)∗(q)→ q(t). (5.90)

Proof. We partition B into two sets: the set B2 of all anti-monotonic dl-atoms and the

set B1 of all remaining dl-atoms. In view of Lemma 74, BGQ
2 is a conjunction of GQ-

formulas (5.11) such that QU is anti-monotone in all argument positions. By Lemma 44 and

Proposition 32 (b), (5.90) is equivalent to

X ∪ Y p
q |= (BGQ

1)∗(q) ∧BGQ
2 ∧NGQ → q(t),

which is the same as

X ∪ Y p
q |= BGQ

1 (q) ∧BGQ
1 ∧BGQ

2 ∧NGQ → q(t). (5.91)

Consider two cases.

Case 1: X |=T B2 ∧N . (p(t)← B,N)XT is p(t)← B1. On the other hand, by Lemma 47,

X |= BGQ
2 ∧ NGQ. Since Y ⊆ X, Y p

q |= BGQ
1 (q) implies X |= BGQ

1 . Thus (5.91) is

equivalent to saying that Y p
q |= BGQ

1 (q) → q(t), which in turn is equivalent to saying that

Y |= BGQ
1 → p(t). By Lemma 47 again, Y |= BGQ

1 → p(t) iff Y |=T B1 → p(t).

Case 2: X �|=T B2 ∧ N . (p(t) ← B,N)XT is equivalent to �. By Lemma 47, X �|=

BGQ
2 ∧NGQ. Thus (5.91) follows.

Lemma 76 For any dl-program (T ,Π), X |= ΠGQ iff X |=T ΠX
T .

Proof. Immediate from the definition of ΠX
T that X |=T ΠX

T iff X |=T Π. It follows from

Lemma 47 that X |=T Π iff X |= ΠGQ.

Proposition 42 For any dl-program (T ,Π), and any Herbrand interpretation X of 〈C,PΠ〉,

X is an answer set of (T ,Π) iff X satisfies ��[ΠGQ;PΠ] relative to T .

Proof. X is an answer set of (T ,Π) iff

209

(i) X |=T ΠX
T , and

(ii) no proper subset Y of X satisfies ΠX
T relative to T .

On the other hand, X |= ��[ΠGQ;PΠ] iff

(i′) X |= ΠGQ, and

(ii′) X does not satisfy ∃u(u < PΠ ∧ (ΠGQ)∗(u)).

By Lemma 76, (i) is equivalent to (i′). Assume (i′). Condition (ii) can be reformu-

lated as: no proper subset Y of X satisfies (p(t) ← B,N)XT relative to T for every rule

p(t) ← B,N in Π. Under the assumption (i′), condition (ii′) can be reformulated as: there

is no proper subset Y of X such that, for every rule p(t) ← B,N in Π, X ∪ Y p
q satisfies

(BGQ)∗(q) ∧ (NGQ)∗(q)→ q(t). By Lemma 75, it follows that (ii) is equivalent to (ii′).

Proof of Proposition 43

Let (T ,Π) be a dl-program and X an Herbrand interpretation of 〈C,PΠ〉. By fΠX
T , we

denote the FLP reduct of Π as defined by viewing a dl-program as a Hex program.

Lemma 77 Let (T ,Π) be a dl-program. For any Herbrand interpretations X, Y of 〈C,PΠ〉

such that Y ⊆ X and any rule p(t)← B,N in Π,

Y |=T f(p(t)← B,N)XT

iff

X ∪ Y p
q |= BGQ(q) ∧NGQ(q) ∧BGQ ∧NGQ → q(t). (5.92)

Proof. Case 1: X |=T B,N . f(p(t) ← B,N)XT is p(t) ← B,N . On the other hand, by

Lemma 47, X |= BGQ ∧NGQ follows. (5.92) is equivalent to saying that Y p
q |= B(q)GQ ∧

N(q)GQ → q(t), which in turn is equivalent to saying that Y |= BGQ ∧ NGQ → p(t). By

Lemma 47 again, Y |=T p(t)← B,N iff Y |= BGQ ∧NGQ → p(t).

Case 2: X �|=T B,N . f(p(t) ← B,N)XT is equivalent to �. By Lemma 47, X �|= BGQ ∧

NGQ. So (5.92) holds.

210

Lemma 78 For any dl-program (T ,Π) such that Π is a ground program, X |= ΠGQ iff

X |=T fΠX
T .

Proof. Immediate from the definition of fΠX
T that X |=T fΠX

T iff X |=T Π. It follows from

Lemma 47 that X |=T Π iff X |= ΠGQ.

Proposition 43 For any dl-program (T ,Π), and any Herbrand interpretation X of 〈C,PΠ〉,

X satisfies ���[ΠGQ;PΠ] relative to T iff X is an answer set of (T ,Π) according to Fink

and Pearce.

Proof. X is an answer set of (T ,Π) according to Fink and Pearce iff

(i) X |=T fΠX
T , and

(ii) no proper subset Y of X satisfies fΠX
T relative to T .

On the other hand, X satisfies ���[ΠGQ;PΠ] iff

(i’) X |= ΠGQ, and

(ii’) X does not satisfy ∃u(u < PΠ ∧ (ΠGQ)�(u)).

By Lemma 80, (i) iff (i’). Condition (ii) can be reformulated as: no proper subset Y

of X satisfies f(p(t) ← B,N)XT relative to T for every rule p(t) ← B,N in Π. Condition

(ii’) can be reformulated as: there is no proper subset Y of X such that, for every rule

p(t)← B,N in Π, X ∪ Y p
q satisfies ((p(t)← B,N)GQ)�(q). By Lemma 79, it follows that

(ii) is equivalent to (ii’).

Proof of Proposition 44

Let (T ,Π) be a dl-program and X an Herbrand interpretation of 〈C,PΠ〉. By fΠX
T , we

denote the FLP reduct of Π as defined by viewing a dl-program as a HEX program.

Lemma 79 For any dl-program (T ,Π) such that every occurrence of non-monotonic dl-

atoms is in the positive body of a rule, any Herbrand interpretations X, Y of 〈C,PΠ〉 such
211

that Y ⊆ X and any rule p(t)← B,N in Π,

Y |=T f(p(t)← B,N)XT

iff

Y |=T (p(t)← B,N)XT

Proof. We partition B into two sets: the set B1 of all anti-monotonic dl-atoms and the set

B2 of rest of all dl-atoms.

Consider two cases.

Case 1: X |=T B ∧ N . f(p(t) ← B,N)XT is p(t) ← B,N . On the other hand, (p(t) ←

B,N)XT is p(t) ← B2. It is sufficient to show that Y |=T B1 ∧ B2 ∧N iff Y |=T B2. From

X |= B ∧ N , it follows that X |= B1 and X |= N . Since B1 contains only anti-monotonic

dl-atoms, Y |= B1 follows from X |= B1. Since N contains only negation of monotonic

dl-atoms, Y |= N follows from X |= N .

Case 2: X �|=T B ∧N . both (p(t) ← B,N)XT and f(p(t) ← B,N)XT are equivalent to �.

Lemma 80 For any dl-program (T ,Π) such that Π is a ground program and every occur-

rence of non-monotonic dl-atoms is in the positive body of a rule, X |= ΠX
T iff X |=T fΠX

T .

Proof. Immediate from the definition of fΠX
T that X |=T fΠX

T iff X |=T Π. It follows from

Lemma 47 that X |=T Π iff X |= ΠGQ.

Proposition 44 For any dl-program (T ,Π), and any Herbrand interpretation X of 〈C,PΠ〉,

if every occurrence of non-monotonic dl-atoms is in the positive body of a rule, then X is an

answer set of (T ,Π) in the sense of (Fink & Pearce, 2010) iff X is an answer set of (T ,Π)

in our sense.

Proof. X is an answer set of (T ,Π) according to Fink and Pearce iff

212

(i) X |=T fΠX
T , and

(ii) no proper subset Y of X satisfies fΠX
T relative to T .

On the other hand, X satisfies ���[ΠGQ;PΠ] iff

(i′) X |=T ΠX
T , and

(ii′) no proper subset Y of X satisfies ΠX
T relative to T .

By Lemma 80, (i) is equivalent to (i′). By Lemma 79, (ii) is equivalent to (ii′).

Proof of Proposition 45

Theorem on Double Negations (Ferraris et al., 2009b) Let H be a sentence, F a sub-

formula of H , and H− the sentence obtained from H by inserting ¬¬ in front of F . If F

is contained in a subformula G of H that is negative on p then ��[H−;p] is equivalent to

��[H;p].

The following corollary follows from the Splitting Lemma and the Theorem on Dou-

ble Negations.

Corollary 15 Let Π be a tight program with generalized quantifiers. ��[(ΠGQ)¬¬;p] is

equivalent to ��[ΠGQ;p].

Lemma 81 Let Π be a finite program and X, Y be sets of atoms of σ(Π) such that Y ⊆ X

and p be the list of all predicates in Π. Consider any rule

p(t)← B,QB,N

in Π where B is a set of normal atoms, QB is a set of GQ-atoms and N is a set of normal

and GQ atoms preceded by “not".

Y |= (p(t)← B,QB,N)X

iff

X ∪ Y p
q |= (B ∧QB¬¬ ∧N¬¬)∗(q)→ q(t). (5.93)

213

Proof. Since QB¬¬ and N¬¬ are negative on p, in view of Lemma 44, (5.93) is the same

as saying

X ∪ Y p
q |= B∗(q) ∧QB¬¬ ∧N¬¬ → q(t). (5.94)

Consider two cases:

Case 1: X �|= QB,N . (p(t)← B,QB,N)X is �. Clearly, X �|= QB¬¬ ∧N¬¬. As a result,

(5.94) holds.

Case 2: X |= QB,N . (p(t) ← B,QB,N)X is p(t) ← B. On the other hand, (5.94) is

equivalent to saying that

Y p
q |= B∗(q)→ q(t). (5.95)

Since B is a conjunction of atoms, it is clear that Y |= p(t)← B iff (5.95) holds.

Lemma 82 Let Π be a finite program and X be a set of atoms of σ(Π). X |= ΠX iff

X |= (ΠGQ)¬¬.

Proof. Clear from Lemma 81 when Y = X and p = q.

Proposition 45 For any program Π and any Herbrand interpretation X of σ(Π), X is a

EGV-answer set of Π iff X |= ��[(ΠGQ)¬¬].

Proof. X is a EGV-answer set of Π iff

(i) X |= ΠX , and

(ii) no proper subset Y of X satisfies ΠX .

On the other hand, X satisfies ��[(ΠGQ)¬¬] iff

(i’) X |= (ΠGQ)¬¬, and

(ii’) X does not satisfy ∃u(u < p ∧ ((ΠGQ)¬¬)∗(u)).

214

By Lemma 82, (i) is equivalent to (i’). Let rules in Π are of the form

p(t)← B,QB,N

where B is a set of normal atoms, QB is a set of GQ-atoms and N is a set of normal

and GQ atoms preceded by “not". Condition (ii) can be reformulated as: no proper subset

Y of X satisfies (p(t) ← B,QB,N)X for every rule p(t) ← B,QB,N ∈ Π. Condition

(ii’) can be reformulated as: there is no proper subset Y of X such that, for every rule

p(t) ← B,QB,N ∈ Π, X ∪ Y p
q satisfies (B ∧QB¬¬ ∧N¬¬)∗(q) → q(t). By Lemma 81,

(ii) is equivalent to (ii’).

215

Chapter 6

ANSWER SET PROGRAMMING MODULO THEORIES AND REASONING ABOUT

CONTINUOUS CHANGES

The availability of efficient Answer Set Programming (ASP) solvers has greatly contribute

the success of the programming paradigm. Most ASP solvers utilize (i) intelligent grounding—

the process that replaces variables with ground terms—and (ii) efficient search methods

that originated from propositional satisfiability solvers (SAT solvers). However, this method

is not scalable in handling functional fluents that range over a large numeric domain. For

example, consider the inertia rule:

�����1(x) ← �����0(x), ��� ¬�����1(x) (6.1)

If the range of x is over a large domain of numbers (e.g. all integers), then grounding it

w.r.t. all the elements in the domain becomes very inefficient. Moreover, real numbers are

not supported at all because grounding cannot be applied.

An alternative representation using functions, such as replacing �����1(x) with

�����1 = x, does not work under the ASP semantics because (i) answer sets are defined

as Herbrand models (e.g., �����1 = �����0 is always false under any Herbrand interpreta-

tion), and (ii) the nonmonotonicity of the stable model semantics has to do with minimizing

the extents of predicates but has nothing to do with functions.

In order to alleviate the “grounding problem,” there have been several recent ef-

forts (Gebser et al., 2009; Balduccini, 2009; Janhunen et al., 2011; Liu et al., 2012) to

integrate ASP with Constraint Programming or Satisfiability Modulo Theories (SMT), where

functional fluents can be represented by variables in Constraint Satisfaction Problems or

uninterpreted constants in SMT. However, like the standard ASP, nonmonotonicity of those

extensions has to do with predicates only, and nothing to do with functions. For instance, a

natural counterpart of (6.1) in the language of CLINGCON (Gebser et al., 2009),

�����1 =
$ x ← �����0 =

$ x, ��� �����1 �=$ x ,

does not correctly represent inertia.

216

Monotonic Nonmonotonic

FOL Functional SM
SMT ASP Modulo Theories
SAT ASP

Figure 6.1: Analogy between SMT and ASPMT

In this chapter, we present a framework of combining answer set programming with

satisfiability modulo theories, which we call Answer Set Programming Modulo Theories

(ASPMT). Just like that SMT is a generalization of SAT and, at the same time, a special case

of first-order logic in which certain predicate and function symbols in background theories

(such as difference logic and the theory of reals) have fixed interpretations, ASPMT is a

generalization of the standard ASP and, at the same time, a special case of functional

stable model semantics (Bartholomew & Lee, 2012) that assumes background theories.

Figure 6.1 summarizes our view on the analogy. Like the known relationship between

SAT and ASP that tight ASP programs can be turned into SAT instances, we show that

tight ASPMT programs can be turned into SMT instances, which allows SMT solvers for

computing ASPMT programs.

This results allow us to enhance action language C+ (Giunchiglia et al., 2004) to

handle reasoning about continuous changes. Language C+ is an expressive action de-

scription language but its semantics was defined in terms of propositional causal theories,

which limits the language to express discrete changes only. By reformulating C+ in terms of

ASPMT, we naturally extend the language to overcome the limitation, and use SMT solvers

to compute the language. Our experiment shows that this approach outperforms the exist-

ing implementations of C+ by several orders of magnitude for some benchmark problems.

This chapter is organized as follows. Section 6.1 provides the theoretical founda-

tion of the formalism. In Section 6.2, we extend the action language C+ to allow arbitrary

domains and to reasoning about continuous changes. We illustrate the expressiveness of

the extended language using various benchmark examples. In Section 6.3, we show that

reachability analysis in Hybrid Automata can be automated using the extended framework.

Section 6.4 compare the framework with some related work in the modelling of actions and

continuous changes.

217

6.1 Answer Set Programming Modulo Theories
Syntax

Formally, an SMT instance is a formula in many-sorted first-order logic, where some des-

ignated function and predicate constants are constrained by some fixed background inter-

pretation. SMT is the problem of determining whether such a formula has a model that

expands the background interpretation.

The syntax of ASPMT is the same as that of SMT. Let σbg be the (many-sorted)

signature of the background theory bg (E.g., the theory of reals). In the theory of reals,

we consider the set R of symbols for all real numbers, the set {+,−, /, ∗} of arithmetic

functions over reals and the set {<,>,≤,≥} of binary predicates over reals. Note that we

have a fixed set of functions and predicates, all of which are typed. Also, note that every

symbol in σbg has a fixed interpretation. σ is extended from σbg with uninterpreted symbols

- object constants of some sorts and propositional constants. Terms are defined as usual:

• object constants of σ and variables are terms;

• if f is a function constants of sort (s1, . . . , sn, sn+1) and t1, . . . , tn are terms of sort

s1, . . . , sn then f(t1, . . . , tn) is a term of sort sn+1. (N.B. this means that if f has arity

> 0, then f must be a function from the background theory)

Atomic Formula are defined as follows:

• if p is a predicate constant of sort (s1, . . . , sn) and t1, . . . , tn are ground terms of sort

s1, . . . , sn, then p(t1, . . . , tn) is an atomic formula. (N.B. this means that if p has arity

> 0, then p must be a predicate from the background theory)

• if t1, t2 are terms of the same sort then t1 = t2 is an atomic formula.

Formulas are defined the same as in the first-order logic. We call a formula ground

if it contains no variable.

218

Semantics

We consider the standard semantics of many-sorted first-order formulas. Interpretation and

satisfaction are defined as usual.

A background interpretation Ibg is an interpretation of the signature σbg. For in-

stance, in the Theory of Reals,

• for each r ∈ R, rI
bg

= r;

• for each arithmetics functions f ∈ {+,−, /, ∗}, f Ibg : R×R → R;

• for each comparisons predicates op ∈ {<,>,≤,≥,=}, opIbg : R×R → {t,f}.

Let σ be a signature that is disjoint from σbg. We say that an interpretation I of σ

satisfies F w.r.t. the background theory bg, denoted by I |=bg F , if I ∪ Ibg |= F . Let F

be an ASPMT instance with background theory σbg. Interpretation I is a stable model of F

relative to c (w.r.t. background theory σbg) if I |=bg ��[F ; c].

We will often write the implication F → G in a form familiar in logic programs,

G← F . A finite set of formulas is identified with the conjunction of the formulas in the set.

An Example

Example 27 The following formula F describes the inertia assumption on the speed of a

car and the effect of accelerating. Assume that the background theory is the theory of reals.

�����1=x ← �����0=x ∧ ¬¬(�����1=x)

�����1=x ← (x = �����0+3×����	
��) ∧
�������	� .
(6.2)

Here x is a variable of sort R≥0; ßSpeed0, ßSpeed1 and ßDuration are function constants

of sort R≥0 and ßAccelerate is a Boolean function constant. For interpretation I1 of sig-

nature {�����0, �����1, ����	
��,
�������	�} such that
�������	�I1 = f , ����� I1
0 = 1,

����� I1
1 = 1, ����	
��I1 = 1.5, we have I1 |=bg ��[F ; �����1].

Consider another interpretation I2 of the same signature that agrees with I except

that
�������	�I2 = t, ����� I2
1 = 5.5, we check that I2 |=bg ��[F ; �����1].

219

Another interpretation I3 that agrees with I1 except that (�����1)
I3 = 5.5. I3 |=bg F

but I3 �|=bg ��[F ; �����1].

Completion

In this section, we present a generalization of the theorem on completion from (Bartholomew

& Lee, 2012) by (i) not restricting to “f -plain” theories, and (ii) referring to a weaker notion

of “tightness.”

Let f be a function constant. A first-order formula is called f -plain if each atomic

formula in it does not contain f , or is of the form f(t) = t1 where t is a list of terms not

containing f , and t1 is a term not containing f . For any list c of predicate and function

constants, we say that F is c-plain if F is f -plain for each function constant f in c.

A formula F is said to be in Clark normal form (relative to the list c of intensional

constants) if it is a conjunction of sentences of the form

∀x(G→ p(x)) (6.3)

and

∀xy(G→ f(x)=y) (6.4)

one for each intensional predicate p and each intensional function f , where x is a list of

distinct object variables, y is an object variable, and G is an arbitrary formula that has no

free variables other than those in x and y.

The completion of a formula F in Clark normal form (relative to c) is obtained from

F by replacing each conjunctive term (6.3) with ∀x(p(x) ↔ G) and each conjunctive term

(6.4) with ∀xy(f(x)=y ↔ G).

The dependency graph of F (relative to c) is the directed graph that

• has all members of c as its vertices, and

• has an edge from c to d if, for some strictly positive occurrence of G→ H in F ,

– c has a strictly positive occurrence in H , and

– d has a strictly positive occurrence in G.
220

We say that F is tight (on c) if the dependency graph of F (relative to c) is acyclic.

The following theorem is a generalization of Theorem 12 from (Bartholomew & Lee,

2012).

Theorem 16 For any formula F in Clark normal form that is tight on c, an interpretation I

that satisfies ∃xy(x �= y) is a model of ��[F ; c] iff I is a model of the completion of F

relative to c.

Theorem 16 can be applied to formulas in non-Clark normal form if they can be

rewritten in Clark normal form. The following theorem is useful in extending completion to

formulas that are not in Clark normal form.

Theorem 17 (Bartholomew & Lee, 2012, Theorem 1) For any first-order formulas F and G,

if G has no strict positive occurrence of a constant from c, ��[F ∧G; c] is equivalent

to ��[F ; c] ∧G.

Theorem 16 is applicable to ASPMT formulas as well. Since F in Example 27 is

tight on �����1, according to Theorem 16, ��[F ; �����1] is equivalent to the following

SMT instance with the same background theory:

�����1=x ↔ (�����0=x ∧ ¬¬(�����1=x))

∨ (x = �����0+3×���	
��
) ∧�������	
� .

Comparison with Clingcon

Clingcon semantics (Gebser et al., 2009) combines answer set programs with arbitrary

constraints.

Remind that a constraint satisfaction problem (CSP) is a tuple (V,D,C), where V

is a set of constraint variables with the respective domain D, and C is a set of constraints

of the form

〈(v1, . . . , vn), R〉, (6.5)

such that vi ∈ V (1 ≤ i ≤ n) and R ⊆ ���(v1)× · · · ×���(vn).

221

In view of the definition of SM from the previous section, we identify V with object

constants in σ \ σbg. D contains the sort(v) for every v ∈ V . We represent a constraint

(6.5) as a formula F (v1, . . . , vn) of the signature σbg ∪ V where F (x1, . . . , xn) is a formula

of the signature σbg and F (v1, . . . , vn) is obtained from F (x1, . . . , xn) by substituting the

constants (v1, . . . , vn) for (x1, . . . , xn). We call F (v1, . . . , vn) a formula over (v1, . . . , vn).

We now review the syntax and the semantics of constraint answer sets by (Gebser

et al., 2009). We find it convenient to understand constraint answer sets as a first-order

interpretations.

A clingcon program Π with with a constraint satisfaction problem (V,D,C) is a set

of rules of the form

H ← B,N,Cn, (6.6)

where H , B are sets of positive propositional literals, N is a set of negative propositional

literals, and Cn is a set of constraints from C, possibly preceded by ���.

We identify an interpretation of σ as the tuple 〈A,X〉 where A is the interpretation

over function constants and X is a set of propositional atoms in σ \ σbg.

Given a clingcon program Π, an interpretation I = 〈A,X〉, we define the reduct of

Π relative to X and A (denoted by ΠX
A) as the set of rules

H ← B,

where H ← B,N,Cn is in Π such that

• A ∪ Ibg |= Cn, and

• X |= N .

We say that a set X of propositional atoms is a constraint answer set of Π relative to A if X

is a minimal model of ΠX
A .

Example 17 continued Consider the Clingcon program Π:

triangle(obj);

rightTriangle(obj)← triangle(obj), sq(side1(obj)) + sq(side2(obj)) = sq(side3(obj)).

222

Let A be a mapping such that A(side1(obj)) = 3, A(side1(obj)) = 4, A(side1(obj)) = 5

and let X = {triangle(obj), rightTriangle(obj)}. We check that X is a constraint answer

set relative to A because X is the minimal model of ΠX
A which is

triangle(obj);

rightTriangle(obj)← triangle(obj).

We identify a clingcon program Π as a formula which is the conjunction of the rules

in Π. The following proposition reformulate the clingcon semantics in terms of SM.

Proposition 49 Let Π be a clingcon program with CSP (V,D,C), let p be a set of propo-

sitional constants that occur in Π and I = 〈A,X〉 an interpretation of the signature V ∪ p.

I |=bg ��[Π;p] iff X is a constraint answer set of Π relative to A.

Example 17 Continued. Let A and X be the same as above. We check that 〈A,X〉 |=bg

��[Π; triangle(obj)].

6.2 Enhancing C+ for Continuous Changes
Syntax

We consider a many-sorted first-order signature σ that is partitioned into three signatures:

the set σfl of object constants called fluent constants, the set σact of object constants called

action constants, and the background signature σbg. The signature σfl is further partitioned

into the set σsim of simple fluent constants and the set σsd of statically determined fluent

constants. We assume the same syntax of formulas as in Section 6.1. A fluent formula is a

formula of signature σfl ∪ σbg. An action formula is a formula of σact ∪ σbg that contains at

least one action constant and no fluent constants.

A static law is an expression of the form

caused F if G (6.7)

where each F and G are fluent formulas. An action dynamic law is an expression of the

form (6.7) in which F is an action formula and G is a formula. A fluent dynamic law is an

223

expression of the form

caused F if G after H (6.8)

where F and G are fluent formulas and H is a formula, provided that F does not contain

statically determined constants. A causal law is a static law, or an action dynamic law, or a

fluent dynamic law. A C+ action description is a finite set of causal laws.

An action description is definite if the head F of every causal law (6.7) and (6.8) is

an atomic formula that is (σfl ∪ σact)-plain. Throughout this chapter we consider definite

action descriptions only, which covers the fragment of C+ that is implemented in CCalc.

Semantics

In (Giunchiglia et al., 2004) the semantics of C+ is defined in terms of nonmonotonic propo-

sitional causal theories, in which every constant has a finite domain. The semantics of the

enhanced C+ below is similar to the one in (Giunchiglia et al., 2004) except that it is de-

fined in terms of ASPMT in place of causal theories. This reformulation is essential for the

language to represent continuous changes as it is not limited to finite domains only.

For a signature σ and a nonnegative integer i, expression i : σ is the signature

consisting of the pairs i : c such that c ∈ σ, and the sort of i : c is the same as the sort

of c. Similarly, if s is an interpretation of σ, i : s is an interpretation of i : σ such that

cs = (i : c)i:s.

For any definite action description D of signature σfl ∪ σact ∪ σbg and any nonneg-

ative integer m, the ASPMT program Dm is defined as follows. The signature of Dm is

0 :σfl ∪ · · · ∪m :σfl ∪ 0 :σact ∪ · · · ∪ (m−1) :σact ∪ σbg. By i : F we denote the result of

inserting i : in front of every occurrence of every fluent and action constant in a formula F .

ASPMT program Dm is the conjunction of

¬¬ i : G→ i : F

for every static law (6.7) in D and every i ∈ {0, . . . ,m}, and for every action dynamic law

(6.7) in D and every i ∈ {0, . . . ,m−1};

¬¬ (i+ 1) : G ∧ i : H → (i+ 1) : F

224

for every fluent dynamic law (6.8) in D and every i ∈ {0, . . . ,m− 1}.

The transition system represented by an action description D consists of states

(vertices) and transitions (edges). A state is an interpretation s of σfl such that 0 : s |=bg

��[D0; 0:σ
sd]. A transition is a triple 〈s, e, s′〉, where s and s′ are interpretations of σfl and

e is an interpretation of σact, such that

(0 :s) ∪ (0 :e) ∪ (1 :s′) |=bg ��[D1; (0 :σ
sd) ∪ (0 :σact) ∪ (1 :σfl)].

The following theorems extend Propositions 7 and 8 from (Giunchiglia et al., 2004)

by referring to functional stable model semantics. They justify the soundness of our refor-

mulation of C+.

Theorem 18 For every transition 〈s, e, s′〉, s and s′ are states.

Theorem 19

(0 :s0) ∪ (0 :e0) ∪ (1 :s1) ∪ (1 :e1) ∪ · · · ∪ (m :sm)

|=bg ��[Dm; (0 :σsd) ∪ (0 :σact) ∪ (1 :σfl) ∪ (1 :σact) ∪ · · · ∪ (m−1:σact) ∪ (m :σfl)]

iff each triple 〈si, ei, si+1〉 (0 ≤ i < m) is a transition.

According to the above theorems, each stable model of Dm corresponds to a path

of length m in the transition system represented by D. At the same time, each path in the

transition system of D can be mapped to a stable model of Dm. As a result, the stable

models of Dm correctly represent the semantics of D.

It is not difficult to check that the ASPMT program Dm that is obtained from action

description D is always tight. In view of the theorem on completion (Section 6.1), Dm can

be represented in the language of SMT as the next section demonstrates.

Reasoning about Continuous Changes in C+

In order to represent continuous changes in the enhanced C+, we distinguish between

steps and real clock times. We assume the theory of reals as the background theory,

and introduce a simple fluent constant ���� of sort R≥0, which denotes the clock time,
225

and an action constant ��� of sort R≥0, which denotes the time elapsed between the two

consecutive states. We postulate the following causal laws:

exogenous ����,���,

constraint ����= t+ t′ after ����= t ∧���= t′ .
(6.9)

These causal laws are shorthand for

caused ����= t if ����= t ,

caused ���= t if ���= t ,

caused ⊥ if ¬(����= t+ t′) after ����= t ∧���= t′

where t, t′ are variables of sort R≥0. (See Appendix B in (Giunchiglia et al., 2004) for the

abbreviations of causal laws.)

Continuous changes can be described as a function of duration using fluent dy-

namic laws of the form

caused c=f(x,x′, t) if c′=x′after (c=x) ∧ (���= t) ∧G

where (i) c is a simple fluent constant, (ii) c, c′ are lists of fluent constants, (iii) x, x′ are lists

of object variables, (iv) G is a formula, and (v) f(x,x′, t) is a term constructed from σbg,

and variables in x, x′, and t.

For instance, the fluent dynamic law

caused ���	
���=d+0.5×(v′+v)×t if
����=v′

after
����=v ∧���	
���=d ∧���= t

describes how fluent ���	
��� changes according to the function of real time.

Consider the following problem by Lifschitz.1

If the accelerator of a car is activated, the car will speed up with constant accel-

eration A until the accelerator is released or the car reaches its maximum speed

MS, whichever comes first. If the brake is activated, the car will slow down with

acceleration −A until the brake is released or the car stops, whichever comes

first. Otherwise, the speed of the car remains constant. The problem asks to

1http://www.cs.utexas.edu/vl/tag/continuous_problem

226

find a plan satisfying the following condition: at time 0, the car is at rest at one

end of the road; at time T , it should be at rest at the other end.

Notation: A, MS are real numbers
Simple fluent constants: Domain:

�����, ����	
��, ��
� R≥0

Action constants: Domain:
�������	��, �������	�� Boolean
��� R≥0

caused �����=v+A×t after �������	�� ∧ �����=v ∧���= t
caused �����=v−A×t after �������	�� ∧ �����=v ∧���= t
caused ����	
��=d+0.5×(v′+v)×t if �����=v′

after �����=v ∧����	
��=d ∧���= t
constraint ��
�= t+t′ after ��
�= t ∧���= t′

constraint ����� ≤MS

inertial �����
exogenous ��
�, c for every action constant c

Figure 6.2: Car Example in C+

A C+ description of this example is shown in Figure 6.2. The actions �������	�� and

�������	�� has direct effects on ����� and indirect effects on ����	
��. According to the

semantics in Section 6.2, the description is turned into the ASPMT program with the theory

of reals as the background theory, which can be further rewritten in Clark normal form.

Some occurrences of ¬¬ can be dropped without affecting stable models, which results in

the program in Figure 6.3.

The program can be viewed as F∧G where F is the conjunction of the rules that has

i+1:����� in the heads, and G is the conjunction of the rest rules. In view of Theorem 20,

the stable models and F ∧ G are the same as the stable models of F that satisfies G.

By Theorem 16, the completion of the program relative to i+1 : ����� is equivalent to the

following formula

i+1:�����=x↔
(
x = (i :�����+A×i :���) ∧ i :�������	��)

∨
(
x = (i :�����−A×i :���) ∧ i :�������	��)

∨
(
i+1:�����=x ∧ i :�����=x

)
.

227

Notation: x, v, t are variables of sort R≥0; y is a variable of sort Boolean.
Intensional object constants: i : for i > 0

i+1: =x ← (x = v+A×t) ∧ i : (∧ =v ∧ = t)
i+1: =x ← (x = v−A×t) ∧ i : (∧ =v ∧ = t)
i+1: =x ← (x = d+0.5×(v′+v)×t)

∧ i+1: =v′ ∧ i : (=v ∧ =d ∧ = t)
¬¬((i+1:)=(i :) + (i :))
¬¬(i : ≤MS)
i+1: =x← ¬¬(i+1: =x) ∧ i : =x
i : = t← ¬¬(i : = t)
i :c=y ← ¬¬(i :c=y) for every action constant c

Figure 6.3: Car Example in ASPMT

Figure 6.4: A Path in the Transition System of Car Example.

Variable x in the formula can be eliminated by equivalent transformations using

equality:

i : =t→ i+1: =(i : +A×i :)

i : =t→ i+1: =(i : −A×i :)

(i+1 : = (i : +A×i :) ∧ i : =t)

∨(i+1 : = (i : −A×i :) ∧ i : =t)

∨(i : = i+1:) .

This formula can be encoded in the input language of SMT solvers. The shortest

plan found by iSAT 2 on this input formula when the road length is 10, A = 3,MS = 4,K =

4 is shown in Figure 6.4.

Reasoning about Additive Fluents

Additive fluents are fluents with numerical values such that the effect of several concurrently

executed actions on it can be computed by adding the effects of the individual actions. Lee

and Lifschitz [(2003a)] show how to describe additive fluents in C+ by understanding “incre-

2http://isat.gforge.avacs.org/index.html

228

ment laws” as shorthand for some causal laws. However, some additive fluents are real-

valued, and cannot be represented in the language described in (Lee & Lifschitz, 2003a)

as it is limited to finite domains only. This made the discussion of additive fluents in (Lee &

Lifschitz, 2003a) limited to integer domains only. For example, in (Lee & Lifschitz, 2003a)

the effect of firing multiple jets on the velocity of a spacecraft is described by “increment

laws”

����(j) increments ���(ax) by n/Mass if �����(j, ax)=n ,

where 	
�� stands for an integer constant. The duration of firing action is assumed to be

1, and all components of the position and the velocity vectors at any time are assumed to

be integers, and even the forces applied are limited to integers. Obviously these are too

strong assumptions.

These limitations are not present in our SMT-based computation of the enhanced

C+. The representation in (Lee & Lifschitz, 2003a) can be straightforwardly extended to

handle continuous motions by distinguishing between steps and real time as in the previous

section. For example, we can describe the effect that firing multiple jets has on the velocity

of a spacecraft by

����(j) increments ���(ax)by n/	
��× t if �����(j, ax)=n ∧�
�= t . (6.10)

In general, an incremental law is of the form

a increments c by f(x, t) if d=x ∧�
�= t ∧G (6.11)

where

• a is a Boolean action or fluent constant;

• c is an additive fluent constant;

• d is a list of fluent constants, and x is a list of corresponding variables;

• f(x, t) is an arithmetic expression over x and the duration t;

• G is a formula that contains no Boolean action constants.
229

The increment law (6.11) is understood in terms of causal laws of the form (6.7) and

(6.8) by using auxiliary action constants Contr(a, c) where c is an additive fluent constants

and a is an c-contributing constant. We

• replace each increment law (6.11) with the action dynamic law

caused Contr(a, c)=f(xcur, d) if ccur=xcur ∧Duration=d ∧G, (6.12)

• for every auxiliary constant Contr(a, c), add the action dynamic law

caused Contr(a, c)=0 if Contr(a, c)=0, (6.13)

• add the fluent dynamic laws

caused c=v +Σava if � after c=v ∧
∧
a

Contr(a, c)=va, (6.14)

for every additive fluent constant c, every v ∈ Dom(c) and every function a → va

that maps each c-contributing constant a to an element of the domain of Contr(a,c)

so that v +Σava is in the domain of c.

The sum and the multiple conjunction in (6.14) range over all c-contributing con-

stants a.

Example 28 The following example from (Lee & Lifschitz, 2003a) describe the use of ad-

ditive fluents.

A spacecraft is not affected by any external forces. It has two jets and the force

that can be applied by each jet along each axis is at most 2. The current position

of is (0, 0, 0), and its current velocity is (0, 1, 1). How can it get to (0, 3, 2) within

2 seconds? Assume the mass is 2.

The C+ encoding of the example is shown in Figure 6.5. Figure 6.6 shows the

basic program that corresponds to the program in Figure 6.5. The corresponding ASPMT

230

program is shown in Figure 6.7. Fire(j) is a contribution constant Speed(ax). The incre-

ment law (6.10) is understood as the set of laws

caused �����(����(j), 	
���(ax))=x/�
��× t

if ����(j) ∧ �����(j, ax)=x ∧���= t

caused �����(����(j), 	
���(ax))=0 if �����(����(j), 	
���(ax))=0

caused 	
���(ax)=v1+v2+v3 if � after v1=	
���(ax)∧

v2=�����(����(J1), 	
���(ax)) ∧ v3=�����(����(J2), 	
���(ax)),

(6.15)

which in turn can be understood as the following ASPMT program:

i :�����(����(j), 	
���(ax))=x/�
��× t

← i :����(j) ∧i :�����(j, ax)=x ∧i :���= t

i :�����(����(j), 	
���(ax))=0← ¬i :�����(����(j), 	
���(ax)) �= 0

i+1:	
���(ax)=s← s=(i :	
���(ax)+ i :�����(����(J1), 	
���(ax))

+i :�����(����(J2), 	
���(ax))).

(6.16)

Completion of (6.16) is the conjunction of it with

i :�����(����(j), 	
���(ax))=0 ∨

(i :�����(����(j), 	
���(ax))= (i :�����(j, ax)× i : ���/�
��) ∧i :����(j)).

The definition of additive fluent in from (Lee & Lifschitz, 2003a) restricts contributing

constant to be action constant. We slightly generalize to allow Boolean fluent constants as

well. This is generalization allows us to encode process as we show in the next section.

Our C+ representation of the spacecraft example is essentially an enhancement of the one

in Figure 6.2 in that it allows concurrent accelerations.

Table 6.1 and Table 6.2 compare the performance of SMT-based computation of

C+ vs. existing implementations of C+: CCalc and cplus2asp in terms of running time and

the number of variables and clauses. System cplus2asp translates C+ into ASP programs

and use gringo and clasp for computation. For the sake of comparison, we assume that

the duration of each action is exactly 1 unit of time so that the plans found by the systems

are of the same kind. We assume that initially the spacecraft is rest at coordinate (0, 0, 0).

The task is to find a plan such that at each integer time t, the spacecraft is at (t2, t2, t2).
231

Notation: j ∈ {J1, J2}, ax ∈ {X,Y, Z}
Simple fluent constants: Domain:

Pos(ax) R
T ime R≥0

Action constants: Domain:
�������, ���	���
��� Boolean

�� R≥0

Additive fluent constants: Domain:
����� R

������� increments ��������� by n/Mass× t if ���	�(j, ax)=n ∧
�� = t.
caused �������=p+(0.5×(v+���������)×t)

after ���������=v ∧ �������=p ∧
��= t.
always ���	���
���=0↔ ¬�������.
constraint ����= t+t′ after ����= t ∧
��= t′

exogenous ����

exogenous c for every action constant c

Figure 6.5: Spacecraft Example in Additive C+

Steps CCalc v2.0 cplus2asp v1.0 C+ in iSAT v1.0
Run Time Run Time Run Time

(grounding+solving) (grounding+solving) last/total

1 0.16 (0.12+0.00) 0.01 (0.01+0) 0/0
2 0.57 (0.40+0.00) 0.03 (0.03+0) 0/0
3 10.2 (2.62+6) 0.43 (0.23+0.2) 0/0
4 505.86 (12.94+479) 12.55 (3.18+9.37) 0/0
5 failed (51.10+failed) 73.07 (15.85+57.22) 0/0.03
6 time out 3020.85 (62.38+2958.47) 0/0.03

10 time out time out 0.03/0.09
50 time out time out 0.09/1.39

100 time out time out 0.17/5.21
200 time out time out 0.33/21.96

Table 6.1: Experimental Results (Running Time) on Spacecraft Example

The plan involve having the maximal acceleration at each step. We further restrict duration

of each action is exactly 1 unit of time so that the program can be run using previous C+

solvers. A 2 hours timeout is assumed for all systems. The first set is based on the C+

solver CCALC. The run time consists of grounding time (first number) and solving time

(second number). Both time increase exponential according to the number of steps. When

the step is 5, the grounded program is too large so that the solver does not return any

solution. The second set is based on cplus2asp. It is a recent improvement of CCALC

by smart grounding. We can see that there is a significant speed up for test. However, the

increase of all attributes are still exponential. The test takes too long to return solutions for

232

Notation: j ∈ {J1, J2}, ax ∈ {X,Y, Z}
Simple fluent constants: Domain:

Pos(ax) R
T ime R≥0

Action constants: Domain:
�������, ���	���
��� Boolean

�� R≥0

Additive fluent constants: Domain:
����� R

caused ���������=v1+v2+v3 if v1=���������∧
v2=�����(����(J1), ���������) ∧ v3=�����(����(J2), ���������)

caused �������������
 ����������=n/Mass× t
if ������� ∧ ���	���
 ���=n ∧
��= t

caused �������������
����������=0 if �������������
����������=0
caused �������=p+(0.5×(v+���������)×t)

after ���������=v ∧ �������=p ∧
��= t.
always ���	���
���=0↔ ¬�������.
constraint ����= t+t′ after ����= t ∧
��= t′

exogenous ����

exogenous c for every action constant c

Figure 6.6: Spacecraft Example in Basic C+

Notation: s, x are variables of sort R, MS is a real number;
j ∈ {J1, J2}, ax ∈ {X,Y, Z}.

Intensional object constants: :������� for i > 0

i+1:���������=s← s= (i : ���������+i :�����(����(J1), ���������)
+i :�����(����(J2), ���������))

i : �������������
����������=x← i : ������� ∧ (i : ���	���
���×i :
��/����)=x
i : �������������
����������=0← ¬i : �������������
���������� �= 0
i+1: ������� = (i : �������+0.5×i :
��×(i+1: ���������+i : ���������))
← ¬ (i : ���	���
���=0↔ ¬i : �������)
i+1: ����= i : ����+i :
��
← ¬ (0 ≤ i : ����� ≤MS)

Figure 6.7: Spacecraft Example in ASPTM

steps greater than 6. The third set is based on our framework using the SMT solver iSAT.

Since iSAT uses iterative deepening search, the run time contains the actual time for the last

step and the accumulated time. We can see that all attributes increase linearly according

to the number of steps. The run time is still very short for a large steps number. From

the experiments, it is clear that our approach significantly improves previous approaches

233

Steps CCalc v2.0 cplus2asp v1.0 C+ in iSAT v1.0
atoms / clauses # atoms / rules # variables / clauses

1 488 / 1872 1864 / 2626 (42+53) / 182
2 3262 / 14238 6673 / 12035 (82+98) / 352
3 32772 / 155058 42778 / 92124 (122+143) / 520
4 204230 / 992838 228575/ 503141 (162+188) / 688
5 897016 / 4410186 949240/ 2060834 (202+233) / 856
6 – 3179869/ 6790167 (242+278) / 1024

10 – – (402+458) / 1696
50 – – (2002+2258) / 8416

100 – – (4002+4508) / 16816
200 – – (8002+9008) / 33616

Table 6.2: Experimental Results (Instance Size) on Spacecraft Example

both in expressivity of the language and the efficiency of computation. The experiment was

performed on Intel Core 2 Duo CPU 3.00 GHz with 4 GB RAM running on Ubuntu version

11.10. It shows clear advantage of the SMT-based computation of C+ for this example.

Representing Processes in C+

The language C+ is flexible enough to represent the start-process-end model (Reiter, 1996;

Fox & Long, 2006a), where instantaneous actions may initiate or terminate processes. Pro-

cesses run over time and have a continuous effect on numeric fluents. They are initiated

and terminated either by the direct action of the agent or by events triggered in the environ-

ment.

The model can be encoded in C+ by representing a process as a Boolean fluent p.

An instantaneous event estart causes the fluent to be true which starts the process

estart causes p .

Similarly, an action or event eend causes the fluent to be false which terminates the process

eend causes ¬p .

The process fluent p is inertial, meaning that the process continues until there is an action

or event stops it

inertial p .

The process fluent p determines the changes of additive variables c in terms of incremental

laws

p increments c by f(xcur, t) if ccur=xcur ∧Dur= t ∧G.

234

For example, the process On(Tap1) increases the water level by the flow rate W (Tap1)

times the duration

On(Tap1) increments Level by W (Tap1)× t if Dur = t. (6.17)

The start action estart and end actions eend are instantaneous

estart causes Dur=0

eend causes Dur=0.

Example 29 The following example describes the process of two taps filling a water tank.

There are two taps above a water tank with a leak. When ���i is turned on, wa-

ter fills the tank at the constant rate of W i. The leak causes water to be drained

at the constraint rate of V . The water level ����� must be maintained between

the minimum constant level Low and the maximum constant level High. As-

sume W1 = W2 = 0.2, V = 0.3, Low = 0.5, High = 1. Initially, Level = 1,

T ime = 0. Find a plan such that when T ime = 5, water level is 0.75.

Figure 6.8 describes the two-taps water tank example in C+ with additive fluents.

The process of ���i filling the tank can be modeled by the fluent 	
(���i). An instan-

taneous action ���
	
(���i) initiates the process while another instantaneous action

���
	
 (���i) terminates it. When the fluent 	
(���i) is true, it contributes to increasing

the water level by W i times duration. �����
� on the other hand is another process that

decreases the water level.

The semantics of the C+ program in Figure 6.8 is defined by the ASPMT program

in Figure 6.9. Completion of the program relative to the intensional constants are the

235

conjunction of the rules and the following formula

i :����������	
��
��	=0 ∨ (i :����������	
��
��	=���	 ×i :��� ∧i :����)

i :�������������
��
��	=0 ∨ (i :�������������
��
��	=V × i :��� ∧i :�������)

i+1:����	 → (i :����	 ∨i :��������)

¬i+1:����	 → (¬i :����	 ∨i :��������)

i+1:������� → i :�������

¬i+1:������� → ¬i :������� .

x ∈ {���1,���2}; W (x), V , Low, High are real numbers;
t, t′ are variables of sort R≥0.

������(x) causes ��(x); ������(x) causes ¬��(x)
������(x) causes 	��=0; ������(x) causes 	��=0

��(x) increments
���
 by W (x)×t if 	��= t

������ decrements
���
 by V ×t if 	��= t

constraint Low≤
���
 ∧
���
≤High
inertial ��(x),
������
exogenous c for every action constant c

exogenous ����

constraint ����= t+ t′ after ����= t ∧	��= t′

Figure 6.8: Two Taps Water Tank Example C+

An output from iSAT corresponds to a path in the transition system described by the

C+ program in Figure 6.8 is shown in Figure 6.10. The solution contains 5 steps and the

solving time is 0.07 second.

6.3 Hybrid Automata and C+
Hybrid Automata

In the following, we review the definition of Hybrid Automata. The definition follows from the

one in (Henzinger, 1996).

A Hybrid Automaton H consists of the following components:

236

Notation: y, v1, v2, v3 are variables of sort R.
Intensional object constants: i : , i : ,

i : , i : for i > 0

i+1: ← i :
¬i+1: ← i :
i : =y ← y= ×t ∧ i : = t ∧ i :
i : =0← ¬ i : �= 0
i : =y ← y=− ×t∧ : = t ∧ i :
i : =0← ¬ i : �= 0
i+1: =x+v1+v2+v3 ← i : =x ∧ i : 1),))=v1

∧i : 2),)=v2 ∧ i : =v3
i+1: =y ← i : ∧ i : =y
i+1: =y ← i : ∧ i : =y
i+1: = t+t′ ← i : = t ∧ i : = t′

i+1: ← i : ∧ ¬¬i+1:
¬i+1: ← ¬i : ∧ ¬ i+1:
i+1: ← i : ∧ ¬¬i+1:
¬i+1: ← ¬i : ∧ ¬i+1:

Figure 6.9: Two Taps Water Tank Example in ASPTM

Figure 6.10: A Path in the Transition System of Two Taps Water Tank Example.

• Variables. A finite list X = (x1, . . . , xn) of variables whose values are in R. X

defines the continuous components. We write Ẋ for the list (ẋ1, . . . , ẋn) of dotted

variables, representing first derivatives during continuous change, and X ′ for the list

(x′1, . . . , x
′
n) of primed variables, representing the set of “next" variables.

• Directed Graph. A finite directed graph 〈V,E〉, where V is the set of locations and

E is a finite set of edges between locations.

• Invariant, initial and flow conditions. Three vertex labeling functions, init, inv, and

flow, that assign to each location v ∈ V three arithmetic formulas:

– Each inv(v)(X) is a formula over X which constraints the value of the continu-

ous part of the state while the location is v.

237

Figure 6.11: Hybrid Automata for Water Tank System.

– Each init(v)(X) is a formula over X that defines the initial condition.

– Each flow(v)(Ẋ,X) is a formula over X ∪ Ẋ, which constraints the continuous

variables and their first derivatives.

• Jump conditions. Each jump(e)(X ′, X), where e ∈ E, is a formula over X ∪ X ′,

which specifies the precondition and postcondition of the edge.

• Events. A finite set Σ of events and a function, event : E → Σ, that assigns to each

edge an unique event.

Example 30 Consider the following Water Tank System example from (Lygeros, 2004).

The automata consists of two variables X = (X1, X2), two events Σ = {E1, E2}

and two locations V = {Q1, Q2}. The flow, initial, invariants and jump conditions are as

shown in the graph. For example, flow(Q1)(Ẋ1, Ẋ2, X1, X2) is Ẋ1 =W−V1 ∧ Ẋ2 =−V2,

init(Q1)(X1, X2) is X1≥R1∧X2≥R2. inv(Q1)(X1, X2) is X2≥R2. event(Q1, Q2) = E1,

jump(Q1, Q2)(X1
′, X2

′, X1, X2) is X2≤R2 ∧X ′
1=X1 ∧X ′

2=X2.

A labelled transition system consists of the following components:

• State Space. A (possibly infinite) set, Q, of states and a subset, Q0 ⊆ Q of initial

states.

• Transition Relation. A (possibly infinite) set, A, of labels. For each label a ∈ A a

binary relation →a on the state space Q. Each triple q
a−→ q′ is called a transition.

The Hybrid Transition System TH of a Hybrid Automaton H is the labelled transition

system with components Q, Q0, A and
a−→, for each a ∈ A, defined as follows:

238

• Define Q,Q0 ⊆ V ×Rn such that (v,n) is in Q iff invv(n) is true, and (v,n) is in Q0

iff both invv(n) and initv(n) are true.

• A = Σ ∪R≥0.

• For each event σ ∈ Σ, define (v,n)
σ−→ (v′,n′) iff there is an edge (v, v′) ∈ E such

that: (1) the formula jump(v,v′)(n,n
′) is true, and (2) �����(v, v′) = σ.

• For each δ ∈ R≥0, define (v,n)
δ−→ (v,n′) iff there is a differentiable function f :

[0, δ] → Rn, with the first derivative ḟ : (0, δ) → Rn such that: (i) f(0) = n and

f(δ) = n′, and (ii) for all reals ε ∈ (0, δ), both invv(f(ε)) and flowv(f(ε), ḟ(ε)) are

true.

Example 30 Continued Let W = 0.75, V1 = V2 = 0.5, R1 = R2 = 0. Transition system

of the automata contains the following path

(Q1, (X1 = 0, X2 = 1))
2−→ (Q1, (X1 = 0.5, X2 = 0)).

There is a differentiable function f : [0, 2] → R2 such that for any ε ∈ (0, 2), f(ε) =

(0+0.25× ε, 1−0.5× ε) which corresponds to the functions on X1 and X2 respectively.

˙f(ε) = (0.25,−0.5). Note that flow(Q1)(Ẋ1, Ẋ2, X1, X2) is Ẋ1 = 0.25 ∧ Ẋ2 =−0.5. We

check flow(Q1)(ḟ(ε), f(ε)) is (0.25=0.25) ∧ (−0.5=−0.5) and inv(Q1)(f(ε)) is X2≥ 0

which is true because 0<X2<1 when ε ∈ (0, 2).

A Linear Hybrid Automaton is a Hybrid Automaton where (1) all the conditions are

Boolean combinations of linear inequalities, and (2) the flow conditions contain variables

in Ẋ only, and (3) flow(v)(Ẋ,X) is a conjunction of linear inequalities. For example, the

automaton shown in Figure 6.11 is a linear Hybrid Automaton.

Linear Hybrid Automata in C+ Modulo Theories

Given a linear hybrid automaton H , we assume that the background theory is the theory of

reals extended with members of V as object constants. Consider a signature σ consisting

of

• for each arithmetic variable Xi in H , a simple fluent constant Xi of sort R;
239

• for each event e ∈ Σ, a Boolean action constant e;

• for each vertex v, a Boolean action constant E(v);

• a simple fluent constant ���� of sort R≥0;

• an action constant ��� of sort R≥0;

• a simple fluent constant �	
 of sort V .

A C+ action description describing hybrid automaton H consists of the following

causal laws. Below x represents a list of variables of sort R.

(i) For each vertex v ∈ V , the causal laws that represent invariant condition:

constraint invv(X) if �	
=v

and flow condition:

constraint flowv((X−x)/t) if �	
=v after �	
=v ∧���= t ∧ t > 0 ∧X = x

constraint X = x if �	
=v after �	
=v ∧ ¬E(v) ∧���=0 ∧X = x

where (X−x)/t represents the tuple of expressions (Xi−xi)/t. Also include

default ¬E(v).

E(v) is an auxiliary action constant that records whether any event happend from the loca-

tion v. If E(v) is false, the flow condition applies; otherwise the jump condition applies.

(ii) For each edge (v, v′) ∈ E, causal laws for the jump condition.

constraint jump(v,v′)(x,X) after ����
(v, v′) ∧X = x .

(iii) For each edge (v, v′) in E,

exogenous ����
(v, v′)

nonexecutable ����
(v, v′) if �	
 �= v

����
(v, v′) causes �	
=v′ ∧���=0 ∧ E(v).

(iv) exogenous Xi for each simple fluent constant Xi; causal law inertial �	
; and causal

law (6.9).
240

q ∈ {Q1, Q2}; t, t′ are variables of sort R≥0.

Simple fluent constants: Domain:
X1, X2, ���� R≥0

��� {Q1, Q2}
Action constants: Domain:

E1, E2, E(q) Boolean
�	
 R≥0

% inv
constraint X2 ≥ R2 if ��� = Q1

constraint X1 ≥ R1 if ��� = Q2

% flow
constraint ((X1−x1)/t, (X2−x2)/t) = (W−V1,−V2) if ���=Q1

after ���=Q1 ∧ (X1, X2) = (x1, x2) ∧�	
= t ∧ t > 0
constraint (X1, X2) = (x1, x2) if ���=Q1

after ¬E(Q1) ∧ ���=Q1 ∧�	
=0 ∧ (X1, X2) = (x1, x2)
constraint ((X1−x1)/t, (X2−x2)/t) = (−V1,W−V2) if ���=Q2

after ���=Q2 ∧ (X1, X2) = (x1, x2) ∧�	
= t ∧ t > 0
constraint (X1, X2) = (x1, x2) if ���=Q2

after ¬E(Q2) ∧ ���=Q2 ∧�	
=0 ∧ (X1, X2) = (x1, x2)

% jump
constraint (X1, X2) = (x1, x2) ∧ (x2 ≤ R2) after E1 ∧ (X1, X2) = (x1, x2)
constraint (X1, X2) = (x1, x2) ∧ (x1 ≤ R1) after E2 ∧ (X1, X2) = (x1, x2)

exogenous X1, X2, E1, E2,����,�	

nonexecutable E1 if ��� �= Q1

nonexecutable E2 if ��� �= Q2

E1 causes ���=Q2 ∧�	
=0 ∧ E(Q1)
E2 causes ���=Q1 ∧�	
=0 ∧ E(Q2)
inertial ���; default ¬E(Q1); default ¬E(Q2)
constraint ����= t+ t′ after ����= t ∧�	
= t′

Figure 6.12: Hybrid Automaton of Water Tank (Figure 6.11) in C+

Example 30 Continued The Linear Hybrid Automata in Example 30 can be encoded in

the C+ program shown in Figure 6.12. It is semantics is defined in terms of the ASPTM

program in Figure 6.3. Completion of the program is the conjunction of the program with

241

Figure 6.13: Water Tank Example in ASPMT

———————————————————————————-
Intensional constants: i : Location for 1 ≤ i
Note q ∈ {Q1, Q2}.

(i : X2) ≥ (i : R2)← (i : Location) = Q1

((i+ 1 : X1)− (i : X1))/d = (W − V1) ∧ ((i+ 1 : X2)− (i : X2))/d = −V2

← (i+ 1 : Location) = Q1, (i : Location) = Q1, (i : Duration) = d, d > 0
(i+ 1 : X1) = (i : X1) ∧ (i+ 1 : X2) = (i : X2)

← (i+ 1 : Location) = Q1, (i : Location) = Q1, (i : Duration) = 0
((i+ 1 : X1) = (i : X1) ∧ (i+ 1 : X2) = (i : X2)

∧(i : X2 ≤ R2) ∧ v = Q1)← E1 ∧ (i : Location) = v

(i : X1) ≥ (i : R1)← (i : Location) = Q2

((i+ 1 : X1)− (i : X1))/d = −V1 ∧ ((i+ 1 : X2)− (i : X2))/d = (W − V2)
← (i+ 1 : Location) = Q2, (i : Location) = Q2, (i : Duration) = d, d > 0

(i+ 1 : X1) = (i : X1) ∧ (i+ 1 : X2) = (i : X2)
← (i+ 1 : Location) = Q2, (i : Location) = Q2, (i : Duration) = 0

((i+ 1 : X1) = (i : X1) ∧ (i+ 1 : X2) = (i : X2)
∧(i : X1 ≤ R1) ∧ v = Q2)← E2 ∧ (i : Location) = v

(i+ 1 : Location) = q ← (i : Location) = q, ��� (i+ 1 : Location) �= q
(i+ 1 : Location) = Q2 ← (i : E1)
(i+ 1 : Location) = Q1 ← (i : E2)
(i+ 1 : T ime) = (i : T ime)← i : E1

(i+ 1 : T ime) = (i : T ime)← i : E2

(i+ 1 : T ime) = y ← y = d+ x, (i : Duration) = d, (i : T ime) = x
———————————————————————————-

the following formula

(i+ 1 : Location) = (i : Location) ∨

((i+ 1 : Location) = Q2 ∧ (i : E1)) ∨

((i+ 1 : Location) = Q1 ∧ (i : E2))

The completion formula can be computed by SMT solvers. An output from iSAT

corresponds to a path in the transition system is shown in Figure 6.15. The solution contains

5 steps and the solving time is 0.31 second.

Let H be a linear hybrid automata, TH the labelled transition system of H , and DH

the C+ description representing H . Let

p = (v0,n0)
σ0−→ (v1,n1)

σ1−→ . . .
σm−1−−−→ (vm,nm)

242

Figure 6.14: An execution of the Water Tank Example.

Figure 6.15: A Path in the Transition System of Water Tank Example.

be a path in TH . We consider

p′ = (s0, e0, s1, e1, . . . , sm)

where each si is an interpretation of σfl and each ei is an interpretation of σact such that,

for i = 0, . . .m−1,

• s0 |=bg (,X,) = (v0,n0, 0);

• si+1 |=bg (,X,) = (vi+1,ni+1, t+ d), where

1) si |=bg = t, and

2) d is σi if σi is a number, and 0 otherwise.

• 1) if σi = (vi, vi+1) then ei |=bg =0, and, for all Boolean actions a, we have

ei |=bg a iff a is (vi, vi+1) or E(vi);

2) if σi ∈ R≥0 then ei |=bg =σi, and, for all Boolean action a, ei �|=bg a;
243

Proposition 50 p′ is a path in the transition system DH .

Initial conditions of a Linear Hybrid automata can be encoded in ASPMT formulas:

for each v ∈ V , the formula

Loc = v → initv(X).

We denote the set of such formula by ����.

Let

q = (s0, e0, s1, e1, . . . , em)

be a path in the transition system of DH such that s0 |=bg ���� and v0 = (Loc)s0 . Consider

q′ = (v0,n0)
σ0−→ (v1,n1)

σ1−→ . . .
σm−1−−−→ (vm,nm)

where each vi ∈ V and each ni ∈ Rn for i = 0, . . .m,

• si |=bg (���,X) = (vi,ni),

• 1) if ei |=bg ���	
(vi, vi+1) then σi = ���	
(vi, vi+1);

2) otherwise σi = ��

ei .

Proposition 51 p′ is a path in the transition system TH .

Note that only a fragment of the language C+ is enough to describe Hybrid au-

tomata. Statically determined fluents, indirect effects, and concurrently executed actions

are not utilized.

The completion formula can be computed by SMT solvers. An output from iSAT

corresponds to a path in the transition system is shown in Figure 6.15. The solution contains

5 steps and the solving time is 0.09 second.

244

6.4 Related Work and Conclusion

The framework of ASPMT presented in this chapter is a novel combination of several re-

cent developments: functional stable model semantics, constraint answer set solving, SMT

solving, and hybrid reasoning about dynamic systems.

PDDL 2.1 (Fox & Long, 2003) introduced numeric fluents and durative actions to

represent and reason about continuous time and resource. The framework is further ex-

tended to allow autonomous processes and event in PDDL+ (Fox & Long, 2006b). While

the former is similar to our simple encoding approach, we showed that the start-process-

stop model in PDDL+ can be represented in our framework by representing a process as

an inertial fluent. (Shin & Davis, 2005) extended SAT-based planning framework to cover

an extension of PDDL+ language using SAT-based arithmetic constraint solvers. In (Shin &

Davis, 2005), durative actions are always understood as the start action, continuous action

and end action.

In (Bu, Cimatti, Li, Mover, & Tonetta, 2010), the authors showed that bounded model

checking of Linear Hybrid Automata can be implemented using SMT solvers. While (Bu

et al., 2010) directly encode a Linear Hybrid Automata into SMT theory, we first encode

it using the high level C+ Modulo Theories and use completion to turn it into the input

language of SMT solvers. Since C+ has built-in transition semantics, we find our encoding

more intuitive. On the other hand, (Bu et al., 2010) also considers shallow synchronization

semantics of a Hybrid Automata network.

Our approach is similar to the action language H (Chintabathina, 2008) which is a

recent extension of action language to reason about continuous process. One notable dif-

ference is there, each state represents an interval of time, rather than a particular timepoint.

Instead of using SMT solvers, an implementation of H is by translation into the language

AC (Mellarkod et al., 2008), which extends ASP with constraints. Action language H does

not have action dynamic laws, and consequently does not allow additive fluents.

In action language H , fluents are separated into two kinds: discrete fluents and

continuous fluents. While a discrete fluent describes the static properties in each state,

245

a continuous fluent describes a property that changes with time within a state. This is

similar to the approach presented in (Pinto, 1994) in the framework of situation calculus.

Natural actions and continuous changes in situation calculus were studied in (Pinto, 1994;

Reiter, 1996), which do not have explicit transition system semantics. In situation calculus,

a dynamic world is modeled as progressing through a series of situations as a result of

various actions being performed within the world. Actions are assumed to be instantaneous

and actions with durations are modeled in terms of two durationless actions which initiate

and terminate a process fluent. As we show in Section 6.2, process can be modeled in our

framework as well. Our language provides more flexibility by allowing durative actions as

well.

Event Calculus (Kowalski & Sergot, 1986) provides a powerful framework for repre-

senting and reasoning about actions and their effects. It was extended by Shanahan (1990)

to model continuous changes. As described in the water sink example in (Shanahan, 1990),

within an event, some actions (like tap-on, tap-off) can initiate or terminate processes (e.g

filling), which in turn can contribute to rate of change in some fluents (e.g the level of water).

This is similar to our process model. The concept of an event make it flexible when dealing

with concurrency. On the other hand, additive fluents in our formalism give us more natural

representation when there are multiple contributing processes. In the case of (Shanahan,

1990), the filling process has to be terminated and restart with a different rate.

In (Lee & Palla, 2012b, 2012a), situation calculus and event calculus were reformu-

lated in ASP. We expect that the techniques we developed in this chapter can be applied

for more effective computation of these formalisms using SMT solvers.

246

6.5 Proofs
Useful Lemmas and Theorem

Lemma 83 Formula ĉ = c→ F ∗(ĉ)↔ F is logically valid.

Proof. By induction on F .

Theorem 20 [Theorem 1, (Bartholomew & Lee, 2012)] For any first-order formulas F and

G, if G is negative on c, ��[F ∧G; c] is equivalent to ��[F ; c] ∧G.

Proof of Theorem 18

Let c be a list of object constants and let F be a formula that is the conjunction of formulas

of the form

∀z(c = t← B) (6.18)

where c is an object constant, t is a term that does not contain any constant from c, B is

a formula and z is the set of all free variables in t and B. By F ′, we denote the formula

obtained from F by replacing every formula (6.18) where c ∈ c by the formula

∀xz(c = x← x = t ∧B) (6.19)

where x is a new variable. By ����[F ; c], we denote the formula obtained from F ′ by

replacing all implications (6.19) where c ∈ c by the formula

∀x
(
c=x↔

∨
(6.19)∈F ′

∃z(x = t ∧B)
)
.

Lemma 84 If F as defined above is tight, then for any interpretation I that satisfies ∃xy(x �=

y), I |=bg ��[F ; c] iff I |=bg ����[F ; c].

Proof. It is clear that I |=bg ��[F ; c] iff I |=bg ��[F ′; c]. F ′ is strongly equivalent to the

conjunction of ∧
c∈c
∀x

(
c=x←

∨
(6.19)∈F ′

∃z(x = t ∧B)
)

(6.20)

247

and ∧
c �∈c
∀z(c = t← B) . (6.21)

Since (6.21) is negative on c, by Theorem 20, I |=bg ��[F ; c] iff I satisfies ��[(6.20); c]

and I |=bg (6.21). If F is tight, it is immediate that (6.20) is also tight. Since (6.20) is in

Clark normal form, by Theorem 16, I |=bg ��[(6.20); c] iff I satisfies

∧
c∈c
∀x

(
c=x↔

∨
(6.19)∈F ′

∃z(x = t ∧B)
)

(6.22)

I |=bg (6.21) ∧ (6.22) iff I |=bg ����[F ; c].

Let D be an action description and Dm be the corresponding ASPMT formula.

����[Dm; (0 :σsd) ∪ (0 :σact) ∪ (1 :σfl) ∪ (1 :σact) ∪ · · · ∪ (m−1:σact) ∪ (m :σfl)]

is the conjunction of the following formulas for 0 ≤ i ≤ m and 0 ≤ j ≤ m− 1:

• formula SD(i), which is the conjunction of

∀x
(
i :sd=x ↔ i :

∨
static law (6.7)∈D

H is sd=t

∃z(x = t ∧G)
)
, (6.23)

for each statically determined constant sd where z is the set of all free variables in

(6.7),

• formula AD(j), which is the conjunction of

∀x
(
j :a=x ↔ j :

∨
action dynamic law (6.7)∈D

H is a=t

∃z(x = t ∧G)
)
, (6.24)

for each action constant a where z is the set of all free variables in (6.7),

• formula FD(i), which is the conjunction of

∀x
(
(i+1) :sim=x ↔ (i+1) :

∨
static law (6.7)∈D

H is sim=t

∃z(x = t ∧G)

∨∨
fluent dynamic law (6.8)∈D

H is sim=t

∃z′(x = (i+1) : t ∧ (i+1) :G ∧ i :H)
) (6.25)

for each simple fluent constant sim where z is the set of all free variables in (6.7) and

z′ is the set of all free variables in (6.8),

248

• formula SIM(0), which is the conjunction of

∀x
(
0:sim=x ← 0:

∨
static law (6.7)∈D

H is sim=t

∃z(x = t ∧G)
)

(6.26)

for each simple fluent constant sim where z is the set of all free variables in (6.7).

Theorem 18 For every transition 〈s, e, s′〉, s and s′ are states.

Proof. Since 〈s, e, s′〉 is a transition, by definition,

0:s ∪ 0:e ∪ 1:s′ |=bg ��[D1; (0 :σ
sd) ∪ (0 :σact) ∪ (1 :σfl)]. (6.27)

Since D1 is tight, by Lemma 84, (6.27) is equivalent to

0:s ∪ 0:e ∪ 1:s′ |=bg ����[D1; (0 :σ
sd) ∪ (0 :σact) ∪ (1 :σfl)]. (6.28)

Note that ����[D1; (0 :σ
sd) ∪ (0 :σact) ∪ (1 :σfl)] is the conjunction of SIM(0), SD(0),

AD(0), FD(0) and SD(1). From (6.28), it follows that

0:s |=bg SIM(0) ∧ SD(0), (6.29)

and

0:s ∪ 0:e ∪ 1:s′ |=bg FD(0) ∧ SD(1). (6.30)

(6.29) is the same as saying that

0:s |=bg ����[D0; 0 :σ
sd]. (6.31)

(a) From (6.30), it follows that 1 : s′ |=bg SD(1), which can be rewritten as 0 : s′ |=bg

SD(0).

(b) From (6.30), it follows that 1 : s′ |=bg SIM(1), which can be rewritten as 0 : s′ |=bg

SIM(0).

From (a) and (b), we conclude

0:s′ |=bg SIM(0) ∧ SD(0)
249

which is the same as saying that

0:s′ |=bg ����[D0; 0 :σ
sd]. (6.32)

Note that D0 is tight. From (6.31) and (6.32), by Lemma 84,

0:s |=bg ��[D0; 0 :σ
sd],

0:s′ |=bg ��[D0; 0 :σ
sd]

follows. As a result, s and s′ are states.

Proof of Theorem 19

Theorem 19

0:s0 ∪ 0:e0 ∪ 1:s1 ∪ 1:e1 ∪ · · · ∪m :sm |=bg ��[Dm; (0 :σsd)

∪(0 :σact) ∪ (1 :σfl) ∪ (1 :σact) ∪ · · · ∪ (m−1:σact) ∪ (m :σfl)]
(6.33)

iff each triple 〈si, ei, si+1〉 (0 ≤ i < m) is a transition.

Proof. By induction on m.

Base Case: When m = 1, clear from definition.

Assumption: Assume that the statement of the theorem holds for m = k (1 ≤ k).

Inductive Case: We will show that the statement of the theorem holds for m = k + 1.

From left to right: Assuming (6.33), by I.H.

〈s0, e0, s1〉, . . . , 〈sk−1, ek−1, sk〉

are transitions. We are to show that 〈sk, ek, sk+1〉 is a transition. Since Dk+1 is tight, by

Lemma 84, (6.33) is equivalent to

0:s0 ∪ 0:e0 ∪ · · · ∪ k :ek ∪ (k + 1):sk+1 |=bg ����[Dk+1;

(0 :σsd) ∪ (0 :σact) ∪ (1 :σfl) ∪ (1 :σact) ∪ · · · ∪ (k :σact) ∪ (k+1:σfl)].
(6.34)

From (6.34), it follows that

k :sk |=bg SIM(k) ∧ SD(k), (6.35)
250

k :sk ∪ k :ek |=bg AD(k), (6.36)

k :sk ∪ k :ek ∪ (k+1):sk+1 |=bg FD(k). (6.37)

It is immediate from above that

0:sk |=bg SIM(0) ∧ SD(0), (6.38)

0:sk ∪ 0:ek |=bg AD(0), (6.39)

0:sk ∪ 0:ek ∪ 1:sk+1 |=bg FD(0) (6.40)

follows. This is equivalent to saying that

0:sk ∪ 0:ek ∪ 1:sk+1 |=bg ����[D1; (0 :σ
sd) ∪ (0 :σact) ∪ (1 :σfl)],

which by Lemma 84 is equivalent to saying that

0:sk ∪ 0:ek ∪ 1:sk+1 |=bg ��[D1; (0 :σ
sd) ∪ (0 :σact) ∪ (1 :σfl)].

By definition, 〈sk, ek, sk+1〉 is a transition.

From right to left: Assume that each triple 〈si, ei, si+1〉 (0 ≤ i ≤ k) is a transition. By I.H.

0:s0 ∪ 0:e0 ∪ 1:s1 ∪ 1:e1 ∪ · · · ∪ k :sk |=bg ��[Dk; (0 :σ
sd)

∪(0 :σact) ∪ (1 :σfl) ∪ (1 :σact) ∪ · · · ∪ (k−1:σact) ∪ (k :σfl)].
(6.41)

Since Dk is tight, by Lemma 84, (6.41) is equivalent to

0:s0 ∪ 0:e0 ∪ 1:s1 ∪ 1:e1 ∪ · · · ∪ k :sk |=bg ����[Dk;

(0 :σsd) ∪ (0 :σact) ∪ (1 :σfl) ∪ (1 :σact) ∪ · · · ∪ (k−1:σact) ∪ (k :σfl)].
(6.42)

Note that 〈sk, ek, sk+1〉 is also a transition, by definition,

0:sk ∪ 0:ek ∪ 1:sk+1 |=bg ��[D1; (0 :σ
sd) ∪ (0 :σact) ∪ (1 :σfl)]. (6.43)

Since D1 is tight, by Lemma 84, (6.43) is equivalent to saying that

0:sk ∪ 0:ek ∪ 1:sk+1 |=bg ����[D1; (0 :σ
sd) ∪ (0 :σact) ∪ (1 :σfl)]. (6.44)

251

(6.44) is equivalent to saying (6.38), (6.39) and (6.40). It is immediate that (6.35), (6.36)

and (6.37) follow. We observe that the conjunction of (6.35), (6.36), (6.37) and (6.42) is

equivalent to saying that

0:s0 ∪ 0:e0 ∪ 1:s1 ∪ 1:e1 ∪ · · · ∪ (k+1):sk+1 |=bg ����[Dm;

(0 :σsd) ∪ (0 :σact) ∪ (1 :σfl) ∪ (1 :σact) ∪ · · · ∪ (k :σact) ∪ (k+1:σfl)].
(6.45)

This follows from the fact that (6.42) implies k :sk |=bg SD(k)∧FD(k), which in turn implies

(6.35). From (6.45), by Lemma 84 again, we derive (6.33).

Proof of Proposition 50

Lemma 85 Let H be a linear hybrid automaton and

(v,n)
σ−→ (v,n′)

be a transition in TH such that σ ∈ R≥0. f(t)=n+t ∗ (n′−n)/σ is a linear differentiable

function from [0, σ] to Rn, with the first derivative ḟ : [0, σ] → Rn such that: (1) f(0) =n

and f(σ)=n′ and (2) for all reals ε ∈ (0, σ), both inv(v)(f(ε)) and flow(v)(ḟ(ε)) are true.

Proof. We check that f satisfies the above conditions:

• f(t) is differentiable over [0, σ].

• It is clear that f(0)=n and f(σ)=n′.

• Since (v,n) and (v′,n′) are states of TH , it follows that invv(f(0)) and invv(f(σ))

are true. Since invvi(X) is a conjunction of linear inequalities, the values of X that

satisfies invvi(X) must form a convex region inRn. Since f(t) is a linear function, it

follows that for any ε ∈ (0, σ), invv(f(ε)) is true.

• Since (v,n)
σ−→ (v,n′) is a transition in TH , it follows that there is a function f ′

such that (1) f ′ is differentiable in [0, σ], (2) for any ε ∈ (0, σ), flowv(ḟ ′(ε)) is true,

(3) f ′(0) = n and f ′(σ) = n′. Since f ′ is continuous on [0, σ] (differentiability

implies continuity) and differentiable on (0, σ), by mean value theorem3, there is a

3http://en.wikipedia.org/wiki/Mean_value_theorem

252

point c ∈ (0, σ) such that ḟ ′(c) = (n′−n)/σ. Consequently, flowv((n
′−n)/σ) is true.

As a result, we get flow(v)(ḟ(ε)) is true for all ε ∈ (0, σ).

Lemma 86 For each i ≥ 0, si is a state in the transition system of DH .

Proof. By definition, we are to show that

0:si |=bg ��[(DH)0; ∅], (6.46)

while ��[(DH)0; ∅] is equivalent to the conjunctions of

0: invv(X)← 0:Loc=v (6.47)

for each location v ∈ V . Since p is a path, for each i ≥ 0, (vi,ni) is a state in TH . By

the definition of hybrid transition systems, invvi(ni) is true. Note that si |=bg (���,X) =

(vi,ni). It is clear that 0 : si |=bg (6.47).

Lemma 87 For each i ≥ 0, 〈si, ei, si+1〉 is a transition.

Proof. By definition, we are to show that

0:si ∪ 0:ei ∪ 1:si+1 |=bg ��[(DH)1; 0 :σ
act ∪ 1:σsim]. (6.48)

We check that (DH)1 is tight. By Lemma 84, (6.48) is equivalent to

0:si ∪ 0:ei ∪ 1:si+1 |=bg ����[(DH)1; 0 :σ
act ∪ 1:σsim] (6.49)

where ����[(DH)1; 0 : σact ∪ 1 : σsim] is equivalent to the conjunction of the following

formulas:

• Formula 	
�, which is the conjunction of

k : invv(X)← k :Loc=v (6.50)

for each k ∈ {0, 1} and each v ∈ V ;
253

• Formula ����, which is the conjunction of

flowv((1 :X − 0:X)/t)← 1:Loc=v ∧ 0:Loc=v ∧ 0:Dur= t ∧ t > 0 (6.51)

and

1:X = 0:X ←
∧

(v,v′)∈E

for some v′

¬ 0:event(v, v′)∧1:Loc=v∧0:Loc=v∧0:Dur=0 (6.52)

for each v ∈ V ;

• Formula ����, which is the conjunction of

jump(v,v′)(0 :X, 1:X) ∧ 0:Loc=v ∧ 1:Loc=v′ ∧ 0:Dur=0

← 0:event(v, v′)
(6.53)

for each (v, v′) ∈ E;

• Formula ��	, which is the conjunction of

1:Loc=v → 0:Loc=v ∨
∨

(v′,v)∈E

for some v′

0:event(v′, v) (6.54)

for each v ∈ V ;

• Formula
�, which is the conjunction of

0:E(v)↔
∨

(v,v′)∈E

for some v′

0:event(v, v′) (6.55)

for each location v ∈ V ;

• Formula �
�
, which is the formula

1:T ime = 0:T ime+ 0:Dur. (6.56)

We will check in the following that 0:si ∪ 0:ei ∪ 1:si+1 satisfies each one of them.

��: From the fact that (vi,ni) and (vi+1,ni+1) are states in TH , by the definition of hybrid

transition systems, invvi(ni) and invvi+1(ni+1) are true. Note that si |=bg (���,X) =

(vi,ni) and si+1 |=bg (���,X) = (vi+1,ni+1). As a result,

0 : si |=bg 0: invv(X)← 0:Loc=v

1 : si+1 |=bg 1: invv(X)← 1:Loc=v.

254

����: From the construction of si and si+1, ����si+1 = ����
si + �	

ei . It is clear that

0:si ∪ 0:ei ∪ 1:si+1 |=bg ����.

We will show that 0 : si ∪ 0 : ei ∪ 1 : si+1 satisfies ��
�, ����, �
� and ��.

From the definition of TH , there are two cases for the value of σi:

Case 1: σi = event(vi, vi+1). It follows from the construction of p′ that (�	
)ei = 0,

(event(vi, vi+1))
ei = t and (event(v, v′))ei =f for every other (v, v′) ∈ E. Since ��
� is

trivially satisfied, it is sufficient to consider only ����, �
� and ��.

From the fact that

(vi,ni)
σi−→ (vi+1,ni+1)

is a transition in TH and that σi = event(vi, vi+1), it follows from the definition of hybrid

transition systems that jump(vi,vi+1)(ni,ni+1) is true.

• ����: Note that si |=bg (���,X) = (vi,ni) and si+1 |=bg (���,X) = (vi+1,ni+1).

It is immediate that 0:si∪1:si+1 |=bg jump(vi,vi+1)(0 :X, 1:X), 0:si |=bg 0:Loc=vi

and 1:si+1 |=bg 1:Loc=vi+1. Since �	
ei =0 and (event(vi, vi+1))
ei =t, it is follows

that 0:si ∪ 0:ei ∪ 1:si+1 |=bg ����.

• �
�: Since (���)si+1 =vi+1 and (event(vi, vi+1))
ei =t, it follows that 0:si∪0:ei∪1:

si+1 |=bg �
� (take v to be vi+1).

• ��: Since (event(vi, vi+1))
ei = t, E(vi)

ei = t and aei =f for any other action a. It is

clear that 0:ei |=bg �� (take v to be vi).

Case 2: σi ∈ R≥0. By the construction of p′, Durei =σi and (event(v, v′))ei =f for every

(v, v′) ∈ E. Since ���� is trivially satisfied, it is sufficient to consider only ��
� and

�
�.

From the fact that

(vi,ni)
σi−→ (vi+1,ni+1)

is a transition of TH and that σi ∈ R≥0, it follows from the definition of hybrid transition

systems that
255

(a) vi=vi+1, and

(b) there is a differentiable function f : [0, σi]→ Rn, with the first derivative ḟ : [0, σi]→

Rn such that: (1) f(0) = ni and f(σi) = ni+1 and (2) for all reals ε ∈ (0, σi), both

invv(f(ε)) and flowv(ḟ(ε)) are true.

We check the following:

• ����: consider two cases.

– If σi = 0 then Dure
i
= 0. It is sufficient to consider only (6.52). From (b),

ni=ni+1=f(0). Since (X)si =(X)si+1 , it follows that 0:si∪0:ei∪1:si+1 |=bg

(6.52).

– If σi > 0, then Dure
i
> 0. By Lemma 85, f(t) = ni + t ∗ (ni+1 − ni)/σi

is a differentiable function that satisfies all the conditions in (b). As a result,

flowvi((ni+1 − ni)/σi) is true and thus 0 : si ∪ 0 : ei ∪ 1 : si+1 |=bg flowvi((1 :

X − 0:X)/Dur). It follows that 0:si ∪ 0:ei ∪ 1:si+1 |=bg (6.51).

• ���: From vi = vi+1 and that Locsi = vi, Locsi+1 = vi+1, it follows that 0 : si ∪ 0 :

ei ∪ 1:si+1 |=bg ���.

• ��: Since aei =f for any other action a. It is clear that 0:ei |=bg ��.

Proposition 50 p′ is a path in the transition system of DH .

Proof. By Lemma 86, each si is a state of DH . By Lemma 87, each 〈si, ei, si+1〉 is a

transition of DH . So p′ is a path in the transition system of DH .

Proof of Proposition 51

Lemma 88

(a) For each i ≥ 0, (vi,ni) is a state in TH , and
256

(b) (v0,n0) is an initial state in TH .

Proof.

(a) By definition, we are to show that invvi(ni) is true. Since each si is a state in the

transition system of DH , by definition,

0:si |=bg ��[(DH)0; ∅]. (6.57)

Note that ��[(DH)0; ∅] is equivalent to the conjunction of the formula:

0: invv(X)← 0:Loc = v (6.58)

for each location v ∈ V . Since (Loc)si = vi, it follows that si |=bg invvi(X). Since

Xsi = ni, it follows that invvi(ni) is true.

(b) We are to show that initv0(n0) is true. This is clear from the fact that s0 |=bg ���� and

(X)s0 = n0.

Lemma 89 For each 0 ≤ i ≤ m,

(vi,ni)
σi−→ (vi+1,ni+1) (6.59)

is a transition in TH .

Proof. From the fact that (si, ei, si+1) is a transition of DH , by definition, we know that

0:si ∪ 0:ei ∪ 1:si+1 |=bg ��[(DH)1; 0 :σ
act ∪ 1:σsim]. (6.60)

Since (DH)1 is tight, by Lemma 84, (6.60) holds iff

0:si ∪ 0:ei ∪ 1:si+1 |=bg ���	[(DH)1; 0 :σ
act ∪ 1:σsim]. (6.61)

where ���	[(DH)1; 0 :σ
act ∪ 1:σsim] is equivalent to the conjunction of the formulas ��
,

��
�, ����, �
�, ���� and EV .

Since 0 : ei |=bg ����, it is follows that if (event(v, v′))ei = t for some v′ then

Locsi = v, Locsi+1 = v′. As a result, there can be at most one event(v, v′) such that

(event(v, v′))ei = t. Consider two cases:
257

Case 1: There exists an edge (v, v′) such that (event(v, v′))ei = t. From the above dis-

cussion, we know that event(v, v′) is the only event that is true. Since Locsi = vi and

Locsi+1 = vi+1, it follows that (v, v′) must be (vi, vi+1). As a result, (event(vi, vi+1))
ei = t

and (event(v, v′))ei = f for every other (v, v′) ∈ E. It follows from the definition that

σi = event(vi, vi+1).

(a) Since 0:si ∪ 0:ei ∪ 1:si+1 |=bg ����, Xsi+1 = ni+1 and Xsi = ni, it is immediate

that jump(vi,vi+1)(ni+1,ni) is true.

(b) By Lemma 88, (vi,ni) and (vi+1,ni+1) are states.

From (a), (b) and the fact that σi = event(vi, vi+1), we conclude (6.59) is a transition.

Case 2: (event(v, v′))ei = f for every (v, v′) ∈ E. By construction, (Dur)ei = σi for

some σi ∈ R≥0. By Lemma 88, (vi,ni) and (vi+1,ni+1) are states. From ���, it follows

that Locsi = Locsi+1 . As a result, vi = vi+1. We are to show that there is a differentiable

function f : [0, σi]→ Rn, with the first derivative ḟ : [0, σi]→ Rn such that: (1) f(0) = ni

and f(σi) = ni+1 and (2) for all reals ε ∈ (0, σi), both invvi(f(ε)) and flowvi(ḟ(ε)) are

true. Define f(t) = ni+ t∗ (ni+1−ni)/σi. We check that f satisfies the above conditions:

• f(t) is differentiable over [0, σi].

• It is clear that f(0) = ni and f(σi) = ni+1.

• We check that for any ε ∈ (0, σ), invv(f(ε)) is true. From i : si ∪ (i + 1) : si+1 |=bg

(6.50), it follows that invvi(f(0)) and invvi(f(σi)) are true. Since invvi(X) is a

conjunction of linear inequalities, the values of X that satisfies invvi(X) must form a

convex region in Rn. Since f(t) is a linear function, it follows that for any ε ∈ (0, σ),

invv(f(ε)) is true.

• We check that for any ε ∈ (0, σ), flowvi(ḟ(ε)) is true. We only consider the case

where σi > 0 because otherwise is trivial (there is no ε ∈ (0, 0)). From (6.51),

it follows that flowvi((f(σi) − f(0))/σi) is true. Since f(t) is a linear function, it

258

follows that for any ε ∈ (0, σi), ḟ(ε) = (f(σi)− f(0))/σi. As a result, flowvi(ḟ(ε)) is

true.

From above, we conclude that (6.59) is a transition.

Proposition 51 q′ is a path in TH .

Proof. By Lemma 88 (a), each (vi,ni) is a state in TH . By Lemma 89, each (vi,ni)
σi−→

(vi+1,ni+1) is a transition in TH . So q′ is a path in TH . If s0 |=bg initv0 then by Lemma 88

(b), (v0,n0) is a initial state in TH .

Proof of Proposition 49

Lemma 90 For any clingcon program Π with CSP (V,D,C), any interpretation I = 〈A,X〉

of the signature V ∪ p, let Y be sets of X such that. Consider any rule H ← B,N,Cn in

Π,

Y |=bg (H ← B,N,Cn)XA

iff

〈A,X ∪ Y p
q 〉 |=bg (B ∧N ∧ Cn)∗(q)→ H∗(q). (6.62)

Proof. By Theorem 20, 〈A,X∪Y p
q 〉 |=bg N∗(q) iff 〈A,X∪Y p

q 〉 |=bg N . Since Cn contains

no intentional constants, Cn∗(q) is the same as Cn. So (6.62) can be equivalently rewritten

as

〈A,X ∪ Y p
q 〉 |=bg B∗(q) ∧N ∧ Cn→ H∗(q). (6.63)

Consider two cases.

Case 1: A �|=bg Cn or X �|=bg N , (H ← B,N,Cn)XA is equivalent to �. It follows that

〈A,X ∪ Y p
q 〉 ∪ Ibg �|=bg N ∧ Cn. Clearly, (6.63) holds.

Case 2: Otherwise, A |=bg Cn and X |=bg N . As a result, 〈A,X〉 |=bg N ∧ Cn. (H ←

B,N,Cn)XA is H ← B. Y |=bg H ← B is equivalent to Y p
q |=bg H∗(q) ← B∗(q). And

thus 〈A, Y p
q 〉 |=bg B∗(q) → H∗(q), which in turn is equivalent to (6.63) when 〈A,X〉 |=bg

N ∧ Cn.

259

Lemma 91 For any clingcon program Π with CSP (V,D,C), any interpretation I = 〈A,X〉

of the signature V ∪ p, I |=bg Π iff X satisfies ΠX
A .

Proof. Immediate from Lemma 90 and Lemma 83 when Y = X and p = q.

Proposition 49 Let Π be a clingcon program with CSP (V,D,C), let p be a set of propo-

sitional constants that occur in Π and I = 〈A,X〉 an interpretation of the signature V ∪ p.

I |=bg ��[Π;p] iff X is a constraint answer set of Π relative to A.

Proof. X is a constraint answer set of Π relative to A iff

(i) X |=bg ΠX
A , and

(ii) no proper subset Y of X satisfies ΠX
A .

On the other hand, I |=bg ��[Π;p] iff

(i’) I |=bg Π, and

(ii’) I does not satisfy ∃u(u < p ∧Π∗(u)).

It follows from Lemma 91 that condition (i) is equivalent to condition (i’). Assume

(i’). Condition (ii) can be reformulated as: no proper subset Y of X satisfies rule (H ←

B,N,Cn)XA for each H ← B,N,Cn ∈ Π. Under the assumption (i’), condition (ii’) can be

reformulated as: there is no proper subset Y of X such that, for every rule H ← B,N,Cn

in Π, 〈A,X ∪Y p
q 〉 |=bg (B ∧N ∧Cn)∗(q)→ H∗(q). By Lemma 90, (ii) is equivalent to (ii’).

260

Chapter 7

Conclusion

In this dissertation, we proposed a framework for extending ASP language and for integrat-

ing it with other computing paradigms. We observed that the traditional ASP semantics is

too restrictive for new constructs like aggregates, dl-atoms and constraints. Also, a system-

atic way to study different extensions is needed.

To overcome the limitations in the existing extensions, we extend the first-order

stable model semantics to formulas with generalized quantifiers, which cover aggregates,

DL-atoms, constraints and SMT theory atoms as special cases. The framework provides a

new top-down perspective on extensions of ASP and a systematic approach to study and

extend non-monotonic languages.

This dissertation contributes to the researches in the area of logic programming and

reasoning about actions in the following ways:

• By relating the first-order stable model semantics to first-order logic via loop formulas,

we provided useful insights into first-order reasoning with stable models. We showed

that when a formula is bounded or has finite complete set of loop, the reasoning under

the first-order stable model semantics can be reduced to reasoning in first-order logic.

The results were extended to cover aggregates and generalized quantifiers. These

results allow us to compute non-Herbrand stable models using solvers from other

computing paradigms.

• By reformulating the existing semantics on programs with aggregates in terms of

propositional formulas, we presented a systematic way to study the properties of

each semantics using the underlying general language. Guided by the reduction, we

lifted up the stable model semantics and FLP semantics of aggregates to the first-

order level. The general semantics avoid the issues of grounding and provide natural

semantics for arbitrary recursive and nested aggregates. The study paved ways to

more general semantics that unify the extensions of ASP.

• To provide a systematic approach for studying the other extensions of ASP, we ex-
261

tended the first-order semantics to formulas with generalized quantifiers and showed

that the unifying framework naturally covers aggregates, DL-atoms, constraints and

SMT theory atoms as special cases. The framework provides a theoretic founda-

tion of extending ASP with other computing paradigms via a first-order semantics.

This overcomes the limitation of existing approaches that are based on propositional

ones. We also illustrated the unifying view by generalizing several important proper-

ties, such as the splitting theorem, the theorem on completion, the theorem on strong

equivalence, the theorem on safety and the theorem on loop formulas to formulas with

generalized quantifiers, which in turn can be applied to existing individual extensions.

This saves the efforts of reproving them in each context.

• Towards a tight integration of ASP with SMT, we presented the ASPMT framework

which allows us to represent non-monotonic functions with background interpreta-

tions. We bridged the gap between traditional ASP and functional view in constraints

by referring to functional stable model semantics. Using the framework, we enhanced

action language C+ to handle reasoning about continuous changes. We demon-

strated the expressiveness of the new language by modeling domains that reason

about continuous changes, additive fluents and process. We also showed the com-

putation advantage of the framework using some benchmark examples. Preliminary

experiment results shows that our approach outperform existing implementations of

C+ by several orders of magnitude.

Some results presented in the dissertation were in the following venue:

• Relating first-order stable model semantics to first-order logic: (Lee & Meng, 2008,

2011).

• On semantics of aggregates: (Lee & Meng, 2009; Bartholomew et al., 2011).

• First-order stable model semantics for generalized quantified formulas: (Lee & Meng,

2012a, 2012b, 2012c).

262

BIBLIOGRAPHY

Armando, A., & Compagna, L. (2002). Automatic sat-compilation of protocol insecurity via
reduction to planning. In Proceedings of the Joint International Conference on Formal
Techniques for Networked and Distributed Systems 2002, pp. 210–225.

Artikis, A., Sergot, M., & Pitt, J. (2003). Specifying electronic societies with the Causal
Calculator. In Giunchiglia, F., Odell, J., & Weiss, G. (Eds.), Proceedings of Workshop
on Agent-Oriented Software Engineering III (AOSE), LNCS 2585, pp. 1–15. Springer.

Asuncion, V., Lin, F., Zhang, Y., & Zhou, Y. (2010). Ordered completion for first-order logic
programs on finite structures. In AAAI, pp. 249–254.

Balduccini, M. (2009). Representing constraint satisfaction problems in answer set pro-
gramming. In Working Notes of the Workshop on Answer Set Programming and
Other Computing Paradigms (ASPOCP).

Baral, C., & Gelfond, M. (2000). Reasoning agents in dynamic domains. In Minker, J. (Ed.),
Logic-Based Artificial Intelligence, pp. 257–279. Kluwer.

Baral, C., Gelfond, M., & Provetti, A. (1997). Reasoning about actions: laws, observations
and hypotheses. Journal of Logic Programming, 31, 201–244.

Bartholomew, M., & Lee, J. (2012). Stable models of formulas with intensional functions. In
Proceedings of International Conference on Principles of Knowledge Representation
and Reasoning (KR), pp. 2–12.

Bartholomew, M., Lee, J., & Meng, Y. (2011). First-order extension of the FLP stable model
semantics via modified circumscription. In Proceedings of International Joint Confer-
ence on Artificial Intelligence (IJCAI), pp. 724–730.

Baselice, S., Bonatti, P. A., & Gelfond, M. (2005). Towards an integration of answer set and
constraint solving. In In Proc. of ICLP 05, pp. 52–66.

Biere, A., Biere, A., Heule, M., van Maaren, H., & Walsh, T. (2009). Handbook of Satis-
fiability: Volume 185 Frontiers in Artificial Intelligence and Applications. IOS Press,
Amsterdam, The Netherlands, The Netherlands.

Bonatti, P. A. (2004). Reasoning with infinite stable models. Artificial Intelligence, 156(1),
75–111.

Brooks, D. R., Erdem, E., Erdoğan, S. T., Minett, J. W., & Ringe, D. (2007). Inferring
phylogenetic trees using answer set programming. Journal of Automated Reasoning,
39, 471–511.

Bu, L., Cimatti, A., Li, X., Mover, S., & Tonetta, S. (2010). Model checking of hybrid systems
using shallow synchronization. In Proceedings of the 12th IFIP WG 6.1 international
conference and 30th IFIP WG 6.1 international conference on Formal Techniques
for Distributed Systems, FMOODS’10/FORTE’10, pp. 155–169, Berlin, Heidelberg.
Springer-Verlag.

Caldiran, O., Haspalamutgil, K., Ok, A., Palaz, C., Erdem, E., & Patoglu, V. (2009). Bridging
the gap between high-level reasoning and low-level control. In LPNMR, pp. 342–354.

263

Chen, Y., Lin, F., Wang, Y., & Zhang, M. (2006). First-order loop formulas for normal logic
programs. In Proceedings of International Conference on Principles of Knowledge
Representation and Reasoning (KR), pp. 298–307.

Chen, Y., Lin, F., Zhang, Y., & Zhou, Y. (2011). Loop-separable programs and their first-
order definability. Artificial Intelligence, 175(3-4), 890–913.

Chen, Y., Zhang, Y., & Zhou, Y. (2010). First-order indefinability of answer set programs on
finite structures. In AAAI, pp. 285–290.

Chintabathina, S. (2008). Towards answer set prolog based architectures for intelligent
agents.. In AAAI’08, pp. 1843–1844.

Clark, K. (1978). Negation as failure. In Gallaire, H., & Minker, J. (Eds.), Logic and Data
Bases, pp. 293–322. Plenum Press, New York.

Eiter, T., Fink, M., Ianni, G., Krennwallner, T., & Schüller, P. (2011). Pushing efficient evalu-
ation of hex programs by modular decomposition. In Proceedings of the 11th interna-
tional conference on Logic programming and nonmonotonic reasoning, LPNMR’11,
pp. 93–106, Berlin, Heidelberg. Springer-Verlag.

Eiter, T., Gottlob, G., & Veith, H. (1997a). Generalized quantifiers in logic programs. In In
Proceedings of the ESSLLI Workshop on Generalized Quantifiers, Aix-en-Provence,
pp. 72–98. Springer.

Eiter, T., Gottlob, G., & Veith, H. (1997b). Modular logic programming and generalized
quantifiers.. In LPNMR’97, pp. 290–309.

Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., & Tompits, H. (2008a). Combining
answer set programming with description logics for the semantic web. Artificial Intel-
ligence, 172(12-13), 1495–1539.

Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., & Tompits, H. (2008b). Combining
answer set programming with description logics for the semantic web. Artificial Intel-
ligence, 172(12-13), 1495–1539.

Eiter, T., Ianni, G., Schindlauer, R., & Tompits, H. (2005). A uniform integration of higher-
order reasoning and external evaluations in answer-set programming. In IJCAI, pp.
90–96.

Eiter, T., Ianni, G., Schindlauer, R., & Tompits, H. (2006a). Effective integration of declara-
tive rules with external evaluations for semantic-web reasoning. In ESWC, pp. 273–
287.

Eiter, T., Ianni, G., Schindlauer, R., & Tompits, H. (2006b). Effective integration of declara-
tive rules with external evaluations for semantic-web reasoning. In ESWC, pp. 273–
287.

Eiter, T., Lukasiewicz, T., Schindlauer, R., & Tompits, H. (2004). Combining answer set
programming with description logics for the semantic web. In Proceedings of Interna-
tional Conference on Principles of Knowledge Representation and Reasoning (KR).

264

Faber, W. (2005). Unfounded sets for disjunctive logic programs with arbitrary aggregates.
In Proceedings of International Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR), pp. 40–52.

Faber, W., Leone, N., & Pfeifer, G. (2004). Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In Proceedings of European Conference on Logics
in Artificial Intelligence (JELIA).

Faber, W., Pfeifer, G., & Leone, N. (2011). Semantics and complexity of recursive aggre-
gates in answer set programming. Artificial Intelligence, 175(1), 278–298.

Feier, C., & Heymans, S. (2009). Hybrid reasoning with forest logic programs. In ESWC,
pp. 338–352.

Ferraris, P. (2005). Answer sets for propositional theories. In Proceedings of Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR),
pp. 119–131.

Ferraris, P., Lee, J., & Lifschitz, V. (2006). A generalization of the Lin-Zhao theorem. Annals
of Mathematics and Artificial Intelligence, 47, 79–101.

Ferraris, P., Lee, J., & Lifschitz, V. (2007). A new perspective on stable models. In Proceed-
ings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 372–379.

Ferraris, P., Lee, J., & Lifschitz, V. (2011a). Stable models and circumscription. Artificial
Intelligence, 175, 236–263.

Ferraris, P., Lee, J., & Lifschitz, V. (2011b). Stable models and circumscription. Artificial
Intelligence, 175, 236–263.

Ferraris, P., Lee, J., Lifschitz, V., & Palla, R. (2009a). Symmetric splitting in the general
theory of stable models. In Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), pp. 797–803.

Ferraris, P., Lee, J., Lifschitz, V., & Palla, R. (2009b). Symmetric splitting in the general
theory of stable models. In Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI), pp. 797–803.

Ferraris, P., & Lifschitz, V. (2010). On the stable model semantics of firsr-order formulas
with aggregates. In NMR.

Fink, M., & Pearce, D. (2010). A logical semantics for description logic programs. In Pro-
ceedings of European Conference on Logics in Artificial Intelligence (JELIA), pp. 156–
168.

Fox, M., & Long, D. (2003). PDDL2.1: An extension to pddl for expressing temporal planning
domains. J. Artif. Intell. Res. (JAIR), 20, 61–124.

Fox, M., & Long, D. (2006a). Modelling mixed discrete-continuous domains for planning. J.
Artif. Intell. Res. (JAIR), 27, 235–297.

Fox, M., & Long, D. (2006b). Modelling mixed discrete-continuous domains for planning. J.
Artif. Int. Res., 27 (1), 235–297.

265

Gebser, M., Ostrowski, M., & Schaub, T. (2009). Constraint answer set solving. In Proceed-
ings of International Conference on Logic Programming (ICLP), pp. 235–249.

Gebser, M., Lee, J., & Lierler, Y. (2006). Elementary sets for logic programs. In Proceedings
of National Conference on Artificial Intelligence (AAAI).

Gebser, M., Lee, J., & Lierler, Y. (2011). On elementary loops of logic programs. Theory
and Practice of Logic Programming, 11(6), 953–988.

Gebser, M., & Schaub, T. (2005). Loops: Relevant or redundant?. In Proceedings of the
Eighth International Conference on Logic Programming and Nonmonotonic Reason-
ing (LPNMR’05), pp. 53–65.

Gelfond, M. (1993). Logic programming and reasoning with incomplete information. Annals
of Mathematics and Artificial Intelligence.

Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming. In
Kowalski, R., & Bowen, K. (Eds.), Proceedings of International Logic Programming
Conference and Symposium, pp. 1070–1080. MIT Press.

Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and disjunctive
databases. New Generation Computing, 9, 365–385.

Gelfond, M., & Lifschitz, V. (1998). Action languages1. Electronic Transactions on Artificial
Intelligence, 3, 195–210.

Gelfond, M., & Lobo, J. (2008). Authorization and obligation policies in dynamic systems.
In ICLP, pp. 22–36.

Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., & Turner, H. (2004). Nonmonotonic causal
theories. Artificial Intelligence, 153(1–2), 49–104.

Giunchiglia, E., Lee, J., Lifschitz, V., & Turner, H. (2001). Causal laws and multi-valued
fluents2. Unpublished draft.

Giunchiglia, E., & Lifschitz, V. (1998). An action language based on causal explanation:
Preliminary report. In Proceedings of National Conference on Artificial Intelligence
(AAAI), pp. 623–630. AAAI Press.

Henzinger, T. A. (1996). The theory of hybrid automata. In Proceedings, 11th Annual IEEE
Symposium on Logic in Computer Science, pp. 278–292.

Heymans, S., de Bruijn, J., Predoiu, L., Feier, C., & Nieuwenborgh, D. V. (2008). Guarded
hybrid knowledge bases. TPLP, 8(3), 411–429.

Hoehndorf, R., Loebe, F., Kelso, J., & Herre, H. (2007). Representing default knowledge
in biomedical ontologies: application to the integration of anatomy and phenotype
ontologies. BMC Bioinformatics, 8, 1–12.

1http://www.ep.liu.se/ea/cis/1998/016/
2http://www.cs.utexas.edu/users/vl/papers/clmvf-long.ps

266

Janhunen, T., Liu, G., & Niemela, I. (2011). Tight integration of non-ground answer set
programming and satisfiability modulo theories. In Working notes of the 1st Workshop
on Grounding and Transformations for Theories with Variables.

Janhunen, T., & Oikarinen, E. (2004). Capturing parallel circumscription with disjunctive
logic programs. In Proc. of 9th European Conference in Logics in Artificial Intelligence
(JELIA-04), pp. 134–146.

Karp, C. R. (1964). Languages with expressions of infinite length. North-Holland Amster-
dam.

Kim, T.-W., Lee, J., & Palla, R. (2009). Circumscriptive event calculus as answer set pro-
gramming. In Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI), pp. 823–829.

Kowalski, R., & Sergot, M. (1986). A logic-based calculus of events. New Generation
Computing, 4, 67–95.

Kunen, K. (1987). Negation in logic programming. The Journal of Logic Programming, 4(4),
289 – 308.

Lee, J. (2004). Nondefinite vs. definite causal theories. In Proceedings 7th Int’l Conference
on Logic Programming and Nonmonotonic Reasoning, pp. 141–153.

Lee, J. (2005). A model-theoretic counterpart of loop formulas. In Proceedings of Inter-
national Joint Conference on Artificial Intelligence (IJCAI), pp. 503–508. Professional
Book Center.

Lee, J., Lierler, Y., Lifschitz, V., & Yang, F. (2010). Representing synonymity in causal logic
and in logic programming3. In Proceedings of International Workshop on Nonmono-
tonic Reasoning (NMR).

Lee, J., & Lifschitz, V. (2003a). Describing additive fluents in action language C+. In Pro-
ceedings of International Joint Conference on Artificial Intelligence (IJCAI), pp. 1079–
1084.

Lee, J., & Lifschitz, V. (2003b). Loop formulas for disjunctive logic programs. In Proceedings
of International Conference on Logic Programming (ICLP), pp. 451–465.

Lee, J., Lifschitz, V., & Palla, R. (2008a). A reductive semantics for counting and choice
in answer set programming. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pp. 472–479.

Lee, J., Lifschitz, V., & Palla, R. (2008b). A reductive semantics for counting and choice in
answer set programming. In Proceedings of the 23rd national conference on Artificial
intelligence - Volume 1, pp. 472–479. AAAI Press.

Lee, J., Lifschitz, V., & Palla, R. (2009). Safe formulas in the general theory of stable
models. Unpublished Draft. ������������	��
	�
�	����
�����������
�
�����	
���.

3 http://peace.eas.asu.edu/joolee/papers/syn.pdf

267

Lee, J., & Lin, F. (2006). Loop formulas for circumscription. Artificial Intelligence, 170(2),
160–185.

Lee, J., & Meng, Y. (2008). On loop formulas with variables. In Proceedings of the Interna-
tional Conference on Knowledge Representation and Reasoning (KR), pp. 444–453.

Lee, J., & Meng, Y. (2009). On reductive semantics of aggregates in answer set program-
ming. In Procedings of International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR), pp. 182–195.

Lee, J., & Meng, Y. (2011). First-order stable model semantics and first-order loop formulas.
Journal of Artificial Inteligence Research (JAIR), 42, 125–180.

Lee, J., & Meng, Y. (2012a). Stable models of formulas with generalized quantifiers.
In Proceedings of International Workshop on Nonmonotonic Reasoning (NMR).
http://peace.eas.asu.edu/joolee/papers/smgq-nmr.pdf.

Lee, J., & Meng, Y. (2012b). Stable models of formulas with generalized quantifiers (pre-
liminary report). In Technical Communications of the 28th International Conference
on Logic Programming, pp. 61–71.

Lee, J., & Meng, Y. (2012c). Two new definitions of stable models of logic programs with
generalized quantifiers. In Working Notes of the 5th Workshop on Answer Set Pro-
gramming and Other Computing Paradigms (ASPOCP).

Lee, J., & Palla, R. (2010). Situation calculus as answer set programming. In Proceedings
of the AAAI Conference on Artificial Intelligence (AAAI), pp. 309–314.

Lee, J., & Palla, R. (2011). Integrating rules and ontologies in the first-order stable model
semantics (preliminary report). In Proceedings of International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR), pp. 248–253.

Lee, J., & Palla, R. (2012a). Reformulating temporal action logics in answer set program-
ming. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).

Lee, J., & Palla, R. (2012b). Reformulating the situation calculus and the event calculus
in the general theory of stable models and in answer set programming. Journal of
Artificial Inteligence Research (JAIR), 43, 571–620.

Lifschitz, V. (1994). Circumscription. In Gabbay, D., Hogger, C., & Robinson, J. (Eds.),
Handbook of Logic in AI and Logic Programming, Vol. 3, pp. 298–352. Oxford Univer-
sity Press.

Lifschitz, V. (2002). Answer set programming and plan generation. Artificial Intelligence,
138, 39–54.

Lifschitz, V. (2008). What is answer set programming?. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, pp. 1594–1597. MIT Press.

Lifschitz, V., Morgenstern, L., & Plaisted, D. (2008). Knowledge representation and classical
logic. In van Harmelen, F., Lifschitz, V., & Porter, B. (Eds.), Handbook of Knowledge
Representation, pp. 3–88. Elsevier.

268

Lifschitz, V., Pearce, D., & Valverde, A. (2001). Strongly equivalent logic programs. ACM
Transactions on Computational Logic, 2, 526–541.

Lifschitz, V., & Razborov, A. (2006). Why are there so many loop formulas?. ACM Transac-
tions on Computational Logic, 7, 261–268.

Lifschitz, V., & Turner, H. (1994). Splitting a logic program. In Van Hentenryck, P. (Ed.),
Proceedings of International Conference on Logic Programming (ICLP), pp. 23–37.

Lin, F., & Wang, Y. (2008). Answer set programming with functions. In Proceedings of
International Conference on Principles of Knowledge Representation and Reasoning
(KR), pp. 454–465.

Lin, F., & Zhao, Y. (2002). ASSAT: Computing answer sets of a logic program by SAT
solvers. In Proceedings of National Conference on Artificial Intelligence (AAAI), pp.
112–117. MIT Press.

Lin, F., & Zhao, Y. (2004). ASSAT: Computing answer sets of a logic program by SAT
solvers. Artificial Intelligence, 157, 115–137.

Lindström, P. (1966). First-order predicate logic with generalized quantifiers. Theoria, 32,
186–195.

Liu, G. (2009). Level mapping induced loop formulas for weight constraint and aggregate
programs. In Procedings of International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR), pp. 444–449.

Liu, G., Goebel, R., Janhunen, T., Niemelä, I., & You, J.-H. (2011). Strong equivalence of
logic programs with abstract constraint atoms. In Proceedings of the 11th interna-
tional conference on Logic programming and nonmonotonic reasoning, LPNMR’11,
pp. 161–173, Berlin, Heidelberg. Springer-Verlag.

Liu, G., Janhunen, T., & Niemelä, I. (2012). Answer set programming via mixed integer
programming. In Proceedings of International Conference on Principles of Knowledge
Representation and Reasoning (KR).

Liu, L., Pontelli, E., Son, T. C., & Truszczynski, M. (2010). Logic programs with abstract
constraint atoms: The role of computations. Artificial Intelligence, 174(3ĺC4), 295 –
315.

Liu, L., & Truszczynski, M. (2006). Properties and applications of programs with monotone
and convex constraints. J. Artif. Intell. Res. (JAIR), 27, 299–334.

Lloyd, J., & Topor, R. (1984). Making Prolog more expressive. Journal of Logic Program-
ming, 3, 225–240.

Lygeros, J. (2004). Lecture notes on hybrid systems. Tech. rep..

Marek, V., & Truszczyński, M. (1999). Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm: a 25-Year Perspective, pp. 375–398.
Springer Verlag.

269

Marek, V. W., & Truszczynski, M. (2004). Logic programs with abstract constraint atoms. In
AAAI, pp. 86–91.

McCain, N., & Turner, H. (1997). Causal theories of action and change. In Proceedings of
National Conference on Artificial Intelligence (AAAI), pp. 460–465.

Mellarkod, V. S., Gelfond, M., & Zhang, Y. (2008). Integrating answer set programming and
constraint logic programming. Ann. Math. Artif. Intell., 53(1-4), 251–287.

Moore, G. (1997). The prehistory of infinitary logic: 1885Ű1955. In Chiara, M., Doets,
K., Mundici, D., & Benthem, J. (Eds.), Structures and Norms in Science, Vol. 260 of
Synthese Library, pp. 105–123. Springer Netherlands.

Mostowski, A. (1957). On a Generalization of Quantifiers. Fundamenta Mathematicae, 44,
12–35.

Niemelä, I., & Simons, P. (2000). Extending the Smodels system with cardinality and
weight constraints. In Minker, J. (Ed.), Logic-Based Artificial Intelligence, pp. 491–
521. Kluwer.

Niemelä, I., Simons, P., & Soininen, T. (1999). Stable model semantics of weight con-
straint rules. In PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE
ON LOGIC PROGRAMMING AND NONMONOTONIC REASONING (LPNMRąŕ99),
VOLUME 1730 OF LECTURE, pp. 317–331. Springer-Verlag. LNAI.

Nieuwenhuis, R., Oliveras, A., & Tinelli, C. (2006). Solving sat and sat modulo theories:
From an abstract davis–putnam–logemann–loveland procedure to dpll(t). J. ACM,
53(6), 937–977.

Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., & Barry, M. (2001). An A-Prolog
decision support system for the Space Shuttle. In Proceedings of International Sym-
posium on Practical Aspects of Declarative Languages (PADL), pp. 169–183.

Pearce, D. (1997). A new logical characterization of stable models and answer sets. In
Dix, J., Pereira, L., & Przymusinski, T. (Eds.), Non-Monotonic Extensions of Logic
Programming (Lecture Notes in Artificial Intelligence 1216), pp. 57–70. Springer.

Pednault, E. (1994). ADL and the state-transition model of action. Journal of Logic and
Computation, 4, 467–512.

Pelov, N., Denecker, M., & Bruynooghe, M. (2003). Translation of aggregate programs to
normal logic programs.. In Proceedings Answer Set Programming.

Pelov, N., Denecker, M., & Bruynooghe, M. (2004). Partial stable models for logic programs
with aggregates. In LPNMR, pp. 207–219.

Pelov, N., Denecker, M., & Bruynooghe, M. (2007). Well-founded and stable semantics of
logic programs with aggregates. TPLP, 7 (3), 301–353.

Pinto, J. A. (1994). Temporal reasoning in the situation calculus..

270

Polleres, A., & Schindlauer, R. (2007). dlvhex-sparql: A sparql-compliant query engine
based on dlvhex. In 2nd Int. Workshop on Applications of Logic Programming to the
Web, Semantic Web and Web Services (ALPSWS2007, pp. 332–347. Springer.

Reiter, R. (1996). Natural actions, concurrency and continuous time in the situation calculus.
In Proceedings of International Conference on Principles of Knowledge Representa-
tion and Reasoning (KR), pp. 2–13.

Robinson, J. A. (1965). A machine-oriented logic based on the resolution principle. J. ACM,
12, 23–41.

Rosati, R. (2005). On the decidability and complexity of integrating ontologies and rules. J.
Web Sem., 3(1), 61–73.

Sabuncu, O., & Alpaslan, F. N. (2007). Computing answer sets using model generation
theorem provers. Unpublished Draft.

Scott, D., T. A. (1958). The sentential calculus with infinitely long expressions. Colloquium
Mathematicae, 6(1), 165–170.

Shanahan, M. (1990). Representing continuous change in the event calculus. In ECAI, pp.
598–603.

Shen, Y.-D. (2011). Well-supported semantics for description logic programs. In Proceed-
ings of the 22nd International Joint Conference on Artificial Intelligence, pp. 1081–
1086.

Shen, Y.-D., You, J.-H., & Yuan, L.-Y. (2009). Characterizations of stable model semantics
for logic programs with arbitrary constraint atoms. TPLP, 9(4), 529–564.

Shin, J.-A., & Davis, E. (2005). Processes and continuous change in a sat-based planner.
Artif. Intell., 166(1-2), 194–253.

Simons, P. (1999). Extending the stable model semantics with more expressive rules.
In Logic Programming and Non-monotonic Reasoning: Proceedings Fifth Int’l Conf.
(Lecture Notes in Artificial Intelligence 1730), pp. 305–316.

Son, T. C., & Pontelli, E. (2007). A constructive semantic characterization of aggregates in
answer set programming. TPLP, 7 (3), 355–375.

Son, T. C., Pontelli, E., & Tu, P. H. (2007). Answer sets for logic programs with arbitrary
abstract constraint atoms. J. Artif. Intell. Res. (JAIR), 29, 353–389.

Tarski, A. (1958). Remarks on predicate logic with infinitely long expressions. Colloquium
Mathematicae, 6(1), 171–176.

Tiihonen, J., Soininen, T., Niemelä, I., & Sulonen, R. (2003). A practical tool for mass-
customising configurable products. In Proceedings of the 14th International Confer-
ence on Engineering Design, pp. 1290–1299.

Truszczyński, M. (2010). Reducts of propositional theories, satisfiability relations, and gen-
eralizations of semantics of logic programs. Artificial Intelligence, 174(16-17), 1285–
1306.

271

Truszczynski, M. (2012). Connecting first-order asp and the logic fo(id) through reducts. In
Correct Reasoning, pp. 543–559.

Turner, H. (2003). Strong equivalence made easy: nested expressions and weight con-
straints. Theory and Practice of Logic Programming, 3(4,5), 609–622.

Wang, Y., You, J.-H., Lin, F., Yuan, L. Y., & Zhang, M. (2010a). Weight constraint programs
with evaluable functions. Annals of Mathematics and Artificial Intelligence, 60, 341–
380.

Wang, Y., You, J.-H., Yuan, L.-Y., & Shen, Y.-D. (2010b). Loop formulas for description logic
programs. TPLP, 10(4-6), 531–545.

Westerståhl, D. (2008). Generalized quantifiers. In The Stan-
ford Encyclopedia of Philosophy (Winter 2008 Edition). URL =
<http://plato.stanford.edu/archives/win2008/entries/generalized-quantifiers/>.

You, J.-H., & Liu, G. (2008). Loop formulas for logic programs with arbitrary constraint
atoms. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp.
584–589.

Zhang, Y., & Zhou, Y. (2010). On the progression semantics and boundedness of answer
set programs. In KR.

272

