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ABSTRACT

Different logic-based knowledge representation formalisms have different

limitations either with respect to expressivity or with respect to computational ef-

ficiency. First-order logic, which is the basis of Description Logics (DLs), is not

suitable for defeasible reasoning due to its monotonic nature. The nonmonotonic

formalisms that extend first-order logic, such as circumscription and default logic,

are expressive but lack efficient implementations. The nonmonotonic formalisms

that are based on the declarative logic programming approach, such as Answer Set

Programming (ASP), have efficient implementations but are not expressive enough

for representing and reasoning with open domains.

This dissertation uses the first-order stable model semantics, which extends

both first-order logic and ASP, to relate circumscription to ASP, and to integrate

DLs and ASP, thereby partially overcoming the limitations of the formalisms. By

exploiting the relationship between circumscription and ASP, well-known action for-

malisms, such as the situation calculus, the event calculus, and Temporal Action

Logics, are reformulated in ASP. The advantages of these reformulations are shown

with respect to the generality of the reasoning tasks that can be handled and with

respect to the computational efficiency. The integration of DLs and ASP presented

in this dissertation provides a framework for integrating rules and ontologies for the

semantic web. This framework enables us to perform nonmonotonic reasoning with

DL knowledge bases. Observing the need to integrate action theories and ontolo-

gies, the above results are used to reformulate the problem of integrating action

theories and ontologies as a problem of integrating rules and ontologies, thus en-

abling us to use the computational tools developed in the context of the latter for

the former.
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Chapter 1

INTRODUCTION

Knowledge representation and reasoning (KR&R) is the area of Aritificial

Intelligence (AI) that is concerned with encoding knowledge in an adequately

expressive formalism and drawing conclusions effectively from the encoded

knowledge. A lot of work in the area is based on formal logic, and many

logic-based formalisms have been proposed. However, developing a formalism

that is both adequately expressive and efficiently computable has remained a

constant fundamental challenge.

First-order logic is widely used in KR&R. It forms the basis of many

well-known knowledge representation languages. For example, Description Logics

(DLs), which are widely studied in the context of the semantic web, are decidable

fragments of first-order logic. However, since inference in first-order logic is

monotonic, it is not suitable for capturing defeasible inferences (the kind of

inferences in everyday reasoning in which we tentatively derive conclusions and

retract them in the light of further information). In order to overcome this limitation

of first-order logic, there has been extensive research on nonmonotonic reasoning,

and many formalisms have been proposed.

Circumscription (McCarthy, 1980, 1986) and Default Logic (Reiter, 1980)

are among the first and most well-known nonmonotonic formalisms to have been

introduced. These languages extend first-order logic and have been shown to be

suitable for representing various commonsense reasoning domains. They were

also used to provide elegant solutions to the frame problem, thus achieving one of

the important goals of the theory of nonmonotonic reasoning. Some of the

well-known action formalisms that use circumscription to solve the frame problem

are the situation calculus (McCarthy & Hayes, 1969; Reiter, 2001; Lin, 1995), the
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event calculus (Shanahan, 1995; Mueller, 2006), and Temporal Action Logics

(TAL) (Doherty, Gustafsson, Karlsson, & Kvarnström, 1998). However,

circumscription and default logic are hard to compute and thus lack efficient

implementations.

Nonmonotonic reasoning is also studied in the context of logic programs,

and a number of declarative languages have been proposed. One of the most

well-known declarative logic programming languages is Answer Set Programming

(ASP), which is based on the stable model semantics (Gelfond & Lifschitz, 1988).

The traditional stable model semantics was shown to be a fragment of default logic

but several important extensions of the semantics have been proposed that

consider more general programs than the ones considered by the traditional

semantics. ASP has a wide range of applications, examples of which include

automated product configuration (Tiihonen, Soininen, Niemelä, & Sulonen, 2003),

decision support for the space shuttle (Nogueira, Balduccini, Gelfond, Watson, &

Barry, 2001) and phylogenetic tree inference (Brooks, Erdem, Erdoğan, Minett, &

Ringe, 2007). One of the main reasons for the growing popularity of ASP is the

availability of efficient off-the-shelf computational tools known as answer set

solvers. ASP also has a rich theory and various mathematical tools are available

for the analysis of programs. However, a limitation of ASP is that the semantics

considers only Herbrand interpretations (variables are merely place-holders and

are eliminated by grounding). This limitation implies that all the objects in the

domain being modeled often need to be explicitly specified, which in turn implies

that ASP does not effectively handle open domains, as often needed for modeling

ontologies. The limitation also makes the analysis of programs difficult as the

programs need to be grounded in order to apply the existing mathematical tools.

The above discussion on various well-known formalisms suggests that

each formalism has interesting applications but also has certain limitations either

2



with respect to expressivity or with respect to computational efficiency. The

discussion also suggests that the limitations of some formalisms are

well-addressed by some other formalisms, which implies that relating or integrating

the formalisms is a viable approach to (partially) overcoming their limitations.

Relating cirumscription and ASP enables us to use efficient answer set

solvers for computing circumscriptive action theories, such as theories in the event

calculus, the situation calculus, and TAL. This has several advantages. First, given

the efficiency of the answer set solvers, ASP-based reasoners are expected to be

more efficient on several domains when compared to the existing reasoners for the

circumscriptive theories. Second, since improving answer set computation is a

community-wide effort, answer set solvers are constantly improved, and these

improvements can be carried over to the computation of the circumscriptive

theories. This implies that the computation of the theories with different underlying

formalisms can be improved without specifically focusing on each of the

formalisms. Third, since answer set solvers can handle recursive axioms,

ASP-based reasoners can handle certain reasoning tasks that cannot be handled

by the existing reasoners for the circumscriptive action theories. Fourth, it enables

us to view the underlying formalisms of the circumscriptive theories as high-level

languages for ASP, thus allowing us to combine the corresponding theories with

ASP-rules. This is particularly useful if we want to extend the theories by adding

expressive ASP-rules such as the transitive closure rules.

Similarly, integrating DLs and ASP enables us to perform nonmonotonic

reasoning using DL knowledge bases. Since DLs form the basis for the Web

Ontology Language (OWL), integration of DLs and ASP provides a framework for

the integration of rules and ontologies, which is a key fragment of the semantic

web architecture.

3



Interestingly, while reasoning about actions and integrating rules and

ontologies have largely been treated as separate problems, there are certain

applications in which it is useful to relate the two. For instance, consider a medical

expert system that is required to assist physicians in diagnosis and treatment of

diseases/disorders. Such a system needs to be able to reason with various

cause-effect relationships, such as the causes of various diseases/disorders and

the effects of various drugs or disorders on the human body. For this, the system

needs to have sufficient access to information regarding anatomy, pathology,

pharmacology, and other related domains. Since much of this information is

available in the form of ontologies, the system also needs to be able to query

various biomedical ontologies. So, essentially, the system needs to be able to

reason with dynamic domains while using the ontologies as knowledge bases.

While there have been several approaches and computational tools presented for

integrating rules and ontologies, there is not much work on integrating

(circumscriptive) action theories and ontologies. By using a common semantic

framework for relating circumscription to ASP and integrating DLs and ASP, we

can reformulate the problem of integrating action theories and ontologies as a

problem of integrating ASP-rules and ontologies, thus enabling us to use the

computational tools of the latter for the former.

In order to relate circumscription to ASP, and to integrate DLs and ASP, we

need to bridge the gap between the underlying logics: first-order logic and the

stable model semantics. These languages are syntactically and semantically very

different. First, the (traditional) stable model semantics (Gelfond & Lifschitz, 1988)

is restricted to rule form while first-order logic considers first-order formulas.

Second, the stable model semantics refers to grounding to eliminate variables,

which implies that it considers only Herbrand interpretations. On the other hand,

first-order logic has no such restriction. Third, the negation under the stable model

4



semantics is default negation (not) while that in first-order logic is the usual

classical negation. In addition to bridging the gap between the logics, we also

need to relate circumscription to the stable model semantics.

A recent generalization of the stable model semantics makes our tasks a

bit easier since it bridges some of the gaps between first-order logic and the

traditional stable model semantics (Gelfond & Lifschitz, 1988). The first-order

stable model semantics (FOSM) defined by Ferraris, Lee and Lifschitz (2007,

2011) extends the traditional semantics to first-order formulas. The stable models,

according to this new definition, are not restricted to Herbrand interpretations.

Further, the stable models are characterized as the models of a second-order

sentence, which is similar to that used in the definition of circumscription. Since

the first-order stable model semantics incorporates features from first-order logic,

circumscription, and the traditional stable model semantics, it provides an ideal

framework for relating circumscription to ASP, and for integrating DLs and ASP.

Towards accomplishing these tasks and overcoming some of the limitations of the

corresponding formalisms, this dissertation

1. investigates the relationship between circumscription and FOSM and

presents a uniform approach to reformulate the event calculus, the situation

calculus, and TAL in ASP;

2. presents a system for computing descriptions in the event calculus, the

situation calculus, and TAL using existing answer set solvers, and

demonstrates some of its advantages;

3. presents a FOSM-based approach to integrate DLs and ASP, and relates it

to several existing approaches;

4. presents a FOSM-based approach to reformulate the problem of integrating

cirumscriptive action theories and ontologies as a problem of integrating
5



ASP-rules and ontologies, and discusses some interesting examples with

respect to the healthcare/biomedical domain.

5. investigates several properties of the first-order stable model semantics,

which, in addition to being useful for accomplishing the above tasks, also

have other interesting applications with respect to overcoming some

limitations of ASP.

The document is organized as follows. Chapter 2 gives the necessary

background information. Chapters 3-6 present various interesting properties of

FOSM and discuss some of their applications. Chapter 5 also presents system

F2LP (Formula to Logic Program) that turns formulas in FOSM, under certain

conditions, into the syntax of answer set programs. Chapters 7, 8, and 9 present

reformulations of the event calculus, the situation calculus, and TAL, respectively,

in ASP. These chapters also show how to use F2LP to compute descriptions in

these formalisms using existing answer set solvers, and compare this ASP-based

computation with some existing reasoning engines for the formalisms. Chapter 10

uses FOSM to integrate ASP-rules and ontologies, and relates this approach to

several existing approaches. Chapter 11 presents an interesting combination of

reasoning about actions and integrating rules and ontologies, with applications in

the healthcare/biomedical domain. Finally, Chapter 12 presents a conclusion.
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Chapter 2

BACKGROUND

2.1 The Situation Calculus

The situation calculus is one of the most well-known action formalisms. It was

originally introduced by McCarthy (1963). Reiter’s version (Reiter, 2001) of the

situation calculus differs from the original version mainly in terms of the

interpretation of situations. According to McCarthy, a situation is “the complete

state of the universe at an instance of time”. On the other hand, according to

Reiter, a situation is the same as its history, which is the finite sequence of actions

performed since the initial situation. The frame problem was extensively studied

under the situation calculus and many solutions were proposed (see, for example,

(McCarthy, 1986; Pednault, 1989; Schubert, 1990; Reiter, 1991)). The literature of

the situation calculus is very rich and many languages have been proposed. Here,

we consider two well-known languages - Basic Action Theories (BATs) (Reiter,

2001) and Lin’s Causal Theories (Lin, 1995).

BATs were introduced by Reiter and use the approach in (Reiter, 1991) to

solve the frame problem. They have implementations based on Prolog, which

enables expressive first-order reasoning. These theories are extensively used in

Golog (Levesque, Reiter, Lespérance, Lin, & Scherl, 1997) and its extensions

ConGolog (Giacomo, Lespérance, & Levesque, 2000) and IndiGolog (Giacomo &

Levesque, 1999; Giacomo, Levesque, & Sardiña, 2001; Sardiña, Giacomo,

Lespérance, & Levesque, 2004), which are high-level languages for the situation

calculus, and which have been shown to be well-suited for various applications

such as high-level control of robots (Burgard, Cremers, Fox, Hähnel, Lakemeyer,

Schulz, Steiner, & Thrun, 1999), web service composition (McIlraith & Son, 2002),

and vision systems (Borzenko, Xu, Obsniuk, Chopra, Jasiobedzki, Jenkin, &

Lespérance, 2006). However, a drawback of BATs is that they do not provide an
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effective solution to the ramification problem. This drawback is overcome by Lin’s

causal theories (Lin, 1995), that use cirumscription to solve the frame problem and

the ramification problem. However, since circumscription is hard to compute, the

computational tools for Lin’s causal theories (Lin, 2003; Lin & Wang, 1999) rely on

the reduction of circumscription to first-order logic, which is only possible under

certain conditions.

2.2 The Event Calculus

The event calculus was originally introduced by Kowalski and Sergot (1986) in the

framework of logic programs but was later extensively developed under the

classical logic setting (Shanahan, 1995; Miller & Shanahan, 1999). The work

based on classical logic uses circumscription to solve the frame problem and the

ramification problem. The event calculus is a very expressive language and can

handle a variety of reasoning tasks such as reasoning with compound events and

hierarchical planning, reasoning about continuous change, reasoning with

indeterminate effects, and reasoning with indirect effects. It has been applied to

various areas of science and technology, including open interaction

systems (Fornara & Colombetti, 2008), robotics (Patkos & Plexousakis, 2009),

software engineering (Classen, Heymans, & Schobbens, 2008), and web service

composition (Rouached, Perrin, & Godart, 2006). A key difference between the

event calculus and the situation calculus is with respect to the time structures

used. While the situation calculus uses a branching time structure, the event

calculus uses a linear time structure.

Initial implementations of the event calculus were based on logic

programming and mostly handled only abduction and planning problems (see, for

example, (Shanahan, 2000)1). Later, Shanahan and Witkowski (2004) introduced

a SAT-based planner which was shown to be more efficient than the logic

1 http://www.iis.ee.ic.ac.uk/∼mpsha/planners.html
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programming based planners. However, due to its limited coverage of the event

calculus, it solves only 1 out of the 14 benchmark problems (Mueller, 2004) from

(Shanahan, 1997, 1999). Mueller (2004) introduced a SAT-based event calculus

reasoner that not only solves abduction and planning problems, but also solves

other interesting problems such as projection and postdiction. This system is

called the DEC reasoner, and is available at

http://decreasoner.sourceforge.net/ .

Similar to the computational tools for Lin’s causal theories, the DEC reasoner

computes circumscription by reducing it to first-order logic (Lifschitz, 1994). It

handles a large fragment of the event calculus (Mueller, 2006) and solves 11 out of

the 14 benchmark problems. It has been used for various applications, some of

which are listed on its webpage.

2.3 Temporal Action Logics

Temporal Action Logics (TAL) (Doherty et al., 1998) is a class of logics for

reasoning about action and change that are based on the Features and Fluents

framework of Sandewall (1994). Some of the languages that belong to this class

are PMON (Sandewall, 1994), PMON-RC (Gustafsson & Doherty, 1996), TAL 1.0

(PMON+) (Doherty, 1996), TAL-C (Karlsson & Gustafsson, 1999), TAL

2.0 (Doherty et al., 1998), and TAL-Q (Kvarnström & Doherty, 2000). By TAL, we

refer to the language presented in (Doherty & Kvarnström, 2008).which is

essentially the latest kernel of this class of logics. Like the event calculus, TAL also

uses a linear time structure. In TAL, features represent properties of the world, and

fluents are functions of time representing the values of the features over time.

Unlike the situation calculus and the event calculus, actions in TAL are by default

durative, due to which, it provides a suitable framework for representing and

reasoning with problems involving required concurrency (Cushing, Kambhampati,
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Mausam, & Weld, 2007). Among other interesting features of TAL is the support

for durational fluents. TAL uses circumscription to solve the frame problem,

ramification problem, and the qualification problem, and the language is carefully

designed so that circumscription in the language can be reduced to first-order logic

using “predicate completion” presented in (Lifschitz, 1994).

VITAL2 is a tool for reasoning about actions using TAL. The tool supports

rich featuers, including ramification constraints, qualification constraints, and

durational fluents. It not only generates the models but also provides a

visualization of the models, which makes it easier to verify the output.

TALplanner3 (Kvarnström, 2005) is a forward-chaining planner based on TAL. The

planner uses domain-dependent control rules specified in the description to prune

the search space, which results in a considerable improvement in the efficiency.

The planner participated in the second and third international planning

competitions (IPC-20004 and IPC-20025) and won the “distinguished planner”

award in the hand-tailored track of IPC-2000.

2.4 Action Languages

Action Languages are high-level languages that are used to succintly describe

transition systems. Examples include STRIPS (Fikes & Nilsson, 1971),

ADL (Pednault, 1989), PDDL (McDermott, Ghallab, Howe, Knoblock, Ram,

Veloso, Weld, & Wilkins, 1998), A (Gelfond & Lifschitz, 1998), B (Gelfond &

Lifschitz, 1998), C (Giunchiglia & Lifschitz, 1998), and C+ (Giunchiglia, Lee,

Lifschitz, McCain, & Turner, 2004).

The language STRIPS (Stanford Research Institute Problem Solver), which

was introduced in the context of automated planning, is one of the earliest action

2http://www.ida.liu.se/∼jonkv/vital
3 http://www.ida.liu.se/divisions/aiics/aiicssite/projects/talplanner.en.shtml
4http://www.cs.toronto.edu/aips2000/
5 http://planning.cis.strath.ac.uk/competition/
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languages to be introduced. It forms the basis for several languages that are

currently being used to describe planning domains. ADL (Action Description

Language) is an extension of STRIPS that allows one to represent conditional

effects. PDDL (Planning Domain Definition Language), which can be considered

as an extension of ADL, is the official language for the international planning

competitions. Over the years, several extensions of PDDL have been proposed.

While PDDL (v. 1.2) (McDermott et al., 1998) had roughly the same

expressiveness as ADL, PDDL (v. 2.1) (Fox & Long, 2003) introduced durative

actions, numeric expressions (for modeling domains involving fluents with numeric

values), and plan metrics (such as minimize and maximize for utility-driven

planning). PDDL (v. 2.2) (Edelkamp & Hoffmann, 2004) introduced derived

predicates, and timed initial literals for modeling exogenous events. PDDL (v.

3.0) (Gerevini & Long, 2005) introduced state trajectory constraints (for specifying

constriants over the trajectories) and soft constraints and preferences (for

specifying constraints that need not be satisfied but that the user would prefer to

see satisfied). PDDL (v. 3.1) is an extension of PDDL (v. 3.0) that allows the range

of functions to be non-numeric.

Action language A (Gelfond & Lifschitz, 1998), which is essentially the

propositional fragment of ADL, is based on ASP. In A, effects of actions can be

specified using statements such as “A causes B if C”, which represents the

knowledge that action A has effect B under condition C. There are several

extensions of language A, including languages AC (Baral & Gelfond, 1997) and

B (Gelfond & Lifschitz, 1998) that enable representation of concurrent actions and

indirect effects respectively. Action language C (Giunchiglia & Lifschitz, 1998),

which is based on causal logic (McCain & Turner, 1997), provides a convenient

way to represent nondeterministic actions and concurrent actions. Further, it

allows one to choose which fluent is inertial and which is not. Language
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C+ (Giunchiglia et al., 2004) extends C by providing support for functional fluents

and by introducing features such as action attributes and additive fluents6 (Lee &

Lifschitz, 2001). System CCALC7 is a SAT-based implementation of an expressive

fragment of C+, and system COALA8 is a compiler from action languages to

answer set programs which supports several action languages including B, C, and

a fragment of C+.

Comparison with Circumscriptive Action Formalisms

While action languages and circumscriptive action formalisms address several

common problems in the area of reasoning about actions, there are certain key

differences between the two.This section briefly discusses some differences

between circumscriptive action formalisms and PDDL, and between

circumscriptive action formalisms and the action languages based on ASP and

causal logic.

One of the key differences between circumscriptive action formalisms (such

as the event calculus, the situation calculus, and Temporal Action Logics) and

PDDL is that while the former are based on first-order logic (augmented with

circumscription), the latter has a transition system based semantics. Another key

difference is with respect to the representation of indirect effects. As we will see in

the later chapters, the circumscriptive action formalisms handle direct effects and

indirect effects in a similar way. As a result, the value of a fluent can change both

as a direct effect of an action and as an indirect effect of a possibly different

action. This is in contrast to PDDL (v. 2.2), where “derived predicates” cannot

occur in the effect lists of actions. On the other hand, PDDL also has certain

interesting features that are not well-studied in the context of circumscriptive action

6An additive fluent is a fluent with numerical values such that the effect of concurrently executed
actions on the fluent can be computed by adding the effects of the individual actions.

7http://www.cs.utexas.edu/∼tag/cc/
8http://potassco.sourceforge.net/
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formalisms. Examples include “plan metrics” and “soft constraints and

preferences” discussed above.

Similarly, there are some key differences between circumscriptive action

formalisms and the action languages based on ASP and causal logic. For

example, representation of continuous change and compound events are

well-studied in the event calculus but not in the framework of action languages.

Another example is the representation of durative actions that is well-studied in

TAL and the event calculus but not in the framework of action languages. On the

other hand, representation of action attributes and additive fluents are well-studied

in C+ but not in the framework of the circumscriptive action formalisms.

2.5 Stable Model Semantics and Answer Set Programming

The traditional stable model semantics (Gelfond & Lifschitz, 1988) applies to

programs consisting of rules of the form

A← A1, . . . , Am, not Am+1, . . . , not An (2.1)

where n ≥ m ≥ 0, not is default negation, comma(,) represents conjunction and A

and each Ai are ground atoms. Such programs are traditionally referred to as

normal logic programs and logic programs under the stable model semantics are

often referred to as answer set programs. In (2.1), A is the head of the rule and

A1, . . . , Am, not Am+1, . . . , not An is the body of the rule. Further, A1, . . . , Am is

the positive part of the body and not Am+1, . . . , not An is the negative part of the

body. If the body is empty, then the rule is called a fact and if the head is empty,

the rule is called a constraint. A program is called positive if none of the rules in

the program contains the negative part of the body. A set of ground atoms X is a

stable model (answer set) of a normal logic program Π if it is the minimal model of

ΠX , where ΠX is the positive program (reduct) obtained by (i) removing all the

rules such that for some not Ai in the negative body, Ai ∈ X, and (ii) removing the
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negative bodies of all the remaining rules. According to this semantics, variables in

answer set programs are understood as place-holders, to be replaced by the

ground terms of the underlying signature9. The semantics was later extended to

programs with classical negation, and disjunction in the head (Gelfond & Lifschitz,

1991).

Consider the statements “Normally, birds fly.” and “Penguins do not fly.”

These can be represented by the following program Π:

flies(x)← bird(x), not ¬flies(x)

¬flies(x)← penguin(x).

Here, ’¬’ represents classical negation. The only answer set of Π ∪ {bird(tweety)}

is {bird(tweety), flies(tweety)}, representing the conclusion that Tweety flies.

However, the only answer set of Π ∪ {bird(tweety), penguin(tweety)} is

{bird(tweety),¬flies(tweety), penguin(tweety)}, representing the conclusion that

Tweety does not fly. As we can see, the inference here is nonmonotonic.

The stable model semantics was further extended to programs with nested

expressions (head and body can contain arbitrary nesting of default negation,

conjunction and disjunction) (Lifschitz, Tang, & Turner, 1999) and programs with

aggregates and choice rules.

Aggregates are constructs that greatly facilitate encoding. They have been

widely studied in the context of relational databases and nonmonotonic reasoning

(see, for example, (Astrahan, Blasgen, Chamberlin, Eswaran, Gray, Griffiths, King,

Lorie, McJones, Mehl, Putzolu, Traiger, Wade, & Watson, 1976; Mumick,

Pirahesh, & Ramakrishnan, 1990; Zaniolo, Arni, & Ong, 1993; Agarwal, Agrawal,

Deshpande, Gupta, Naughton, Ramakrishnan, & Sarawagi, 1996)). They were first

introduced in ASP in the form of weight constraints by Simons, Niemelä and

Soininen (Simons, 1999; Niemelä, Simons, & Soininen, 1999). More general
9The signature is usually obtained from the program.
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aggregates were later considered in (Denecker, Pelov, & Bruynooghe, 2001; Pelov,

Denecker, & Bruynooghe, 2004; Faber, Leone, & Pfeifer, 2004; Marek &

Truszczynski, 2004), and this was followed by various proposals for defining

semantics for programs with aggregates (see, for example, (Ferraris, 2005; Son &

Pontelli, 2007; Lee & Meng, 2009)).

The following rule intuitively represents that p is true if there are atleast 8

elements that belong to q:

p← #count{x : q(x)} ≥ 8

Here #count{x : q(x)} ≥ 8 is an aggregate expression involving the count

aggregate. As another example, consider the following rule involving the sum

aggregate:

p(x)← #sum{y : q(x, y)} ≤ 5

This rule represents that x belongs to p if the sum of all y such that q(x, y) holds is

less than or equal to 5.

While most semantics for programs with aggregates agree on the treatment

of monotonic aggregates such as count, they usually differ with respect to the

treatment of nonmonotonic aggregates such as sum. In fact, the need to

understand nonmonotonic aggregates under the stable model semantics is one of

the main reasons for the several different proposals for semantics of programs

with aggregates.

The choice construct is another useful construct in ASP, which is used to

represent an arbitrary choice for including atoms in the answer set. For example,
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consider the following program:

{p(x)} ← q(x)

r ← p(x)

q(a)

The first rule is a choice rule indicating that for every element in q, arbitrarily

choose whether the element belongs to p. Since q(a) holds, the rule generates 2

choices for p(a): one in which it is true and one in which it is false. As a result, the

program has 2 answer sets : {q(a), p(a), r} and {q(a)}.

Ferraris (2005) extended the stable model semantics to arbitrary

propositional formulas. According to that semantics, answer set programs without

variables are a special class of propositional formulas. In that paper, he also

proposed semantics for aggregates by turning the aggregates to propositional

formulas.

The tools that compute answer sets are referred to as answer set solvers.

Some of the well-known answer set solvers are SMODELS10, CMODELS11,

CLASP12, CLINGO, DLV13, and ASSAT14. SMODELS, CMODELS, and CLASP use the

systems LPARSE and GRINGO to ground the input programs. DLV has a grounder

built into it, and CLINGO is GRINGO and CLASP combined in a monolithic way. Any

of LPARSE, GRINGO, or DLV can be used as a grounder for ASSAT. ASSAT and

CMODELS are SAT-based systems, i.e., they turn the output of the grounders into a

set of clauses and invoke satisfiability solvers to compute the answer sets.

CLASPD is an extension of CLASP to disjunctive programs, and we use this in

place of CLASP whenever necessary.

10http://www.tcs.hut.fi/Software/smodels/
11http://www.cs.utexas.edu/∼tag/cmodels/
12http://potassco.sourceforge.net/
13http://www.dlvsystem.com
14http://assat.cs.ust.hk/
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2.6 Description Logics and Hybrid Knowledge Bases

Description Logics (DLs), which were originally introduced in order to provide

precise semantics for network-based systems such as semantic networks and

frame systems (Minsky, 1981), are a family of knowledge representation

languages, most of which are decidable fragments of first-order logic. DLs have a

wide range of applications but are probably most well-known as the basis for the

ontology layer in the semantic web. DLs form the basis for the Web Ontology

Language (OWL), which is one of the most widely used semantic web languages.

OWL today is being extensively used for representing ontologies spanning many

different domains. Due to its standard syntax and semantics (based on DLs), it

greatly facilitates knowledge sharing across domains. However, the lack of support

for nonmonotonic reasoning is a significant limitation of the language. This

limitation is well-recognized by the semantic web community, and several

approaches have been proposed for integrating nonmonotonic rules and

ontologies (DLs). The knowledge base resulting from combining a DL knowledge

base with nonmonotonic rules is usually referred to as a hybrid knowledge base.

A hybrid knowledge base is a pair (T ,P) where T is a FOL knowledge

base (typically in a description logic) of signature ΣT and P is a logic program of

signature ΣP . The existing integration approaches can be classified into three

categories: loose integration, tight integration with semantic separation, and tight

integration under a unifying logic (Nazarenko, Polo, Eiter, de Bruijn,

Schwichtenberg, & Heymans, 2010). In the loose integration approach, T and P

are viewed as separate, independent components, and are connected through

minimal safe interfaces for exchanging data (usually in the form of ground atoms).

Examples in this category include nonmonotonic dl-programs (Eiter, Ianni,

Lukasiewicz, Schindlauer, & Tompits, 2008), and the combination of description

17



logics and defeasible logic (Wang, Billington, Blee, & Antoniou, 2004). In the tight

integration with semantic separation approach, T and P are more tightly

integrated, but the predicates in ΣT and ΣP are kept separate. This approach

builds an integrated model I as the union of a model IT of T and a model IP of P

with the same domain. Examples in this category are r-hybrid KB (Rosati, 2005),

DL+ log (Rosati, 2006), g-hybrid KB (Heymans, de Bruijn, Predoiu, Feier, &

Nieuwenborgh, 2008), and f -hybrid KB (Feier & Heymans, 2009). Finally, in the

tight integration under a unifying logic approach, T and P are treated uniformly by

translating them into a uniform logic, and there is no principled separation between

ΣT and ΣP . Examples in this category are Hybrid MKNF KB (Motik & Rosati,

2010), the first-order Autoepistemic Logic based integration (de Bruijn, Eiter,

Polleres, & Tompits, 2007a), and the Quantified Equilibrium Logic based

integration (de Bruijn, Pearce, Polleres, & Valverde, 2007b). This approach is

attractive since it provides a seamless integration of DLs and logic programs, and

since the information flow is bi-directional.
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Chapter 3

CIRCUMSCRIPTION, FIRST-ORDER STABLE MODEL SEMANTICS, AND

THEIR RELATIONSHIP

In this chapter, we present a class of formulas, called canonical formulas, on which

cirumscription and the stable model semantics coincide. As we will see in the later

chapters, canonical formulas are general enough to cover theories in the event

calculus, the situation calculus, and TAL. This enables us to turn theories in these

action formalisms into the first-order stable model semantics.

The chapter is organized as follows. We first review the definitions of

circumscription and the first-order stable model semantics. We then introduce

canonical formulas and discuss the related work. Several parts of this chapter are

also presented in (Kim, Lee, & Palla, 2009; Lee & Palla, 2010), which contain a

stronger definition of canonical formulas.

3.1 Circumscription

We assume the following set of primitive propositional connectives and quantifiers:

⊥ (falsity), ∧, ∨, →, ∀, ∃ .

We understand ¬F as an abbreviation of F → ⊥; symbol > stands for ⊥ → ⊥,

and F ↔ G stands for (F → G) ∧ (G→ F ).

Let p be a list of distinct predicate constants p1, . . . , pn, and let u be a list of

distinct predicate variables u1, . . . , un. By u ≤ p we denote the conjunction of the

formulas ∀x(ui(x)→ pi(x)) for all i = 1, . . . n where x is a list of distinct object

variables whose length is the same as the arity of pi. Expression u < p stands for

(u ≤ p) ∧ ¬(p ≤ u). For instance, if p and q are unary predicate constants then

(u, v) < (p, q) is

∀x(u(x)→ p(x)) ∧ ∀x(v(x)→ q(x)) ∧ ¬
(
∀x(p(x)→ u(x)) ∧ ∀x(q(x)→ v(x))

)
.
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Circumscription is defined in terms of the CIRC operator with minimized

predicates. For any first-order formula F , expression CIRC[F ; p] stands for the

second-order formula

F ∧ ¬∃u((u < p) ∧ F (u)),

where F (u) is the formula obtained from F by substituting ui for pi. When F is a

sentence (i.e., a formula with no free variables), intuitively, the models of

CIRC[F ; p] are the models of F that are “minimal” on p.

This minimization of certain predicates is what makes the inference under

circumscription nonmonotonic. For instance, consider again the sentences

“Normally, birds fly.” and “Penguins do not fly.” These can be represented using

the following formula:

∀x(bird(x) ∧ ¬ab(x)→ flies(x)) ∧ ∀x(penguin(x)→ ab(x)). (3.1)

It follows that

CIRC[(3.1) ∧ bird(tweety); penguin, ab, flies] |= flies(tweety),

and

CIRC[(3.1) ∧ bird(tweety) ∧ penguin(tweety); penguin, ab, flies] |= ¬flies(tweety).

The definition of circumscription is straightforwardly extended to the case

when F is a many-sorted first-order formula (Lifschitz, 1994, Section 2.4), which is

the language that the event calculus, the situation calculus, and TAL are based on.

Predicate Completion

Lifschitz (1994) uses the notion of predicate completion to characterize

circumscription by a first-order formula under certain conditions.

If p is a predicate constant and F (x) is a formula whose only free variables

are the ones in x, then replacing the implication F (x)→ p(x) with F (x)↔ p(x) is

known as predicate completion.
20



Theorem 1 (Lifschitz, 1994) If F (x) does not contain p, then

CIRC[∀x(F (x)→ p(x)); p]

is equivalent to

∀x(F (x)↔ p(x)).

The above result was extended to the case when several predicates are

minimized in parallel. A formula F is positive relative to a list of predicate

constants p if every occurrence of every predicate constant p ∈ p in F is in the

antecedent of an even number of implications. Following is a restricted version of

Proposition 7.1.1 from (Lifschitz, 1994).

Theorem 2 If F is positive relative to p, then

CIRC[F ; p]

is equivalent to ∧
p∈p

CIRC[F ; p].

These results are used by the event calculus reasoner DEC reasoner, and

the TAL reasoner VITAL for computing circumscription.

3.2 First-Order Stable Model Semantics

This review follows the definition by Ferraris et al. (2011).

We assume the same set of primitive propositional connectives and

quantifiers as in the case of circumscription (Chapter 3.1).

The stable models are defined in terms of the SM operator with intensional

predicates,1 which is similar to the circumscription operator: For any first-order
1The intensional predicates p are the predicates that we “intend to characterize” by F , which

are analogous to “output” predicates in Datalog; non-intensional (i.e., extensional) predicates are
analogous to input predicates in Datalog. Here we use expression SM[F ; p] in place of SMp[F ]
used in the work of Ferraris et al. (2011).
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formula F and any finite list p = (p1, . . . , pn) of intensional predicates, SM[F ; p] is

defined as

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where u is defined the same as in CIRC[F ; p] and F ∗(u) is defined recursively as

follows:

• pi(t)∗ = ui(t) for any list t of terms;

• F ∗ = F for any atomic formula F (including ⊥ and equality) that does not

contain members of p;

• (F ∧G)∗ = F ∗ ∧G∗;

• (F ∨G)∗ = F ∗ ∨G∗;

• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);

• (∀xF )∗ = ∀xF ∗;

• (∃xF )∗ = ∃xF ∗.

When F is a sentence, the models of SM[F ; p] are called the p-stable

models of F . Intuitively they are the models of F that are “stable” on p. We will

often simply write SM[F ] in place of SM[F ; p] when p is the list of all predicate

constants occurring in F .

According to Lee, Lifschitz, and Palla (2008a), answer sets are defined as

a special class of stable models as follows. By σ(F ) we denote the signature

consisting of the object, function and predicate constants occurring in F . If F

contains at least one object constant, an Herbrand interpretation of σ(F ) that

satisfies SM[F ] is called an answer set of F . The answer sets of a logic program

Π are defined as the answer sets of the FOL-representation of Π (i.e., the
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conjunction of the universal closures of implications corresponding to the rules).

For example, the FOL-representation of the program

p(a)

q(b)

r(x)← p(x), not q(x)

is

p(a) ∧ q(b) ∧ ∀x(p(x) ∧ ¬q(x)→ r(x)) (3.2)

and SM[F ] is

p(a) ∧ q(b) ∧ ∀x(p(x) ∧ ¬q(x)→ r(x))

∧¬∃uvw(((u, v, w) < (p, q, r)) ∧ u(a) ∧ v(b)

∧∀x((u(x) ∧ (¬v(x) ∧ ¬q(x))→ w(x)) ∧ (p(x) ∧ ¬q(x)→ r(x)))),

which is equivalent to the first-order sentence

∀x(p(x)↔ x = a) ∧ ∀x(q(x)↔ x = b) ∧ ∀x(r(x)↔ (p(x) ∧ ¬q(x))) (3.3)

by completion (presented later in the chapter). The stable models of F are any

first-order models of (3.3). The only answer set of F is the Herbrand model

{p(a), q(b), r(a)}.

Ferraris et al. show that this definition of an answer set, when applied to the

syntax of logic programs, is equivalent to the traditional definition of an answer set

that is based on grounding and fixpoints (Gelfond & Lifschitz, 1988).

Note that the definition of a stable model is more general than the definition

of an answer set in the following ways: stable models are not restricted to

Herbrand models, the underlying signature can be arbitrary, and the intensional

predicates are not fixed to the list of predicate constants occurring in the formula.

The last fact is not essential in view of the following proposition. By pr(F ) we

denote the list of all predicate constants occurring in F ; by Choice(p) we denote
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the conjunction of “choice formulas” ∀x(p(x) ∨ ¬p(x)) for all predicate constants p

in p where x is a list of distinct object variables; by False(p) we denote the

conjunction of ∀x¬p(x) for all predicate constants p in p. We sometimes identify a

list with the corresponding set when there is no confusion.

Proposition 1 Formula

SM[F ; p]↔ SM[F ∧ Choice(pr(F )\p) ∧ False(p\pr(F ))] (3.4)

is logically valid.

For example, if F is ∀x(q(x)→ p(x)) and r is a unary predicate, then SM[F ; p, r]

is equivalent to

SM[∀x(q(x)→ p(x)) ∧ ∀x(q(x) ∨ ¬q(x)) ∧ ∀x¬r(x)].

Notice that the (implicit) intensional predicates on the right-hand side of (3.4) are

those in (pr(F ) ∪ p). The Choice formula makes the predicates in (pr(F ) \ p) to

be exempt from the stability checking. On the other hand, the False formula makes

the predicates in (p \ pr(F )) to be stabilized (i.e., to have empty extents), though

they do not occur in F .

The language presented so far does not consider strong (a.k.a. classical)

negation. Strong negation is useful to represent the notion of a property being

false. This is different from the notion of a property not known to be true, which

can be represented using default negation (¬)2. Typical uses of strong negation

include explicit representation of the Closed World Assumption (CWA) and the

commonsense law of inertia. For example, the following axioms represent the

knowledge that the property on(x, y), representing that an object x is on y, is

2Note that this symbol is used to represent classical negation in the logic program syntax dis-
cussed in Chapter 2.5. However, in formulas under the first-order stable model semantics, this
symbol represents default negation.
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inertial:

on(x, y, t) ∧ ¬ ∼on(x, y, t+ 1)→ on(x, y, t+ 1)

∼on(x, y, t) ∧ ¬on(x, y, t+ 1)→∼on(x, y, t+ 1).

Here, ‘∼’ is a symbol for strong negation and t is a time variable. The expression

∼on(x, y, t) represents that x is not on y at time t. This is different from

¬on(x, y, t), which represents that x is not known to be on y at time t.

Ferraris et al. (2011) incorporated strong (a.k.a. classical) negation into the

stable model semantics by distinguishing between intensional predicates of two

kinds, positive and negative. Each negative intensional predicate has the form ∼p,

where p is a positive intensional predicate. An interpretation of the underlying

signature is coherent if the extent of every negative predicate ∼p in it is disjoint

from the extent of the corresponding positive predicate p.

According to Ferraris et al. (2011), a formula F is strongly equivalent to

formula G if, for any formula H containing F as a subformula (and possibly

containing object, function and predicate constants that do not occur in F , G), and

for any list p of distinct predicate constants, SM[H; p] is equivalent to SM[H ′; p],

where H ′ is obtained from H by replacing an occurrence of F by G. In other

words, replacing a subformula with a formula that is strongly equivalent to the

subformula does not change the stable models of the whole formula. While

strongly equivalent theories are classically equivalent, the converse does not

necessarily hold. Consequently, classically equivalent transformations do not

necessarily preserve stable models. For instance, consider p and ¬¬p. If p is

intensional, the former has stable models but the latter does not.

Like the extension of circumscription to many-sorted first-order sentences,

the definition of a stable model is straightforwardly extended to many-sorted

first-order sentences.
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The above extension of the stable model semantics to first-order formulas

is essentially the same as the extension presented by Lin and Zhou (2011). These

definitions are also equivalent to the definition of Quantified Equilibrium Logic

given by Pearce and Valverde (2005), which is defined in terms of the logic of

Here-and-There. In the rest of the dissertation, we often use FOSM as an

abbreviation of first-order stable model semantics.

Relation to Completion

Similar to circumscription, completion can be used, under certain conditions, to

characterize the first-order stable model semantics by a first-order formula.

We say that an occurrence of a predicate constant, or any other

subexpression, in a formula F is positive if the number of implications containing

that occurrence in the antecedent is even, and negative otherwise. (Recall that we

treat ¬G as shorthand for G→ ⊥.) We say that the occurrence is strictly positive if

the number of implications in F containing that occurrence in the antecedent is 0.

For instance the occurrence of q in

((p→ q)→ r)→ p (3.5)

is positive, and the second occurrence of p is strictly positive. Let F be a first-order

formula. A rule of F is an implication that occurs strictly positively in F . We say

that F is negative on a list of predicates p if members of p have no strictly positive

occurrences in F .3

The predicate dependency graph of F (relative to p) is the directed graph

that

• has all members of p as its vertices, and

• has an edge from p to q if, for some rule G→ H of F ,

3Note the difference between a formula being negative and an occurrence being negative.
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– p has a strictly positive occurrence in H, and

– q has a positive occurrence in G that does not belong to any

subformula of G that is negative on p.

For instance, the dependency graph of (3.5) relative to {p} has no edges since the

only rule of the formula is the formula itself and ((p→ q)→ r) is negative on {p}.

On the other hand, the dependency graph of the same formula relative to {p, r}

has an edge from p to r. Though p occurs positively in ((p→ q)→ r), there is no

edge from p to p since p→ q is negative on {p, r}.

A formula F is in Clark normal form (relative to the list p of intensional

predicates) if it is a conjunction of sentences of the form

∀x(G→ p(x)), (3.6)

one for each intensional predicate p, where x is a list of distinct object variables,

and G has no free variables other than those in x. The completion (relative to p) of

a formula F in Clark normal form is obtained by replacing each conjunctive term

(3.6) with

∀x(p(x)↔ G).

The following theorem from (Ferraris et al., 2011) relates SM to completion.

We say that F is tight on p if the predicate dependency graph of F relative to p is

acyclic.

Theorem 3 (Ferraris et al., 2011) For any formula F in Clark normal form that is

tight on p, formula SM[F ; p] is equivalent to the completion of F relative to p.

3.3 Canonical Formulas

Neither the stable model semantics nor circumscription is stronger than the other.

For example,

CIRC[∀x(p(x) ∨ ¬p(x)); p] (3.7)
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is equivalent to ∀x¬p(x), and

SM[∀x(p(x) ∨ ¬p(x)); p] (3.8)

is equivalent to >, so that (3.7) is stronger than (3.8). On the other hand,

CIRC[∀x(¬p(x)→ q(x)); p, q] (3.9)

is equivalent to ∀x(¬p(x)↔ q(x)), and

SM[∀x(¬p(x)→ q(x)); p, q] (3.10)

is equivalent to ∀x(¬p(x) ∧ q(x)), so that (3.10) is stronger than (3.9).

Here, we show that the two semantics coincide on a class of formulas

called canonical formulas, which we define below.

We say that a formula F is canonical relative to a list p of predicate

constants if

• no occurrence of a predicate constant from p is in the antecedent of more

than one implication in F , and

• every occurrence of a predicate constant from p that is in the scope of a

strictly positive occurrence of ∃ or ∨ in F is strictly positive in F .

Example 1 The formula

∀x(¬p(x)→ q(x)) (3.11)

that is shown above is not canonical relative to {p, q} since it does not satisfy the

first clause of the definition (p occurs in the antecedent of two implications as

¬p(x) is shorthand for p(x)→ ⊥). On the other hand, the formula is canonical

relative to {q}. The formula

∀x(p(x) ∨ ¬p(x)) (3.12)
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is not canonical relative to {p} since it does not satisfy the second clause; the

formula

p(a) ∧ (∃x p(x)→ ∃x q(x)) (3.13)

is canonical relative to {p, q}, while

p(a, a) ∧ ∃x(p(x, a)→ p(b, x)) (3.14)

is not canonical relative to {p, q} since it does not satisfy the second clause (the

second occurrence of p is in the scope of a strictly positive occurrence of ∃, but is

not strictly positive in formula (3.14)).

The following theorem states that, for any canonical formula,

circumscription coincides with the stable model semantics.

Theorem 4 For any canonical formula F relative to p,

CIRC[F ; p]↔ SM[F ; p] (3.15)

is logically valid.

For instance, for formula (3.13), which is canonical relative to {p, q},

formulas CIRC[(3.13); p, q] and SM[(3.13); p, q] are equivalent to each other.

Also, any sentence F is clearly canonical relative to ∅, so that CIRC[F ; ∅] is

equivalent to SM[F ; ∅], which in turn is equivalent to F . On the other hand, such

equivalence may not necessarily hold for non-canonical formulas. For instance, we

observed that, for formula (3.12) that is not canonical relative to {p}, formulas (3.7)

and (3.8) are not equivalent to each other. For formula (3.11) that is not canonical

relative to {p, q}, formulas (3.9) and (3.10) are not equivalent to each other. We

also observe that for formula (3.14) that is not canonical relative to {p, q},

CIRC[(3.14); p, q] is not equivalent to SM[(3.14); p, q]: the Herbrand interpretation

{p(a, a), p(b, a)} satisfies SM[(3.14); p, q], but does not satisfy CIRC[(3.14); p, q].
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Note that non-canonical formulas can often be equivalently rewritten as

canonical formulas. Since any classically equivalent transformation preserves the

models of circumscription, Theorem 4 can be applied to such non-canonical

formulas, by first rewriting them as canonical formulas. For example, formula

(3.11) is equivalent to

∀x(p(x) ∨ q(x)), (3.16)

which is canonical relative to {p, q}, so that CIRC[(3.11); p, q] is equivalent to

SM[(3.16); p, q]. As another example, formula (3.12) is equivalent to

∀x(p(x)→ p(x)), (3.17)

which is canonical relative to {p}, so that CIRC[(3.12); p] is equivalent to

SM[(3.17); p]. It is clear that this treatment can be applied to any quantifier-free

formula (including any propositional formula) because a quantifier-free formula can

be equivalently rewritten as a canonical formula by first rewriting it into a clausal

normal form and then turning each clause into the form C → D where C is a

conjunction of atoms and D is a disjunction of atoms.4

3.4 Related Work

The relationship between circumscription and the stable model semantics has

been well-studied. Proposition 8 from the work of Lee and Lin (2006) shows an

embedding of propositional circumscription in logic programs under the stable

model semantics. The theorem on canonical formulas is a generalization of this

result to the first-order case. Janhunen and Oikarinen (2004) showed another

embedding of propositional circumscription in logic programs, and implemented

the system CIRC2DLP,5 but their translation appears quite different from the one

4It appears unlikely that knowledge has to be encoded in a non-canonical formula such as
(3.8) that cannot be easily turned into an equivalent canonical formula. c.f. “Guide to Axiomatizing
Domains in First-Order Logic” ( http://cs.nyu.edu/faculty/davise/guide.html). It is not a surprise that
all circumscriptive action theories considered in this dissertation satisfy the canonicality assumption.

5http://www.tcs.hut.fi/Software/circ2dlp/.
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by Lee and Lin (2006). Ferraris et al. (2007, 2011) showed a characterization of

the first-order stable model semantics in terms of circumscription, and Lin and

Zhou (2011) presented the same via logic of knowledge and justified

assumptions (Lin & Shoham, 1992).

Recently, Zhang, Zhang, Ying, and Zhou (2011) showed that

circumscription of any first-order formula F can be translated into the first-order

stable model semantics. Theorem 3 from that paper is represented as follows.6

Theorem 5 (Zhang et al., 2011, Theorem 3) Let F be a formula in negation

normal form and let p be a finite list of predicate constants. Let F¬¬ be the formula

obtained from F by replacing every p(t) by ¬¬p(t), and let F ′ be the formula

obtained from F by replacing every ¬p(t) by p(t)→ Choice(p), where p is in p and

t is a list of terms. Then CIRC[F ; p] is equivalent to SM[F¬¬ ∧ F ′; p].

For example, consider the formula F = ∀x(p(x) ∨ ¬p(x)). According to the above

theorem, CIRC[F ; p] is equivalent to

SM[∀x(¬¬p(x) ∨ ¬¬¬p(x)) ∧ ∀x
(
p(x) ∨

(
p(x)→ (p(x) ∨ ¬p(x))

))
; p].

Notice that F is not canonical relative to p, and so, Theorem 4 is not applicable to

F .

The above theorem provides another insight into the relationship between

the two semantics. While the result is applicable to circumscription of any formula,

it requires non-trivial transformations. Our result is limited to canonical formulas,

but does not require any transformation, and is still general enough to cover useful

circumscriptive theories, such as the situation calculus, the event calculus, and

TAL. In fact, we expect that most practical circumscriptive theories satisfy the

canonicality condition.
6This is a bit simpler than the original statement because some redundancy is dropped.
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3.5 Proofs

We will first review some results from (Ferraris et al., 2011) which will be used in

our proofs.

Theorem 6 (Ferraris et al., 2011, Theorem 2) For any first-order formula F and

any disjoint lists p, q of distinct predicate constants,

SM[F ; p]↔ SM[F ∧ Choice(q); p,q]

is logically valid.

Theorem 7 (Ferraris et al., 2011, Theorem 3) For any first-order formulas F and

G, and any list of distinct predicate constants p, SM[F ∧ ¬G; p] is equivalent to

SM[F ; p] ∧ ¬G.

Theorem 8 (Ferraris et al., 2011, Theorem 4) Let F be any first-order formula, p

be any list of distinct predicate constants, and p be a member of p. If every

occurrence of p in F belongs to the antecedent of an implication, then the formula

SM[F ; p]→ False(p)

is logically valid.

Proof of Proposition 1

From Theorem 8, it follows that SM[F ; p] is equivalent to

SM[F ; p] ∧ False(p\pr(F )).

From Theorem 7, it follows that the above formula is equivalent to

SM[F ∧ False(p\pr(F )); p].

The result follows from Theorem 6. �
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Proof of Theorem 4

In the following, F is a formula, p is a list of distinct predicate constants p1, . . . , pn,

and u is a list of distinct predicate variables u1, . . . , un of the same length as p.

Lemma 1 (Ferraris et al., 2011, Lemma 5) Formula

u ≤ p→ (F ∗(u)→ F )

is logically valid.

Lemma 2 If every occurrence of every predicate constant from p is strictly positive

in F ,

(u ≤ p)→ (F ∗(u)↔ F (u))

is logically valid.

Proof. By induction. We will show only the case when F is G→ H. The other

cases are straightforward. Consider

F ∗(u) = (G∗(u)→ H∗(u)) ∧ (G→ H).

Since every occurrence of predicate constants from p in F is strictly positive, G

contains no predicate constants from p, so that G∗(u) is equivalent to G(u), which

is the same as G. Also by I.H., H∗(u)↔ H(u) is logically valid. Therefore it is

sufficient to prove that under the assumption u ≤ p,

(G→ H(u)) ∧ (G→ H)↔ (G→ H(u))

is logically valid. From left to right is clear. Assume (u ≤ p), G→ H(u), and G.

We get H(u), which is equivalent to H∗(u) by I.H. By Lemma 1, we conclude H. �

The proof of Theorem 4 is immediate from the following lemma, which can

be proved by induction.
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Lemma 3 If F is canonical relative to p, then formula

(u ≤ p) ∧ F → (F ∗(u)↔ F (u))

is logically valid.

Proof.

• F is an atomic formula. Trivial.

• F = G ∧H. Follows from I.H.

• F = G∨H. Assume (u ≤ p)∧ (G∨H). Since G∨H is canonical relative to

p, every occurrence of every predicate constant from p is strictly positive in

G or in H, so that, by Lemma 2, G∗(u) is equivalent to G(u), and H∗(u) is

equivalent to H(u).

• F = G→ H. Assume (u ≤ p) ∧ (G→ H). It is sufficient to show

(G∗(u)→ H∗(u))↔ (G(u)→ H(u)). (3.18)

Since G→ H is canonical relative to p, every occurrence of every predicate

constant from p in G is strictly positive in G, so that, by Lemma 2, G∗(u) is

equivalent to G(u).

– Case 1: ¬G. By Lemma 1, ¬G∗(u). The claim follows since ¬G∗(u) is

equivalent to ¬G(u).

– Case 2: H. By I.H. H∗(u) is equivalent to H(u). The claim follows

since G∗(u) is equivalent to G(u).

• F = ∀xG. Follows from I.H.

• F = ∃xG. Since every occurrence of every predicate constant from p in G is

strictly positive in G, the claim follows from Lemma 2.

�
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Chapter 4

SPLITTING

Splitting in ASP was introduced by Lifschitz and Turner (1994). That paper showed

several applications of splitting answer set programs. Among them are the

simplification of the computation of answer sets and a simple characterization of

locally stratified programs (Przymusinski, 1988). For example, consider the

following program:

p← not q, t

q ← not t (4.1)

t← not q (4.2)

According to (Lifschitz & Turner, 1994), the above program can be split into two

parts, one part consists of the first rule, and the other part consists of the

remaining rules. By splitting the program in this way, the answer sets of the

program can be computed by first computing the answer sets of the (program

consisting of the) last two rules and then using them in the first rule to determine if

p holds or not. This kind of splitting is called top-bottom splitting, wherein we first

evaluate the bottom part of the program and then use its answer sets in evaluating

the top part. The answer sets of the last two rules are {t} and {q}. From the first

answer set, we get that p should hold and from the second answer set, we get that

p should not hold. Thus we get 2 answer sets for the entire program : {t, p} and

{q}. Erdoğan and Lifschitz (2004) extended the splitting theorem to programs with

nested expressions and showed how it can be used to prove correctness of the

same. Oikarinen and Janhunen (2008) generalized the splitting theorem in

(Lifschitz & Turner, 1994) by considering certain atoms as input atoms.1 For

example, consider the program consisting only of rules (4.1) and (4.2). According

1The notion of input atoms is similar to the notion of extensional predicates.
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to the splitting theorems in (Lifschitz & Turner, 1994) and (Erdoğan & Lifschitz,

2004), the program cannot be split. However, according to the result in (Oikarinen

& Janhunen, 2008), the answer sets of the program are the common answer sets

of (4.1) (with t as input) and (4.2) (with q as input). Janhunen, Oikarinen, Tompits,

and Woltran (2007) apply similar techniques to split disjunctive programs.

The work on splitting discussed above presents some interesting results

with respect to simplifying answer set computation and proving correctness of

answer set programs. However, the splitting theorems discussed above cannot be

applied to programs with variables and programs with aggregates. Since variables

and aggregates are integral parts of the ASP language, generalizing the splitting

theorem to handle programs with these constructs will enable us to extend the

results discussed above to more general classes of programs.

In this chapter, we present a generalization of the splitting theorem in the

framework of the first-order stable model semantics. This generalization enables

us to extend the splitting theorem to programs with variables, choice constructs,

and count aggregates (Chapter 2.5). This theorem is also used in the later

chapters to reformulate the event calculus, the situation calculus, and TAL in ASP,

and to integrate DLs and ASP.

The chapter is organized as follows. We first present the splitting lemma

followed by the splitting theorem. The splitting lemma, which is about splitting the

intensional predicates, is used to prove the splitting theorem, which is about

splitting a formula into its conjunctive terms. We then introduce RASPL-1 (Lee

et al., 2008a), which is a function-free programming language that allows

representation of the count aggregate and the choice construct, and show how the

splitting theorem can be applied to programs in this language. Several parts of this

chapter are also presented in (Lee et al., 2008a; Ferraris, Lee, Lifschitz, & Palla,

2009).
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4.1 Generalization of the Splitting Theorem

For the generalization, we use the notion of predicate dependency graph

presented in Chapter 3.2. We will denote the predicate dependency graph of F

relative to p by DGp[F ].

Splitting Lemma

Here, we present 3 equivalent formulations of the splitting lemma.

Theorem 9 [Splitting Lemma, Version 1] Let F be a first-order sentence, and

let p, q be disjoint lists of distinct predicate constants. If each strongly connected

component of DGp,q[F ] is a subset of p or a subset of q, then

SM[F ; p,q] is equivalent to SM[F ; p] ∧ SM[F ; q].

Note that the condition on DGp,q[F ] in the statement of the theorem holds

trivially if all strongly connected components of this graph are singletons.

Example 2 F is ¬p ∧ r → q, p is p, q is q. In this case, the graph DGp,q[F ] has

two vertices p, q, and no edges, so that its strongly connected components are

singletons. The splitting lemma asserts that

SM[¬p ∧ r → q; p, q] (4.3)

is equivalent to the conjunction of

SM[¬p ∧ r → q; p] (4.4)

and

SM[¬p ∧ r → q; q]. (4.5)

Each of these three expressions can be rewritten as a propositional formula using

Theorem 3. Formula (4.3) becomes

(p↔ ⊥) ∧ (q ↔ ¬p ∧ r), (4.6)
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(4.4) becomes

(¬p ∧ r → q) ∧ ¬p, (4.7)

and (4.5) turns into

q ↔ ¬p ∧ r. (4.8)

It is clear that (4.6) is indeed equivalent to the conjunction of (4.7) and (4.8).

Example 3 F is r → p ∨ q, p is p, q is q. The graph DGp,q[F ] is the same as in

Example 2, and the splitting lemma asserts that

SM[r → p ∨ q; p, q] (4.9)

is equivalent to the conjunction of

SM[r → p ∨ q; p] (4.10)

and

SM[r → p ∨ q; q]. (4.11)

Theorem 3 is not directly applicable to (4.9), but it can be applied to (4.10)

and (4.11) by moving the non-intensional predicates to the antecedent. The former

is thus equivalent to p↔ ¬q ∧ r and the latter to q ↔ ¬p∧ r. Consequently (4.9) is

equivalent to the conjunction of these two formulas.

Example 3 shows that the splitting lemma allows us to expand the power of

completion, as a method for describing stable models, to some disjunctive

programs. This is similar to the generalization of completion to disjunctive

programs described in (Lee & Lifschitz, 2003); the advantage of the splitting

lemma is that it is applicable to programs with variables. For instance, using the

same argument as in Example 3, we can check that

SM[∀xy(r(x, y)→ p(x) ∨ q(y)); p, q]
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is equivalent to the conjunction of

∀x(p(x)↔ ∃y(¬q(y) ∧ r(x, y)))

and

∀y(q(y)↔ ∃x(¬p(x) ∧ r(x, y))).

To illustrate the role of the condition on the predicate dependency graph in

the statement of the splitting lemma, take F to be p↔ q, with p as p and q as q.

The graph DGp,q[F ] in this case has two edges, from p to q and from q to p. The

strongly connected component {p, q} of this graph has a common element with p

and a common element with q, so that the splitting lemma is not applicable.

Accordingly, the formulas SM[p↔ q; p, q] and SM[p↔ q; p] ∧ SM[p↔ q; q] are not

equivalent to each other. Indeed, the former can be rewritten as ¬p∧¬q, and each

conjunctive term of the latter is equivalent to p↔ q.

The splitting lemma as stated above can be equivalently reformulated as

follows:

Theorem 10 [Splitting Lemma, Version 2] Let F be a first-order sentence, and

let p be a list of distinct predicate constants. If c1, . . . , cn are all the strongly

connected components of DGp[F ], then

SM[F ; p] is equivalent to SM[F ; c1] ∧ · · · ∧ SM[F ; cn].

A loop of a first-order formula F (relative to a list p of intensional predicates)

is a nonempty subset l of p such that the subgraph of DGp[F ] induced by l is

strongly connected. It is clear that the strongly connected components of DGp[F ]

can be characterized as the maximal loops of F . For example, the loops of

(p→ q) ∧ (q → p)
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relative to {p, q} are {p}, {q}, and {p, q}, while the only strongly connected

component is the maximal loop {p, q}.

Theorem 11 [Splitting Lemma, Version 3] Let F be a first-order sentence, and

let p be a list of distinct predicate constants. If l1, . . . , ln are all the loops of F

relative to p then

SM[F ; p] is equivalent to SM[F ; l1] ∧ · · · ∧ SM[F ; ln].

The last two versions of the splitting lemma are equivalent to each other in

view of the fact that the operator SM is monotone with respect to the intensional

predicates p: if p contains q then SM[F ; p] entails SM[F ; q].

Splitting Theorem

We now present the splitting theorem, which can be easily proved using the

splitting lemma.

Theorem 12 [Splitting Theorem] Let F , G be first-order sentences, and let p, q

be disjoint lists of distinct predicate constants. If

(a) each strongly connected component of DGp,q[F ∧G] is either a subset of p

or a subset of q,

(b) F is negative on q, and

(c) G is negative on p

then

SM[F ∧G; p,q]↔ SM[F ; p] ∧ SM[G; q]

is logically valid.
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Example 4 F is (¬q → p), G is (¬p→ q) , p is p , and q is q. DGp,q[F ∧G] has

two vertices p and q, and no edges. So condition (a) in the splitting theorem is

trivially satisfied. Further, F is negative on q, and G is negative on p. The splitting

theorem asserts that

SM[(¬q → p) ∧ (¬p→ q); p, q] (4.12)

is equivalent to

SM[(¬q → p); p] ∧ SM[(¬p→ q); q]. (4.13)

One can easily verify this by applying completion (Theorem 3) to each of the

formulas under SM. As discussed earlier in this chapter, similar result can be

obtained by using the splitting theorem by Oikarinen and Janhunen (2008).

4.2 RASPL-1

The language RASPL-1 is based on the observation that the choice construct and

the count aggregate can be intuitively represented as first-order formulas, which

enables us to straightforwardly use the first-order stable model semantics to

provide semantics for programs with these constructs. This implies that we can

use the splitting theorem discussed above to split RASPL-1 programs, thus

overcoming some of the limitations of the earlier splitting approaches.

RASPL-1 is a function-free programming language that allows

representation of the count aggregate and the choice construct.

In RASPL-1, an aggregate expression is an expression of the form

b {x : F1, . . . , Fk} (4.14)

(k ≥ 1), where b is a positive integer (“the bound”), x is a list of variables (possibly

empty), and each Fi is an atom possibly preceded by not. This expression is

similar to the count aggregate expression presented in Chapter 2.5 and reads:
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there are at least b values of x such that F1, . . . , Fk hold. Since comma represents

conjunction, we can view F1, . . . , Fk as a conjunction of literals.

A rule in RASPL-1 is an expression of the form

A1 ; . . . ; Al ← E1, . . . , Em, not Em+1, . . . , not En (4.15)

(l ≥ 0; n ≥ m ≥ 0), where each Ai is an atom, each Ei is an aggregate

expression, and semi-colon(;) represents disjunction. A program is a finite set of

rules. If an aggregate expression Ei in (4.15) has the form 1{: A}, where A is an

atom (so that the list of variables in front of the semi-colon is empty) then we will

write it as A. If an aggregate expression Ei in (4.15) with i > m has the form

1{: not A} then we will write it as not A. If Ei in (4.15) with i > m is

b {x : F (x)}

then the term not Ei can be written as

{x : F (x)} b− 1

Finally, an expression of the form

{A} ← E1, . . . , Em, not Em+1, . . . , not En

where A is an atom, stands for

A← E1, . . . , Em, not Em+1, . . . , not En, not not A.

The semantics of RASPL-1 is defined by a procedure that turns every

aggregate, every rule, and every program into a formula of first-order logic, called

its FOL-representation.

The FOL-representation of an aggregate expression b {x : F (x)} is the

formula

∃x1 · · · xb
[ ∧

1≤i≤b

F (xi) ∧
∧

1≤i<j≤b

¬(xi = xj)

]
(4.16)
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where x1, . . . xb are lists of new variables of the same length as x, and x = y,

where x = (x1, . . . , xn) and y = (y1, . . . , yn), stands for x1 = y1 ∧ · · · ∧ xn = yn.

For example, the FOL-representation of 2{x : p(x), not q(x)} is

∃xy((p(x) ∧ ¬q(x)) ∧ (p(y) ∧ ¬q(y)) ∧ x 6= y).

The FOL-representation of a RASPL-1 rule Head← Body is the universal closure

of the implication Body→ Head with each aggregate expression in Body replaced

by its FOL-representation. The FOL-representation of a RASPL-1 program is the

conjunction of the FOL-representations of its rules.

For example, the FOL-representation of the rule

p(x); q(y)← 2{x : r(x)}, s(x, y)

is

∀xy(s(x, y) ∧ ∃xy(r(x) ∧ r(y) ∧ x 6= y)→ p(x) ∨ q(y)).

For any RASPL-1 program Π containing at least one object constant, an

answer set of Π is an answer set of the FOL-representation of Π.

RASPL-1 provides a succint representation for many known NP-complete

problems. For example, the following RASPL-1 program computes cliques of size

greater than or equal to n in a graph G=(V,E):

vertex(a) (a ∈ V ),

edge(ai, bj) ((ai, bj) ∈ E),

{in(x)} ← vertex(x)

← in(x), in(y), not edge(x, y), not x = y

← {x : in(x)}n− 1

(4.17)

The first two rules simply declare all the vertices and edges, and the third rule

arbitrarily chooses if a vertex belongs to in or not. Thus the answer sets of the first
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three rules of (4.17) are in a 1–1 correspondence with arbitrary sets W of vertices

of the graph. The first of the two constraints in (4.17) eliminates the sets W that

are not cliques, and the second constraint eliminates the sets that contain fewer

than n vertices.

4.3 Splitting RASPL-1 Programs

Since the semantics of RASPL-1 programs is defined in terms of the first-order

stable model semantics, the splitting theorem can be easily extended to these

programs. Here, we show how the splitting theorem helps us in proving the

correctness of the program (4.17) shown above, which computes cliques of size

greater than or equal to n in a graph G=(V,E).

Let the program consisting of the last three rules of (4.17) be Π. It follows

from the splitting theorem that

SM[ΠFOL; in]⇔ SM[firstFOL; in] ∧ restFOL

where ΠFOL is the FOL-representation of Π, firstFOL is the FOL-representation of

the first rule of Π and restFOL is the FOL-representation of the remaining rules of

Π. Applying completion (Theorem 3) to the theory on the right hand side, it follows

that the right hand side is equivalent to

∀x(in(x)↔ (vertex(x) ∧ in(x)))

∧∀xy¬(in(x) ∧ in(y)

∧¬edge(x, y) ∧ x 6= y)

∧∃nx(in(x)),

which is in turn equivalent to

∀x(in(x)→ vertex(x))

∧∀xy(in(x) ∧ in(y) ∧ x 6= y → edge(x, y))

∧∃nx(in(x)).
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If we consider any interpretation I that interprets vertex and edge according to the

vertices and edges in the graph, then I satisfies the above formula if and only if

inI represents a clique of size greater than or equal to n.

4.4 Relevance to Later Chapters

Earlier, we briefly mentioned that the splitting theorem is used to reformulate the

event calculus, the situation calculus, and TAL in ASP, and to integrate DLs and

ASP. We will now discuss a bit more about this by considering the event calculus.

As we will see later in Chapter 7.1, an event calculus description is of the form

CIRC[Σ ; Initiates,Terminates,Releases] ∧ CIRC[∆ ; Happens]

∧ CIRC[Θ ; Ab1, . . . ,Abn] ∧ Ξ.

Using the result on canonical formulas (Chapter 3.3) and the splitting theorem, we

can turn the above formula into

SM[Σ ∧∆ ∧Θ ∧ Ξ ; Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn].

In Chapter 7.3, a further transformation is shown that turns the above formula into

an answer set program. Similar approach is used to reformulate the situation

calculus and TAL in ASP.

4.5 Proofs

In this section, we present the proofs of the splitting lemma and the splitting

theorem.

Proof of the Splitting Lemma (Theorem 11)

We will prove the splitting lemma for a slightly different definition of a predicate

dependency graph, and then show how the result can be extended to the definition

presented in Chapter 3.2 (which is the one used in the above sections of this

chapter).

We say that an occurrence of a predicate constant in a formula is negated if

it belongs to a subformula of the form ¬F , and nonnegated otherwise. Recall that
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a rule of a formula is any strictly positive occurrence of an implication in the

formula. For any first-order formula F , the predicate dependency graph of F

(relative to the list p of intensional predicates), represented by DGp[F ], is the

directed graph that

• has all intensional predicates as its vertices, and

• has an edge from p to q if, for some rule G→ H of F ,

– p has a strictly positive occurrence in H, and

– q has a positive nonnegated occurrence in G.

Lemma 4 below can be easily proved by induction (Ferraris et al., 2011).

Recall that, about a formula F we say that it is negative on a list p of

predicate constants if members of p have no strictly positive occurrences in F .

Lemma 4 If F is negative on p then

(u ≤ p)→ (F ∗(u)↔ F )

is logically valid.

The following lemma extends Lemma 3 from (Ferraris, Lee, & Lifschitz,

2006) to first-order formulas.

Lemma 5 Let p1, p2 be disjoint lists of distinct predicate constants, and let u1, u2

be disjoint lists of distinct predicate variables of the same length as p1, p2

respectively.

(a) If every positive occurrence of every predicate constant from p2 in F is

negated then

((u1,u2) ≤ (p1,p2)) ∧ F ∗(u1,p2)→ F ∗(u1,u2)
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is logically valid.

(b) If every nonpositive occurrence of every predicate constant from p2 in F is

negated then

((u1,u2) ≤ (p1,p2)) ∧ F ∗(u1,u2)→ F ∗(u1,p2)

is logically valid.

Proof. Both parts are proved simultaneously by induction on F . Consider the

case when F is G→ H; the other cases are straightforward. Then F ∗(u1,u2) is

(G∗(u1,u2)→ H∗(u1,u2)) ∧ (G→ H). (4.18)

(a) Every nonpositive occurrence of every predicate constant from p2 in G is

negated, and so is every positive occurrence of every predicate constant from p2

in H. By the induction hypothesis, it follows that the formulas

((u1,u2) ≤ (p1,p2)) ∧G∗(u1,u2)→ G∗(u1,p2) (4.19)

and

(u1,u2) ≤ (p1,p2) ∧H∗(u1,p2)→ H∗(u1,u2) (4.20)

are logically valid. Assume (u1,u2) ≤ (p1,p2),

(G∗(u1,p2)→ H∗(u1,p2)) ∧ (G→ H) (4.21)

and G∗(u1,u2). By (4.19), we conclude G∗(u1,p2). Then, by (4.21), we conclude

H∗(u1,p2). Then, by (4.20), we conclude H∗(u1,u2). (b) Similar. �

The following assertion is a generalization of Lemma 5 from (Ferraris et al.,

2006).

Lemma 6 Let p1, p2 be disjoint lists of distinct predicate constants such that

DGp1,p2
[F ] has no edges from predicate constants in p1 to predicate constants in
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p2, and let u1, u2 be disjoint lists of distinct predicate variables of the same length

as p1, p2 respectively. Formula

((u1,u2) ≤ (p1,p2)) ∧ F ∗(u1,u2)→ F ∗(u1,p2)

is logically valid.

Proof. By induction on F . Consider the case when F is G→ H, so that

F ∗(u1,u2) is (4.18); the other cases are straightforward. Assume

(u1,u2) ≤ (p1,p2) and F ∗(u1,u2). Our goal is to prove

G∗(u1,p2)→ H∗(u1,p2).

Assume G∗(u1,p2). By Lemma 1, the formula

((u1,p2) ≤ (p1,p2)) ∧G∗(u1,p2)→ G (4.22)

is logically valid. Consequently, from the assumptions above we can conclude G,

and, by (4.18), H. Case 1: H is negative on p1. It follows from Lemma 4 that the

formula

((u1,p2) ≤ (p1,p2))→ (H∗(u1,p2)↔ H)

is logically valid, and we can conclude that H∗(u1,p2). Case 2: H is not negative

on p1, that is to say, H contains a strictly positive occurrence of a predicate

constant from p1. Then every positive occurrence of every predicate constant

from p2 in G is negated, because otherwise there would exist an edge from p1 to

p2 in DGp1,p2
[F ]. By Lemma 5(a), the formula

((u1,u2) ≤ (p1,p2)) ∧G∗(u1,p2)→ G∗(u1,u2)

is logically valid. Consequently from the assumptions above we can conclude that

G∗(u1,u2). By (4.18), it follows that H∗(u1,u2). Since every edge in DGp1,p2
[H]

belongs to DGp1,p2
[F ], by the induction hypothesis applied to H, the formula
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((u1,u2) ≤ (p1,p2)) ∧H∗(u1,u2)→ H∗(u1,p2)

is logically valid. We can thus conclude that H∗(u1,p2). �

Lemma 7 For any formula F and any nonempty set Y of intensional predicates,

there exists a subset Z of Y such that

(a) Z is a loop of F , and

(b) the predicate dependency graph of F has no edges from predicate constants

in Z to predicate constants in Y \ Z.

The proof is essentially the same as the proof of Lemma 4 in (Ferraris et al., 2006).

Proof of Version 3 of the Splitting Lemma (Theorem 11). It is sufficient to

prove the logical validity of the formula

∃u((u < p) ∧ F ∗(u))

↔ ∃u1((u1 < l1) ∧ F ∗(ũ1))

∨ · · · ∨ ∃un((un < ln) ∧ F ∗(ũn)),

where each ui is the part of u that corresponds to the part li of p, and ũi is the list

of symbols obtained from p by replacing every intensional predicate p that belongs

to li with the corresponding predicate variable u. Right to left: Clear. Left to right:

Assume ∃u((u < p) ∧ F ∗(u)) and take u such that (u < p) ∧ F ∗(u). Consider

several cases, each corresponding to a nonempty subset Y of p. The assumption

characterizing each case is that u < p for each member p of p that belongs to Y ,

and that u = p for each p that does not belong to Y . By Lemma 7, there is a loop li

of F that is contained in Y such that the dependency graph has no edges from

predicate constants in li to predicate constants in Y \ li. Since li is contained in Y ,
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from the fact that u < p for each p in Y we can conclude that

ui < li. (4.23)

Let u′ be the list of symbols obtained from p by replacing every member p that

belongs to Y with the corresponding variable u. Under the assumption

characterizing each case, u = u′, so that F ∗(u)↔ F ∗(u′). Consequently, we can

derive F ∗(u′). It follows from Lemma 6 that the formula

(u′ ≤ p) ∧ F ∗(u′)→ F ∗(ũi)

is logically valid, so that we further conclude that F ∗(ũi). In view of (4.23), it

follows that ∃ui((ui < li) ∧ F ∗(ũi)). �

The splitting lemma can be extended to the predicate dependency graph

presented in Chapter 3.2 using the following theorem:

Theorem 13 (Theorem on Double Negations) Let H be a sentence, F a

subformula of H, and H− the sentence obtained from H by inserting ¬¬ in front

of F . If F is contained in a subformula G of H that is negative on p then

SM[H−; p] is equivalent to SM[H; p].

Proof. Let G− be the formula obtained from G by inserting ¬¬ in front of F . By

Lemma 4, the formulas

u ≤ p→ (G∗(u)↔ G)

and

u ≤ p→ ((G−)∗(u)↔ G−)

are logically valid. Consequently

u ≤ p→ (G∗(u)↔ (G−)∗(u))
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is logically valid also, and so is

u ≤ p→ (H∗(u)↔ (H−)∗(u)).

It follows that SM[H−; p] is equivalent to SM[H; p]. �

Now, let F be any formula, and p be any list of intensional predicates. Let

F− be the formula obtained from F by replacing every maximal subformula G of F

that is negative on the intensional predicates p by ¬¬G. It is clear that the

predicate dependency graph of F according to the definition in Chapter 3.2

coincides with the predicate dependency graph of F− according to the definition

above. So, it follows that

SM[F−; p] is equivalent to SM[F−; l1] ∧ · · · ∧ SM[F−; ln].

The splitting lemma for the dependency graph presented in Chapter 3.2

follows from Theorem 13 above.

Proof of the Splitting Theorem (Theorem 12)

By the splitting lemma, SM[F ∧G; p,q] is equivalent to

SM[F ∧G; p] ∧ SM[F ∧G; q].

Since G is negative on p, from Lemma 4, it follows that the first conjunctive term

can be rewritten as

SM[F ; p] ∧G. (4.24)

Similarly, the second conjunctive term can be rewritten as

SM[G; q] ∧ F. (4.25)

It remains to observe that the second conjunctive term of each of the

formulas (4.24), (4.25) is entailed by the first conjunctive term of the other. �
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Chapter 5

REDUCING THEORIES IN THE FIRST-ORDER STABLE MODEL SEMANTICS

TO ANSWER SET PROGRAMS

While the first-order stable model semantics is an expressive language, it is

undecidable in general. An important question to consider is whether there are

certain interesting fragments of the language that can be efficiently computed. In

this chapter, we show how answer sets of first-order formulas can be computed

using existing answer set solvers. In particular, we present translation F2LP

(Formula to Logic Program) that turns formulas in the first-order stable model

semantics, under certain conditions, into the syntax of answer set programs. This

translation is also used in the later chapters to reformulate the event calculus, the

situation calculus, and TAL in ASP.

The chapter is organized as follows. We first present an approach to

eliminate quantifiers in certain formulas under the first-order stable model

semantics. We then introduce translation F2LP, that uses the quantifier elimination

approach along with the approach in (Cabalar, Pearce, & Valverde, 2005) that

turns quantifier-free formulas into logic programs, to turn formulas under the

first-order stable model semantics into the syntax of ASP. We then present system

F2LP that implements this translation and produces programs that can be

processed by the grounders LPARSE and GRINGO, which are front-ends to various

answer set solvers such as SMODELS, CLASP(D), CMODELS, etc. Finally, we

discuss the related work. Several parts of this chapter are also presented in (Lee &

Palla, 2007; Kim et al., 2009; Lee & Palla, 2010).

5.1 Quantifier Elimination

We introduce a quantifier elimination method that distinguishes between two kinds

of occurrences of quantifiers: singular and non-singlar. Any non-singular
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occurrence of a quantifier is easy to eliminate, while a singular occurrence is

eliminated under a certain assumption.

We say that an occurrence of QxG in F is singular if

• Q is ∃, and the occurrence of QxG is positive in F , or

• Q is ∀, and the occurrence of QxG is negative in F .

For example, the occurrence of ∃x q(x) in

∃x p(x)→ ∃x q(x) (5.1)

is singular, but the occurrence of ∃x p(x) is not.

Non-singular occurrences of quantifiers can be eliminated in view of the

fact that every first-order sentence can be rewritten in prenex form. The prenex

form conversion rules given in Section 6.3.1 of Pearce and Valverde (2005)

preserve strong equivalence.1

Theorem 14 Every first-order formula is strongly equivalent to a formula in prenex

form.

For example, the formula (5.1) is strongly equivalent to

∀x ∃y (p(x)→ q(y)). (5.2)

As we can see in the above example, the standard prenex form conversion

turns a non-singular occurrence of a quantifier into an outermost ∀ while

preserving strong equivalence. Consequently, if a sentence contains no singular

occurrences of quantifiers, then the above result can be used to turn it into a

1 Pearce and Valverde (2005) show that a sentence in QNc
5, the monotonic basis of Quantified

Equilibrium Logic, can be turned into prenex form, from which the result follows.

53



universal sentence. However, in the presence of a singular occurrence of a

quantifier, such as ∃x q(x) in (5.1), the standard prenex form conversion turns the

occurrence into an outermost ∃, which is not allowed in logic programs. Below we

consider how to handle such occurrences.

Obviously, if the Herbrand universe is finite, and if we are interested in

Herbrand stable models (i.e., answer sets) only, quantified formulas can be

rewritten as multiple disjunctions and conjunctions. We do not even need to

consider turning the formula into prenex form. For example, for a formula

r ∧ ¬∃x(p(x) ∧ q(x))→ s (5.3)

occurring in a theory whose signature contains {1, . . . , n} as the only object

constants (and no other function constants), if we replace ∃x(p(x) ∧ q(x)) with

multiple disjunctions and then turn the resulting program with nested expression

into a usual disjunctive program (Lifschitz et al., 1999), 2n rules are generated. For

instance, if n = 3, the resulting logic program is

s← r, not p(1), not p(2), not p(3)

s← r, not p(1), not p(2), not q(3)

s← r, not p(1), not q(2), not p(3)

s← r, not p(1), not q(2), not q(3)

s← r, not q(1), not p(2), not p(3)

s← r, not q(1), not p(2), not q(3)

s← r, not q(1), not q(2), not p(3)

s← r, not q(1), not q(2), not q(3).

However, this translation is not modular as it depends on the underlying domain;

the multiple disjunctions or conjunctions need to be updated when the domain

changes. More importantly, this method is not applicable if the language contains

function constants of positive arity, as its Herbrand universe is infinite.
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One may also consider introducing Skolem constants as in first-order logic,

presuming that, for any sentence F and its “Skolem form” F ′ , SM[F ; p] is

satisfiable iff SM[F ′; p] is satisfiable. However, this method does not work.2

Example 5 For formula

F = (∀x p(x)→ q) ∧ ¬¬∃x(q ∧ ¬p(x)),

SM[F ; q] is equivalent to the first-order sentence

(q ↔ ∀x p(x)) ∧ ∃x(q ∧ ¬p(x)),

which is unsatisfiable (the equivalence can be established using Theorems 3 and

11 from the work of Ferraris et al., 2011). Formula F is strongly equivalent to its

prenex form

∃x∃y
(
(p(x)→ q) ∧ ¬¬(q ∧ ¬p(y))

)
. (5.4)

However, if we introduce new object constants a and b to replace the existentially

quantified variables as in

F ′ = (p(a)→ q) ∧ ¬¬(q ∧ ¬p(b)),

formula SM[F ′; q] is equivalent to

(q ↔ p(a)) ∧ (q ∧ ¬p(b)),

which is satisfiable.

Here we present a method of eliminating singular occurrences of quantifiers

by introducing auxiliary predicates. Our idea is a generalization of the practice in

logic programming that simulates negated existential quantification in the body of a

2Pearce and Valverde (2005) show that Skolemization works with QNc
5, the monotonic basis

of Quantified Equilibrium Logic, but as our example shows, this does not imply that Skolemization
works with Quantified Equilibrium Logic.
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rule by introducing auxiliary predicates. For instance, in order to eliminate ∃ in

(5.3), we will introduce a new predicate constant p′, and turn (5.3) into

(r ∧ ¬p′ → s) ∧ ∀x(p(x) ∧ q(x)→ p′), (5.5)

which corresponds to the logic program

s ← r, not p′

p′ ← p(x), q(x).
(5.6)

The models of SM[(5.3); p, q, r, s] are the same as those of SM[(5.5); p, q, r, s, p′]

if we disregard p′. This method does not involve grounding, so that the translation

does not depend on the domain and is not restricted to Herbrand models. The

method is formally justified by the following proposition.

Proposition 2 Let F be a sentence of a signature σ, let p be a finite list of distinct

predicate constants, and let q be a new predicate constant that does not belong

to σ. Consider any non-strictly positive occurrence of ∃yG(y, x) in F that is

contained in a subformula of F that is negative on p, where x is the list of all free

variables of ∃yG(y, x). Let F ′ be the formula obtained from F by replacing that

occurrence with q(x). Then

SM[F ; p] ∧ ∀x(q(x)↔ ∃yG(y, x))

is equivalent to

SM[F ′ ∧ ∀xy(G(y, x)→ q(x)); p, q].

Proposition 2 tells us that SM[F ; p] and SM[F ′ ∧ ∀xy(G(y, x)→ q(x); p, q]

have the same models if we disregard the new predicate q. Notice that F ′ does not

retain the occurrence of ∃y.

Example 6 In formula (5.3), ∃x(p(x) ∧ q(x)) is contained in a negative formula

(relative to any set of intensional predicates). In accordance with Proposition 2,
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SM[(5.3); p, q, r, s] has the same models as SM[(5.5); p, q, r, s, p′] if we disregard

p′.

Any singular occurrence of a formula ∀yG(y, x) that is contained in a

subformula of F that is negative on p 3 can also be eliminated using Proposition 2

by first rewriting ∀yG(y, x) as ¬∃y¬G(y, x). Note that ∀yG(y, x) is not strongly

equivalent to ¬∃y¬G(y, x), and in general the transformation may not necessarily

preserve stable models. But the condition that ∀yG(y, x) is negative on p ensures

that it preserves p-stable models.

Now we are ready to present our quantifier elimination method. We say that

a formula F is almost universal relative to p if every singular occurrence of QxG in

F is contained in a subformula of F that is negative on p. For example, formula

(5.3) is almost universal relative to any set of predicates because the only singular

occurrence of ∃x(p(x) ∧ q(x)) in it is contained in ¬∃x(p(x) ∧ q(x)), which is

negative on any list of predicates. Formula F in Example 5 is almost universal

relative to {q} because the singular occurrence of ∀x p(x) is contained in the

formula itself, which is negative on {q}, and the singular occurrence of

∃x(q ∧ ¬p(x)) is contained in ¬∃x(q ∧ ¬p(x)), which is also negative on {q}.

The following procedure can be used to eliminate all (possibly nested)

quantifiers in any almost universal sentence.

Definition 1 (Translation ELIM-QUANTIFIERS) Given a formula F , first prepend

¬¬ to every maximal strictly positive occurrence of a formula of the form

∃yH(y, x),4 and then repeat the following until there are no occurrences of

quantifiers remaining: Select a maximal occurrence of a formula of the form

QyG(y, x) in F where Q is ∀ or ∃, and x is the list of all free variables in QyG(y, x).
3Recall the definition of a negative formula on p given in Chapter 4.
4The maximality is in terms of the subformula relation. That is, here we select a strictly positive

occurrence of a formula of the form ∃yH(y, x) that is not a strict subformula of the same form.
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(a) If the occurrence of QyG(y, x) in F is non-singular in F , then set F to be the

formula obtained from F by replacing the occurrence of QyG(y, x) with

G(z, x) where z is a new variable.

(b) If Q is ∃ and the occurrence of QyG(y, x) in F is positive, then set F to be

F ′ ∧ (G(y, x)→ pG(x))

where pG is a new predicate constant and F ′ is the formula obtained from F

by replacing the occurrence of QyG(y, x) with pG(x).

(c) If Q is ∀ and the occurrence of QyG(y, x) in F is negative, then set F to be

the formula obtained from F by replacing the occurrence of QyG(y, x) with

¬∃y¬G(y, x).

We assume that the new predicate constants introduced by the translation

do not belong to the signature of the input formula F . It is clear that this process

terminates, and yields a formula that is quantifier-free. Since the number of times

step (b) is applied is no more than the number of quantifiers in the input formula,

and the new formulas added have the size polynomial to the input formula, it

follows that the size of the resulting quantifier-free formula is polynomial in the size

of the input formula.

The following theorem tells us that any almost universal sentence F can be

turned into the form ∀xG where G is a quantifier-free formula. For any

(second-order) sentences F and G of a signature and any subset σ of that

signature, we say that F is σ-equivalent to G, denoted by F ⇔σ G, if the class of

models of F restricted to σ is identical to the class of models of G restricted to σ.

Theorem 15 Let F be a sentence of a signature σ, let F ′ be the universal closure

of the formula obtained from F by applying translation ELIM-QUANTIFIERS, and
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let q be the list of new predicate constants introduced by the translation. If F is

almost universal relative to p, then SM[F ; p] is σ-equivalent to SM[F ′; p,q].

The statement of the theorem becomes incorrect if F is not required to be

almost universal relative to p. For instance, if ELIM-QUANTIFIERS is applied to

∃x p(x), it results in ¬¬q ∧ (p(x)→q). However, SM[∃x p(x); p] is not

{p}-equivalent to SM[∀x(¬¬q ∧ (p(x)→q)); p, q]. The former means that p is a

singleton. The latter is equivalent to q ∧ ∀x¬p(x) ∧ (q ↔ ∃xp(x)), which is

inconsistent.

5.2 Turning Quantifier-Free Formulas into the Syntax of Logic Programs

Cabalar et al. (2005) present two transformations to turn arbitrary propositional

formulas into logic programs: one is vocabulary-preserving and the other

introduces new atoms but is polynomial. Following is the vocabulary-preserving

transformation shown in Section 3 of that paper.

• Left side rules:

> ∧ F → G 7→ {F → G} (L1)

⊥ ∧ F → G 7→ ∅ (L2)

¬¬F ∧G→ H 7→ {G→ ¬F ∨H} (L3)

(F ∨G) ∧H → K 7→

 F ∧H → K

G ∧H → K

 (L4)

(F → G) ∧H → K 7→


¬F ∧H → K

G ∧H → K

H → F ∨ ¬G ∨K

 (L5)
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• Right side rules:

F → ⊥∨G 7→ {F → G} (R1)

F → >∨G 7→ ∅ (R2)

F → ¬¬G ∨H 7→ {¬G ∧ F → H} (R3)

F → (G ∧H) ∨K 7→

 F → G ∨K

F → H ∨K

 (R4)

F → (G→ H) ∨K 7→

 G ∧ F → H ∨K

¬H ∧ F → ¬G ∨K

 (R5)

Before applying this transformation to each formula on the lefthand side, it

is assumed that the formula is already written in negation normal form, in which

negation is applied to atoms only, by using the following transformation:

• Negation normal form conversion:

¬> 7→ ⊥

¬⊥ 7→ >

¬¬¬F 7→ ¬F

¬(F ∧G) 7→ ¬F ∨ ¬G

¬(F ∨G) 7→ ¬F ∧ ¬G

¬(F → G) 7→ ¬¬F ∧ ¬G

According to Cabalar et al. (2005), successive application of the rewriting

rules above turn any propositional formula into a disjunctive logic program. This

result can be simply extended to turn any quantifier-free formula into a logic

program.

As noted by Cabalar et al. (2005), this translation may involve an

exponential blowup in size, and Theorem 1 from their paper shows that indeed
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there is no vocabulary-preserving polynomial time algorithm to convert general

propositional theories under the stable model semantics into disjunctive logic

programs. Alternatively, one can use another translation from the same paper,

which is linear in size but involves auxiliary atoms and is more complex.

5.3 F2LP: Turning Formulas in the First-Order Stable Model Semantics into the

Syntax of ASP

Using the translations discussed in the previous sections, we introduce translation

F2LP that turns an almost universal formula into a logic program.

Definition 2 [Translation F2LP]

1. Given a formula F and a list of intensional predicates p, apply translation

ELIM-QUANTIFIERS (Definition 1) to F ;

2. Add choice formulas (q(x) ∨ ¬q(x)) for all non-intensional predicates q.

3. Turn the resulting quantifier-free formula into a logic program by applying the

translation from (Cabalar et al., 2005, Section 3), which was reviewed in

Chapter 5.2.

Due to the third step, this transformation may involve an exponential

blowup in size. One can obtain a polynomial time translation by replacing Step 3

with an alternative translation given in (Cabalar et al., 2005, Section 4).

The following theorem asserts the correctness of translation F2LP.

Theorem 16 Let F be a sentence of a signature σ, let p be a list of intensional

predicates, and let F ′ be the FOL representation of the program obtained from F

by applying translation F2LP with p as intensional predicates. If F is almost

universal relative to p, then SM[F ; p] is σ-equivalent to

SM[F ′ ∧ False(p \ pr(F ′))].
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Example 7 Consider one of the domain independent axioms in the discrete event

calculus (DEC5 axiom):

HoldsAt(f, t) ∧ ¬ReleasedAt(f, t+1)∧

¬∃e(Happens(e, t) ∧ Terminates(e, f, t))→ HoldsAt(f, t+1).
(5.7)

Step 1 of translation F2LP introduces the formula

Happens(e, t) ∧ Terminates(e, f, t)→ q(f, t),

and replaces (5.7) with

HoldsAt(f, t) ∧ ¬ReleasedAt(f, t+1) ∧ ¬q(f, t)→ HoldsAt(f, t+1).

Step 3 turns these formulas into rules

q(f, t)← Happens(e, t), Terminates(e, f, t)

HoldsAt(f, t+1)← HoldsAt(f, t), not ReleasedAt(f, t+1), not q(f, t).

System F2LP

System F2LP is an implementation of translation F2LP, which turns a first-order

formula into the languages of LPARSE and GRINGO. The system can be

downloaded from its home page

http://reasoning.eas.asu.edu/f2lp/ .

First-order formulas can be encoded in F2LP using the following ASCII

representation for the quantifiers and connectives.

Symbol ¬ ∼ ∧ ∨ → ⊥ > ∀xyz ∃xyz

ASCII - � & | -> false true ![X,Y,Z]: ?[X,Y,Z]:
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The system also allows extended rule form F ← G where F and G are

first-order formulas. In this case, not is used to represent ¬, - is used to represent

∼, and <- is used to represent←.

The usual LPARSE and GRINGO rules (which have rule arrow :-) are also

allowed in F2LP. Such rules are simply copied to the output. The program returned

by F2LP can be passed to ASP grounders and solvers that accept LPARSE and

GRINGO languages.

For example, formula ∃xy p(x, y)→ ∀z (¬q(z) ∧ r(z)) can be represented

as

?[X,Y]: p(X,Y) -> ![Z]: (-q(Z) & r(Z)).

Here, the dot(.) indicates the end of the formula. Each formula should end with a

dot(.).

Example 8 Consider F =

∀x p(x, y)→ ∀x q(x).

where p is extensional. Here y is assumed to be universally quantified. This is

represented as

![X]: p(X,Y) -> ![X]: q(X).

#extensional p(X,Y).

in F2LP syntax. F2LP turns this formula into

q(_NV_1) :- not _new_pred_1(Y).

{p(X,Y)}.

_new_pred_1(Y) :- not p(X,Y).
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Here, _NV_1 and _new_pred_1 are the new variable and new predicate introduced

respectively. Further, “{p(X,Y)}.” is the choice rule introduced since p is

extensional.

Example 9 The input

![X]: p(X,Y) -> ![X]: q(X) & r.

#extensional p(X,Y).

is turned to

q(_NV_1) :- not _new_pred_1(Y).

r :- not _new_pred_1(Y).

{p(X,Y)}.

_new_pred_1(Y) :- not p(X,Y).

Example 10 The input

p(X,Y) -> -q(X) | X = Y.

is turned to

:- X!=Y,{not q(X)}0,p(X,Y).

This example shows how F2LP handles negation and equality in the head.

F2LP turns negation in the head to double negation in the body (according to

LPARSE and GRINGO languages, {not q(X)}0 represents not not q(X). This is

the same as in RASPL-1 (Chapter 4.2)).

In addition to usual first-order formulas, F2LP also allows the choice

construct and aggregate formulas (Lee & Meng, 2009). Aggregate formulas are
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formulas built from normal atomic formulas (including equality) and aggregate

expressions using the standard connectives and quantifiers in first-order logic. In

other words, aggregate expressions are treated as atomic formulas. F2LP currently

supports both GRINGO and DLV aggregates. A detailed manual of F2LP can be

found from its homepage.

Example 11 The input

s(Y) & not 2{t(X,Z,Z):s(Z)} -> {p(X):q(X)} & r(Y).

#sum[t(X,Y,Z):r(Z):q(Y),s(X)]5 | s(X) -> {p(X)}.

#count{X:p(X,Y)} >= 5 | s(Y) -> q(Y).

is turned to

{p(X):q(X)} :- s(Y),not 2{t(X,Z,Z):s(Z)}.

r(Y) :- s(Y),not 2{t(X,Z,Z):s(Z)}.

{p(X)} :- #sum[t(X,Y,Z):r(Z):q(Y),s(X)]5.

{p(X)} :- s(X).

q(Y) :- #count{X:p(X,Y)}>=5.

q(Y) :- s(Y).

As an example of the extended rule form representation, consider the

following input

![X]: q(X) & r <- not ![X]: p(X,Y).

#extensional p(X,Y).

When the above input is given to F2LP, it produces the following output:

q(_NV_2) :- not p(_NV_1,Y).
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r :- not p(_NV_1,Y).

{p(X,Y)}.

where _NV_1 and _NV_2 are the new variables introduced.

5.4 Related Work

The idea of the translation F2LP is similar to the one independently given

by Cabalar (2009) that eliminates existential quantifiers in the scope of negation in

the body of a rule. The difference is that our translation applies to the larger class

of almost universal formulas and also differentiates between intensional and

extensional predicates. Zhang et al. (2011) introduce a translation that turns

arbitrary first-order formulas into logic programs, but this work is limited to finite

structures only. On the other hand, our translation works for almost universal

formulas only, but is not limited to finite structures.

5.5 Relevance to Later Chapters

Translation F2LP is used in the later chapters to reformulate the event calculus,

the situation calculus, and TAL in ASP. While the complete reformulations are

provided in the respective chapters on each of the formalisms, we will briefly

discuss the reformulation of the event calculus here. As we will see in Chapter 7.2,

an event calculus description can be turned into the following formula by using the

result on canonical formulas (Chapter 3.3) and the splitting theorem (Chapter 4.1):

SM[Σ ∧∆ ∧Θ ∧ Ξ ; Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn].

Translation F2LP is used to turn the above formula into the syntax of ASP. As a

result, system F2LP can be used to compute event calculus descriptions using

answer set solvers.

66



5.6 Proofs

Proof of Theorem 14

One can verify this by checking that for any formula F , and the formula F ′

obtained from F by applying one of the prenex form conversion rules given in

Section 6.3.1 of (Pearce & Valverde, 2005), formula

u ≤ p→ (F ∗(u)↔ F ′∗(u))

is logically valid where p is any list of predicate constants and u is the

corresponding list of predicate variables. �

Proof of Proposition 2

Lemma 8 (Ferraris et al., 2011, Lemma 6) Formula

u ≤ p→ ((¬F )∗(u)↔ ¬F )

is logically valid.

Lemma 9 Let F be a formula, let p be a list of distinct predicate constants, let G

be a subformula of F and let G′ be any formula that is classically equivalent to G.

Let F ′ be the formula obtained from F by substituting G′ for G. If the occurrence of

G is in a subformula of F that is negative on p and the occurrence of G′ is in a

subformula of F ′ that is negative on p, then

SM[F ; p]↔ SM[F ′; p]

is logically valid.

Proof. Let F¬¬ be the formula obtained from F by prepending ¬¬ to G, and let

(F ′)¬¬ be the formula obtained from F ′ by prepending ¬¬ to G′. By the Theorem
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on Double Negations (Theorem 13), the following formulas are logically valid.

SM[F ; p]↔ SM[F¬¬; p],

SM[F ′; p]↔ SM[(F ′)¬¬; p].

From Lemma 8, it follows that

(u ≤ p ∧ (G↔ G′))→ ((F¬¬)∗(u)↔ ((F ′)¬¬)∗(u))

is logically valid, where u is a list of predicate variables corresponding to p.

Consequently,

SM[F¬¬; p]↔ SM[(F ′)¬¬; p]

is logically valid. �

Proof of Proposition 2. In formula

SM[F ′ ∧ ∀xy(G(y, x)→ q(x)); p, q], (5.8)

clearly, F ′ is negative on q and ∀xy(G(y, x)→ q(x)) is negative on p. Let H be

any subformula of F that is negative on p and contains the occurrence

of ∃yG(y, x). Consider two cases.

• Case 1: the occurrence of ∃yG(y, x) in H is not strictly positive. Thus the

dependency graph (Chapter 3.2) of F ′ ∧ ∀xy(G(y, x)→ q(x)) relative to

{p, q} has no incoming edges into q.

• Case 2: the occurrence of ∃yG(y, x) in H is strictly positive. Since H is

negative on p, ∃yG(y, x) is negative on p as well, so that the dependency

graph of F ′ ∧ ∀xy(G(y, x)→ q(x)) relative to {p, q} has no outgoing edges

from q.
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Therefore, every strongly connected component in the dependency graph belongs

to either p or {q}. Consequently, by Theorem 12, (5.8) is equivalent to

SM[F ′; p] ∧ SM[∀xy(G(y, x)→ q(x)); q] (5.9)

Since ∃yG(y, x) is negative on q, formula ∀xy(G(y, x)→ q(x)) is tight on {q}. By

Theorem 3, (5.9) is equivalent to

SM[F ′; p] ∧ ∀x(∃yG(y, x)↔ q(x)). (5.10)

By Lemma 9, it follows that (5.10) is equivalent to

SM[F ; p] ∧ ∀x(∃yG(y, x)↔ q(x)).

Consequently, the claim follows. �

Proof of Theorem 15

It is clear that the algorithm terminates and yields a quantifier-free formula K. We

will prove that SM[F ; p] is σ-equivalent to SM[∀xK; p ∪ q] where x is the list of all

(free) variables of K.

Let F¬¬ be the formula obtained from the initial formula F by prepending

double negations in front of every maximal strictly positive occurrence of formulas

of the form ∃yG(x, y). Since F is almost universal relative to p, such an

occurrence is in a subformula of F that is negative on p. Thus by the Theorem on

Double Negations (Theorem 13), SM[F ; p] is equivalent to SM[F¬¬; p]. Note that

F¬¬ contains no strictly positive occurrence of formulas of the form ∃yG(x, y).

For each iteration, let us assume that the formula before the iteration is

H0 ∧ · · · ∧Hn

where H0 is transformed from F¬¬ by the previous iterations, and each Hi (i > 0)

is a formula of the form G(x, y)→ pG(x) that is introduced by Step (b). Initially H0
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is F¬¬ and n = 0. Let r0 be p, and let ri be each pG for Hi (i > 0). By induction we

can prove that

(i) every positive occurrence of formulas of the form ∃yG(x, y) in Hi is not

strictly positive, and is in a subformula of Hi that is negative on ri;

(ii) every negative occurrence of formulas of the form ∀yG(x, y) in Hi is in a

subformula of Hi that is negative on ri.

We will prove that if Step (a) or Step (c) is applied to turn Hk into H ′k, then

SM[∀x0H0; r0] ∧ · · · ∧ SM[∀xnHn; rn] (5.11)

is equivalent to

SM[∀x′0H ′0; r0] ∧ · · · ∧ SM[∀x′nH ′n; rn] (5.12)

where H ′j = Hj for all j different from k, and xi (i ≥ 0) is the list of all free

variables of Hi, and x′i (i ≥ 0) is the list of all free variables of H ′i.

Indeed, Step (a) is a part of prenex form conversion, which preserves

strong equivalence (Theorem 14). So it is clear that (5.11) is equivalent to (5.12).

When Step (c) is applied to turn (5.11) into (5.12), since ∀yH(x, y) is in a

subformula of Hk that is negative on rk, the equivalence between (5.11) and (5.12)

follows from Lemma 9.

When Step (b) is applied to turn Hk into H ′k and introduces a new

conjunctive term H ′n+1, formula (5.11) is (σ, r1, . . . , rn)-equivalent to

SM[∀x′0H ′0; r0] ∧ · · · ∧ SM[∀x′nH ′n; rn] ∧ SM[∀x′n+1H
′
n+1; rn+1] (5.13)

by Proposition 2 due to condition (i).

Let

H ′′0 ∧ · · · ∧H ′′m (5.14)
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be the final quantifier-free formula where H ′′0 is transformed from F¬¬. By the

induction, it follows that SM[F ; p] is σ-equivalent to

SM[∀x′′0H ′′0 ; r0] ∧ · · · ∧ SM[∀x′′mH ′′m; rm], (5.15)

where each x′′i (0 ≤ i ≤ m) is the list of all free variables of H ′′i .

Since every non-strictly positive occurrence of new predicate ri (i > 0) in

any H ′′j (0 ≤ j ≤ m) is positive, there is no incoming edge into ri in the

dependency graph of (5.14) relative to r0, r1, . . . , rm. Consequently, every strongly

connected component of the dependency graph belongs to one of ri (i ≥ 0).

Moreover, it is clear that each H ′′i (i ≥ 0) is negative on every rj for j 6= i. (In the

case of H ′′0 , recall that the occurrence of rj for any j > 0 is not strictly positive

since F¬¬, from which H ′′0 is obtained, contains no strictly positive occurrence of

formulas of the form ∃yG(x, y).) Thus by the splitting theorem (Theorem 12),

formula (5.15) is equivalent to

SM[∀x′′0H ′′0 ∧ · · · ∧ ∀x′′mH ′′m; r0 ∪ · · · ∪ rm]. (5.16)

�

Proof of Theorem 16

We use the notations introduced in the proof of Theorem 15. By Theorem 15,

SM[F ; p] is σ-equivalent to (5.16) and, by Theorem 6, (5.16) is equivalent to

SM[∀x′′0H ′′0 ∧ · · · ∧ ∀x′′mH ′′m ∧ Choice(σpred \ p); σpred ∪ r1 ∪ · · · ∪ rm] (5.17)

(r0 is p) where σpred is the set of all predicate constants in signature σ. It follows

from Proposition 3 from (Cabalar et al., 2005) that (5.17) is equivalent to

SM[∀x′′0H ′′′0 ∧ · · · ∧ ∀x′′mH ′′′m ∧ Choice(σpred \ p); σpred ∪ r1 ∪ · · · ∪ rm] (5.18)

where H ′′′i is obtained from H ′′i by applying the translation from (Cabalar et al.,

2005, Section 3) (reviewed in Chapter 5.2) that turns a quantifier-free formula into
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a set of rules. It is easy to see that F ′ is the same as the formula

∀x′′0H ′′′0 ∧ · · · ∧ ∀x′′mH ′′′m ∧ Choice(σpred \ p)

and σpred ∪ r1 ∪ · · · ∪ rm is the same as p ∪ pr(F ′), so that (5.18) can be written as

SM[F ′; p ∪ pr(F ′)],

which is equivalent to

SM[F ′ ∧ False(p \ pr(F ′))].

by Proposition 1. �
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Chapter 6

SAFETY

The safety property was studied in datalog as a condition under which the set of

answers for a given query is finite (see, for example, (Ullman, 1985; Zaniolo, 1986;

Ramakrishnan, Bancilhon, & Silberschatz, 1987; Krishnamurthy, Ramakrishnan, &

Shmueli, 1996)). Safety thus guarantees the decidability of query answering. The

study of the safety property has been carried over to ASP (see, for example,

(McCain & Turner, 1994)) and it plays an important role in the design of answer set

solvers. According to the traditional definition of safety in ASP, a rule in a program

is safe if every variable occurring in it also occurs in the positive part of the body. A

program is safe if all the rules in it are safe. Answer set solvers accept only safe

rules as input. There are a couple of reasons for this.

The first reason is mainly from a semantic point of view but is also related

to decidability. Consider the following unsafe program:

p(x)← not q(y)

q(a)

This program is not safe since the first rule is not safe (x and y do not occur in the

positive body). Recall that the traditional way to compute the answer sets of

programs with variables involves grounding the program with the Herbrand

universe of the signature obtained from the program. In this case, the signature

obtained from the program is {p/1, q/1, a} and the program has one answer set:

{q(a)}. However, if we extend the signature by an object constant b and consider

the additional object constant for grounding, we get {q(a), p(a), p(b)} as the

answer set of the resulting ground program. This implies that answer sets of a

program with variables actually depend on the signature of the program. However,

we only consider the signature that can be obtained from the program in order to
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compute the answer sets. Safety actually justifies this choice of the signature since

the answer sets of a safe program depend only on the constants that occur in the

program. This in turn implies that safety not only enables domain-independent

reasoning but also guarantees decidability in the absence of function constants.

The second reason is from the point of view of computational efficiency.

The safety property is used in the answer set solvers to reduce the size of the

ground program and also to enhance the speed of grounding. For example,

consider the following safe program:

p(x)← not q(y), r(x, y)

r(a, b)

The ground program generated by answer set solvers does not include rules

where x is substituted with b and y is substituted with a (in the absence of r(x, y)

in the first rule, both x and y need to be substituted with a and b).

The definition of safety can be straightforwardly extended to disjunctive

programs, and Bria, Faber, and Leone (2008) extended safety to a special class of

programs with nested expressions (Lifschitz et al., 1999) called Normal Form

Nested Programs. However, these extensions are not general enough to cover

programs with aggregates. Though there has been some work done in extending

safety to programs with aggregates, these extensions impose more stringent

conditions than necessary. For example, the following safe rule is not covered by

the definition of safety in (Faber et al., 2004):

p(x)← #count{y : q(x, y)} ≥ 2 (6.1)

In this chapter, we present a generalization of safety to formulas under the

first-order stable model semantics, and show how the generalization can be used

to define safety for RASPL-1 programs (Chapter 4.2), which allow representation
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of the count aggregate. We discuss the related work at the end of the chapter.

Several parts of this chapter are also presented in (Lee et al., 2008a; Lee,

Lifschitz, & Palla, 2008b, 2009).

6.1 Generalization of Safety

We consider first-order formulas that may contain object constants and equality

but no function constants of arity > 0. The definition of a safe formula generalizes

the safety condition to arbitrary sentences in prenex form. The assumption that the

formula is in prenex form is not a significant limitation in view of Theorem 14

(Chapter 5.1), which implies that all steps involved in the standard process of

converting a formula to prenex form are strongly equivalent transformations.

To every quantifier-free formula F we assign a set RV(F ) of its restricted

variables as follows:1

• For an atomic formula F ,

– if F is an equality between two variables then RV(F ) = ∅;

– otherwise, RV(F ) is the set of all variables occurring in F ;

• RV(⊥) = ∅;

• RV(F ∧G) = RV(F ) ∪ RV(G);

• RV(F ∨G) = RV(F ) ∩ RV(G);

• RV(F → G) = ∅.

We say that a variable x is restricted in F if x belongs to RV(F ). For instance,

consider a rule of the form

A← A1, . . . , An, not An+1, . . . , not Am (6.2)
1Some clauses of this definition are similar to parts of the definition of an allowed formula

in (Topor & Sonenberg, 1988).
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which can be viewed as

A1 ∧ · · · ∧ An ∧ ¬An+1 ∧ · · · ∧ ¬Am → A.

A variable x is restricted in the body of the rule iff it occurs in the positive body.

Consider a sentence F in prenex form:

Q1x1 · · ·QnxnM (6.3)

(each Qi is ∀ or ∃; x1, . . . , xn are distinct variables; the matrix M is quantifier-free).

We say that F is semi-safe if every occurrence of each of the variables xi in M is

contained in a subformula G→ H where xi is restricted in G. For example,

consider

∀x∃y(p(x) ∧ ¬q(y)→ r(x)). (6.4)

This formula is semi-safe since both the occurrences of x in the matrix belong to

the matrix itself (which is an implication) and x is restricted in the antecedent of the

matrix, and the only occurrence of y in the matrix belongs to the implication

q(y)→ ⊥2 and y is restricted in the antecedent of the implication. We identify a

formula containing free variables with its universal closure so that a rule (6.2) is

semi-safe iff every variable occurring in the head also occurs in the positive body.

Formula

∀x∃y(p(x) ∧ ¬q(y)→ r(x, y)) (6.5)

is not semi-safe since the strictly positive occurrence of y in the matrix is not

restricted in antecedent of the matrix (RV(¬q(x)) = ∅).

The definition of a safe formula adds an additional restriction to the

definition of a semi-safe formula. We say a sentence (6.3) is safe if every

occurrence of each of the variables xi in M is contained in a subformula G→ H

that satisfies two conditions:

2Recall that we treat ¬F as shorthand for F → ⊥.
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(a) the subformula is positive in M if Qi is ∀, and negative in M if Qi is ∃; and

(b) xi is restricted in G.

Consider the sentence (6.4). This sentence is safe because of the following

reasons. Both the occurrences of x in the matrix belong to the matrix itself (which

is positive in itself) and x is restricted in the antecedent of the matrix. The only

occurrence of y in the matrix belongs to the implication q(y)→ ⊥, which is

negative in the matrix, and y is restricted in the antecedent of the implication.

Now, consider a rule (6.2). If every variable occurs in the positive body,

then every occurrence of every variable belongs to the rule and every variable is

restricted in the body. So, such a rule is safe. On the other hand, consider a

variable that occurs only in the negative body. Clearly, that variable is not

restricted in the body. So, any rule with such a variable is not safe. So, a rule (6.2)

is safe iff every variable occurring in it also occurs in the positive body.

Similarly, one can check that

∀x(¬p(x) ∨ ¬q(x)→ r)

is semi-safe but not safe.

Since the prenex form transformation is strongly equivalent, we can

consider a formula to be safe if its prenex form is safe. For instance, the formula

p(a) ∧ ∀x(p(x) ∧ ¬∃yq(y)→ r(x)) (6.6)

is safe since

∀x∃y(p(a) ∧ (p(x) ∧ ¬q(y)→ r(x)))

is safe.

In the remaining part of the section, we present some interesting properties

of safe sentences, which ensure domain-independent and decidable reasoning.
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The Small Predicate Property

We say that a stable model of a sentence F has the small predicate property if, for

every predicate constant pi, if the relation represented by it holds for a tuple of

arguments, then each member of the tuple is represented by an object constant

occurring in F . To make this idea precise, we will use the following notation: for

any finite set c of object constants, inc(x1, . . . , xm) stands for the formula

∧
1≤j≤m

∨
c∈c

xj = c.

The small predicate property can be expressed by the conjunction of the

sentences

∀x(pi(x)→ inc(x))

for all predicate constants pi occurring in F , where x is a list of distinct variables.

We will denote this sentence by SPPc. By c(F ) we denote the set of all object

constants occurring in F .

Proposition 3 For any semi-safe sentence F , SM[F ] entails SPPc(F ).

For instance, if F is (6.6), then the proposition asserts that SM[F ] entails

∀x(p(x)→ x = a) ∧ ∀x(q(x)→ x = a).

Characterizing the Stable Models of a Safe Sentence

Proposition 3 seems to suggest that the stable models of a safe sentence F are

closely related to the stable models of the sentence obtained by grounding F with

the object constants occurring in it. In order to show that this is indeed the case,

we define Groundc[F ] for any safe sentence F in prenex form as follows. If F is

quantifier-free, then Groundc[F ] is F . Otherwise,
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Groundc[∀xF (x)] =
∧
c∈c

Groundc[F (c)],

Groundc[∃xF (x)] =
∨
c∈c

Groundc[F (c)].

Theorem 17 For any safe sentence F and any nonempty finite set c of object

constants containing c(F ), SM[Groundc[F ]] is equivalent to SM[F ].

This theorem asserts that the stable models of a safe sentence F are the

stable models of the variable-free sentence obtained by grounding F with respect

to the object constants occurring in F . This result also establishes the

domain-independence of the answer sets of safe formulas, i.e, adding object

constants to the signature obtained from the formula does not change the

Herbrand stable models. Further, the above theorem also enables us to

characterize the stable models of a safe sentence by a propositional formula under

the unique name assumption (UNA).

For example, consider the safe formula (6.6). The above theorem asserts

that SM[F ; p, q, r] is equivalent to

SM[p(a) ∧ (p(a) ∧ ¬q(a)→ r(a)); p, q, r].

Since there is only one object constant in F , UNA holds by default. So, by treating

the formula under SM as a propositional formula, it follows from the relationship of

SM to completion (Theorem 3, Chapter 3.2) that the models of the above formula

can be represented by the models of the propositional formula

p(a) ∧ ¬q(a) ∧ (p(a) ∧ ¬q(a)↔ r(a)).

So, questions such as “does SM[F ; pr(F )] |= ∀x¬q(x)?” can be answered by

simply computing the models of the above propositional formula. In other words,
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entailment checking w.r.t safe formulas reduces to the problem of propositional

satisfiability.

We now show that the stable models of a safe sentence can be

characterized by a first-order sentence.

Theorem 18 For every safe sentence F there exists a variable-free formula G

such that SM[F ] is equivalent to G ∧ SPPc(F ).

Extending a Stable Model

In the beginning of the chapter, we mentioned that the answer sets of a safe

program do not change upon adding object constants to the signature obtained

from the program. This result is extended to safe formulas by Theorem 17. Here,

we prove a similar result by considering first-order stable models instead of answer

sets.

Let I be an interpretation of a set of object and predicate constants, and

let X be a superset of the universe of I. By the extension of I to X we mean the

interpretation of the same constants with the universe X such that each object

constant represents the same object under both interpretations, and each

predicate constant represents the same set of tuples.

Theorem 19 For any safe sentence F , any interpretation I of the object and

predicate constants from F , and any superset X of the universe of I, the

extension of I to X is a stable model of F iff I is a stable model of F .

6.2 Safety for RASPL-1

In view of the reductive semantics of RASPL-1 (Chapter 4.2), this definition of

safety can be used to define safety for RASPL-1 programs, thus overcoming some

of the limitations with the earlier definitions and contributing to the design of
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answer set solvers. We adapt the definition of safety provided above to RASPL-1

programs as follows.

Recall that an RASPL-1 program is a finite set of rules of the form

A1 ; . . . ; Al ← E1, . . . , Em, not Em+1, . . . , not En (6.7)

where each Ai is an atom, semi-colon(;) represents disjunction, and each Ei is an

aggregate expression of the form

b {x : F1, . . . , Fk} (6.8)

(k ≥ 1), where b is a positive integer (“the bound”), x is a list of variables (possibly

empty), and each Fi is an atom possibly preceded by not. Since comma (,)

represents conjunction, we can view (6.8) as

b {x : F} (6.9)

where F stands for F1 ∧ · · · ∧ Fk.

We say that an aggregate expression b{x : F} is allowed if every member

of x is restricted in F . For instance, 2{x : p(x, y)} is allowed; 2{x : p(y)} and

2{x : not p(x, y)} are not allowed.

We say that a variable v is restricted in an aggregate expression b{x : F}

if v is restricted in F and does not belong to x. For instance, y is restricted in

2{x : p(x, y)} and in 2{x : p(y)}, but is not restricted in 2{x : not p(x, y)}.

A variable v is free in a rule (6.7) if

• v occurs in the head A1 ; . . . ; Al of the rule, or

• the body E1, . . . , not En of the rule contains an aggregate expression

b{x : F} such that v occurs in F and does not belong to x.
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A rule (6.7) is safe if

• each aggregate expression in its body is allowed, and

• each of its free variables is restricted in one of the aggregate expressions

E1, . . . , Em.

A RASPL-1 program is safe if each of its rules is safe. For example, the

RASPL-1 program (4.17) that computes cliques of size greater than or equal to n

is safe and is accepted by some answer set solvers. However, any program

containing (6.1)3 or the rule4

q ← not 1{not p(x)}

is not accepted by answer set solvers as they consider them unsafe. On the other

hand, the definition of safety presented here asserts that these rules are safe and

answer set solvers can be extended to accept such rules.

As an example of an unsafe rule, consider

p(x)← 2{x : q(x)}.

This rule is not safe since the free variable x is not restricted in 2{x : q(x)}.

The following theorem states that the answer sets of a safe RASPL-1

program do not change upon adding object constants to the signature obtained

from the program.

Theorem 20 Let Π be a safe RASPL-1 program containing at least one object

constant, and let F be its FOL-representation. For any signature σ obtained by

adding object constants to σ(F ), an Herbrand interpretation of σ satisfies SM[F ] iff

it is an answer set of Π.

3This is not a RASPL-1 rule but can be straightforwardly rewritten as one.
4Such rules are quite useful when we want to compute answer sets of arbitrary formulas.
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6.3 Related Work

The definition of safety by Cabalar, Pearce, and Valverde (2009) generalizes our

definition provided above. We review here a slightly different version of their

definition. We say that a formula (6.3) is CPV-semi-safe if every strictly positive

occurrence of each of the variables xi in M belongs to a subformula G→ H

where xi is restricted in G. It is easy to see that any sentence that is semi-safe

according to our definition is also CPV-semi-safe. For example, formula (6.4),

which is semi-safe according to our definition, is also CPV-semi-safe. Since the

definition of a CPV-semi-safe formula imposes restrictions on only the strictly

positive occurrences of variables, any formula in which no variable occurs strictly

positively is trivially CPV-semi-safe. For example, the formula

q(x) ∨ r(y)→ r

is CPV-semi-safe, but is not semi-safe according to our definition. Formula (6.5) is

not semi-safe according to both the definitions since the strictly positive occurrence

of y in the matrix is not restricted in antecedent of the matrix (RV(¬q(x)) = ∅).

Following (Cabalar et al., 2009), we define the following transformations.

• ¬⊥ 7→ >, ¬> 7→ ⊥,

• ⊥ ∧ F 7→ ⊥, F ∧ ⊥ 7→ ⊥, > ∧ F 7→ F , F ∧ > 7→ F ,

• ⊥ ∨ F 7→ F , F ∨ ⊥ 7→ F , > ∨ F 7→ >, F ∨ > 7→ >,

• ⊥ → F 7→ >, F → > 7→ >, > → F 7→ F .

We say that a variable x is positively weakly restricted in a formula G if the

formula obtained from G by

• first replacing every atomic formula A in it such that x is restricted in A by ⊥,
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• and then applying the transformations above

is >. Similarly, we say that x is negatively weakly restricted in G if the formula

obtained from G by the same procedure is ⊥.

We say that a CPV-semi-safe sentence (6.3) is CPV-safe if, for every

occurrence of each of the variables xi in the matrix M ,

(a) if Qi is ∀, then the occurrence belongs to

– a positive subformula of (6.3) in which xi is positively weakly restricted,

or

– a negative subformula of (6.3) in which xi is negatively weakly

restricted;

(b) if Qi is ∃, then the occurrence belongs to

– a negative subformula of (6.3) in which xi is positively weakly restricted,

or

– a positive subformula of (6.3) in which xi is negatively weakly restricted.

It follows that if a sentence is safe according to our definition, it is also CPV-safe.

For, example, consider the sentence (6.4), which is safe according to our

definition. This sentence is CPV-safe because of the following reasons. By

replacing p(x) and r(x) by ⊥, the matrix reduces to > upon applying the

transformations shown above. This implies that x is positively weakly restricted in

the matrix, which is a positive subformula of (6.4). Also, the variable y, which is

existentially quantified, is clearly negatively weakly restricted in q(y), which is a

positive subformula of (6.4). On the other hand, a CPV-safe sentence may not be

safe according to our definition. For example, formula

¬p(x)→ ¬q(x)
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is CPV-safe but not safe according to our definition.

One can check that

∃x∀y((p(x)→ q(y))→ r)

and

∃x(¬p(x)→ q)

are CPV-safe, but

∀x(¬p(x) ∨ ¬q(x)→ r)

is CPV-semi-safe but not CPV-safe.

6.4 Proofs

Proof of Proposition 3

The notation that we use in the proof involves predicate expressions of the form

λxF (x), (6.10)

where F (x) is a formula. If e is (6.10) and G(p) is a formula containing a predicate

constant p of the same arity as the length of x then G(e) stands for the result of

replacing each atomic part of the form p(t) in G(p) with F (t), after renaming the

bound variables in G(p) in the usual way, if necessary. For instance, if G(p) is

p(a) ∨ p(b) then G(λy(x = y)) is x = a ∨ x = b. Substituting a tuple e of predicate

expressions for a tuple p of predicate constants is defined in a similar way.

For any finite set c of object constants, by ec we denote the list of predicate

expressions

λx(pi(x) ∧ inc(x))

for all predicate constants pi.

The following lemma can be proved by induction on F .

85



Lemma 10 For any quantifier-free formula F and any finite set c of object

constants containing c(F ),

F ∗(ec)→ inc(RV(F ))

is logically valid.

About a variable x occurring in a quantifier-free formula F we say that it is

safe in F if every occurrence of x in F belongs to a subformula G→ H such

that x is restricted in G. It is clear that a sentence in prenex form is semi-safe iff all

variables in its matrix are safe. By NS(F ) we will denote the set of the variables

of F that are not safe.

Lemma 11 For any quantifier-free formula F and any finite set c of object

constants containing c(F ),

(F ∧ inc(NS(F )))→ F ∗(ec) (6.11)

is logically valid.

Proof. By induction on F . We only consider the case when F is G→ H; the

other cases are straightforward. By the induction hypothesis,

(H ∧ inc(NS(H)))→ H∗(ec) (6.12)

is logically valid. By Lemma 1,

G∗(ec)→ G (6.13)

is logically valid. By Lemma 10,

G∗(ec)→ inc(RV(G)) (6.14)

is logically valid. Assume the antecedent of (6.11)

(G→ H) ∧ inc(NS(G→ H)). (6.15)
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Assume G∗(ec); our goal is to derive H∗(ec). By (6.13), G; by the first conjunctive

term of (6.15), H. By (6.14),

inc(RV(G)). (6.16)

Note that NS(H) ⊆ NS(G→ H) ∪ RV(G). Consequently, from the second

conjunctive term of (6.15), and (6.16),

inc(NS(H)). (6.17)

From H, (6.17) and (6.12), H∗(ec). �

Lemma 12 For any semi-safe sentence F , F entails F ∗(ec).

Proof. Immediate from Lemma 11.

�

Proof of Proposition 3 Assume F and ¬SPPc(F ); we will derive

∃u(u < p ∧ F ∗(u)).

To this end, we will prove

(ec(F ) < p) ∧ F ∗(ec(F )).

By Lemma 12, it is sufficient to prove the first conjunctive term, that is,

∧
p∈p

(
∀x
(
p(x) ∧ inc(F )(x)→ p(x)

))
∧ ¬

∧
p∈p

∀x
(
p(x)→

(
p(x) ∧ inc(F )(x)

))
. (6.18)

The first conjunctive term of (6.18) is logically valid, and the second is equivalent

to ¬SPPc(F ). �
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Proof of Theorem 17

As in (Lifschitz, Pearce, & Valverde, 2007), by INT= we denote intuitionistic

predicate logic with equality, and DE stands for the decidable equality axiom

x = y ∨ x 6= y.

The importance of the logical system INT= + DE is determined by the fact that it is

a part of SQHT= (“static quantified logic of here-and-there with equality”) (Ferraris

et al., 2011), so that the provability of a sentence F ↔ G in this system implies

that SM[F ] is equivalent to SM[G].

We will first prove the following proposition.

Proposition 4 For any safe sentence F and any nonempty finite set c of object

constants containing c(F ), the equivalence

Groundc[F ]↔ F

is derivable from SPPc in INT= + DE.

Lemma 13 If any of the sentences ∀xF (x), ∃xF (x) is safe then so is F (c) for any

object constant c.

Proof. Immediate from the fact, easily verified by induction, that if a variable other

than x is restricted in a formula G(x) then it is restricted in G(c) as well. �

Lemma 14 If x is restricted in a quantifier-free formula F (x), and c is a nonempty

finite set of object constants containing c(F ), then the formula

F (x)→ inc(x)

is derivable from SPPc in INT=.
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Proof. Immediate by induction on F (x). �

Lemma 15 For any formula F (x) in prenex form that has no free variables other

than x, and for any nonempty finite set c of object constants containing c(F ),

(a) if the sentence ∀xF (x) is safe then the equivalence

∀xF (x)↔
∧
c∈c

F (c)

is derivable from SPPc in INT= + DE;

(b) if the sentence ∃xF (x) is safe then the equivalence

∃xF (x)↔
∨
c∈c

F (c)

is derivable from SPPc in INT= + DE.

Proof. (a) Assume that ∀xF (x) is safe. In INT= + DE, this formula can be

equivalently written as

∀x((inc(x)→ F (x)) ∧ (¬inc(x)→ F (x))),

and consequently as

∧
c∈c

F (c) ∧ ∀x(¬inc(x)→ F (x)). (6.19)

Consider the maximal subformulas G(x)→ H(x) of F (x), positive in F (x), such

that x is restricted in G(x). From Lemma 14 we conclude that for each of these

subformulas, the implication

G(x)→ inc(x)

is derivable from SPPc in INT=, and consequently so is

¬inc(x)→ (G(x)→ H(x)).
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It follows that, under the assumption SPPc, (6.19) can be equivalently rewritten as

∧
c∈c

F (c) ∧ ∀x(¬inc(x)→ S), (6.20)

where S is the formula obtained from F (x) by replacing each of these maximal

subformulas G(x)→ H(x) with >. Since ∀xF (x) is safe, x does not occur in S. It

follows that S can be obtained from F (c) in the same way as it was obtained

from F (x), that is, by replacing some subformulas that are positive in F (c) with >.

Consequently, the formula F (c)→ S is intuitionistically provable, and so is

F (c)→ ∀x(¬inc(x)→ S).

It follows that the second conjunctive term of (6.20) can be dropped.

(b) Assume that ∃xF (x) is safe. In INT= + DE, this formula can be

equivalently written as

∃x((inc(x) ∧ F (x)) ∨ (¬inc(x) ∧ F (x))),

and consequently as

∨
c∈c

F (c) ∨ ∃x(¬inc(x) ∧ F (x)). (6.21)

Consider the maximal subformulas G(x)→ H(x) of F (x), negative in F (x), such

that x is restricted in G(x). As before, the implications

¬inc(x)→ (G(x)→ H(x))

are derivable from SPPc in INT=. Consequently, under the assumption

SPPc, (6.21) can be equivalently rewritten as

∨
c∈c

F (c) ∨ ∃x(¬inc(x) ∧ S), (6.22)

where S is the formula obtained from F (x) by replacing each of these subformulas

with >. Since ∃xF (x) is safe, x does not occur in S. It follows that S can be
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obtained from F (c) in the same way as it was obtained from F (x), that is, by

replacing some subformulas that are negative in F (c) with >. Consequently, the

formula S → F (c) is intuitionistically provable, and so is

∃x(¬inc(x) ∧ S)→ F (c).

It follows that the second disjunctive term of (6.22) can be dropped. �

Proof of Proposition 4. By induction on the length of the prefix. The base case is

trivial. Assume that QxF (x) is safe. Case 1: Q is ∀. In view of Lemma 13, from

the induction hypothesis we can conclude that

Groundc[F (c)]↔ F (c)

is derivable from SPPc in INT= + DE for every c ∈ c. Consequently

∧
c∈c

Groundc[F (c)]↔
∧
c∈c

F (c)

is derivable from SPPc as well. By the definition of Groundc, the left-hand side is

Groundc[∀xF (x)]. By Lemma 15(a), under the assumption SPPc, the right-hand

side is equivalent in INT= + DE to ∀xF (x). Case 2: Q is ∃. Similar, using

Lemma 15(b). �

Proof of Theorem 17. By Proposition 4 proved above, the equivalence

Groundc[F ] ∧ SPPc ↔ F ∧ SPPc

is provable in INT= + DE. Consequently

SM[Groundc[F ] ∧ SPPc] is equivalent to SM[F ∧ SPPc].

Since SPPc is negative on all predicates, it follows from Lemma 4 that

SM[Groundc[F ]] ∧ SPPc is equivalent to SM[F ] ∧ SPPc.
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In view of Proposition 3 and the fact that c(F ) ⊆ c, the conjunctive term SM[F ] in

the second conjunction entails its other conjunctive term SPPc, and the latter can

be dropped. Furthermore, Groundc[F ] is variable-free and consequently safe. It

follows by similar reasoning that in the first conjunction the term SPPc can be

dropped also. �

Proof of Theorem 18

In view of Proposition 3, we need to find a variable-free formula G such that

SPPc(F ) entails SM[F ]↔ G.

Case 1: c(F ) = ∅. Under the assumption SPP∅, every atomic part of

SM[F ] that contains a predicate constant or variable of arity > 0 can be

equivalently replaced by ⊥. The result is a second-order propositional formula, so

that it is equivalent to a propositional formula.

Case 2: c(F ) 6= ∅ and F is variable-free. The only quantifiers in the

definition of SM are the second-order quantifiers ∃u. Clearly SPPc(F ) entails

ui ≤ pi → ui ≤ λx

(∨
c

x = c

)

where c ranges over the tuples of members of c(F ) of the same length as x.

Consequently it entails also

u < p → ui ≤ λx

(∨
c

x = c

)

and

u < p →
∨
C

(
ui = λx

∨
c∈C

x = c

)
,

where C ranges over all sets of such tuples. It follows that under the assumption

SPPc(F ) the quantifiers ∃u can be equivalently replaced by finite disjunctions, with

expressions of the form λx
∨

c∈C x = c substituted for the variables ui. The result

is a variable-free formula with the required properties.
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Case 3: c(F ) 6= ∅ and F is not variable-free. The part of Theorem 18

corresponding to Case 2 can be applied to Groundc(F )[F ]. Since the formulas F

and Groundc(F )[F ] contain the same object constants, we can assert that, for

some variable-free formula G, SPPc(F ) entails

SM[Groundc(F )[F ]]↔ G.

It remains to observe that, by Theorem 17, the left-hand side is equivalent to

SM[F ]. �

Proof of Theorem 19

From Theorem 18, it follows that there is a variable-free formula G such that

SM[F ] is equivalent to G ∧ SPPc(F ). The result follows from the observation that

I |= G ∧ SPPc(F ) iff the extension of I to X satisfies G ∧ SPPc(F ). �

Proof of Theorem 20

From Theorem 17, it follows that SM[Groundc(F )[F ]] is equivalent to SM[F ]. The

result follows from Proposition 3. �

93



Chapter 7

EVENT CALCULUS IN ANSWER SET PROGRAMMING

In this chapter, we use the results presented in the previous chapters to

reformulate the event calculus in ASP. We begin with a review of the event

calculus and then show how the theorem on canonical formulas (Theorem 4) and

the splitting theorem (Theorem 12) can be used to reformulate the event calculus

in the first-order stable model semantics. We then show how translation F2LP

(Chapter 5.3) can be used to further transform event calculus theories into the

syntax of ASP. Based on this, we show how system F2LP can be used for

computing event calculus descriptions and discuss some of the advantages of this

approach. We then compare this computational approach to some existing

reasoners, primarily the DEC reasoner1 (Mueller, 2004).

7.1 Review of the Event Calculus

Here we review the syntax of circumscriptive event calculus described in (Mueller,

2006, Chapter 2).

The language of the event calculus is a many-sorted first-order language,

which contains an event sort, a fluent sort, and a timepoint sort. A fluent term is a

term whose sort is a fluent; an event term and a timepoint term are defined

similarly. Some of the key event calculus predicates that are used to represent the

knowledge about the occurrences of events and the values of the fluents are as

follows:

• HoldsAt(f, t): fluent f is true at timepoint t;

• Happens(e, t): event e occurs at timepoint t;

• Initiates(e, f, t): if event e occurs at timepoint t, then fluent f is true after t;

1http://decreasoner.sourceforge.net/.
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• Terminates(e, f, t): if event e occurs at timepoint t, then fluent f is false after

t;

• Releases(e, f, t): if event e occurs at timepoint t, then fluent f is released

from the commonsense law of inertia after t;

• ReleasedAt(f, t): fluent f is released from the commonsense law of inertia

at timepoint t.

A condition is defined recursively as follows:

• If τ1 and τ2 are terms, then comparisons τ1 < τ2, τ1 ≤ τ2, τ1 ≥ τ2, τ1 > τ2,

τ1 = τ2, τ1 6= τ2 are conditions;

• If f is a fluent term and t is a timepoint term, then HoldsAt(f, t) and

¬HoldsAt(f, t) are conditions;

• If γ1 and γ2 are conditions, then γ1 ∧ γ2 and γ1 ∨ γ2 are conditions;

• If v is a variable and γ is a condition, then ∃vγ is a condition.

In the following, we will use e and ei to denote event terms, f and fi to

denote fluent terms, t and ti to denote timepoint terms, and γ and γi to denote

conditions.

In the event calculus, Initiates, Terminates, and Releases are circumscribed

to minimize unexpected effects of events, Happens is circumscribed to minimize

unexpected events, and every abnormality predicate Abi is circumscribed to

minimize abnormalities. Formally, an event calculus description is a

circumscriptive theory of the form
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CIRC[Σ ; Initiates,Terminates,Releases] ∧ CIRC[∆ ; Happens]

∧ CIRC[Θ ; Ab1, . . . ,Abn] ∧ Ξ
(7.1)

where

• Σ is a conjunction of universal closures of axioms of the form

γ → Initiates(e, f, t)

γ → Terminates(e, f, t)

γ → Releases(e, f, t)

γ ∧ π1(e, f1, t)→ π2(e, f2, t) (“effect constraint”)

γ ∧ [¬]Happens(e1, t) ∧ · · · ∧ [¬]Happens(en, t)→ Initiates(e, f, t)

γ ∧ [¬]Happens(e1, t) ∧ · · · ∧ [¬]Happens(en, t)→ Terminates(e, f, t)

where each of π1 and π2 is either Initiates or Terminates (‘[¬]’ means that ‘¬’

is optional);

• ∆ is a conjunction of universal closures of temporal ordering formulas

(comparisons between timepoint terms) and axioms of the form

γ → Happens(e, t)

σ(f, t) ∧ π1(f1, t) ∧ · · · ∧ πn(fn, t)→ Happens(e, t) (“causal constraints”)

Happens(e, t)→
Happens(e1, t) ∨ · · · ∨ Happens(en, t) (“disjunctive event axiom”)

where σ is Started or Stopped and each πj (1 ≤ j ≤ n) is either Initiated or

Terminated;

• Θ is a conjunction of universal closures of cancellation axioms of the form

γ → Abi(..., t);

• Ξ is a conjunction of first-order sentences (outside the scope of CIRC)

including unique name axioms, state constraints, action precondition
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axioms, event occurrence constraints, trajectory/antitrajectory axioms,

observations, and the set of domain-independent axioms in the event

calculus, such as EC and DEC axioms (Mueller, 2006). It also includes the

following definitions of the predicates used in the causal constraints in ∆:

Started(f, t)
def↔

(HoldsAt(f, t) ∨ ∃e(Happens(e, t) ∧ Initiates(e, f, t))) (CC1)

Stopped(f, t)
def↔

(¬HoldsAt(f, t) ∨ ∃e(Happens(e, t) ∧ Terminates(e, f, t))) (CC2)

Initiated(f, t)
def↔

(Started(f, t) ∧ ¬∃e(Happens(e, t) ∧ Terminates(e, f, t))) (CC3)

Terminated(f, t)
def↔

(Stopped(f, t) ∧ ¬∃e(Happens(e, t) ∧ Initiates(e, f, t))) (CC4).

For example, the “Yale Shooting” (Hanks & McDermott, 1987) scenario can

be represented in the event calculus as follows:

Initiates(Load, Loaded, t)

HoldsAt(Loaded, t)→ Terminates(Shoot,Alive, t)

Terminates(Shoot, Loaded, t)

HoldsAt(Alive, 0) ∧ ¬HoldsAt(Loaded, 0)

Happens(Load, 0) ∧ Happens(Wait, 1) ∧ Happens(Shoot, 2)

In addition to these axioms, there are the unique name axioms and the

domain-independent axioms. The domain-independent axioms include inertial

axioms, and the axioms that make a fluent true/false based on the occurrence of

events that affect it. For example, in the Discrete Event Calculus (DEC), the

following axioms make a fluent true/false based on the occurrence of events that
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affect it:

Happens(e, t) ∧ Initiates(e, f, t)→ HoldsAt(f, t+ 1)

Happens(e, t) ∧ Terminates(e, f, t)→ ¬HoldsAt(f, t+ 1).

The following DEC axioms ensure that the value of a fluent does not change

unless some event that affects it occurs or unless it is released from the

commonsense law of inertia:

HoldsAt(f, t) ∧ ¬ReleasedAt(f, t+ 1)∧

¬∃e(Happens(e, t) ∧ Terminates(e, f, t))→ HoldsAt(f, t+ 1)

¬HoldsAt(f, t) ∧ ¬ReleasedAt(f, t+ 1)∧

¬∃e(Happens(e, t) ∧ Initiates(e, f, t))→ ¬HoldsAt(f, t+ 1).

In the “Yale Shooting” scenario, since Happens is minimized, the only

events that occur are those that are specified by the event occurrence formula (the

last formula), and since Initiates and Terminates are minimized, no unexpected

effects of events occur. As a result, the gun remains loaded after the Wait action

occurs since the action does not affect any fluent.

7.2 Reformulating the Event Calculus in the First-Order Stable Model Semantics

We assume that Ξ in (7.1) was already equivalently rewritten so that it is negative

on {Initiates, Terminates, Releases, Happens, Ab1, . . . ,Abn}.2

The following facts are easy to check from the description of the event

calculus (7.1), and the definition of canonical formulas (Chapter 3.3):

• Σ is canonical relative to {Initiates,Terminates,Releases};

• ∆ is canonical relative to {Happens};

• Θ is canonical relative to {Ab1, . . . ,Abn}.
2Recall the definition of a negative formula on p given in Chapter 4.
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These facts enable us to reformulate the event calculus in the first-order

stable model semantics. The following theorem shows a few equivalent

reformulations of circumscriptive event calculus in the first-order stable model

semantics.

Theorem 21 For any event calculus description (7.1), the following theories are

equivalent to each other: 3

(a) CIRC[Σ; I, T,R] ∧ CIRC[∆;H] ∧ CIRC[Θ; Ab1, . . . ,Abn] ∧ Ξ ;

(b) SM[Σ; I, T,R] ∧ SM[∆;H] ∧ SM[Θ; Ab1, . . . ,Abn] ∧ Ξ ;

(c) SM[Σ ∧∆ ∧Θ ∧ Ξ; I, T,R,H,Ab1, . . . ,Abn] ;

(d) SM[Σ∧∆∧Θ∧Ξ∧Choice(pr(Σ∧∆∧Θ∧Ξ) \ {I, T,R,H,Ab1, . . . ,Abn})].

The equivalence between (a) and (b) is immediate from the theorem on

canonical formulas (Theorem 4). The equivalence between (b) and (c) can be

proved using the splitting theorem (Chapter 4.1). The assumption that Ξ is

negative on the intensional predicates is essential in showing this equivalence.

(For more details, see the proof in the Appendix.) The equivalence between (c)

and (d) follows from Proposition 1 since

{I, T,R,H,Ab1, . . . ,Abn} \ pr(Σ ∧∆ ∧Θ ∧ Ξ) is the empty set.4

7.3 Reformulating the Event Calculus in Answer Set Programming

Using translation F2LP (Chapter 5.3), we can further turn the event calculus

reformulation shown above (Chapter 7.2) into answer set programs.

The following procedure turns an event calculus description into an answer

set program.

3For brevity, we abbreviate the names of circumscribed predicates.
4I, T , R, H occur in the domain independent axioms as part of Ξ.
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Definition 3 (Translation EC2ASP) 1. Given an event calculus

description (7.1), rewrite all the definitional axioms of the form

∀x(p(x)
def↔ G) (7.2)

in Ξ as ∀x(G¬¬ → p(x)) where G¬¬ is obtained from G by prepending ¬¬ to

all occurrences of the intensional predicates Initiates, Terminates, Releases,

Happens, Ab1, . . . ,Abn. Also prepend ¬¬ to the strictly positive occurrences

of the intensional predicates in the remaining axioms of Ξ. Let Ξ′ be the

resulting formula obtained from Ξ.

2. Apply translation F2LP on Σ ∧∆ ∧Θ ∧ Ξ′ with intensional predicates

{Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn} ∪ p

where p is the set of all predicate constants p of (7.2) considered in Step 1.

The following theorem states the correctness of the translation.

Theorem 22 Let T be an event calculus description (7.1) of signature σ that

contains finitely many predicate constants, let F be the FOL-representation of the

program obtained from T by applying translation EC2ASP. Then T is σ-equivalent

to SM[F ].

In view of the theorem, system F2LP can be used to compute event

calculus descriptions by a simple rewriting as stated in translation EC2ASP.5

Figure 7.1 shows an F2LP encoding of the domain-independent axioms in

the Discrete Event Calculus (DEC) (Mueller, 2006). The file is also available at

http://reasoning.eas.asu.edu/f2lp, along with the F2LP encodings of the domain

5In (Kim et al., 2009), we presented a prototype of system F2LP called ECASP that is tailored
to the event calculus computation.
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independent axioms in other versions of the event calculus. Figure 7.2 shows an

F2LP encoding of a simple blocks world domain. In this blocks world encoding,

there are only 2 actions: PickUp(x, y) and Stack(x, y). PickUp(x, y) represents the

action of picking up block x from the table (y) or from the top of another block y.

Stack(x, y) represents the action of placing block x on top of another block y or on

the table (y). Initially, block a is on the table, c is on a, and b is on c. The goal is to

stack the blocks such that c is on the table, b is on c, and a is on b. The plan can

be computed by invoking F2LP along with GRINGO and CLASPD as follows:

$ f2lp dec blocksWorld | gringo -c maxstep=8 | claspD

where 8 is the length of the plan. This gives the following plan:

happens(pickUp(b),0) happens(stack(b,table),1) happens(pickUp(c),2)

happens(stack(c,table),3) happens(pickUp(b),4) happens(stack(b,c),5)

happens(pickUp(a),6) happens(stack(a,b),7)
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% File `dec'

% domain variable declarations

#domain fluent(F). #domain fluent(F1). #domain fluent(F2).

#domain event(E).

#domain time(T). #domain time(T1). #domain time(T2).

time(0..maxstep).

% DEC 1

happens(E,T) & T1 < T & T < T2 & terminates(E,F,T) -> stoppedIn(T1,F,T2).

% DEC 2

happens(E,T) & T1 < T & T < T2 & initiates(E,F,T) -> startedIn(T1,F,T2).

% DEC 3

happens(E,T1) & initiates(E,F1,T1) & T2 > 0 &

trajectory(F1,T1,F2,T2) & -stoppedIn(T1,F1,T1+T2) &

T1+T2 <= maxstep -> holdsAt(F2,T1+T2).

% DEC 4

happens(E,T1) & terminates(E,F1,T1) & 0 < T2 &

antiTrajectory(F1,T1,F2,T2) & -startedIn(T1,F1,T1+T2) &

T1+T2 <= maxstep -> holdsAt(F2,T1+T2).

% DEC 5

holdsAt(F,T) & -releasedAt(F,T+1) &

-?[E]:(happens(E,T) & terminates(E,F,T)) &

T < maxstep -> holdsAt(F,T+1).

% DEC 6

-holdsAt(F,T) & -releasedAt(F,T+1) &

-?[E]:(happens(E,T) & initiates(E,F,T)) &

T < maxstep -> -holdsAt(F,T+1).

% DEC 7

releasedAt(F,T) & -?[E]:(happens(E,T) &

(initiates(E,F,T) | terminates(E,F,T))) &

T < maxstep -> releasedAt(F,T+1).

% DEC 8

-releasedAt(F,T) &

-?[E]: (happens(E,T) & releases(E,F,T)) &

T < maxstep -> -releasedAt(F,T+1).

% DEC 9

happens(E,T) & initiates(E,F,T) & T < maxstep -> holdsAt(F,T+1).
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% DEC 10

happens(E,T) & terminates(E,F,T) & T < maxstep -> -holdsAt(F,T+1).

% DEC 11

happens(E,T) & releases(E,F,T) & T < maxstep -> releasedAt(F,T+1).

% DEC 12

happens(E,T) &

(initiates(E,F,T) | terminates(E,F,T)) &

T < maxstep -> -releasedAt(F,T+1).

% Choice rules for non-intensional predicates

{holdsAt(F,T)}.

{releasedAt(F,T)}.

Figure 7.1: DEC axioms in F2LP
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% file 'blocksWorld'

% domain declarations

objects(a;b;c;table).

time(0..maxstep).

#domain objects(X). #domain objects(Y).

#domain time(T).

% fluents and events

fluent(on(X,Y);holding(X);clear(X)).

event(pickUp(X);stack(X,Y)).

#domain event(E1). #domain event(E2).

% initiates and terminates formulas

T < maxstep -> initiates(pickUp(X),holding(X),T).

T < maxstep & holdsAt(on(X,Y),T) -> terminates(pickUp(X),on(X,Y),T).

T < maxstep -> initiates(stack(X,Y),on(X,Y),T).

T < maxstep -> terminates(stack(X,Y),holding(X),T).

% action precondition axioms

T < maxstep & happens(pickUp(X),T) ->

holdsAt(clear(X),T) & -?[Y]:holdsAt(holding(Y),T) & X != table.

T < maxstep & happens(stack(X,Y),T) ->

holdsAt(holding(X),T) & holdsAt(clear(Y),T) & X != table.

% event occurrence constraints

T< maxstep & happens(E1,T) & E1 != E2 -> -happens(E2,T).

% state constraints

X != table & holdsAt(clear(X),T) -> -?[Y]:(holdsAt(on(Y,X),T)).

-?[Y]:(holdsAt(on(Y,X),T)) -> holdsAt(clear(X),T) & X != table.

holdsAt(on(X,Y),T) -> X != table.

holdsAt(clear(table),T).

% clear is non-inertial, and the rest of the fluents are inertial

releasedAt(clear(X),0).

-releasedAt(holding(X),0).

-releasedAt(on(X,Y),0).

% happens is exempt from minimization in order to find a plan

T < maxstep -> {happens(E1,T)}.
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% initial state

holdsAt(on(a,table),0). holdsAt(on(b,c),0). holdsAt(on(c,a),0).

-holdsAt(on(a,c),0). -holdsAt(on(a,b),0). -holdsAt(on(b,table),0).

-holdsAt(on(c,table),0). -holdsAt(on(c,b),0).

-holdsAt(on(b,a),0). -holdsAt(holding(X),0).

% goal

--(holdsAt(on(c,table),maxstep) &

holdsAt(on(b,c),maxstep) &

holdsAt(on(a,b),maxstep)).

Figure 7.2: Blocks World in F2LP
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Figure 7.3: Robby’s apartment in a 3× 3 grid

7.4 Enhancing Event Calculus Descriptions with Answer Set Programming Rules

As mentioned in the introduction, one of the advantages of ASP-based event

calculus reasoning is that we can enhance event calculus descriptions with

expressive ASP rules such as the transitive closure rules. We illustrate this using

the example from (Doğandağ, Ferraris, & Lifschitz, 2004). There are 9 rooms

numbered 1–9 (horizontal, then vertical) and 12 doors as shown in Figure 7.3.

Initially the robot “Robby” is in the middle room and all the doors are closed. The

goal of the robot is to make all rooms accessible from each other. Figure 7.4 (File

’robby’) shows an encoding of the problem in the language of F2LP. Atom

door(x,y) denotes that there is a door between rooms x and y; open(x,y)

denotes the event “Robby opening the door between rooms x and y”; goto(x)

denotes the event “Robby going to room x”; opened(x,y) denotes that the door

between x and y has been opened; inRoom(x) denotes that Robby is in room x;

accessible(x,y) denotes that y is accessible from x. Note that the rules defining

the relation accessible are not part of event calculus axioms (Chapter 7.1). This

example illustrates an advantage of allowing ASP rules in event calculus

descriptions.

The minimal number of steps to solve the given problem is 11. We can find

such a plan using the combination of F2LP, GRINGO and CLASPD in the following

way:
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% File 'robby'

% objects

step(0..maxstep).

astep(0..maxstep-1).

room(1..9).

% variables

#domain step(T).

#domain room(R).

#domain room(R1).

#domain room(R2).

% position of the doors

R1 >= 1 & R2 >=1 & R1 < 4 & R2 < 4 & R2 = R1+1 -> door(R1,R2).

R1 >= 4 & R2 >= 4 & R1 < 7 & R2 < 7 & R2 = R1+1 -> door(R1,R2).

R1 >= 7 & R2 >= 7 & R1 < 10 & R2 < 10 & R2 = R1+1 -> door(R1,R2).

R2 < 10 & R2 = R1+3 -> door(R1,R2).

door(R2,R1) -> door(R1,R2).

% fluents

door(R1,R2) -> fluent(opened(R1,R2)).

fluent(inRoom(R)).

% F ranges over the fluents

#domain fluent(F).

% events

door(R1,R2) -> event(open(R1,R2)).

event(goto(R)).

% E and E1 range over the events

#domain event(E).

#domain event(E1).

% effect axioms

initiates(open(R,R1),opened(R,R1),T).

initiates(open(R,R1),opened(R1,R),T).

holdsAt(opened(R1,R2),T) & holdsAt(inRoom(R1),T) ->

initiates(goto(R2),inRoom(R2),T).

holdsAt(inRoom(R1),T) & initiates(E,inRoom(R2),T) ->

terminates(E,inRoom(R1),T).

% action precondition axioms

happens(open(R1,R2),T) -> holdsAt(inRoom(R1),T).
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% event occurrence constraint

happens(E,T) & E != E1 -> -happens(E1,T).

% state constraint

holdsAt(inRoom(R1),T) & R1 != R2 -> -holdsAt(inRoom(R2),T).

% accessibility

holdsAt(opened(R,R1),T) -> accessible(R,R1,T).

accessible(R,R1,T) & accessible(R1,R2,T) -> accessible(R,R2,T).

% initial state

-holdsAt(opened(R1,R2),0).

holdsAt(inRoom(5),0).

% goal state

--accessible(R,R1,maxstep).

% happens is exempt from minimization in order to find a plan.

T < maxstep -> {happens(E,T)}.

% all fluents are inertial

-releasedAt(F,0).

Figure 7.4: Robby’s apartment in F2LP

$ f2lp dec robby | gringo -c maxstep=11 | claspD

Following is one of the plans found:

happens(open(5,8),0) happens(open(5,2),1) happens(open(5,6),2)

happens(open(5,4),3) happens(goto(4),4) happens(open(4,7),5)

happens(open(4,1),6) happens(goto(5),7) happens(goto(6),8)

happens(open(6,3),9) happens(open(6,9),10)

7.5 Comparison with Other Event Calculus Reasoners

Shanahan (2000) introduced an event calculus planner that uses abductive logic

programming to solve abduction and planning problems.6 Later, Shanahan and

Witkowski (2004) introduced a SAT-based event calculus planner that showed

significant improvements over the abductive planner. Based on the reduction of

6http://www.iis.ee.ic.ac.uk/∼mpsha/planners.html
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circumscription to completion (Chapter 3.1, Theorems 1 and 2), Mueller (2004)

introduced a SAT-based event calculus reasoner that not only solves abduction

and planning problems but also solves other interesting problems such as

projection and postdiction. This system is called the DEC reasoner.7 While the

system handles a large fragment of the event calculus, it still cannot handle

recursive and disjunctive axioms, such as effect constraints and disjunctive event

axioms (Chapter 7.1), since completion cannot be applied to descriptions

containing such axioms. For example, the DEC reasoner does not allow the

following effect constraints which describe the indirect effects of an agent’s

walking on the objects that he is holding:

HoldsAt(Holding(a, o), t) ∧ Initiates(e, InRoom(a, r), t)

→ Initiates(e, InRoom(o, r), t)

HoldsAt(Holding(a, o), t) ∧ Terminates(e, InRoom(a, r), t)

→ Terminates(e, InRoom(o, r), t).

(7.3)

Our ASP-based approach on the other hand can handle the full version of the

event calculus under the assumption that the domain is given and finite.

We compared the performance of the DEC reasoner (v 1.0) running

MINISAT (v 2.2) with the following:8

• F2LP (v 1.11) with LPARSE (v 1.0.17)+CMODELS (v 3.79) running MINISAT

(v 2.0 beta),

• F2LP (v 1.11) with GRINGO (v 3.0.3)+CMODELS (v 3.79) running MINISAT

(v 2.0 beta),

• F2LP (v 1.11) with GRINGO (v 3.0.3) +CLASP (v 2.0.2) (CLASP(D) (v 1.1.2)

used instead for disjunctive programs), and

7http://decreasoner.sourceforge.net/.
8Similar results were observed when RELSAT (v 2.2) was used with the DEC reasoner.
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Problem DEC F2LP with F2LP with F2LP with F2LP with
(max. step) reasoner (LPARSE + (GRINGO + (GRINGO + CLINGO

(minisat) CMODELS) CMODELS) CLASP(D))

BusRide — 0.04s 0.00s 0.01s —
(15) (0.03s + 0.01s) (0.00s + 0.00s) (0.00s + 0.01s)

A:902/R:7779 A:355/R:555 A:448/R:647
C:0 C:0

Commuter — 77.29s 0.15s 0.2s 0.14s
(15) (45.74s + 31.55s) (0.07s + 0.08s) (0.07s + 0.13s)

A:32861/R:8734019 A:5269/R:24687 A:13174/R:24687
C:0 C:5308

Kitchen 38.9s 6.19s 0.44s 0.24s 0.20s
Sink (38.9s + 0.00s) (2.99s + 3.20s) (0.19s + 0.25s) (0.18s + 0.06s)
(25) A:1014 A:121621/R:480187 A:11970/R:61932 A:11970/R:61932

C:12109 C:0 C:0
Thielscher 6.3s 0.42s 0.19s 0.12s 0.1s

Circuit (6.3s + 0.0s) (0.27s + 0.15s) (0.09s + 0.1s) (0.09s + 0.03s)
(40) A:1394 A:9292/R:53719 A:4899/R:35545 A:4899/R:35545

C:42454 C:0 C:0
Walking — 0.00s 0.00s 0.00s 0.00s
Turkey (0.00s + 0.00s) (0.00s + 0.00s) (0.00s + 0.00s)

(15) A:370/R:518 A:316/R:456 A:316/R:456
C:0 C:0

Falling w/ 141.7s 0.08s 0.04s 0.03s 0.03s
AntiTraj (141.7s + 0.00s) (0.05s + 0.03s) (0.02s + 0.02s) (0.03s + 0.00s)

(15) A:416 A:4994/R:9717 A:3702/R:7414 A:3702/R:7414
C:3056 C:0 C:0

Falling w/ 59.4s 4.95s 0.46s 0.28s 0.22s
Events (59.4s + 0.0s) (2.57s + 2.38s) (0.20s + 0.26s) (0.20s + 0.08s)

(25) A:1092 A:1240/R:388282 A:1219/R:71266 A:13829/R:71266
C:12351 C:1436 C:1415

HotAir 32.3s 0.01s 0.0s 0.0s 0.01s
Baloon (32.3s + 0.0s) (0.01s + 0.00s) (0.0s + 0.0s) (0.0s + 0.0s)

(15) A:288 A:494/R:2451 A:492/R:1835 A:1063/R:1835
C:1163 C:689 C:681

Telephone1 9.1s 0.22s 0.11s 0.07s 0.07s
(40) (9.1s + 0.0s) (0.13s + 0.09s) (0.08s + 0.03s) (0.06s + 0.01s)

A:5419 A:21414/R:27277 A:9455/R:13140 A:9455/R:13140
C:41590 C:0 C:0

A: number of atoms, C: number of clauses, R: number of ground rules

Figure 7.5: Comparison of DEC reasoner with F2LP + answer set solvers

• F2LP (v 1.11) with CLINGO (v 3.0.3 (CLASP v 1.3.5)).

F2LP turns an input theory into the languages of LPARSE and GRINGO, and

LPARSE and GRINGO turn the result into a ground ASP program. CMODELS turns

this ground program into a set of clauses and then invokes a SAT solver to

compute answer sets, while CLASP computes answer sets using the techniques

similar to those used in SAT solvers but without actually invoking them. CLINGO is

a system that combines GRINGO and CLASP in a monolithic way.
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The first five examples in Figure 7.5 are part of the benchmark problems

from the work of Shanahan (1997, 1999). The next four are by Mueller (2006).

(We increased timepoints to see more notable differences.) More examples can be

found from the F2LP homepage. All experiments were done on a Pentium machine

with 3.06 GHz CPU and 4GB RAM running 64 bit Linux. The reported run times

are in seconds and were obtained using the Linux time command (“user time +

sys time”), except for the DEC reasoner for which we recorded the times reported

by the system. This was to avoid including the time spent by the DEC reasoner in

producing output in a neat format, which sometimes takes non-negligible time. For

the DEC reasoner, the times in parentheses are “(encoding time + SAT solving

time).” For the others, they are the times spent by each of the grounder and the

solver. CMODELS time includes the time spent in converting the ground program

generated by LPARSE/GRINGO into a set of clauses, and calling the SAT solver.

The time spent by F2LP in translating an event calculus description into an answer

set program (with variables) is negligible for these problems.

The symbol ’—’ denotes that the system cannot solve the problem due to

the limited expressivity. For instance, BusRide includes disjunctive event axioms,

which results in a disjunctive program that cannot be handled by CLINGO.

Similarly, the DEC reasoner cannot handle BusRide (disjunctive event axioms),

Commuter (compound events) and Walking Turkey (effect constraints). As is

evident from the experiments, the main reason for the better performance of the

ASP-based approach is the efficient grounding mechanisms implemented in the

ASP grounders. Though the DEC reasoner and CMODELS call the same SAT

solver MINISAT, the number of atoms produced by the DEC reasoner is in general

much smaller. This is because the DEC reasoner adopts an optimized encoding

method (that is based on predicate completion) which avoids a large number of

ground instances of atoms such as Initiates(e, f, t), Terminates(e, f, t), and
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Problem DEC F2LP with F2LP with
(max. step) reasoner (MINISAT) GRINGO+ CMODELS GRINGO+ CLASP
ZooTest1 > 2h 50.48s 29.01s
(16) (6.66s + 43.82s) (6.66s + 22.35s)

A:930483/R:2272288 A:153432/R:2271175
C:3615955

ZooTest2 > 2h 159.51s 210.55s
(22) (12.36s + 147.15s) (12.36s + 198.19s)

A:2241512/R:4153670 A:219220/R:4152137
C:8864228

ZooTest3 > 2h 142.68s 196.63s
(23) (13.55s + 129.13s) (13.55s + 183.08s)

A:2505940/R:4556928 A:230731/R:4555325
C:9914568

A: number of atoms, C: number of clauses, R: number of ground rules

Figure 7.6: Zoo World in DEC reasoner vs. Zoo World in F2LP + answer set solvers

Releases(e, f, t) (Mueller, 2004, Section 4.4). On the other hand, in several

examples, the number of clauses generated by CMODELS is 0, which means that

the answer sets were found without calling the SAT solver. This is because for

these examples the unique answer set coincides with the well-founded model,

which is efficiently computed by CMODELS in a preprocessing step before calling

SAT solvers. Out of the 14 benchmark examples by Shanahan (1997, 1999), 10 of

them belong to this case when LPARSE is used for grounding.

In the experiments in Figure 7.5, the solving times are negligible for most of

the problems. We also experimented with some computationally hard problems,

where solving takes more time than grounding. Figure 7.6 shows runs of a

medium-size action domain, the Zoo World (Akman, Erdoğan, Lee, Lifschitz, &

Turner, 2004). All the tests shown in the table are planning problems where

“max.step” is the length of a minimal plan. The cut-off time was 2 hours and the

DEC reasoner did not terminate within that time for any of the problems. In fact, the

entire time was spent on encoding and the SAT solver was never called. On the

other hand, the ASP grounder GRINGO took only a few seconds to ground the

domain and, unlike in Figure 7.5, the solvers took much more time than the
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grounder. As we can see, CMODELS with MINISAT performed better than CLASP

on two of the problems. To check the time taken by MINISAT on the encoding

generated by the DEC reasoner, we ran ZooTest1 to completion. The DEC

reasoner terminated after 116578.1 seconds (32.38 hours) and the time taken by

MINISAT (solving time) was just 2 seconds.

7.6 Proofs

Proof of Theorem 21

Between (a) and (b): Follows immediately from Theorem 4.

Between (b) and (c): Note first that Ξ is equivalent to SM[Ξ; ∅]. Since

• every strongly connected component in the dependency graph (Chapter 3.2)

of Σ ∧∆ relative to {I, T,R,H} either belongs to {I, T,R} or {H},

• Σ is negative on {H}, and

• ∆ is negative on {I, T,R},

it follows from Theorem 12 that (b) is equivalent to

SM[Σ ∧∆; I, T,R,H] ∧ SM[Θ; Ab1, . . . , Abn] ∧ SM[Ξ; ∅]

Similarly, applying Theorem 12 repeatedly, we can show that the above

formula is equivalent to (c).

Between (c) and (d): By Proposition 1. �

Proof of Theorem 22

Assume that T is

CIRC[Σ; Initiates,Terminates,Releases] ∧ CIRC[∆; Happens]

∧ CIRC[Θ; Ab1, . . . ,Abn] ∧ Ξ,
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which is equivalent to

SM[Σ; Initiates,Terminates,Releases] ∧ SM[∆; Happens]

∧ SM[Θ; Ab1, . . . ,Abn] ∧ Ξ
(7.4)

by Theorem 21.

Let Ξdef be the set of all definitions (7.2) in Ξ, and let Ξ′ be the formula

obtained from Ξ by applying Step 1. By Theorem 3, it follows that each formula

(7.2) in Ξdef is equivalent to

SM[∀x(G′ → p(x)); p]

where G′ is as described in Step 1. Consequently, (7.4) is equivalent to

SM[Σ; Initiates,Terminates,Releases] ∧ SM[∆; Happens]

∧ SM[Θ; Ab1, . . . ,Abn] ∧
∧

(7.2)∈Ξdef
SM[∀x(G′ → p(x)); p] ∧ Ξ′′

(7.5)

where Ξ′′ is the conjunction of all the axioms in Ξ′ other than the ones obtained

from definitional axioms (7.2).

Applying Theorem 12 repeatedly, it follows that (7.5) is equivalent to

SM[Σ ∧∆ ∧Θ ∧ Ξ′′ ∧
∧

(7.2)∈Ξdef
∀x(G′ → p(x));

Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn,p] .
(7.6)

According to the syntax of the event calculus reviewed in Section 7.1,

• every positive occurrence of a formula of the form ∃yG(y) in (7.6) is

contained in a subformula that is negative on

{Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn,p}, and

• there are no negative occurrences of any formula of the form ∀yG(y) in (7.6).

Consequently, the statement of the theorem follows from Theorem 16. �
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Chapter 8

SITUATION CALCULUS IN ANSWER SET PROGRAMMING

In this chapter, we use the results from Chapters 3-5 to reformulate Lin’s causal

theories (Lin, 1995) and Basic Action Theories (BATs) (Reiter, 2001) in the

first-order stable model semantics and in ASP. Based on the reformulations, we

show how F2LP can be used to compute these theories, and discuss some of the

advantages of this approach.

8.1 Lin’s Causal Theories in Answer Set Programming

In this section, we show how Lin’s causal theories can be reformulated in the

first-order stable model semantics and in ASP. We also show how system F2LP

can be used to compute these theories.

Review of Lin’s Causal Theories

We assume a many-sorted first-order language which contains a situation sort, an

action sort, a fluent sort, a truth value sort and an object sort. We do not consider

functional fluents here for simplicity. Expression Holds(P (x), s) represents that

fluent P (x) is true in situation s, Poss(a, s) represents that action a can be

executed in situation s, and Caused(f, v, s) represents that f is caused to have

value v in situation s where v ∈ {true, false}.

According to Lin (1995), a formula φ(s) is called a simple state formula

about s if φ(s) does not mention Poss, Caused or any situation term other than

possibly the variable s.

We assume that a causal action theory D consists of a finite number of the

following sets of axioms. We often identify D with the conjunction of the universal

closures of all axioms in D. In the following, F , Fi are fluent names, A is an action

name, V , Vi are truth values, s, s′ are situation variables, φ(s) is a simple state

formula about s, symbols a, a′ are action variables, f is a variable of sort fluent, v
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is a variable of sort truth value, and x, xi, y, yi are lists of variables.

• Dcaused is a conjunction of axioms of the form

Poss(A(x), s)→ (φ(s)→ Caused(F (y), V, do(A(x), s)),

(direct effect) and

φ(s) ∧ Caused(F1(x1), V1, s) ∧ · · · ∧ Caused(Fn(xn), Vn, s)→

Caused(F (x), V, s)

(indirect effect).

• Dposs is a conjunction of precondition axioms of the form

Poss(A(x), s)↔ φ(s). (8.1)

• Drest is a conjunction of the following axioms:

– The basic axioms:

Caused(f, true, s)→ Holds(f, s),

Caused(f, false, s)→ ¬Holds(f, s),

true 6= false ∧ ∀v(v = true ∨ v = false). (8.2)

– The unique name assumptions for fluent names:

Fi(x) 6= Fj(y), (i 6= j)

Fi(x) = Fi(y)→ x = y.
(8.3)

Similarly for action names.

– The foundational axioms for the discrete situation calculus: 1

s 6= do(a, s), (8.4)

do(a, s) = do(a′, s′)→ (a = a′ ∧ s = s′), (8.5)

∀p
(
p(S0) ∧ ∀a, s

(
p(s)→ p(do(a, s))

)
→ ∀s p(s)

)
. (8.6)

1For simplicity we omit the two axioms regarding the partial-order among situations.
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– The frame axiom:

Poss(a, s)→ (¬∃vCaused(f, v, do(a, s))

→ (Holds(f, do(a, s))↔ Holds(f, s))).

– Axioms for other domain knowledge: φ(s).

A causal action theory is defined as

CIRC[Dcaused; Caused] ∧ Dposs ∧ Drest. (8.7)

For example, consider the Lin’s suitcase example (Lin, 1995), wherein

there is a suitcase with two locks L1, L2 and a spring loaded mechanism that

opens the suitcase when both the locks are in the Up position. This can be

represented as follows:

Poss(Flip(x), s)→ (Holds(Up(x), s)→ Caused(Up(x), false, do(Flip(x), s)))

Poss(Flip(x), s)→ (¬Holds(Up(x), s)→ Caused(Up(x), true, do(Flip(x), s)))

Holds(Up(L1), s) ∧ Holds(Up(L2), s)→ Caused(Open, true, s)

> ↔ Poss(Flip(x), s)

The first two axioms represent the direct effects of the action Flip, and the

third axiom is the indirect effect axiom representing that Open is caused to be true

when both the locks are in the Up position. Finally, the last axiom represents that

the Flip action can be executed in every situation.

Reformulating Lin’s Causal Theories in the First-Order Stable Model Semantics

It is easy to check from the description above that Dcaused is canonical relative to

Caused (see Chapter 3.3 for definition of canonical relative to p). This fact enables

us to reformulate causal action theories in the first-order stable model semantics.

Let Dposs→ be the conjunction of axioms

φ(s)→ Poss(A(x), s)
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for each axiom (8.1) in Dposs. Instead of the second-order axiom (8.6) we consider

the following first-order formula Dsit, which introduces a new intensional predicate

constant Sit.2

Sit(S0) ∧ ∀a, s(Sit(s)→ Sit(do(a, s))) ∧ ¬∃s¬Sit(s). (8.8)

In the following, D−rest is the theory obtained from Drest by dropping (8.6).

Theorem 23 Given a causal action theory (8.7), the following theories are

equivalent to each other when we disregard the auxiliary predicate Sit:

(a) CIRC[Dcaused; Caused] ∧ Dposs ∧ Drest;

(b) SM[Dcaused; Caused] ∧ Dposs ∧ D−rest ∧ SM[Dsit; Sit];

(c) SM[Dcaused; Caused] ∧ SM[Dposs→ ; Poss] ∧ D−rest ∧ SM[Dsit; Sit];

(d) SM[Dcaused ∧ Dposs→ ∧ D−rest ∧ Dsit; Caused,Poss,Sit].

The proof of the equivalence between (a) and (b) uses the theorem on canonical

formulas (Theorem 4, Chapter 3.3). The equivalence between (b) and (c) follows

from the theorem on completion (Ferraris et al., 2011), and the equivalence

between (c) and (d) follows from the splitting theorem (Theorem 12, Chapter 4.1).

A complete proof is given in the Appendix.

Reformulating Lin’s Causal Theories in Answer Set Programming

Using translation F2LP, we can further turn the reformulation of Lin’s causal

theories shown above into the syntax of answer set programs.

Theorem 24 Let D be a finite causal action theory (8.7) of signature σ that

contains finitely many predicate constants, and let F be the FOL-representation of

2Suggested by Vladimir Lifschitz (personal communication).
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the program obtained by applying translation F2LP on

Dcaused ∧ Dposs→ ∧ D−rest ∧ Dsit (8.9)

with intensional predicates {Caused,Poss,Sit}. Then D is σ-equivalent to SM[F ].

In view of this theorem, system F2LP can be used to compute Lin’s causal

theories. The input to F2LP can be simplified if we are interested in Herbrand

stable models (answer sets) only. We can drop axioms (8.2)–(8.5) as they are

ensured by Herbrand models. Also, in order to ensure finite grounding, instead of

Dsit, we include the following set of rules Πsituation in the input to F2LP.

nesting(0,s0).

nesting(L,S) & L < maxdepth -> nesting(L+1,do(A,S)).

nesting(L,S) -> situation(S).

nesting(maxdepth,S) -> final(S).

Πsituation is used to generate finitely many situation terms whose height is up to

maxdepth, the value that can be given as an option in invoking GRINGO. Using the

splitting theorem (Theorem 12, Chapter 4.1), it is not difficult to check that if a

program Π containing the ASP-rules corresponding to Πsituation has no occurrence

of predicate nesting in any other rules and has no occurrence of predicate

situation in the head of any other rules, then every answer set of Π contains

atoms situation(do(am,do(am−1,do(. . . ,do(a1,s0))))) for all possible

sequences of actions a1,. . . ,am for m=0,. . . ,maxdepth. Though the

ASP-representation of Πsituation does not satisfy syntactic conditions, such as the

ones corresponding to λ-restricted (Gebser, Schaub, & Thiele, 2007),

ω-restricted (Syrjänen, 2004), or finite domain programs (Calimeri, Cozza, Ianni, &

Leone, 2008), that answer set solvers usually impose in order to ensure finite

grounding, the rules can still be finitely grounded by GRINGO Version 3.x, which
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does not check such syntactic conditions.3 It is not difficult to see why the

ASP-rules corresponding to Πsituation lead to finite grounding since we provide an

explicit upper limit for the nesting depth of function do.

In addition to Πsituation, we use the following rules Πexecutable in order to

represent the set of executable situations (Reiter, 2001):

executable(s0).

executable(S) & poss(A,S) & -final(S) &

situation(S) & action(A) -> executable(do(A,S)).

Figure 8.1 shows an encoding of Lin’s suitcase example (1995) in the

language of F2LP (h is used to represent Holds), which describes a suitcase that

has two locks and a spring loaded mechanism which will open the suitcase when

both locks are up. This example illustrates how the ramification is handled in

causal action theories. Since we fix the domain of situations to be finite, we require

that actions not be effective in the final situations. This is done by introducing atom

final(S).

Consider the simple temporal projection problem by Lin (1995). Initially the

first lock is down and the second lock is up. What will happen if the first lock is

flipped? Intuitively, we expect both locks to be up and the suitcase to be open. We

can verify this by using the combination of F2LP, GRINGO and CLASPD. First, we

add Πexecutable and the following formulas to the theory in Figure 8.1. In order to

check if the theory entails that flipping the first lock is executable, and that the

suitcase is open after the flipping, we encode the negation of these facts in the last

formula.

% initial situation

-h(up(l1),s0).

3Similarly, system DLV-COMPLEX allows us to turn off the finite domain checking (option
-nofdcheck). This system was used in (Lee & Palla, 2010) .
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% File 'suitcase'

% domain and domain variable declarations

lock(l1). lock(l2).

#domain lock(X).

fluent(up(X)). fluent(open).

action(flip(X)).

value(t). value(f).

#domain fluent(F).

#domain action(A).

#domain value(V).

% computing domain of situation

nesting(0,s0).

nesting(L,S) & L < maxdepth -> nesting(L+1,do(A,S)).

nesting(L,S) -> situation(S).

nesting(maxdepth,S) -> final(S).

% basic axioms

situation(S) & caused(F,t,S) -> h(F,S).

situation(S) & caused(F,f,S) -> -h(F,S).

% effect axioms (D_caused)

situation(S) & -final(S) & poss(flip(X),S) ->

(h(up(X),S) -> caused(up(X),f,do(flip(X),S))).

situation(S) & -final(S) & poss(flip(X),S) ->

(-h(up(X),S) -> caused(up(X),t,do(flip(X),S))).

% indirect effects

situation(S) & h(up(l1),S) & h(up(l2),S) -> caused(open,t,S).

% pre-conditions (D_poss)

situation(S) -> poss(flip(X),S).

% frame axioms

situation(S) & -final(S) & poss(A,S) ->

( -?[V]:caused(F,V,do(A,S)) ->

(h(F,do(A,S)) <-> h(F,S)) ).

% Holds is non-intensional

situation(S) -> {h(F,S)}.

Figure 8.1: Lin’s Suitcase example in F2LP
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h(up(l2),s0).

% query

-(executable(do(flip(l1),s0)) & h(open,do(flip(l1),s0))).

We check the answer to the temporal projection problem by running the

command:

$ f2lp suitcase | gringo -c maxdepth=1 | claspD

CLASPD returns no answer set as expected.

Now, consider a simple planning problem for opening the suitcase when

the locks are initially down. We add Πexecutable and the following rules to the theory

in Figure 8.1. The last rule encodes the goal.

% initial situation

-h(up(l1),s0).

-h(up(l2),s0).

-h(open,s0).

% goal

--( ?[S]: (executable(S) & h(open,S)) ).

When maxdepth is 1, the combined use of F2LP, GRINGO and CLASPD

results in no answer sets, and when maxdepth is 2, it finds the unique answer set

that contains both h(open,do(flip(l2),do(flip(l1),s0))) and

h(open,do(flip(l1),do(flip(l2),s0))), each of which encodes a plan. In

other words, the single answer set encodes multiple plans in different branches of

the situation tree, which allows us to combine information about the different

branches in one model. This is an instance of hypothetical reasoning that is

elegantly handled in the situation calculus due to its branching time structure.
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Belleghem, Denecker, and Schreye (1997) note that the linear time structure of the

event calculus is limited to handle such hypothetical reasoning allowed in the

situation calculus.

8.2 Basic Action Theories in Answer Set Programming

In this section, we show how BATs can be reformulated in the first-order stable

model semantics and in ASP. We also show how system F2LP can be used to

compute these theories.

Review of Basic Action Theories

We understand P (x, s) where P is a fluent name, as shorthand for Holds(P (x), s),

and do not consider functional fluents.

According to (Reiter, 2001), a formula is uniform in a situation term σ if it

satisfies the following conditions:

• it does not contain any quantification over situations;

• it does not mention any variables for relational fluents;

• it does not mention any situation term other than σ;

• it does not mention any predicate that has a situation argument other than

Holds;

• it does not mention any function constant that has a situation argument

unless the function is a functional fluent.

Since we do not consider functional fluents, the last item above simply means that

functions in uniform formulas do not have any situation argument.

A basic action theory (BAT) (Reiter, 2001) is of the form

Σ ∪ Dss ∪ Dap ∪ Duna ∪ DS0 , (8.10)

where
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• Σ is the conjunction of the foundational axioms (8.4) - (8.6);

• Dss is a conjunction of successor state axioms of the form

F (x, do(a, s))↔ ΦF (x, a, s),

where ΦF (x, a, s) is a formula that is uniform in s and whose free variables

are among x, a, s;

• Dap is a conjunction of action precondition axioms of the form

Poss(A(x), s)↔ ΠA(x, s),

where ΠA(x, s) is a formula that is uniform in s and whose free variables are

among x, s;

• Duna is the conjunction of unique name axioms for fluents and actions;

• DS0 is a conjunction of first-order formulas that are uniform in S0.

Reformulating Basic Action Theories in the First-Order Stable Model Semantics

Similar to the reformulation of Lin’s causal theories (Chapter 8.1), we use Dsit

instead of the second-order axiom (8.6). The following theorem shows how a BAT

(8.10) can be viewed under the first-order stable model semantics.

Theorem 25 Given a BAT T , let T− be the theory obtained by dropping (8.6) from

T . Then, T is equivalent to the following theories if we disregard the predicate Sit:

(a) SM[Dsit;Sit] ∧ T−;

(b) SM[Dsit ∧ T−;Sit].

As before, the proof of the equivalence of (a) and (b) uses the splitting theorem

(Theorem 12, Chapter 4.1).

124



In the rest of this section, we consider an alternative encoding of BAT in

ASP, in which we do not need to provide explicit successor state axioms Dss.

Instead, the successor state axioms are entailed by the effect axioms and the

generic inertia axioms adopted in ASP by making both the positive predicate Holds

and the negative predicate ∼Holds intensional (Chapter 3.2). In the following, we

assume that the underlying signature contains both these predicates. Also, for

simplicity, we disregard the second-order axiom (8.6).

An ASP-style BAT is of the form

Σ ∪ Deffect ∪ Dprecond ∪ Dinertia ∪ Dexogenous0 ∪ Duna ∪ DS0 (8.11)

where

• Σ, Duna and DS0 are defined the same as before;

• Deffect is a conjunction of axioms of the form

γ+
R(x, a, s)→ Holds(R(x), do(a, s)) (8.12)

or

γ−R(x, a, s)→∼Holds(R(x), do(a, s)), (8.13)

where γ+
R(x, a, s) and γ−R(x, a, s) are formulas that are uniform in s and

whose free variables are among x, a and s;

• Dprecond is a conjunction of axioms of the form

πA(x, s)→ Poss(A(x), s) (8.14)

where πA(x, s) is a formula that is uniform in s and whose free variables are

among x, s;

• Dinertia is the conjunction of the axioms

Holds(R(x), s) ∧ ¬∼Holds(R(x), do(a, s))→ Holds(R(x), do(a, s)),

∼Holds(R(x), s) ∧ ¬Holds(R(x), do(a, s))→∼Holds(R(x), do(a, s))
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for all fluent names R;

• Dexogenous0 is the conjunction of

Holds(R(x), S0)∨ ∼Holds(R(x), S0)

for all fluent names R.

Note that axioms in Dinertia are typically used in answer set programming

to represent the common sense law of inertia (Lifschitz & Turner, 1999). Similarly,

Dexogenous0 is used to represent that the initial value of a fluent is arbitrary.4

We will show how this ASP-style BAT is related to Reiter’s BAT. First, since

we use strong negation, it is convenient to define the following notions. For the

signature σ of a given BAT, σHolds is the signature obtained by adding ∼Holds to σ.

We say that an interpretation I of σHolds is complete on Holds if it satisfies

∀y(Holds(y)∨ ∼Holds(y))

where y is a list of distinct variables. Given an interpretation I of σHolds, expression

I|σ denotes the projection of I on σ.

Let Dss be the conjunction of successor state axioms

Holds(R(x), do(a, s)) ↔ Γ+
R(x, a, s) ∨ (Holds(R(x), s) ∧ ¬Γ−R(x, a, s))

where Γ+
R(x, a, s) is the disjunction of γ+

R(x, a, s) for all axioms (8.12) in Deffect,

and Γ−R(x, a, s) is the disjunction of γ−R(x, a, s) for all axioms (8.13) in Deffect. By

Dap we denote the conjunction of axioms

Poss(A(x), s)↔ ΠA(x, s)

where ΠA(x, s) is the disjunction of πA(x, s) for all axioms (8.14) in Dprecond.
4The axioms Dinertia and Dexogenous0 are also closely related to the translation of C+ into non-

monotonic causal logic (Giunchiglia et al., 2004).
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Theorem 26 Let T be a theory (8.11) of signature σHolds, and I a coherent

interpretation of σHolds that is complete on Holds. If I satisfies

¬∃x a s(Γ+
R(x, a, s) ∧ Γ−R(x, a, s))

for every fluent name R, then I satisfies

SM[T ; Poss,Holds,∼Holds]

iff I|σ satisfies the BAT

Σ ∧ Dss ∧ Dap ∧ Duna ∧ DS0 .

Reformulating Basic Action Theories in Answer Set Programming

Since a BAT T (not including the second-order axiom (8.6)) can be viewed as a

first-order formula under the stable model semantics (with the list of intensional

predicates being empty), it follows that F2LP can be used to turn T ∪ Πsituation into

a logic program. As before, we focus on the ASP-style BAT.

Theorem 27 Let T be a ASP-style BAT (8.11) of signature σ that contains finitely

many predicate constants, and let F be the FOL-representation of the program

obtained from T by applying translation F2LP with intensional predicates

{Holds,∼Holds,Poss}. Then SM[T ; Holds,∼Holds,Poss] is σ-equivalent to

SM[F ].

Consider the “broken object” example discussed in (Reiter, 1991). An object

is broken if it is fragile and someone drops it, or if a bomb next to it explodes. Also,

it is no longer broken if a person repairs it. Figure 8.2 shows an encoding of the

example in the language of F2LP. Consider the simple projection problem of

determining if an object o, which is next to bomb b, is broken after the bomb

explodes. We add Πexecutable and the following formulas to the theory in Figure 8.2.
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% initial situation

-h(broken(o),s0) & h(fragile(o),s0) & h(nexto(b,o),s0).

-h(holding(p,o),s0) & -h(exploded(b),s0).

% query

-(executable(do(explode(b),s0)) & h(broken(o),do(explode(b),s0))).

$ f2lp broken | gringo -c maxdepth=1 | claspD

returns no answer set as expected.
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% File: broken

% domains other than situations

person(p). object(o). bomb(b).

#domain person(R).

#domain object(Y).

#domain bomb(B).

fluent(holding(R,Y)). fluent(nexto(B,Y)). fluent(fragile(Y)).

fluent(broken(Y)). fluent(exploded(B)).

action(drop(R,Y)). action(explode(B)). action(repair(R,Y)).

#domain fluent(F). #domain action(A).

depth(0..maxdepth). #domain depth(L).

% defining the situation domain

nesting(0,s0).

nesting(L,S) & L < maxdepth -> nesting(L+1,do(A,S)).

nesting(L,S) -> situation(S).

nesting(maxdepth,S) -> final(S).

% Effect Axioms

situation(S) & h(fragile(Y),S) & -final(S) ->

h(broken(Y),do(drop(R,Y),S)).

situation(S) & h(nexto(B,Y),S) & -final(S) ->

h(broken(Y),do(explode(B),S)).

situation(S) & -final(S) -> h(exploded(B),do(explode(B),S)).

situation(S) & -final(S) -> ~h(broken(Y),do(repair(R,Y),S)).

situation(S) & -final(S) -> ~h(holding(R,Y),do(drop(R,Y),S)).

% Action precondition axioms

h(holding(R,Y),S) & situation(S) -> poss(drop(R,Y),S).

situation(S) & -h(exploded(B),S) -> poss(explode(B),S).

situation(S) & h(broken(Y),S) -> poss(repair(R,Y),S).

% inertial axioms

h(F,S) & -~h(F,do(A,S)) & situation(S) & -final(S) -> h(F,do(A,S)).

~h(F,S) & -h(F,do(A,S)) & situation(S) & -final(S) -> ~h(F,do(A,S)).

% D_exogeneous_0

h(F,s0) | ~h(F,s0).

% Consider only those interpretations that are complete on Holds

-h(F,S) & -~h(F,S) & situation(S) -> false.

Figure 8.2: “Broken object” example in F2LP
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8.3 Handling Recursive Axioms in the Situation Calculus

Chapter 7.4 shows an example of how event calculus theories can be enhanced

with expressive ASP rules. Here, we show another advantage of ASP-based

reasoning for circumscriptive action theories, particularly, the ability to handle

recursive axioms.

Consider an extension of the Lin’s suitcase example discussed in (Lin,

1995). In this extension, a new fluent down, which is the opposite of up, is

introduced, and the following indirect effects of flip are added:

caused(up(X),t,S) & situation(S) -> caused(down(X),f,S).

caused(up(X),f,S) & situation(S) -> caused(down(X),t,S).

caused(down(X),t,S) & situation(S) -> caused(up(X),f,S).

caused(down(X),f,S) & situation(S) -> caused(up(X),t,S).

As mentioned in (Lin, 1995), Clark’s completion cannot be applied to the resulting

theory because of the recursion between the fluents up and down. As a result, the

existing reasoners cannot handle these axioms. However, these axioms can be

handled using our ASP-based approach. For example, if both the locks are down

in the initial situation, one can verify that after flipping the first lock, the first lock is

up and the second lock is down, by adding Πexecutable and the following formulas to

the theory in Figure 8.1.

% fluent 'down'

fluent(down(X)).

% more indirect effects

caused(up(X),t,S) & situation(S) -> caused(down(X),f,S).

caused(up(X),f,S) & situation(S) -> caused(down(X),t,S).

caused(down(X),t,S) & situation(S) -> caused(up(X),f,S).
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caused(down(X),f,S) & situation(S) -> caused(up(X),t,S).

% a lock has to be either in the up or down position

h(up(X),S) & h(down(X),S) & situation(S) -> false.

-h(up(X),S) & -h(down(X),S) & situation(S) -> false.

% initial situation

h(down(l1),s0).

h(down(l2),s0).

% query

-( executable(do(flip(l1),s0)) &

h(up(l1),do(flip(l1),s0)) & h(down(l2),do(flip(l1),s0)) ).

$ f2lp suitcase | gringo -c maxdepth=1 | claspD

returns no answer set as expected.

8.4 Related Work

Prolog provides a natural implementation for basic action theories since

definitional axioms can be represented by Prolog rules according to the Clark’s

theorem (Reiter, 2001, Chapter 5). The Lloyd-Topor transformation that is used to

turn formulas into Prolog rules is similar to translation F2LP, but the difference is in

that the former preserves the completion semantics and the latter the stable model

semantics.

Lin and Wang (1999) describe a language that can be used to represent a

syntactically restricted form of Lin’s causal theories, called “clausal causal

theories,” which do not allow quantifiers. They show how to translate that language

into answer set programs with strong negation, the answer sets of which are then

used to obtain fully instantiated successor state axioms and action precondition
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axioms. This is fundamentally different from our approach, which computes the

propositional models of the full situation calculus theories directly.

Kautz and Selman (1992) introduced linear encodings that are similar to a

propositionalized version of the situation calculus (McCarthy & Hayes, 1969). Lin

(2003) introduced an action description language and presented a procedure to

compile an action domain in that language into a complete set of successor state

axioms, from which a STRIPS-like description can be extracted. This procedure is

implemented in the system CCS5. The soundness of the procedure is shown with

respect to a translation from action domain descriptions into Lin’s causal theories.

However, that procedure is based on completion and so, unlike our approach,

cannot handle recursive axioms.

8.5 Proofs

Proof of Theorem 23

Between (a) and (b): Since Dcaused is canonical relative to Caused, by

Theorem 4, (a) is equivalent to

SM[Dcaused; Caused] ∧ Dposs ∧ D−rest ∧ (8.6). (8.15)

Consequently, it is sufficient to prove the claim that, under the assumption

∀s Sit(s), formula (8.6) is equivalent to SM[Dsit; Sit].

First note that under the assumption, (8.6) can be equivalently rewritten as

∀p
(
p(S0) ∧ ∀a, s(p(s)→ p(do(a, s)))→ p = Sit

)
. (8.16)

On the other hand, under ∀s Sit(s), SM[Dsit; Sit] is equivalent to

Sit(S0) ∧ ∀a, s(Sit(s)→ Sit(do(a, s)))

∧ ∀p
(
p < Sit→ ¬(p(S0) ∧ ∀a, s(p(s)→ p(do(a, s))) ∧ ∀a, s(Sit(s)→ Sit(do(a, s))))

)
,

5http://www.cs.ust.hk/∼flin/ccp.html
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which, under the assumption ∀s Sit(s), is equivalent to

∀p
(
p(S0) ∧ ∀a, s(p(s)→ p(do(a, s)))→ Sit ≤ p

)
and furthermore to (8.16).

Between (b) and (c): Since φ(s) does not contain Poss, the equivalence follows

from the relation between completion and the first-order stable model semantics

(Theorem 3).

Between (c) and (d): Since Dcaused contains no strictly positive occurrence of

Poss and Dposs→ contains no occurrence of Caused, every strongly connected

component in the predicate dependency graph (Chapter 3.2) of Dcaused ∧ Dposs→

relative to {Caused,Poss} either belongs to Caused or belongs to Poss. By

Theorem 12, it follows that (c) is equivalent to

SM[Dcaused ∧ Dposs→ ; Caused,Poss] ∧ D−rest ∧ SM[Dsit; Sit].

Similarly, applying Theorem 12 two more times, we get that the above formula is

equivalent to (d). �

Proof of Theorem 24

Since (8.9) is almost universal relative to {Caused,Poss,Sit}, the result follows

from Theorems 16 and 23. �

Proof of Theorem 25

As shown in the proof of Theorem 23, formula (8.6) is equivalent to SM[Dsit; Sit]

under the assumption ∀s Sit(s). So, T is equivalent to SM[Dsit; Sit] ∧ T− if we

disregard Sit.

Since Sit does not occur in T−, and since Dsit contains no occurrence of

any predicate other than Sit, the equivalence between (a) and (b) follows from

Theorem 12. �
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Proof of Theorem 26

Theory T is

Σ ∧ Deffect ∧ Dprecond ∧ DS0 ∧ Duna ∧ Dinertia ∧ Dexogenous0,

and the corresponding BAT is

Σ ∧ Dss ∧ Dap ∧ DS0 ∧ Duna.

Without loss of generality, we assume that T is already equivalently rewritten so

that there is exactly one positive effect axiom and exactly one negative effect

axiom for each fluent R, and that there is exactly one action precondition axiom for

each action A.

Consider

SM[Σ ∧ Deffect ∧ Dprecond ∧ DS0 ∧ Duna ∧ Dinertia ∧ Dexogenous0; Poss,Holds,∼Holds].

Since Σ and Duna are negative on the intensional predicates, the formula is

equivalent to

SM[Deffect ∧ Dprecond ∧ DS0 ∧ Dinertia ∧ Dexogenous0; Poss,Holds,∼Holds] ∧ Σ ∧ Duna.

(8.17)

Since Poss does not occur in

Deffect ∧ DS0 ∧ Dinertia ∧ Dexogenous0,

and since Dprecond is negative on {Holds,∼Holds}, by Theorem 12, (8.17) is

equivalent to

SM[Deffect ∧ DS0 ∧ Dinertia ∧ Dexogenous0; Holds,∼Holds]

∧ SM[Dprecond;Poss] ∧ Σ ∧ Duna,
(8.18)
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which is equivalent to

SM[Deffect ∧ DS0 ∧ Dinertia ∧ Dexogenous0; Holds,∼Holds]

∧ Dap ∧ Σ ∧ Duna.

Therefore the statement of the theorem can be proven by showing the

following: if

I |= ¬∃x a s(Γ+
R(x, a, s) ∧ Γ−R(x, a, s)) (8.19)

for every fluent R, and

I |= Σ (8.20)

then I satisfies

SM[DS0 ∧ Dexogenous0 ∧ Deffect ∧ Dinertia; Holds,∼Holds] (8.21)

iff I|σ satisfies

DS0 ∧ Dss.

From Dexogenous0, it follows that (8.21) is equivalent to

SM[D¬¬S0
∧ Dexogenous0 ∧ Deffect ∧ Dinertia; Holds,∼Holds], (8.22)

where D¬¬S0
is the formula obtained from DS0 by prepending ¬¬ to all occurrences

of Holds. Under the assumption (8.20),

D¬¬S0
∧ Dexogenous0 ∧ Deffect ∧ Dinertia

is atomic-tight w.r.t. I on Holds, 6 so that by the relationship between completion

and SM that is stated in Corollary 3 of (Lee & Meng, 2011), we have that

I |= (8.22) iff I satisfies DS0 , and, for each fluent R,

Holds(R(x), do(a, s))↔ Γ+
R(x, a, s) ∨ (Holds(R(x, s) ∧ ¬ ∼Holds(R(x), do(a, s)))

(8.23)
6See Section 4.1 of (Lee & Meng, 2011) for the definition.
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and

∼Holds(R(x), do(a, s))↔ Γ−R(x, a, s)∨ (∼Holds(R(x), s)∧¬Holds(R(x), do(a, s)))

(8.24)

where x, a, s are any (lists of) object names of corresponding sorts.

It remains to show that, under the assumption (8.19), I satisfies

(8.23) ∧ (8.24) iff I|σ satisfies

Holds(R(x), do(a, s)) ↔ Γ+
R(x, a, s) ∨ (Holds(R(x), s) ∧ ¬Γ−R(x, a, s)). (8.25)

In the following we will use the following facts.

• I |=∼Holds(R(x), s) iff I|σ 6|= Holds(R(x), s).

• if F is a ground formula that does not contain ∼, then I |= F iff I|σ |= F .

Left to Right: Assume I |= (8.23) ∧ (8.24).

• Case 1: I|σ |= Holds(R(x), do(a, s)). Clearly, I |= Holds(R(x), do(a, s)), so

that, from (8.23), there are two subcases to consider.

– Subcase 1: I |= Γ+
R(x, a, s). Clearly, I|σ satisfies both LHS and RHS

of (8.25).

– Subcase 2: I |= Holds(R(x), s). From (8.24), it follows that

I 6|= Γ−R(x, a, s), and consequently, I|σ 6|= Γ−R(x, a, s). Clearly, I|σ

satisfies both LHS and RHS of (8.25).

• Case 2: I|σ 6|= Holds(R(x), do(a, s)). It follows from (8.23) that

I 6|= Γ+
R(x, a, s), which is equivalent to saying that I|σ 6|= Γ+

R(x, a, s). Also

since I |=∼Holds(R(x), do(a, s)), from (8.24), there are two subcases to

consider.
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– Subcase 1: I |= Γ−R(x, a, s). Clearly, I|σ satisfies neither LHS nor RHS

of (8.25).

– Subcase 2: I |= ∼Holds(R(x), s). This is equivalent to saying that

I|σ 6|= Holds(R(x), s). Clearly, I|σ satisfies neither LHS nor RHS of

(8.25).

Right to Left: Assume I|σ |= (8.25).

• Case 1: I |= Holds(R(x), do(a, s)). It follows from (8.25) that I|σ satisfies

RHS of (8.25), so that there are two subcases to consider.

– Subcase 1: I|σ |= Γ+
R(x, a, s). Clearly, I satisfies both LHS and RHS of

(8.23). Also from (8.19), it follows that I 6|= Γ−R(x, a, s). Consequently, I

satisfies neither LHS nor RHS of (8.24).

– Subcase 2: I|σ |= Holds(R(x), s) ∧ ¬Γ−R(x, a, s). Clearly, I satisfies

both LHS and RHS of (8.23). Since I 6|= Γ−R(x, a, s), I satisfies neither

LHS nor RHS of (8.24).

• Case 2: I |=∼Holds(R(x), do(a, s)). It follows from (8.25) that

I|σ 6|= Γ+
R(x, a, s), and I|σ 6|= (Holds(R(x), s) ∧ ¬Γ−R(x, a, s)). From the latter,

consider the two subcases.

– Subcase 1: I|σ 6|= Holds(R(x), s). Clearly, I satisfies neither LHS nor

RHS of (8.23), and satisfies both LHS and RHS of (8.24).

– Subcase 2: I|σ 6|= ¬Γ−R(x, a, s). Clearly, I satisfies neither LHS nor

RHS of (8.23), and satisfies both LHS and RHS of (8.24).

�
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Proof of Theorem 27

From Dexogenous0 , it follows that SM[T ; Holds,∼Holds,Poss] is equivalent to

SM[T¬¬; Holds,∼Holds,Poss], where T¬¬ is obtained from T by prepending ¬¬ to

all occurrences of Holds in DS0 . From the definition of a uniform formula (Reiter,

2001), it follows that T¬¬ is almost universal relative to {Holds,∼Holds,Poss}.

The result follows from Theorem 16. �
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Chapter 9

TEMPORAL ACTION LOGICS IN ANSWER SET PROGRAMMING

In this chapter, we use the results from Chapters 3-5 to reformulate Temporal

Action Logics (TAL) in the first-order stable model semantics and in ASP. Based

on the reformulation, we show how F2LP can be used to compute descriptions in

TAL. We then show how constraint answer set solvers, which are answer set

solvers enhanced with constraint processing techniques, can be used for

reasoning with TAL, and discuss some of the advantages of this approach. Finally,

we compare our ASP-based reasoner with VITAL1, which is a well-known tool for

reasoning about actions using TAL.

9.1 Review of Temporal Action Logics

This review is based on (Doherty & Kvarnström, 2008) and Chapter 2 of

(Kvarnström, 2005).

A narrative in TAL is specified using the language L(ND), which is referred

to as the surface language. The language is many-sorted, consisting of a number

of value sorts Vi, a number of feature sorts Fi, an action sort A, and a temporal

sort T . The boolean sort B is a value sort with constants {true, false}. Each

feature sort is associated with a value sort such that dom(Fi)=Vj for some j.

A temporal term, often denoted by t or ti or t′, is a variable, or a constant,

or an expression of the form t1 + t2, all of sort T . A value term, often denoted by ω

or ωi, is a variable or constant of some value sort Vi, an expression value(t, f)

where f is a fluent term, or an expression g (ω1, . . . , ωn) where

g:V1 × · · · × Vn 7→ Vi is a value function symbol. The function value(t, f) returns

the value of the fluent f at timepoint t.

1http://www.ida.liu.se/∼jonkv/vital
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A fluent term is a feature variable or a feature expression of the form

f (ω1, . . . , ωn) where f : V1 × · · · × Vn 7→ Fi is a feature symbol. An action term is

an expression of the form A(ω1, . . . , ωn) where A : V1 × · · · × Vn 7→ A is an action

symbol. In the following, f and g are fluent terms, and a is an action term.

A temporal formula is any comparison between two temporal terms. A

value formula is of the form ω1 = ω2, or r (ω1, . . . , ωn) where r : V1 × · · · × Vn is a

relation symbol. An elementary fluent formula is an expression of the form f=̂ω. A

fluent formula is an elementary fluent formula or a combination of fluent formulas

formed with the standard logical connectives and quantification over values. The

formulas f=̂true and f=̂false can be abbreviated as f and ¬f respectively.

A timed formula is any of the following, where α is a fluent formula:

• fixed fluent formula: [t, t′]α, (t, t′]α, [t, t′)α, (t, t′)α, [t,∞)α, (t,∞)α, and [t]α.

• fluent change formula: CT ([t]α), CF ([t]α), and C([t]α).

• reassignment formulas: R([t, t′]α), R((t, t′]α), R([t, t′)α), R((t, t′)α), and

R([t]α).

• interval reassignment formulas: I([t, t′]α), I((t, t′]α), I([t, t′)α), I((t, t′)α),

and I([t]α).

• occlusion formulas: X([t, t′]α), X((t, t′]α), X([t, t′)α), X((t, t′)α), and

X([t]α).

A static formula is a temporal formula, a value formula, a fixed fluent

formula, a fluent change formula, >, ⊥, or a combination of static formulas formed

using the standard logical connectives together with quantification over values and

time. A change formula is a formula of the form Qv(α1 ∨ · · · ∨ αn) where Qv is a

sequence of quantifiers with variables, and each αi is a conjunction of static,
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occlusion and reassignment formulas. A change formula is balanced if it satisfies

the following conditions:

• whenever a fluent term f (ω1, . . . , ωm) appears inside a reassignment or

occlusion formula in one of the disjuncts αi, it must also appear every other

αj inside a reassignment or occlusion formula with exactly the same

temporal argument.

• any existentially quantified variable v in the formula, whenever appearing

inside a reassignment or occlusion formula, only does so in a formula f=̂v.

An application formula is (a) a balanced change formula, or (b) a formula of

the form F → G where F is a static formula and G is a balanced change formula,

or a combination of formulas of the form (a) and (b) formed with conjunction and

universal quantification over values and time. An occurrence formula is of the form

[t, t′]Ψ where Ψ is an action term. Finally, a persistence formula is an expression

of the form Per(t, f), or Dur(t, f, ω), or a combination of persistence formulas

formed with conjunction and universal quantification over values and time.

A TAL narrative is formed using the following statements:

• action type specification (labeled acs): [t, t′]Ψ→ φ where Ψ is an action

term and φ is an application formula.

• dependency constraint (labeled dep): an application formula.

• domain constraint (labeled dom): a static formula.

• persistence statement (labeled per): a persistence formula.

• observation statement (labeled obs): a static formula.
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• action occurrence statement (labeled occ): a variable-free occurrence

formula.

Reasoning about a narrative is done by translating it into the base language

L(FL), which is an order-sorted classical first-order language with equality using a

linear discrete time structure. The language uses the ternary predicates Holds and

Occurs, and the binary predicate Occlude. Holds(t, f, ω) represents that fluent f

has value ω at time t. Occlude(t, f) represents that a persistent or durational

fluent f is exempt from inertia or default value assumption, respectively, at time t.

Occurs(t, t′, a), represents that action a occurs during the time interval [t, t′]. The

translation from L(ND) to L(FL) is given by the function Trans, that is defined as

follows (ω represents a list of value terms, � ∈ {∧,∨,→} and Q ∈ {∀, ∃}):

• Trans(>) = >; Trans(⊥) = ⊥;

• Trans([t]f(ω)=̂ω) = Holds(t, f(ω), ω);

Trans(X([t]f(ω)=̂ω)) = Occlude(t, f(ω));

Trans([t, t′]a) = Occurs(t, t′, a);

• Trans(Per(t′, f)) =

∀t(t′ = t+ 1 ∧ ¬Occlude(t+ 1, f)→ ∀v(Holds(t+ 1, f, v)↔ Holds(t, f, v)));

Trans(Dur(t, f, ω)) = ¬Occlude(t, f)→ Holds(t, f, ω);

• Trans(α� β) = Trans(α)� Trans(β); similar for ¬;

Trans(Qv(α)) = QvTrans(α);

• Trans([t] α� β) = Trans([t]α)� Trans([t]β); similar for ¬ and quantifiers;

• Trans(X([t] α� β)) = Trans(X([t]α)) ∧ Trans(X([t]β));

Trans(X([t] ¬α)) = Trans(X([t] α));

Trans(X([t] Qv(α))) = ∀vTrans(X([t]α));

• Trans([t1, t2] α) = ∀t(t ≥ t1 ∧ t ≤ t2 → Trans([t] α));

Trans([t1,∞) α) = ∀t(t ≥ t1 → Trans([t] α));
142



Trans(R([t1, t2] α)) = Trans(X([t1, t2] α)) ∧ Trans([t2] α);

Trans(R([t] α)) = Trans(X([t] α)) ∧ Trans([t] α);

Trans(I([t1, t2] α)) = Trans(X([t1, t2] α)) ∧ Trans([t1, t2] α);

Trans(I([t] α)) = Trans(X([t] α)) ∧ Trans([t] α);

other forms of intervals are treated similarly;

• Trans(CT ([t′] α)) = ∀t(t′ = t+ 1→ Trans([t]¬α) ∧ Trans([t′] α);

Trans(CF ([t′] α)) = ∀t(t′ = t+ 1→ Trans([t]α) ∧ Trans([t′] ¬α);

Trans(C([t] α)) = Trans(CT ([t] α)) ∨ Trans(CF ([t] α))

Consider any narrative N and let Nper, Nobs, Nocc, Nacs, Ndomc, and Ndepc denote

the sets of persistence statements, observation statements, action occurrence

statements, action type specifications, domain constraints, and dependency

constraints in N respectively. The TAL domain description (referred to as preferred

narrative) ∆N is given by

Γfnd∧Γtime∧Γper∧Γobs∧Γdomc∧CIRC[Γocc; Occurs]∧CIRC[Γdepc∧Γacs; Occlude]

(9.1)

where Γper, Γobs, Γocc, Γacs, Γdomc, and Γdepc are the formulas in L(FL) (first-order

formulas) obtained by applying Trans on Nper, Nobs, Nocc, Nacs, Ndomc, and Ndepc

respectively; Γfnd is the set of foundational axioms in L(FL), containing unique

name axioms, unique value axioms, etc.; and Γtime is the axiomatization of the

particular temporal structure (linear and discrete) in L(FL).

9.2 Reformulating Temporal Action Logics in the First-Order Stable Model

Semantics

Like in the cases of the event calculus and the situation calculus, this reformulation

uses the concepts of canonical formulas and splitting, which were presented in

Chapters 3.3 and 4 respectively.
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Given a narrative N and the corresponding preferred narrative ∆N , we can

conclude the following:

(ob1) all occurrences of Occlude in Γacs and Γdepc are strictly positive, and there

are no strictly positive occurrences of Occurs in either of them;

(ob2) all occurrences of Occurs in Γocc are strictly positive, and there are no

occurrences of Occlude in it;

(ob3) Γdomc, Γobs, Γfnd, and Γtime do not contain any occurrences of either Occlude

or Occurs; and

(ob4) all occurrences of Occlude in Γper are in the scope of negation, and there are

no occurrences of Occurs in it.

These observations lead us to the following theorem. In the following, we

use Γncirc to denote Γfnd ∧ Γtime ∧ Γper ∧ Γobs ∧ Γdomc.

Theorem 28 Given a TAL narrative N and the corresponding preferred narrative

∆N ((9.1)), the following formulas are logically equivalent:

(a) CIRC[Γocc; Occurs] ∧ CIRC[Γdepc ∧ Γacs; Occlude] ∧ Γncirc

(b) SM[Γocc; Occurs] ∧ SM[Γdepc ∧ Γacs; Occlude] ∧ Γncirc

(c) SM[Γocc ∧ Γdepc ∧ Γacs ∧ Γncirc; Occurs,Occlude]

The equivalence between (a) and (b) follows from Theorem 4, and

observations (ob1) and (ob2) above which imply that Γocc is canonical relative to

Occurs and Γdepc ∧ Γacs is canonical relative to Occlude. The equivalence between

(b) and (c) follows from Theorem 12, and observations (ob1)-(ob4) above which

imply that the conditions for applying the splitting theorem (Chapter 4.1) are

satisfied.
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9.3 Reformulating Temporal Action Logics in Answer Set Programming

Similar to the cases of the event calculus and the situation calculus, we use

translation F2LP to turn formula Γocc ∧ Γdepc ∧ Γacs ∧ Γncirc, which is the formula

within SM in Theorem 28(c) above, into the syntax of answer set programs.

Consider Γocc ∧ Γdepc ∧ Γacs ∧ Γncirc, where Γncirc is

Γfnd ∧ Γtime ∧ Γper ∧ Γobs ∧ Γdomc. The only intensional predicates in these

formulas are Occurs and Occlude. Among the formulas, only Γdepc, Γacs, and Γper

contain occurrences of Occlude, and only Γacs and Γocc contain occurrences of

Occurs. From the definitions of an application formula and Trans, it follows that

Occlude is outside the scope of any positive occurrence of ∃ and any negative

occurrence of ∀ in Γdepc ∧ Γacs. Further, it is clear that all occurrences of Occlude in

Γper are in the scope of negation, and that Occurs is outside the scope of any

positive occurrence of ∃ and any negative occurrence of ∀ in Γacs ∧ Γocc. This

implies that Γocc ∧ Γdepc ∧ Γacs ∧ Γncirc is almost universal relative to

{Occurs,Occlude}, which in turn implies that translation F2LP can be used to turn

the formula into the syntax of ASP. The following theorem makes this precise.

Theorem 29 Let F be the formula Γocc ∧ Γdepc ∧ Γacs ∧ Γncirc of a signature σ, and

let F ′ be the FOL-representation of the program obtained from F by applying

translation F2LP with {Occurs,Occlude} as the list of intensional predicates.

Then, SM[F ; Occurs,Occlude] is σ-equivalent to SM[F ′].

Consider the Russian Airplane Hijack (RAH) scenario as discussed in

(Doherty & Kvarnström, 2008).This example demonstrates the capability of TAL in

handling the ramification and qualification problems. In this scenario, three

businessmen Boris, Erik, and Dimiter try to board a flight to Stockholm. Boris has a

comb and a gun in his pocket, Dimiter is drunk, and Erik has a comb in his pocket.
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When the businessmen move, the items in their pockets should move along with

them. Similarly, when a plane flies from one location to another, the people inside

should move along with the plane. Since Dimiter is drunk, he may not be able to

board the plane. Finally, since Boris has a gun in his pocket, he should not be able

to board the plane. The (partial) solutions provided to the ramification and

qualification problems in TAL use dependency constraints. Following is part of the

description provided with VITAL2 (v. 2.999.910 alpha), which is a well-known tool

for reasoning about action and change using TAL. We only show the action type

specifications and dependency constraints used in the description. These

statements represent the direct effects, the ramifications, and the qualifications

associated with the problem. The fluent PossBoard(person, airplane) is durational

with default value true, and the rest of the fluents are persistent. The direct effects

are represented by the following action type specifications:

acs [t1, t2]Put(person, pthing, pocket)→ ([t1] Loc(person)=̂Loc(pthing)→

R((t1, t2] InPocket(person, pthing)))

acs [t1, t2]Travel(person, loc1, loc2)→ ([t1] Loc(person)=̂loc1 →

R([t2] Loc(person)=̂loc2))

acs [t1, t2]Board(person, airplane)→

([t1] PossBoard(person, airplane) ∧ Loc(person)=̂Airport→

R([t2] Loc(person)=̂Loc(airplane) ∧ OnPlane(airplane, person)))

acs [t1, t2]Fly(airplane, runway1, runway2)→

([t1] Loc(airplane)=̂runway1 →

I((t1, t2) Loc(airplane)=̂Air) ∧R([t2] Loc(airplane)=̂runway2))

The qualification constraints are represented by the following dependency

constraints:

dep [t]InPocket(person, gun)→ I([t] ∀airplane(¬PossBoard(person, airplane)))

dep [t]Drunk(person)→ X([t] ∀airplane(¬PossBoard(person, airplane)))
2http://www.ida.liu.se/ jonkv/vital/
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The ramification constraints are represented by the following dependency

constraints:

dep [t]OnPlane(airplane, person) ∧ CT ([t] Loc(airplane)=̂loc3)→

R([t] Loc(person)=̂Loc(airplane))

dep [t]InPocket(person, pthing) ∧ CT ([t] Loc(person)=̂loc3)→

R([t] Loc(pthing)=̂Loc(person))

To compute the description using answer set solvers, we use system F2LP.

Since F2LP does not accept input in the language of L(ND), we need to encode

the corresponding first-order theory directly. Figure 9.1 shows a complete F2LP

encoding of the corresponding first-order theory.

The following command can be used to compute the answer sets of the

theory:

$ f2lp RAH | gringo -c maxstep=17 | claspD

The answer sets produce the expected results, including the following:

• holds(t,loc(boris),airport) for all t ≥ 10 : since boris has a gun in his

pocket, he is unable to board the plane.

• holds(16,loc(sas609),run609b), holds(16,onplane(sas609,erik),true),

holds(16,loc(erik),run609b), holds(16,inpocket(erik,comb2),true),

holds(16,loc(comb2),run609b): since erik is on the plane and comb2 is in

his pocket, the location of erik and comb2 is the same as the location of the

plane, which is at the destination runway.

• some of the answer sets contain holds(16,loc(dimiter),airport) and

others contain holds(16,loc(dimiter),run609b): since dimiter is drunk,

he may or may not be able to board the plane.
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% file RAH

% domain specification

time(0..maxstep).

airplane(sas609). person(boris;dimiter;erik).

pthing(gun;comb1;comb2;comb3). runway(run609;run609b).

location(home1;home2;home3;office;airport;air).

pocket(pocket1;pocket2;pocket3). bool(true;false).

#domain time(T). #domain time(T1). #domain time(T2).

#domain airplane(Ai). #domain airplane(Ai1). #domain airplane(Ai2).

#domain person(Pe). #domain person(Pe1). #domain person(Pe2).

#domain pthing(Pt).

#domain runway(Ru). #domain runway(Ru1). #domain runway(Ru2).

#domain pocket(Po). #domain bool(Bo).

location(Ru).

#domain location(Lo). #domain location(Lo1). #domain location(Lo2).

thing(Ai). thing(Pe). thing(Pt).

#domain thing(Th).

value(Po). value(Bo). value(Th). value(Lo).

#domain value(V). #domain value(V1). #domain value(V2).

% fluents

feature(loc(Th);inpocket(Pe,Pt);poss_board(Pe,Ai);drunk(Pe)).

feature(onplane(Ai,Pe)).

#domain feature(Fe).

%poss_board is durational with default value true

-occlude(T,poss_board(Pe,Ai)) -> holds(T,poss_board(Pe,Ai),true).

%the rest of them are persistent

-occlude(T+1,loc(Th)) & T < maxstep ->

![Lo]:(holds(T+1,loc(Th),Lo) <-> holds(T,loc(Th),Lo)).

-occlude(T+1,inpocket(Pe,Pt)) & T < maxstep ->

![Bo]:(holds(T+1,inpocket(Pe,Pt),Bo) <-> holds(T,inpocket(Pe,Pt),Bo)).

-occlude(T+1,drunk(Pe)) & T < maxstep ->

![Bo]:(holds(T+1,drunk(Pe),Bo) <-> holds(T,drunk(Pe),Bo)).

-occlude(T+1,onplane(Ai,Pe)) & T < maxstep ->

![Bo]:(holds(T+1,onplane(Ai,Pe),Bo) <-> holds(T,onplane(Ai,Pe),Bo)).
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% Unique Value Axioms

1{holds(T,loc(Th),Loc):location(Loc)}1.

1{holds(T,inpocket(Pe,Pt),Boo):bool(Boo)}1.

1{holds(T,poss_board(Pe,Ai),Boo):bool(Boo)}1.

1{holds(T,drunk(Pe),Boo):bool(Boo)}1.

1{holds(T,onplane(Ai,Pe),Boo):bool(Boo)}1.

% actions

action(put(Pe,Pt,Po);travel(Pe,Lo,Lo);fly(Ai,Ru,Ru);board(Pe,Ai)).

#domain action(Ac).

% observation statements

holds(0,loc(boris),home1). holds(0,loc(gun),office).

holds(loc(comb1),home1). -holds(0,drunk(boris),true).

holds(0,loc(erik),home2). holds(0,comb2,home2).

-holds(0,drunk(erik),true). holds(0,loc(dimiter),home3).

holds(0,loc(comb3),home3). holds(0,drunk(dimiter),true).

holds(0,loc(sas609),run609).

% adding for completeness

-holds(0,inpocket(Pe,Pt),true). -holds(0,onplane(Ai,Pe),true).

% action occurrence statements

occurs(1,2,put(boris, comb1, pocket1)).

occurs(1,2,put(erik, comb2, pocket2)).

occurs(2,4,travel(dimiter, home3, office)).

occurs(3,5,travel(boris, home1, office)).

occurs(4,6,travel(erik, home2, office)).

occurs(6,7,put(boris, gun, pocket1)).

occurs(5,7,travel(dimiter, office, airport)).

occurs(7,9,travel(erik, office, airport)).

occurs(8,10,travel(boris, office, airport)).

occurs(9,10,board(dimiter, sas609)).

occurs(10,11,board(boris, sas609)).

occurs(11,12,board(erik, sas609)).

occurs(13,16,fly(sas609, run609, run609b)).

% action type specifications

occurs(T1,T2,put(Pe, Pt, Po)) ->

(?[Lo]:(holds(T1,loc(Pe),Lo) & holds(T1,loc(Pt),Lo)) ->

(![T]:(T > T1 & T <= T2 -> occlude(T,inpocket(Pe,Pt))) &

holds(T2,inpocket(Pe,Pt),true))).

occurs(T1,T2,travel(Pe, Lo1, Lo2)) ->

(holds(T1,loc(Pe),Lo1) -> occlude(T2,loc(Pe)) &

holds(T2,loc(Pe),Lo2)).
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occurs(T1,T2,board(Pe, Ai)) ->

(holds(T1,poss_board(Pe,Ai),true) & holds(T1,loc(Pe),airport) ->

(occlude(T2,loc(Pe)) & occlude(T2,onplane(Ai,Pe)) &

?[Lo]:(holds(T2,loc(Pe),Lo) & holds(T2,loc(Ai),Lo)) &

holds(T2,onplane(Ai,Pe),true))).

occurs(T1,T2,fly(Ai,Ru1,Ru2)) ->

(holds(T1,loc(Ai),Ru1) ->

(![T]:(T > T1 & T < T2 -> occlude(T,loc(Ai))) &

![T]:(T > T1 & T < T2 -> holds(T,loc(Ai),air)) &

occlude(T2,loc(Ai)) & holds(T2,loc(Ai),Ru2))).

% dependency constraints reprsenting qualifications

holds(T,inpocket(Pe,gun),true) & T <= maxstep ->

![Ai]:occlude(T,poss_board(Pe,Ai)) &

![Ai]: (-holds(T,poss_board(Pe,Ai),true)).

holds(T,drunk(Pe),true) & T <= maxstep ->

![Ai]:occlude(T,poss_board(Pe,Ai)).

% dependency constraints reprsenting ramifications

holds(T,onplane(Ai,Pe),true) & T > 0 &

-holds(T-1,loc(Ai),Lo) & holds(T,loc(Ai),Lo) ->

occlude(T,loc(Pe)) & holds(T,loc(Pe),Lo).

holds(T,inpocket(Pe,Pt),true) & T > 0 &

-holds(T-1,loc(Pe),Lo) & holds(T,loc(Pe),Lo) ->

occlude(T,loc(Pt)) & holds(T,loc(Pt),Lo).

% domain constraints

Pe1 != Pe2 & holds(T,inpocket(Pe1,Pt),true) ->

-holds(T,inpocket(Pe2,Pt),true).

Ai1 != Ai2 & holds(T,onplane(Ai1,Pe),true) ->

-holds(T,onplane(Ai2,Pe),true).

Figure 9.1: RAH example in F2LP
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9.4 Using Constraint Answer Set Solvers for Reasoning with Temporal Action

Logics

Notice that the translation Trans involves turning formulas of the form [t] f=̂ω into

Holds(t, f, ω). This could cause a grounding bottleneck for large domains. In order

to avoid such bottlenecks, answer set solvers are being enhanced with constraint

processing (CP) (Dechter, 2003; Rossi, Beek, & Walsh, 2006) techniques (see, for

example, (Baselice, Bonatti, & Gelfond, 2005; Mellarkod, Gelfond, & Zhang, 2008;

Gebser, Ostrowski, & Schaub, 2009)). As mentioned in the introduction, these

enhancements can be carried over to ASP-based TAL reasoning. Here, we

demonstrate how CLINGCON3 (Gebser et al., 2009), which combines the ASP

solver CLINGO4 and the CP solver GECODE5, can be used for ASP-based TAL

reasoning.

Intuitively, since Holds is non-intensional, we can simply replace

Holds(t, f(x), ω) in Γocc ∧ Γdepc ∧ Γacs ∧ Γncirc, which is the formula within SM in

Theorem 28(c), with f ′(t, x) = ω , where f ′ is a function whose range is the same

as the domain of the fluent f(x) and x is a list of terms. We can then apply

translation F2LP on the resulting theory to turn it into an answer set program. We

make the idea precise as follows. Consider a TAL narrative N and any subset S of

the set of feature symbols in N . If σ is the signature of the corresponding

preferred narrative ∆N ((9.1)), by σS we denote the signature obtained from σ by

adding a function constant f ′ for every feature symbol f in S. If a feature symbol f

takes n arguments, then the arity of f ′ is n+ 1. If F is the formula

Γocc ∧ Γdepc ∧ Γacs ∧ Γncirc, by FS we denote the formula of signature σS obtained

from F by replacing every occurrence of Holds(t, f(x), ω) in F , where f ∈ S, with

3http://potassco.sourceforge.net/
4http://potassco.sourceforge.net/
5http://www.gecode.org/
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f ′(t, x) = ω. By EQS we denote the conjunction of formulas

∀t, x, v(Holds(t, f(x), v)↔ f ′(t, x) = v) for every feature symbol f in S.

Theorem 30 Given a TAL narrative N , let σ be the signature of the corresponding

preferred narrative ∆N ((9.1)), and let F be the formula Γocc ∧ Γdepc ∧ Γacs ∧ Γncirc.

Then,

SM[F ; Occurs,Occlude]

is σ-equivalent to

SM[FS; Occurs,Occlude] ∧ EQS

where S is any subset of the set of feature symbols in N .

We can encode FS, for any S, in the language of F2LP. However, the output of

F2LP cannot be directly used with CLINGCON. This is because CLINGCON uses

the special character $ to distinguish between constraint and regular ASP atoms.

So, we would need to prepend $ to all comparison operators occurring in

constraint atoms. Further, we also need to replace equality in constraint atoms

with $==. For example, the constraint atoms f(a) + g(Y) <= h(Z) and f(a) = X

have to be replaced with f(a) + g(Y) $<= h(Z) and f(a) $== X respectively.

Consider the “Kitchen Sink ” example from the benchmark problems of the

event calculus. The actions tapOn and tapOff turn the tap on and off respectively.

The fluents filling and spilling represent the kitchen sink being filled and the

water being spilled respectively. The fluent waterLevel represents the level of the

water in the sink. Here, it is assumed that the height of the sink is 15 units and

when the tap is on, the level of the water increases by 1 unit for every unit of time.

Figure 9.2 shows an F2LP encoding of the example where waterLevel is used as

a constraint variable. The comments (indicated by %) show the corresponding

VITAL encoding. As we can observe from the encoding, we introduced constraint
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variables waterLevel(T) corresponding to the fluent waterLevel. The construct

#spatom{...} used in the encoding directs F2LP to copy the part within the

parantheses to the output without any processing. The following changes need to

be made to the output of F2LP in order to successfully run the description with

CLINGCON (v. 0.1.2):

• since #spatom{$domain(0..100)} is turned to $domain(0..100) :-

true., this needs to be replaced with $domain(0..100).;

• all the comparison and equality symbols occurring in constraint atoms need

to be replaced with the corresponding CLINGCON encoding as explained

above; and

• since CLINGCON (v. 0.1.2) does not allow variables to begin with an

underscore (_), every new variable _NV_* introduced by F2LP needs to be

replaced with a variable not beginning with an underscore (such as NV_*).

The resulting program can be run using CLINGCON as follows:

$ clingcon -c maxstep=50 kitchensink.lp

One can verify the following from the output:

• since no action occurs until timepoint 15, the waterLevel is 0 and filling

and spilling are false, for timepoints 0 to 15.

• filling becomes true at 16, and remains so until 45.

• starting from 17, waterLevel increases by 1 unit until it reaches 15 (the

height of the sink), and remains so forever since the part about the water

being drained out is not encoded.
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• spilling becomes true at 31 when the waterLevel becomes 15, and

remains so until 45.

We tested several examples with CLINGCON (v. 0.1.2), and the

experimental results presented in the next section clearly show the advantages of

using CLINGCON on numeric domains when compared to pure ASP solvers such

as CLINGO. Since CLINGCON (v. 0.1.2) allows only integers in the domain of

constraint variables, we could not test certain examples, such as the RAH

scenario, which do not have any numeric domains.
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% File 'kitchensink'

time(0..maxstep).

#domain time(T). #domain time(T1). #domain time(T2).

%#domain height :integer :lb 0 :ub 100

#spatom{$domain(0..100)}.

height(0..100).

#domain height(H).

bool(true;false).

#domain bool(B).

%#action tapon, tapoff

action(tapOn;tapOff).

%#feature filling :domain boolean :showname

%#feature waterlevel :domain height :showname

%#feature spilling :domain boolean :durational false :showname

feature(filling;spilling;waterLevel).

hFeature(waterLevel(T)).

% all fluents except spilling are persistent

-occlude(T+1,filling) & T < maxstep ->

![B]:(holds(T+1,filling,B) <-> holds(T,filling,B)).

-occlude(T+1,waterLevel) & T < maxstep ->

waterLevel(T+1) = waterLevel(T).

-occlude(T,spilling) -> holds(T,spilling,false).

% unique value axioms

% not required for waterLevel

1{holds(T,filling,Bo):bool(Bo)}1.

1{holds(T,spilling,Bo):bool(Bo)}1.

% effects of actions

%#acs [t1,t2] tapon -> R((t1,t2] filling)

occurs(T1,T2,tapOn) ->

![T]:(T > T1 & T <= T2 ->

occlude(T,filling)) & holds(T2,filling,true).

%#acs [t1,t2] tapoff -> R((t1,t2] !filling)

occurs(T1,T2,tapOff) ->

![T]:(T > T1 & T <= T2 ->

occlude(T,filling)) & holds(T2,filling,false).
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%#dep forall t [ [t] filling -> X([t+1] waterlevel == 0) ]

holds(T,filling,true) & T < maxstep -> occlude(T+1,waterLevel).

%#dom forall t [ [t] filling & !spilling ->

% [t+1] waterlevel == value(t,$plus(waterlevel,1)) ]

holds(T,filling,true) & -holds(T,spilling,true) & T < maxstep ->

waterLevel(T+1) = waterLevel(T) + 1.

%#dom forall t [ [t] spilling ->

% [t+1] waterlevel == value(t,waterlevel) ]

holds(T,spilling,true) & T < maxstep ->

waterLevel(T+1) = waterLevel(T).

%#dep forall t [ [t] waterlevel == 15 & [t] filling ->

% R([t] spilling) ]

waterLevel(T) == 15 & holds(T,filling,true) ->

occlude(T,spilling) & holds(T,spilling,true).

%#obs [0] waterlevel == 0 & !spilling & !filling

%#occ [15,16] tapon

%#occ [45,46] tapoff

waterLevel(0) = 0.

holds(0,spilling,false) & holds(0,filling,false).

occurs(15,16,tapOn).

occurs(45,46,tapOff).

Figure 9.2: Kitchen Sink example in F2LP
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9.5 Comparison with VITAL

VITAL6 is a tool for reasoning about actions using TAL. The tool supports rich

featuers, including ramification constraints, qualification constraints, and durational

fluents. It not only generates the models but also provides a visualization of the

models, which makes it easier to verify the output. VITAL is essentially a research

tool mainly intended for generating and visualizing the models of the descriptions.

While it has some optimizations for certain types of narratives, raw performance

was not a primary factor in the design and implementation of the tool.7

Nonetheless, we think it is useful to compare the performance of VITAL with that of

our ASP-based approach since it would give us an idea about the performance of

our approach.

For the comparison, we considered 3 scenarios: the Russian Airplane

Hijack (RAH) scenario discussed earlier in the chapter, the water tank scenario

whose TAL encoding is provided with VITAL, and the Zoo World scenario from

(Akman et al., 2004). For the RAH scenario, we considered a few projection and

planning problems. For the water tank scenario, we considered projection

problems, and for the zoo world scenario, we considered projection and

postdiction problems. All experiments were done on a Pentium machine with 3.06

GHz CPU and 4GB RAM running 64 bit Linux.

Figure 9.3 shows the comparison of VITAL (v. 2.999.910 alpha) with the

following for the RAH and water tank scenarios:

• F2LP (v 1.11) with GRINGO (v 3.0.3) +CLASP (v 2.0.2),

• F2LP (v 1.11) with CLINGCON (v 0.1.2) (GRINGO v 2.0.2 and CLASP v 1.1.1)

for the water tank scenario, and

6http://www.ida.liu.se/∼jonkv/vital
7This information was provided to us by Jonas Kvarnström in a personal communication.
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Problem VITAL F2LP with F2LP with F2LP with
(max. step) GRINGO + CMODELS GRINGO + CLASP CLINGCON

RAH-proj 0.01s 0.23s 0.13s NA
(16) (0.08s + 0.15s) (0.08s + 0.05s)
RAH-proj 0.05s 0.99s 0.53s NA
(50) (0.32s + 0.67s) (0.32s + 0.21s)
RAH-plan-unit 10.56s 0.13s 0.08s NA
(7) (0.03s + 0.1s) (0.03s + 0.05s)
RAH-plan-unit > 30min 0.45s 0.29s NA
(10) (0.1s + 0.35s) (0.1s + 0.19s)
RAH-plan-dur 540.59s 0.3s 0.11s NA
(6) (0.07s + 0.23s) (0.07s + 0.04s)
RAH-plan-dur > 30min 0.66s 0.26s NA
(9) (0.13s + 0.53s) (0.13s + 0.13s)
WaterTank-proj-100 0.07s > 30min > 30min 8.92s
(16)
WaterTank-proj-200 0.03s > 30min > 30min 119.44s
(25)
WaterTank-proj-300 0.01s > 30min > 30min 591.15s
(30)
WaterTanks-proj-100 NA 0.06s 0.05s NA
(16) (0.05s + 0.01s) (0.05s + 0.00s)
WaterTanks-proj-200 NA 0.14s 0.13s NA
(25) (0.13s + 0.01s) (0.13s + 0.00s)
WaterTanks-proj-300 NA 0.22s 0.21s NA
(30) (0.21s + 0.01s) (0.21s + 0.00s)

Figure 9.3: Comparison of VITAL with F2LP + answer set solvers

• F2LP (v 1.11) with GRINGO (v 3.0.3)+CMODELS (v 3.79) running MINISAT

(v 2.0 beta).

In the figure, “max.step” indicates the maximum timepoint for which the

tests were run. The times shown are in seconds, and were obtained using the

linux time command for our ASP-based approach. The value shown is the sum of

“user time” and “sys time” returned by the time command. The times shown in the

parantheses are “(grounding time + solving time)”. For VITAL, the time shown is

the one provided by the tool itself. Since there was a non-negligible variation in the

time returned by VITAL for different executions of the same problem instance, we

ran each problem instance 3 times and took the lowest among the times returned.

If VITAL crossed the time limit on the first run, then we did not run that problem
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instance again. The cut-off time we used for the tools to terminate and return 1

model is 30 minutes. “NA” against a tool implies that that particular problem

instance was either not tested with that tool or does not apply to that tool.

For the RAH scenario, the first two problems are projection problems and

the next 4 are planning problems. Among the planning problems, the first two

consider all actions to be of unit duration, and the next two consider actions with

fixed lower and upper bounds on their durations. For the planning problems,

“max.step” is also the length of a minimum plan. While VITAL does not support

goal statements, planning problems can be encoded using dependency and

domain constraints.8 The idea is to introduce fluents representing actions, and to

use dependency constraints and domain constraints to represent the effects of

actions and the constraints on the action occurrences respectively. Domain

constraints are also used to specify the goal. While VITAL is in general not as

efficient as TALplanner on planning problems, it allows us to represent domains,

such as the RAH scenario, which involve ramification and qualification

constraints,9 that are not allowed in TALplanner.

For the water tank scenario, the number in the problem name is the

maximum value in the domain of the numbers considered. For instance, the

number domain used for “WaterTank-proj-100” is 0..100. The F2LP encoding of

the water tank scenario is different when CLINGCON is used from when CLASP or

CMODELS is used. In the F2LP encoding for CLINGCON, the fluents with numeric

domains are treated as constraint variables, similar to how waterLevel was

treated in the “kitchen sink” example discussed in the previous section. The last

three problems in the water tank scenario correspond to the first 3 problems but

they use an alternative (non-CSP) F2LP encoding where the unique value axioms

8This was suggested by Jonas Kvarnström in a personal communication.
9Recall that the (partial) solutions to the ramification and qualification problems use dependency

constraints.
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Problem VITAL F2LP with F2LP with
(max. step) GRINGO + CMODELS GRINGO + CLASP

ZooWorld-proj 0.43s 0.97s 0.80s
(20) (0.39s + 0.58s) (0.39s + 0.41s)
ZooWorld-proj > 30min 4.85s 4.33s
(50) (2.28s + 2.57s) (2.28s + 2.05s)
ZooWorld-post 61.63s 0.62s 0.51s
(15) (0.24s + 0.38s) (0.24s + 0.27s)
ZooWorld-post 17.40s 0.59s 0.51s
(15) (0.24s + 0.25s) (0.24s + 0.27s)
ZooWorld-post 477.4s 0.99s 0.82s
(20) (0.41s + 0.58s) (0.41s + 0.41s)

Figure 9.4: Zoo World in VITAL vs. Zoo World in F2LP + answer set solvers

are not explicitly specified. This is because, for this particular scenario, the F2LP

encoding can be modified so that the value of each fluent is uniquely determined

at every timepoint. As the results show, this modification has a significant impact

on the times taken for GRINGO+ CLASP and GRINGO+ CMODELS to return an

answer set.

Figure 9.4 shows the comparison with VITAL for the zoo world scenario.

The first two problems in this figure are projection problems, and the remaining are

postdiction problems. For the postdiction problems, we gave an incomplete initial

state along with certain constraints on the final state, and ran the tools to

determine the complete initial state.

As we can see from the results, VITAL performed quite well on the

projection problems but is not very efficient on the planning and postdiction

problems we considered. On the other hand, our ASP-based approach performed

equally well on all the problems, except on those involving numeric domains, such

as the water tank scenario. The results also clearly show the usefulness of hybrid

answer set solvers such as CLINGCON on numeric domains.
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9.6 Proofs

Proof of Theorem 28

Given a narrative N and the corresponding preferred narrative ∆N , we can

conclude the following:

(ob1) all occurrences of Occlude in Γacs and Γdepc are strictly positive, and there

are no strictly positive occurrences of Occurs in either of them;

(ob2) all occurrences of Occurs in Γocc are strictly positive, and there are no

occurrences of Occlude in it;

(ob3) Γdomc, Γobs, Γfnd, and Γtime do not contain any occurrences of either Occlude

or Occurs; and

(ob4) all occurrences of Occlude in Γper are in the scope of negation, and there are

no occurrences of Occurs in it.

The equivalence between (a) and (b) follows from Theorem 4, and

observations (ob1) and (ob2) above which imply that Γocc is canonical relative to

Occurs and Γdepc ∧ Γacs is canonical relative to Occlude. The equivalence between

(b) and (c) follows from Theorem 12, and observations (ob1)-(ob4) above which

imply that the conditions for applying the splitting theorem (Theorem 12, Chapter

4.1) are satisfied. �

Proof of Theorem 29

Consider Γocc ∧ Γdepc ∧ Γacs ∧ Γncirc, where Γncirc is

Γfnd ∧ Γtime ∧ Γper ∧ Γobs ∧ Γdomc. The only intensional predicates in these

formulas are Occurs and Occlude. Among the formulas, only Γdepc, Γacs, and Γper

contain occurrences of Occlude, and only Γacs and Γocc contain occurrences of
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Occurs. From the definitions of an application formula and Trans, it follows that

Occlude is outside the scope of any positive occurrence of ∃ and any negative

occurrence of ∀ in Γdepc ∧ Γacs. Further, it is clear that all occurrences of Occlude in

Γper are in the scope of negation, and that Occurs is outside the scope of any

positive occurrence of ∃ and any negative occurrence of ∀ in Γacs ∧ Γocc. This

implies that Γocc ∧ Γdepc ∧ Γacs ∧ Γncirc is almost universal relative to

{Occurs,Occlude}. The result follows from Theorem 16. �

Proof of Theorem 30

Follows from Lemma 9. �

162



Chapter 10

INTEGRATING RULES AND ONTOLOGIES IN THE FIRST-ORDER STABLE

MODEL SEMANTICS

Integrating nonmonotonic rules and ontologies is an important area of the semantic

web research. Since the Web Ontology Language (OWL), which has been

endorsed by the World Wide Web Consortium (W3C), is based on Description

Logics (DLs), much of the work in this area focuses on integrating nonmonotonic

rules and DLs. The knowledge base resulting from combining a DL knowledge

base with nonmonotonic rules is usually referred to as a hybrid knowledge base.

A hybrid knowledge base is a pair (T ,P) where T is a FOL knowledge

base (typically in a description logic) of signature ΣT and P is a logic program of

signature ΣP . As discussed in Chapter 2.6, the existing integration approaches

can be classified into three categories: loose integration, tight integration with

semantic separation, and tight integration under a unifying logic (Nazarenko et al.,

2010). In the loose integration approach, T and P are viewed as separate,

independent components, and are connected through minimal safe interfaces for

exchanging data (usually in the form of ground atoms). Examples in this category

include nonmonotonic dl-programs (Eiter et al., 2008), and the combination of

description logics and defeasible logic (Wang et al., 2004). In the tight integration

with semantic separation approach, T and P are more tightly integrated, but the

predicates in ΣT and ΣP are kept separate. This approach builds an integrated

model I as the union of a model IT of T and a model IP of P with the same

domain. Examples in this category are r-hybrid KB (Rosati, 2005), DL+ log

(Rosati, 2006), g-hybrid KB (Heymans et al., 2008), and f -hybrid KB (Feier &

Heymans, 2009). Finally, in the tight integration under a unifying logic approach, T

and P are treated uniformly by translating them into a uniform logic, and there is

no principled separation between ΣT and ΣP . Examples in this category are
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Hybrid MKNF KB (Motik & Rosati, 2010), the first-order Autoepistemic Logic based

integration (de Bruijn et al., 2007a), and the Quantified Equilibrium Logic based

integration (de Bruijn et al., 2007b). This approach is attractive since it provides a

seamless integration of DLs and logic programs, and since the information flow is

bi-directional.

In this chapter, we use the framework of the first-order stable model

semantics to integrate Description Logics (DLs) and ASP. We show how our

approach can capture several approaches belonging to each of the categories

discussed above. We also show how the research on the first-order stable model

semantics can be used to strengthen certain decidability results for DL+ log

(Rosati, 2006) and to define the notion of strong equivalence (Chapter 3.2) for

hybrid knowledge bases. Several parts of this chapter are also presented in (Lee &

Palla, 2011a, 2011b).

10.1 Integrating Description Logic Knowledge Bases and Answer Set

Programming Rules

DL knowledge bases can be viewed as theories in first-order logic. Since the

first-order stable model semantics generalizes both ASP and first-order logic, it

provides an ideal framework for integrating ASP-rules and DL knowledge bases.

Given a DL knowledge base T of signature ΣT and a logic program P of signature

ΣP , our approach is to identify the models of the hybrid knowledge base (T ,P)

with the interpretations of signature ΣT ∪ ΣP (in the sense of classical logic) that

satisfy SM[FO(T ) ∧ FO(P); p], where FO(T ) and FO(P) are the first-order

representations of T and P respectively, and p is a list of intensional predicates.

We assume that T and P are finite, and so are the predicate constants in ΣP .

Typically, existing integration approaches assume that the signatures do not

contain function constants of positive arity, and ΣT and ΣP share the same set of

object constants, but have disjoint sets of predicate constants.
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Note here that we do not place any restriction on the syntax of P or on the

signatures of T and P . Further, the interpretations considered are first-order

interpretations. This shows that both T and P are treated uniformly, which in turn

indicates that our approach is faithful and tight. The intensional predicates are

usually the predicate constants in ΣP that do not belong to ΣT . However, the list of

intensional predicates can be increased or decreased as necessary. Since both T

and P are viewed uniformly under the first-order stable model semantics, our

approach belongs to the tight integration under a unifying logic category discussed

above.

Example 12 (de Bruijn et al., 2007b, Example 1) Consider a hybrid knowledge

base consisting of a classical theory T :

∀x(Person(x)→ (Agent(x) ∧ (∃yHasMother(x, y))))

∀x((∃yHasMother(x, y))→ Animal(x))

which says that every Person is an Agent and has some (unknown) mother, and

everyone who has a mother is an Animal, and a nonmonotonic logic program P :

Person(x)← Agent(x), not machine(x)

Agent(DaveB)

which says that Agents are by default Persons, unless known to be machines, and

DaveB is an Agent. The predicate constants starting in capital letters belong to

ΣT , and the rest of the predicate constants belong to ΣP \ ΣT . It follows that

SM[FO(T ) ∧ FO(P); machine] entails Person(DaveB), ∃yHasMother(DaveB, y),

and Animal(DaveB).

Since we do not place any restrictions on the syntax of the logic programs,

we can even use quantifiers if necessary. Sometimes, quantifiers also enable

succint representation.
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Example 13 Consider a hybrid knowledge base where T is

∀x(Student(x)→ Person(x))

∀x(Professor(x)→ Person(x))

∀x(Professor(x)→ ∃y(Teaches(x, y) ∧ Course(y)))

∀x(unregistered(x)→ Professor(x))

∀x(∃y(registered(x, y) ∧ Course(y))→ Student(x))

Course(A)

Course(B)

and P is

unregistered(x)← not ∃y(registered(x, y) ∧ Course(y)) ∧ Person(x)

registered(Joe,A)

Person(Mary).

It is not difficult to verify that SM[FO(T ) ∧ FO(P); registered, unregistered ]

entails Professor(Mary), ∃y(Teaches(Mary, y) ∧ Course(y)), Student(Joe),

Person(Joe), and ¬∃xy(registered(x, y) ∧ unregistered(x)).

10.2 Relation to DL+ log

In DL+ log, predicate constants are partitioned into DL predicates PT and

Datalog predicates PP . DL predicates are further partitioned into concept names

and role names. Additionally, DL+ log assumes a countably infinite set of object

constants, denoted by C.

A DL+ log knowledge base is denoted by (T ,P), where T is a DL

knowledge base of signature 〈C,PT 〉 and P is a Datalog program of signature

〈C,PT ∪ PP〉 consisting of rules R of the form

p1(X1) ; . . . ; pn(Xn)←

r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk),

not u1(W1), . . . , not uh(Wh)

(10.1)
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(n ≥ 0,m ≥ 0, k ≥ 0, h ≥ 0) where Xi, Yi, Zi, Wi are lists of object variables and

object constants, and

• each pi is either a DL predicate or a Datalog predicate;

• each ri, ui is a Datalog predicate;

• each si is a DL predicate;

• (Datalog safety) every variable occurring in R must also occur in at least one

of the atoms r1(Y1), . . . , rm(Ym), s1(Z1), . . . , sk(Zk);

• (Weak safety) every variable occurring in the head of R must also occur in at

least one of the atoms r1(Y1), . . . , rm(Ym).

Rosati (2006) presents two semantics of DL+ log KB: the monotonic and

the nonmonotonic semantics. The monotonic semantics of DL+ log is given by

simply viewing T and P as theories in first-order logic: given a DL+ log

knowledge base (T ,P) of signature 〈C,PT ∪ PP〉, an interpretation I is a

monotonic model of (T ,P) if I satisfies FO(T ) ∧ FO(P). Since a first order theory

can be characterized in the first-order stable model semantics by making the list of

intensional predicates empty, the monotonic semantics of DL+ log can be

expressed by SM[FO(T ) ∧ FO(P); ∅].

The nonmonotonic semantics of DL+ log is based on the stable model

semantics for disjunctive logic programs. The notation gr(P , C) represents the

ground program obtained by replacing every variable in every rule of P with every

object constant in C.

Given gr(P , C) and an interpretation I of signature 〈C,PT 〉, the projection

of gr(P , C) with respect to I, denoted by Π(gr(P , C), I), is obtained as follows.

For every rule R ∈ gr(P , C),
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• delete R if I |= r(t) for some head atom r(t) such that r ∈ PT ;

• delete every atom r(t) in the head such that r ∈ PT and I 6|= r(t);

• delete R if I 6|= r(t) for some atom r(t) in the body such that r ∈ PT ;

• delete every atom r(t) in the body such that r ∈ PT and I |= r(t).

The DL+ log approach imposes the standard name assumption: every

interpretation is over the same fixed, countably infinite, domain ∆, and in addition,

the set C of object constants is such that it is in the same one-to-one

correspondence with ∆ in every interpretation. As a result, for simplicity, we

assume that the domain with respect to every interpretation is C.

An interpretation I (in the sense of classical logic) of a signature σ can be

represented as a pair 〈If , X〉, where If is the restriction of I to function constants

(including object constants) from σ, and X is the set of atoms, formed using

predicate constants from σ and the names of elements of |I|, which are satisfied

by I.

Given a DL+ log knowledge base (T ,P) of signature 〈C,PT ∪ PP〉, an

interpretation I is a nonmonotonic model of (T ,P) if

• I|C (the restriction of I on C) is an identity function that maps every constant

in C to itself;

• 〈I|C , I|PT 〉 satisfies T ;

• 〈I|C , I|PP 〉, identified with a set of ground atoms, is an answer set of

Π(gr(P , C), 〈I|C , I|PT 〉).

The following proposition shows how the nonmonotonic semantics of

DL+ log can be reformulated in terms of the first-order stable model semantics.
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Theorem 31 For any DL+ log knowledge base (T ,P), under the standard name

assumption, the nonmonotonic models of (T ,P) according to (Rosati, 2006) are

precisely the interpretations of 〈C,PT ∪ PP〉 that satisfy

SM[FO(T ) ∧ FO(P); PP ].

Since the reformulation does not refer to grounding, arguably, it provides a

simpler account of DL+ log.

Discarding Datalog Safety

DL+ log imposes weak safety (every variable occurring in the head of a rule also

occurs in a Datalog atom in the positive body) and Datalog safety (every variable

occurring in a rule also occurs in the positive body), which, even when combined,

yields a condition that is weaker than DL-safety (Motik, Sattler, & Studer, 2005),

where every variable occurring in a rule is also required to occur in a datalog atom

in the positive body. Here, we use the concept of semi-safety discussed in

Chapters 6.1 and 6.3 to show that the assumption of weak safety is a sufficient

condition for guaranteeing decidability of reasoning with DL+ log.

First, we slightly generalize the definition of semi-safety to the case where

the list of intensional predicates can be arbitrary. We start with generalizing the

definition of RV(F ) (restricted variables of F ) to differentiate between intensional

and extensional predicates. As before, we assume that the signature contains no

function constants of positive arity. To every quantifier-free formula F , we assign a

set RVp(F ) of restricted variables relative to p as follows.

• For an atomic formula F (including equality and ⊥),

– if F is an equality between two variables, or is an atom whose predicate

constant is not in p, then RVp(F ) = ∅;

– otherwise, RVp(F ) is the set of all variables occurring in F ;
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• RVp(G ∧H) = RVp(G) ∪ RVp(H);

• RVp(G ∨H) = RVp(G) ∩RVp(H);

• RVp(G→ H) = ∅.

We say that a variable x is p-restricted in a quantifier-free formula F if x ∈ RVp(F ).

Recall that an occurrence of a predicate constant, a variable, or any other

subexpression in a formula F is strictly positive if that occurrence is not in the

antecedent of any implication.

Consider a sentence F in prenex form:

Q1x1 · · ·QnxnM (10.2)

(each Qi is ∀ or ∃; x1, . . . , xn are distinct variables; the matrix M is quantifier-free).

We say that F is semi-safe relative to p if every strictly positive occurrence of every

variable xi in M belongs to a subformula G→ H where xi is p-restricted in G.

The small predicate property (Chapter 6.1) is generalized as follows. A

p-stable model of F has the small predicate property if, for every predicate

constant pi ∈ p, if the relation represented by it holds for a tuple of arguments,

then each member of the tuple is represented by an object constant occurring

in F . As before, the idea can be made precise as follows. For any finite set c of

object constants, inc(x) stands for the formula

∨
c∈c

x = c.

The small predicate property relative to p, denoted by SPPp
c, is the conjunction of

the sentences

∀v1, . . . , vn

(
p(v1, . . . , vn)→

∧
i=1,...,n

inc(vi)
)

for all predicate constants p in p, where v1, . . . , vn are distinct variables.
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The following proposition is an extension of Proposition 3 in Chapter 6.1.1

By c(F ) we denote the set of all object constants occurring in F .

Proposition 5 For any semi-safe sentence F relative to p, formula SM[F ; p]

entails SPPp
c(F ).

Now, we will show how this proposition can be used to drop the condition of

datalog safety in DL+ log. Since we identify Datalog predicates with intensional

predicates, and DL predicates with non-intensional predicates, the definition of

semi-safety presented above coincides with the definition of weak-safety for

programs whose rules have the form (10.1). Therefore, from Proposition 5 and

Theorem 31, we get that the relations represented by the datalog predicates can

hold for a tuple of arguments only if each member of the tuple is a constant

occurring in the program P . Since the universe is a countably infinite set of

constants C, it follows that if a literal in a rule (10.1) contains a variable that occurs

only in the negative body, then that literal can be simply replaced with >. The

following theorem makes this precise.

Theorem 32 Let K = (T ,P) be a DL+ log knowledge base such that P is weakly

safe but is not necessarily datalog safe. Let P ′ be the program obtained from P by

removing in every rule, all the negative datalog literals that contain a variable that

occurs only in the negative body. Then K is equivalent (under the nonmonotonic

semantics) to the DL+ log knowledge base (T ,P ′).

Since the complexity of the transformation required to obtain P ′ is

polynomial in the size of P , the decidability results (Theorems 11 and 12

from (Rosati, 2006)) and the complexity results (Theorem 13 from (Rosati, 2006))

with respect to the nonmonotonic semantics can be straightforwardly carried over
1This extension is presented in (Bartholomew & Lee, 2010).
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to DL+ log knowledge bases (T ,P) where P is weakly safe but not necessarily

datalog safe. In other words, in terms of decidability and complexity results

mentioned above, the requirement of datalog safety can be dropped.

10.3 Relation to Quantified Equilibrium Logic with Hybrid Rules
Review of Quantified Equilibrium Logic

Quantified Equilibrium Logic (QEL) (Pearce & Valverde, 2005) is based on the

Quantified Here-and-There Logic (QHT). Here we will review QHT and QEL

without function constants and strong negation as presented in (de Bruijn et al.,

2007b). Consider a function-free signature Σ consisting of a set of object

constants C and a set of predicate constants P . A here-and-there Σ-structure with

static domains (QHTs(Σ)-structure) is a tupleM = 〈(D, σ), Ih, It〉 where

• D is a non-empty set, called the domain ofM,

• σ is a mapping C ∪D → D such that σ(d) = d for all d ∈ D,

• Ih and It are interpretations of Σ over D such that for every pIh ⊆ pIt for all

p ∈ P .

HereM can be seen as a first-order model having two components, h and t, that

correspond to the “here” world and “there” world respectively in the sense of Kripke

semantics for intuitionistic logic (van Dalen, 1983), such that whatever is verified in

h remains true at t. For any sentence F ,M, w |= F , where w = {h, t}, is defined

as follows:

• M, w |= p(t1, . . . , tn) iff (σ(t1), . . . , σ(tn)) ∈ pIw ,

• M, w |= G ∧H iffM, w |= G andM, w |= H,

• M, w |= G ∨H iffM, w |= G orM, w |= H,

• M, t |= G→ H iffM, t 6|= G orM, t |= H,
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• M, h |= G→ H iffM, t |= G→ H andM, h 6|= G orM, h |= H,

• M, t |= ∀xG(x) iffM, t |= G(d) for all d ∈ D,

• M, h |= ∀xG(x) iffM, t |= ∀xG(x) andM, h |= G(d) for all d ∈ D,

• M, w |= ∃G(x) iffM, w |= G(d) for some d ∈ D.

The truth of a sentence F in a modelM is defined as follows: M |= F iff

M, w |= F for each w ∈ {h, t}. The resulting logic is called the Quantified

Here-and-There Logic with static domains.

In order to define QEL, the notion of a “minimal” model is needed. Among

two QHTs(Σ) structures 〈(D, σ), Ih, It〉 and 〈(D′, σ′), I ′h, I ′t〉,

〈(D, σ), Ih, It〉 E 〈(D′, σ′), I ′h, I ′t〉 if D = D′, σ = σ′, It agrees with I ′t on Σ, and

pIh ⊆ pI
′
h for all p ∈ P . A modelM = 〈(D, σ), Ih, It〉 of F is total if Ih agrees with It

on Σ. M is an equilibrium model of F if it is minimal under E among models of F ,

and it is total.

Relation to the Quantified Equilibrium Logic Based Approach

Recall that Choice(p) denotes the conjunction of “choice formulas”

∀x(p(x) ∨ ¬p(x)) for all predicate constants p in p where x is a list of distinct object

variables whose length is the same as the arity of p. The approach in (de Bruijn

et al., 2007b) uses QEL to integrate rules and ontologies. According to that

approach, a QHTs(〈C,PT ∪ PP〉) interpretation is a model of the hybrid knowledge

base K = (T ,P) iff it is an equilibrium model of FO(T ) ∧ FO(P) ∧ Choice(PT ).

Formula FO(T ) ∧ FO(P) ∧ Choice(PT ) is called the stable closure of K. The

following proposition shows the relationship between the QEL-based approach and

our approach.

Proposition 6 For any hybrid knowledge base K = (T ,P) of signature

〈C,PT ∪ PP〉, a QHTs(〈C,PT ∪ PP〉) interpretation I = 〈(D, σ), It, It〉 is an
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equilibrium model of K in the sense of (de Bruijn et al., 2007b) iff 〈I|C , I|PT ∪PP 〉

satisfies

SM[FO(T ) ∧ FO(P); PP ].

The proof of the proposition is immediate from Lemma 9 from (Ferraris

et al., 2011), which establishes the relationship between QEL and SM[F ; p] for the

special case when p is the list of all predicate constants in the signature, and

Proposition 1, which tells us that the set of intensional predicates can be increased

by using choice formulas.

10.4 Relation to g-hybrid Knowledge Bases

de Bruijn et al. (2007b) relate the QEL-based approach to r-hybrid (Rosati, 2005)

and g-hybrid knowledge bases (Heymans et al., 2008). As a corollary of

Proposition 6 in this paper, we can thus relate our approach to r-hybrid and

g-hybrid knowledge bases. Here we present the result only with respect to g-hybrid

knowledge bases since we already covered the relationship to DL+ log, which is

an extension of r-hybrid knowledge bases.

g-hybrid knowledge bases are based on the open answer set programming

(Heymans, Nieuwenborgh, & Vermeir, 2005) approach. More specifically, a

g-hybrid knowledge base is a pair (T ,P), where T is a DL knowledge base of

signature 〈C,PT 〉 and P is a guarded program of signature 〈C,PT ∪ PP〉 such that

PT ∩ PP = ∅. A program is said to be guarded if, for all rules R that are not of the

form

p(t) ∨ not p(t)← , (10.3)

there exists an atom A in the positive body (known as the guard) such that all the

variables occurring in R also occur in A. This implies that, in addition to such safe

rules R, guarded programs also allow unsafe choice rules of the form (10.3). Also,
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guarded programs allow negation in the head but with the restriction that there can

be at most one non-negated atom in the head.

Given an interpretation I of signature 〈C,PT ∪ PP〉, program PI is defined

as the ground program obtained from P by first replacing every occurrence of c

from C in it with cI and then grounding the resulting program with respect to the

universe of I. Interpretation I is a model of the g-hybrid knowledge base (T ,P) if

• the restriction of I to 〈C,PT 〉 is a model of T , and

• the restriction of I to 〈C,PP〉, viewed as a set of ground atoms, is an answer

set of Π(PI , I).2

The following proposition is a corollary of Theorem 2 from (de Bruijn et al.,

2007b) and Proposition 6.

Proposition 7 For any g-hybrid knowledge base K = (T ,P), an interpretation I

of signature 〈C,PT ∪ PP〉 is a model of K in the sense of (de Bruijn et al., 2007b)

iff I is a model of

SM[FO(T ) ∧ FO(P); PP ].

10.5 Relating to Nonmonotonic dl-programs
Review of Nonmonotonic dl-programs

We first review the syntax and the semantics of dl-programs. For simplicity, we do

not allow strong negation. A nonmonotonic dl-program (Eiter et al., 2008) is a pair

(T ,P), where T is a DL knowledge base of signature 〈C,PT 〉 and P is a

generalized normal logic program of signature 〈C,PP〉 such that PT ∩ PP = ∅. A

generalized normal logic program is a set of dl-rules that can contain queries to T

in their bodies, in the form of dl-atoms.

2The definition of projection Π given earlier is straightforwardly extended to cover a rule like
(10.3) that allows not in the head.
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A dl-atom is of the form

DL[S1op1p1, . . . , Smopmpm; Q](t) (m ≥ 0) (10.4)

where each Si is a concept, a role or a special symbol θ ∈ {=, 6=}, symbol pi is a

unary predicate constant if Si is a concept and a binary predicate constant

otherwise and opi ∈ {⊕,�,	}; Q(t) is a dl-query (Eiter et al., 2008).

A dl-rule is of the form

a← b1, . . . , bk, not bk+1, . . . , not bm (10.5)

where a is an atom and each bi is either an atom, equality, or a dl-atom. We

identify rule (10.5) with

a← B,N (10.6)

where B is b1, . . . , bk and N is not bk+1, . . . , not bm.

The semantics of dl-programs is defined by extending the answer set

semantics to generalized programs. In order to do this, the definition of satisfaction

is extended to ground dl-atoms. An Herbrand interpretation I satisfies a ground

atom A relative to T if I satisfies A. An Herbrand interpretation I satisfies a

ground dl-atom (10.4) relative to T if T ∪
⋃m
i=1Ai(I) entails Q(t), where Ai(I) is

• {Si(e) | pi(e) ∈ I} if opi is ⊕,

• {¬Si(e) | pi(e) ∈ I} if opi is �,

• {¬Si(e) | pi(e) 6∈ I} if opi is 	,

and t is any list of ground terms. The satisfaction relation is extended to allow

connectives in the usual way.

Given a dl-program (T ,P), the weak dl-transform of P relative to T and an

Herbrand interpretation I of 〈C,PP〉, denoted by wPIT , is the logic program

obtained from gr(P , C) by deleting
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• each rule (10.6) in gr(P , C) such that

– I 6|=T b for some dl-atom b in B, or

– I |=T b for some literal not b in N ;

• from each remaining dl-rule (10.6), all the dl-atoms in B and all the literals in

N .

I is a weak answer set of (T ,P) if I is the minimal model of wPIT .

By DL?
P we denote the set of dl-atoms in gr(P , C) that are not known to be

monotonic. The strong dl-transform of P relative to T and I, denoted by sPIT , is

the logic program obtained from gr(P , C) by deleting

• each rule (10.6) in gr(P , C) such that

– I 6|=T b for some dl-atom b in B ∩DL?
P or

– I |=T b for some not b in N ;

• from each remaining dl-rule (10.6), all the dl-atoms in B ∩DL?
P and all the

literals in N .

I is a strong answer set of (T ,P) if I is the minimal model of sPIT .

Relation to Nonmonotonic dl-programs

In order to relate our approach to the semantics of dl-programs, we define

dl-formulas of signature 〈C,PT ∪ PP〉 as an extension of first-order formulas by

treating dl-atoms as a base case in addition to standard atomic formulas formed

from 〈C,PP〉.3 Note that any generalized normal logic program can be viewed as a

dl-formula: FO(P) can be extended to a generalized normal logic program P in a

3The extension is similar to the extension of first-order formulas to allow aggregate expressions
as given in (Lee & Meng, 2009).
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straightforward way. Let F be a variable-free dl-formula.4 We define Fw∗ the same

as F ∗ except for a new clause for a dl-atom:

DL[S1op1p1, . . . , Smopmpm;Q](c)w∗(u) = DL[S1op1p1, . . . , Smopmpm;Q](c).

SM
w[F ] is defined the same as formula SM[F ] except that Fw∗ is used in place

of F ∗. The following theorem shows how weak answer sets can be characterized

by this extension.

Theorem 33 For any dl-program (T ,P) such that P is variable-free, the weak

answer sets of (T ,P) are precisely the Herbrand interpretations of signature

〈C,PP〉 that satisfy SMw[FO(P); PP ] relative to T .

In order to capture strong answer sets, we define F s∗ the same as F ∗

except for a new clause for a dl-atom:

DL[S1op1p1, . . . , Smopmpm;Q](c)s∗(u) = DL[S1op1u1, . . . , Smopmum;Q](c)

(u1, . . . , um are the elements of u that correspond to p1, . . . , pm) if the dl-atom is

monotonic; otherwise

DL[S1op1p1, . . . , Smopmpm;Q](c)s∗(u) = DL[S1op1p1, . . . , Smopmpm;Q](c).

SM
s[F ] is defined the same as SM[F ] except that F s∗ is used in place

of F ∗. The following theorem shows how strong answer sets can be characterized

by this extension.

Theorem 34 For any dl-program (T ,P) such that P is variable-free, the strong

answer sets of (T ,P) are precisely the Herbrand interpretations of signature

〈C,PP〉 that satisfy SMs[FO(P); PP ] relative to T .

4We require F to be variable-free because strong answer set semantics distinguishes if a ground
dl-atom is monotonic or nonmonotonic.
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Above, we presented two extensions of F ∗ to cover weak and strong

semantics respectively. Further, the relationship was shown only for variable-free

dl-programs. Below, we show how strong and weak semantics can be captured

with a single extension of F ∗, which also applies to dl-formulas with variables and

does not differentiate between monotonic and nonmonotonic dl-atoms. The

tradeoff is that the strong semantics can be captured only under certain conditions.

Consider any dl-formula F . We define F v∗ by adding the following clause to

the definition of F ∗:

DL[S1op1p1, . . . , Smopmpm;Q](t)∗(u) =

DL[S1op1p
′
1, . . . , Smopmp

′
m;Q](t)∧

DL[S1op1p1, . . . , Smopmpm;Q](t)

where symbol p′i is ui if pi is intensional and pi otherwise. Further, we define

SM
v[F ] the same as SM[F ] except that F v∗ is used in place of F ∗.

The following theorem shows how strong answer sets can be characterized

by this extension of SM.

Theorem 35 For any dl-program (T ,P) such that every occurrence of 	 is in the

scope of negation, the strong answer sets of (T ,P) are precisely the Herbrand

interpretations of 〈C,PP〉 that satisfy SMv[FO(P); PP ] relative to T .

The syntactic condition about 	 in Theorem 35 ensures that all dl-atoms in

the positive bodies of the ground program are monotonic. The statement does not

hold if the condition is dropped. For example, consider the dl-program (T ,P)

where the axioms in T (written as first-order formulas) are

Q(b),

∀x(¬S(x)→ Q(x))

and P is

p(x)← DL[S 	 p;Q](x).
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For C = {a, b}, DL[S 	 p;Q](b) is monotonic but DL[S 	 p;Q](a) is not. One can

check that (T ,P) has no strong answer sets, but {p(a), p(b)} is an Herbrand

model of SMv[FO(P); p].

In the case of weak answer set semantics, the condition is not required, but

instead we need to prepend ¬¬ to all dl-atoms.

Theorem 36 For any dl-program (T ,P), the weak answer sets of (T ,P) are

precisely the Herbrand interpretations of signature 〈C,PP〉 that satisfy

SM
v[FO(P)¬; PP ] relative to T , where FO(P)¬ is obtained from FO(P) by

prepending ¬¬ to all occurrences of dl-atoms.

10.6 Strong Equivalence of Hybrid Knowledge Bases

Given two classically equivalent theories F and G of the same signature, and a

theory H containing F , replacing F in the theory with G will not change the

models of H. However, this property does not hold in general for answer set

programs, and as a result, it also does not hold in general for hybrid knowledge

bases. For instance, consider a hybrid knowledge base where T is empty and P

consists of the following rules:

p

p← p.

SM[FO(T ) ∧ FO(P); p] is consistent. Let P ′ be the theory obtained from P by

replacing the second rule with ⊥ ← p. Even though p← p and ⊥ ← p have the

same stable models, SM[FO(T ) ∧ FO(P ′); p] is inconsistent.

The notion of strong equivalence (Ferraris et al., 2011), reviewed in

Chapter 3.2, ensures that the stable models of a formula F do not change if a

subformula G is replaced with a formula that strongly equivalent to G. Similar to

(de Bruijn et al., 2007b), we carry over this notion to hybrid knowledge bases.

180



We say that two hybrid knowledge bases (T1,P1) and (T2,P2) of the same

signature ΣT ∪ ΣP are strongly equivalent if the formula

u ≤ pr(ΣP \ ΣT )→
(
(FO(T1) ∧ FO(P1))∗(u)↔ (FO(T2) ∧ FO(P2))∗(u)

)
is logically valid where pr(ΣP \ ΣT ) is the set of all predicates constants in ΣP that

do not belong to ΣT .

10.7 Related Work

Like our extension, the QEL-based approach (de Bruijn et al., 2007b) was

extended to cover dl-programs in (Fink & Pearce, 2010). In that paper, the authors

capture the weak (strong, respectively) semantics of dl-programs by defining weak

(strong, respectively) QHT models of dl-atoms. The extensions Fw∗ and F s∗ of F ∗

we presented above are syntactic counterparts of these definitions of QHT

models. In (de Bruijn, Pearce, Polleres, & Valverde, 2010), the authors slightly

modify the definition of SM and show how the modified definition can be used to

integrate rules and ontologies.

Motik and Rosati (2010) present an unification of DL knowledge bases and

logic programs in the framework of the logic of Minimal Knowledge and Negation

as Failure (MKNF) (Lifschitz, 1991). They also show how their framework captures

several of the existing integration approaches. In order to capture the semantics of

dl-programs, they unfold dl-atoms into MKNF formulas. For instance,

DL[Q⊕ p;R](a)

is unfolded into the formula (Motik & Rosati, 2010, Definition 7.5)

K

((
FO(T ) ∧ ∀x(p(x)→ Q(x))

)
→ R(a)

)
where T is the DL knowledge base. Such an unfolding does not work with our

semantics. For example, consider K = (T ,P) such that T is empty, and P is the
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following:

p(a) ← DL[Q⊕ p;R](a)

← not p(a).
(10.7)

Since DL[Q⊕ p;R](a) cannot be satisfied by any set of atoms formed using

〈a, p/1〉, P has neither strong nor weak answer sets. On the other hand, if we

represent DL[Q⊕ p;R](a) by

(∀x(p(x)→ Q(x)))→ R(a),

the FOL-representation of (10.7) is

F =

((
(∀x(p(x)→ Q(x)))→ R(a)

)
→ p(a)

)
∧ ¬¬p(a)

and SM[F ; p] is satisfiable.

10.8 Proofs

Proof of Theorem 31

Since FO(T ) contains no occurrences of predicates from PP , from the splitting

theorem (Theorem 12), it follows that

SM[FO(T ) ∧ FO(P); PP ]

is equivalent to

FO(T ) ∧ SM[FO(P); PP ].

Hence the result. �

Proof of Theorem 32

If P is weakly safe and datalog safe, then P ′ is the same as P . Assume that P is

weakly safe but not datalog safe. Then, there is a rule that contains some variable

y that occurs only in a negative datalog literal. P ′ is obtained from P by removing

all negative datalog literals that contain such a variable y. By Theorem 12, since

FO(T ) contains no predicate from PP ,

SM[FO(T ) ∧ FO(P);PP ]
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is equivalent to

FO(T ) ∧ SM[FO(P);PP ].

Similarly

SM[FO(T ) ∧ FO(P ′);PP ]

is equivalent to

FO(T ) ∧ SM[FO(P ′);PP ].

So, it is sufficient to show that SM[FO(P);PP ] is equivalent to SM[FO(P ′);PP ].

Since P is semi-safe relative to PP , P ′ is also semi-safe relative to PP . By

Proposition 5 and Theorem 9 from (Ferraris et al., 2011), it is sufficient to show

that under the assumption SPPPP
c(P), where c(P) is the set of object constants

occurring in P ,

(q ≤ PP)→ (FO(P)∗(q)↔ FO(P ′)∗(q)) (10.8)

is logically valid. Given a rule, let F (y) be the conjunction of negative datalog

literals that contain a variable occurring only in a negative datalog literal, where y

is the list of all such variables. Formula (10.8) is logically valid, since (∃yF (y))∗(q)

is equivalent to ∃yF (y) under the assumption q ≤ PP , and ∃yF (y) is equivalent to

> under the assumption SPPPP
c(P) (the extents of predicates in PP are finite) and

the standard name assumption (there are infinitely many objects in the domain). �

Proof of Theorem 34

In the following, X and Y are Herbrand interpretations of 〈C,PP〉 such that Y is a

subset of X (we identify an Herbrand interpretation with the set of ground atoms

that are true in it), q is a list of new predicate constants of the same length as PP ,

and Y PP
q is obtained from Y by replacing every predicate constant in PP with the

corresponding predicate constant in q.
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Proof of Theorem 34 It is clear that X |=T P iff X |=T sPXT . If X 6|=T P , then X

is not a strong answer set of 〈T ,P〉, and X does not satisfy SMs[FO(P); PP ]

relative to T .

Assume X |=T P . It is sufficient to prove that, for any rule (10.6) in P , and

any Herbrand interpretation Y that is a subset of X,

Y |=T s(a← B,N)XT

iff

X ∪ Y PP
q |=T (B ∧N)s∗(q)→ as∗(q).

Case 1: s(a← B,N)XT is empty. Clearly, Y |=T s(a← B,N)XT . It also follows

that X |=T b for some not b in N , or X 6|=T b for some b ∈ DL?
P ∩B.

Subcase 1: Assume that X |=T b for some not b in N . It follows from the

definition of F s∗ that X ∪ Y PP
q 6|=T (¬b)s∗(q). Consequently, it follows that

X ∪ Y PP
q |=T (B ∧N)s∗(q)→ as∗(q).

Subcase 2: Assume that X 6|=T b for some b ∈ DL?
P ∩B. It follows from the

definition of F s∗ that X ∪ Y PP
q 6|=T (b)s∗(q). Consequently, it follows that

X ∪ Y PP
q |=T (B ∧N)s∗(q)→ as∗(q).

Case 2: s(a← B,N)XT is not empty. Assume that s(a← B,N)XT is a← B1. This

implies that X 6|=T b for every not b in N , and X |=T b for every b ∈ DL?
P ∩B. If b is

monotonic, then bs∗(q)→ b is logically valid, otherwise, bs∗(q) = b. This implies

that X ∪ Y PP
q |=T N s∗(q), and X ∪ Y PP

q |=T bs∗(q) for all b ∈ DL?
P ∩B. Since a is

an atom and B1 is a set of atoms and monotonic dl-atoms, it is clear that

Y |=T a← B1 iff X ∪ Y PP
q |=T Bs∗(q)→ as∗(q). �
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Proof of Theorem 33

Similar to the proof of Theorem 34 shown above, using the fact that for every

dl-atom b, bw∗(q) = b.

Proof of Theorem 35

The following lemma extends Lemma 8 to dl-formulas.

Lemma 16 For any dl-formula F , X ∪ Y PP
q |=T (¬F )∗(q) iff X |=T ¬F .

Proof. By induction on F . �

Proof of Theorem 35 Without loss of generality, let us assume that P is a

variable-free program obtained by grounding. It is clear that X |=T P iff

X |=T sPXT . If X 6|=T P , then X is not a strong answer set of 〈T ,P〉, and X does

not satisfy SMv[FO(P); PP ] relative to T .

Assume X |=T P . It is sufficient to prove that, for any rule (10.6) in P , and

any Herbrand interpretation Y that is a subset of X,

Y |=T s(a← B,N)XT

iff

X ∪ Y PP
q |=T (B ∧N)∗(q)→ a∗(q).

Case 1: s(a← B,N)XT is empty. Clearly, Y |=T s(a← B,N)XT . Since no dl-atom

in B mentions 	, B contains no dl-atoms from DL?
P , and it follows that X |=T b for

some not b in N . Consequently, by Lemma 16, it follows that

X ∪ Y PP
q 6|=T (¬b)∗(q), so that X ∪ Y PP

q |=T (B ∧N)∗(q)→ a∗(q).

Case 2: s(a← B,N)XT is not empty. Since no dl-atom in B mentions 	, B

contains no dl-atoms from DL?
P , and it follows that s(a← B,N)XT is a← B. Also it
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follows that X 6|=T b for every not b in N , so that by Lemma 16, we get

X ∪ Y PP
q |=T N∗(q). Since a is an atom and B is a set of atoms and monotonic

dl-atoms, it is clear that Y |=T a← B iff X ∪ Y PP
q |=T B∗(q)→ a∗(q). �

Proof of Theorem 36

Similar to the proof of Theorem 35, using the fact that, by Lemma 16, for any

dl-atom A, X ∪ Y PP
q |=T (¬¬A)∗(q) iff X |=T ¬¬A. �
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Chapter 11

INTEGRATING ACTION THEORIES AND ONTOLOGIES

In this chapter, we present an approach to integrate circumscriptive actions

theories with ontologies, and show how this approach can be related to our

approach for integrating rules and ontologies. We present an application of

integrating action theories and ontologies in the context of a medical expert system

that is required to assist physicians in diagnosis, treatment, and drug prescription.

We also demonstrate our approach by using DLVHEX1, which is a well-known tool

for reasoning with HEX-programs (Eiter, Ianni, Schindlauer, & Tompits, 2005).

11.1 Integrating Circumscriptive Action Theories and Ontologies

As before, we consider ontologies that are based on Description Logics (DLs).

Since circumscription extends first-order logic, integrating circumscriptive action

theories and ontologies is rather straightforward. Below, we present our approach.

First, since the underlying signatures of the circumscriptive theories

considered in this article are many-sorted, we define the union of two many-sorted

signatures as follows. We denote a many-sorted signature by a pair (S,C) where

S is a set of sorts including the boolean sort {true, false}, and C is a set of

constants such that each constant in C of arity n is associated with argument sorts

s1, . . . , sn ∈ S and a value sort s ∈ S. Given two many-sorted signatures

Σ1 = (S1, C1) and Σ2 = (S2, C2) where each constant in C1 ∩ C2 is associated

with the same arguments sorts and the same value sort in both the signatures, by

Σ1 ∪ Σ2, we denote the signature Σ12 = (S1 ∪ S2, C1 ∪ C2) such that for every

constant c ∈ C1 ∪ C2, if c ∈ Ci, then c is associated with the same argument and

value sorts in Σ12 and Σi.

1http://www.kr.tuwien.ac.at/research/systems/dlvhex/
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Given a circumscriptive action theory CA of a signature ΣCA, and a DL

knowledge base T of a signature ΣT that does not contain any predicate constant

from ΣCA that takes a timepoint/situation argument, the hybrid action theory

(T , CA) can simply be identified with the theory

CA ∧ FO(T )

of signature ΣCA ∪ ΣT where FO(T ) is the first-order representation of T . Below,

we make this precise for each of the circumscriptive action theories considered in

this article.

Definition 4 Consider an event calculus theory (Chapter 7.1) EC (of a signature

ΣEC) of the form

CIRC[Σ ; Initiates,Terminates,Releases] ∧ CIRC[∆ ; Happens]

∧ CIRC[Θ ; Ab1, . . . ,Abn] ∧ Ξ,
(11.1)

and a DL knowledge base T of a signature ΣT that does not contain predicate

constants from ΣEC that take arguments of sort timepoint (for example, HoldsAt,

Initiates, Terminates, Releases, Happens, etc).

The hybrid action theory (T , EC) is the theory

CIRC[Σ ; Initiates,Terminates,Releases] ∧ CIRC[∆ ; Happens]

∧ CIRC[Θ ; Ab1, . . . ,Abn] ∧ Ξ ∧ FO(T )
(11.2)

of signature ΣEC ∪ ΣT .

Definition 5 Consider a Lin’s causal situation calculus theory (Chapter 8.1) SC (of

a signature ΣSC) of the form

CIRC[Dcaused; Caused] ∧ Dposs ∧ Drest, (11.3)
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and a DL knowledge base T of a signature ΣT that does not contain predicate

constants from {Holds,Caused,Poss}.

The hybrid action theory (T ,SC) is the theory

CIRC[Dcaused; Caused] ∧ Dposs ∧ Drest ∧ FO(T ) (11.4)

of signature ΣSC ∪ ΣT .

Definition 6 Consider a Temporal Action Logics (TAL) theory (Chapter 9.1) T AL

(of a signature ΣT AL) of the form

CIRC[Γocc; Occurs] ∧ CIRC[Γdepc ∧ Γacs; Occlude] ∧

Γfnd ∧ Γtime ∧ Γper ∧ Γobs ∧ Γdomc, (11.5)

and a DL knowledge base T of a signature ΣT that does not contain predicate

constants from {Holds,Occurs,Occlude}.

The hybrid action theory (T , T AL) is the theory

CIRC[Γocc; Occurs] ∧ CIRC[Γdepc ∧ Γacs; Occlude] ∧

Γfnd ∧ Γtime ∧ Γper ∧ Γobs ∧ Γdomc ∧ FO(T ) (11.6)

of signature ΣT AL ∪ ΣT .

11.2 Relating Hybrid Action Theories to Hybrid Knowledge Bases

We now show how the above integration approach can be related to our approach

for integrating DLs and ASP-rules presented in Chapter 10.1.

Since we have already related the circumscriptive action theories to ASP

(Chapters 7.3, 8.1, and 9.3), we can use those results to relate hybrid action

theories to hybrid knowledge bases. The following theorems give the precise

relationship.
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Theorem 37 Let (T , EC) be a hybrid action theory (11.2) of signature ΣEC ∪ ΣT ,

and let F be the FOL-representation of the program obtained from EC by applying

translation EC2ASP (Chapter 7.3). Then the following theories are equivalent

(ΣEC ∪ ΣT )-equivalent to (11.2) : 2

(a) SM[Σ ; I,T,R] ∧ SM[∆ ; H] ∧ SM[Θ ; Ab1, . . . ,Abn] ∧ Ξ ∧ FO(T );

(b) SM[Σ ∧∆ ∧Θ ∧ Ξ ∧ FO(T ) ; I,T,R,H,Ab1, . . . ,Abn];

(c) SM[F ∧ FO(T ) ; pr(F )].

Notice that the formula (c) above is essentially how the hybrid knowledge base

(T ,P), where P is the ASP-representation of F , is identified according to our

approach for integrating rules and ontologies (Chapter 10.1). The theorems below

show similar results with respect to the situation calculus and TAL.

Theorem 38 Let (T ,SC) be a hybrid action theory (11.4) of signature ΣSC ∪ ΣT ,

and let F be the FOL-representation of the program obtained by applying

translation F2LP on

Dcaused ∧ Dposs→ ∧ D−rest ∧ Dsit (11.7)

(Chapter 8.1) with intensional predicates {Caused,Poss,Sit}. Then the following

theories are (ΣSC ∪ ΣT )-equivalent to (11.4) :

(a) SM[Dcaused; Caused] ∧ Dposs ∧ Drest ∧ FO(T );

(b) SM[Dcaused ∧ Dposs→ ∧ D−rest ∧ Dsit ∧ FO(T ) ; Caused,Poss,Sit];

(c) SM[F ∧ FO(T ) ; pr(F )].

2For simplicity, the names of the circumscribed predicates are abbreviated. As before, we as-
sume that Ξ is equivalently rewritten so that it does not contain strictly positive occurrences of the
intensional predicates.
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In the following theorem, we use Γncirc to denote the conjunction

Γfnd ∧ Γtime ∧ Γper ∧ Γobs ∧ Γdomc.

Theorem 39 Let (T , T AL) be a hybrid action theory (11.6) of signature

ΣT AL ∪ ΣT , and let F be the FOL-representation of the program obtained by

applying translation F2LP on

Γocc ∧ Γdepc ∧ Γacs ∧ Γncirc

with intensional predicates {Occurs,Occlude}. Then the following theories are

(ΣT AL ∪ ΣT )-equivalent to (11.6) :

(a) SM[Γocc; Occurs] ∧ SM[Γdepc ∧ Γacs; Occlude] ∧ Γncirc ∧ FO(T );

(b) SM[Γocc ∧ Γdepc ∧ Γacs ∧ Γncirc ∧ FO(T ) ; Occurs,Occlude];

(c) SM[F ∧ FO(T ) ; pr(F )].

11.3 A Simple Application in the Healthcare/Biomedical Domain

Consider a medical expert system that is required to assist physicians in diagnosis

and treatment of diseases/disorders. One of the important tasks of such a system

would be to determine if a particular drug can be administered to the patient given

his/her condition. To accomplish this task, an important question that the system

needs to consider is "given the current condition of the patient, will prescribing a

particular drug be beneficial to the patient or will it have adverse effects?". A lot of

knowledge about the positive effects and contraindications of various drugs is

available in the form of ontologies such as the National Drug File Ontology3. One

possible way to answer the above question is to simply query the ontologies to

check if a drug may treat the patient and if the patient is exhibiting any symptoms

that are contraindications for prescribing the drug. However, such static inference

3http://bioportal.bioontology.org/ontologies/40402
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might be insufficient in certain cases and one might need to also consider if the

current patient condition might lead to another condition which is a

contraindication for prescribing the drug.

For example, consider the case where a patient is suffering from Gastritis

and complains of abdominal pain. The job of the system is to determine if Aspirin

can be recommended in this context. Assume that the biomedical ontology being

queried has the information that "Aspirin may treat pain" and "Gastrointestinal

Bleeding is a contraindication for administering Aspirin". Further, assume that we

have the knowledge that Gastritis usually causes Gastrointestinal Bleeding. Now,

if the system simply considers the current patient symptoms, it will simply conclude

that Aspirin can be prescribed. However, since Gastritis usually causes

Gastrointestinal Bleeding, this might not be the preferred treatment. On the other

hand, if the system considers the knowledge about the effects of Gastritis, then it

will be able to conclude that Aspirin is not recommended.

From the above example, it is clear that the system needs to consider what

conditions the current patient condition might cause and then check whether any

of the conditions is a contraindication to prescribing the drug. So, in addition to

being able to query ontologies, the system also needs to be able to reason about

various cause-effect relationships.

Following is a partial event calculus description for reasoning about the

above context. In the description, there are three fluent names and 2 action

names. Fluent Administered(d) is used to represent whether a drug d has been

administered to the patient, fluent Condition(c) is used to represent if the patient is

currently suffering from disease/disorder c, and fluent SideEffect(d) is used to

represent if the drug d has a side-effect on the patient. Action Admin(d) is used to

represent the action of administering drug d, and DummyEvent(c) is used to

simulate the effects of condition c. The predicates in all capitals (MAY_TREAT and
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CONTRAINDICATION) are DL-predicates. MAY_TREAT(d, c) represents that drug d

may treat c, and CONTRAINDICATION(d, c) represents that c is a contraindication for

administering drug d.

Initiates(Admin(d),Administered(d), t)

HoldsAt(Condition(c), t) ∧ MAY_TREAT(d, c) ∧ ¬Ab(d, t)→
Terminates(Admin(d),Condition(c), t)

Ab(d, t)→ Initiates(Admin(d),SideEffect(d), t)

HoldsAt(Condition(c), t) ∧ CONTRAINDICATION(d, c)→ Ab(d, t)

These formulas represent the direct effects of administering a drug. The first

formula represents that Admin(d) causes Administered(d) to be true after t. The

second formula represents the positive effect of drug d w.r.t to treating the patient

who is suffering from condition c. The third formula represents that administering a

drug has a side-effect on the patient if the drug is contraindicated by a condition c

from which the patient is suffering.

¬Ab1(Condition(Gastritis), t)→
Initiates(DummyEvent(Gastritis),Condition(GastrointestinalBleeding), t)

HoldsAt(Condition(c), t)→ Happens(DummyEvent(c), t)

Initiates(e,Condition(c), t) ∧ HoldsAt(Administered(d), t)∧
CONTRAINDICATION(d, c)→ Initiates(e,SideEffect(d), t)

The first two formulas above represent that “Gastritis usually causes

Gastrointestinal Bleeding". The last formula represents the indirect effects of an

event e that causes condition c. Essentially it says that if an event e causes

condition c, and if a drug which is contraindicated by c has been administered,

then the indirect effect of e is a side-effect.

¬ReleasedAt(f, 0)

HoldsAt(Condition(Gastritis), 0) ∧ ¬HoldsAt(Administered(d), 0)∧
HoldsAt(Condition(Pain), 0) ∧ ¬HoldsAt(SideEffect(d), 0)∧

¬HoldsAt(Condition(GastrointestinalBleeding,Tom), 0)
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The first formula above represents that all the fluents are initially inertial, and the

second formula represents the initial state. In addtion to the above formulas, there

are other axioms such as the unique name axioms for the fluents and actions, and

the domain-independent axioms of the discrete event calculus (Chapter 7.1). Now,

assuming that the ontology being queried entails the facts

• MAY_TREAT(Aspirin,Pain),

• MAY_TREAT(Acetaminophen,Pain), and

• CONTRAINDICATION(Aspirin,GastrointestinalBleeding),

one can verify the following from the above description:

• HoldsAt(Condition(GastrointestinalBleeding), τ) holds for all τ > 0;

• if Happens(Admin(Aspirin), τ) holds for some timepoint τ > 0, then

HoldsAt(SideEffect(Aspirin), τ1) holds for all τ1 > τ ;

• if Happens(Admin(Aspirin), τ) holds for timepoint τ = 0, then

HoldsAt(SideEffect(Aspirin), τ1) holds for all τ1 ≥ 2;

• if Happens(Admin(Acetaminophen), τ) holds for some timepoint τ ≥ 0, then

¬HoldsAt(Condition(Pain), τ1) holds for all τ1 > τ , and

¬HoldsAt(SideEffect(Acetaminophen), τ1) holds for all τ1 ≥ 0.

From this, the system will be able to conclude that Aspirin is not recommended but

Acetaminophen can be recommended.

Due to the indirect effect axiom in the above description, if Aspirin is

administered at some timepoint τ , and some contraindication to Aspirin is caused

at some other timepoint τ1 > τ , then the system concludes that a side-effect is

caused irrespective of the difference in the values of τ and τ1. However, such a
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conclusion might not be appropriate since the effects of Aspirin might have weared

off before the contraindication is caused. One way to get over this problem is to

treat action Admin(d) as a durative action so that a side-effect can be caused only

during the duration of the action. By setting the duration of the action to the time it

takes for the effects of the drug to wear off, we can avoid any inappropriate

conclusions about the side-effects.

Since TAL provides an ideal framework for representing durative actions,

we will use it to encode the domain. Following is a partial TAL description in the

surface language. Here, fluent Ab is durational with default value false. The rest of

the fluents are persistent.

acs1 [t1, t2] Admin(d)→
(
[t1] Condition(c) ∧ MAY_TREAT(d, c)∧

¬∃c1, t(t1 ≤ t ≤ t2 ∧ [t] Condition(c1) ∧ CONTRAINDICATION(d, c1))→
I((t1, t2] ¬Condition(c))

)
acs2 [t1, t2] Admin(d)→ ∀t

(
t1 ≤ t ≤ t2 ∧ [t] ∃c(Condition(c)∧

CONTRAINDICATION(d, c))→ I([t, t2] SideEffect(d))
)

dep1 ∀t([t] Condition(Gastritis) ∧ ¬Ab(Gastritis)→
R([t+ 1] Condition(GastrointestinalBleeding)))

The first statement above represents that if no contraindication to the drug d holds

in the interval [t1, t2], then administering d, which may treat c, has a positive effect

on the patient who is suffering from c. The second statement represents that if a

contraindication to drug d holds in the interval [t1, t2], then administering d in that

interval causes a side-effect. Finally, the dependency constraint represents that

Gastritis usually causes Gastroinstestinal Bleeding. Note here that due to the

dependency constraint, we do not need the action DummyEvent(c) which was

used in the event calculus description. Another difference between the two

descriptions is the introduction of the additional fluent Ab to represent abnormality.

This is because, while abnormality predicates are part of the language of the event
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calculus, they are not part of the language of TAL. In addition to the above

statements, there are other statements such as the unique value axioms,

foundational axioms, etc. (Chapter 9.1).

Given the same initial state as before and the facts corresponding to

MAY_TREAT and CONTRAINDICATION, one can verify the following from the above

description:

• Condition(GastrointestinalBleeding) is true for all timepoints τ ≥ 1;

• if Admin(Aspirin) occurs in the interval [0, 2], then SideEffect(Aspirin) is true

for all timepoints τ ≥ 1;

• if Admin(Acetaminophen) occurs in the interval [τ1, τ2], then

SideEffect(Acetaminophen) is false for all τ ≥ 0, and Condition(Pain) is

false for all τ > τ1;

Now, consider an initial state in which only Condition(Pain) is true and the rest of

the fluents are false. Further, assume that Condition(GastrointestinalBleeding) is

not caused in some interval [τ1, τ2]. If Admin(Aspirin) occurs in the interval [τ1, τ2],

then Condition(Pain) is false for all τ > τ1 and no side-effect will be caused. So,

the system will be able to conclude that Aspirin can be recommended, unless a

contraindication to it may be caused in the interval that it is to be administered.

11.4 A Simple Demonstration Using DLVHEX

DLVHEX4 is a system for reasoning with HEX-programs (Eiter et al., 2005).

HEX-programs generalize answer set programs by allowing higher-order and

external atoms. For the case when there are no higher-order atoms and all the

external atoms are dl-atoms (Chapter 10.5), the semantics of HEX-programs

concides with that of non-monotonic dl-programs (Eiter & Wang, 2008) which we

4http://www.kr.tuwien.ac.at/research/systems/dlvhex/
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<?xml version="1.0"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsp="http://www.owl-ontologies.com/2005/08/07/xsp.owl#"

xmlns:owl="http://www.w3.org/2002/07/owl#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:swrl="http://www.w3.org/2003/11/swrl#"

xmlns="http://www.owl-ontologies.com/drugs.owl#"

xmlns:swrlb="http://www.w3.org/2003/11/swrlb#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xml:base="http://www.owl-ontologies.com/drugs.owl">

<owl:Ontology rdf:about=""/>

<owl:Class rdf:ID="Drug"/>

<owl:Class rdf:ID="Condition"/>

<Condition rdf:ID="Pain"/>

<Condition rdf:ID="Gastritis"/>

<Condition rdf:ID="GastroIntestinalBleeding"/>

<Drug rdf:about="http://www.owl-ontologies.com/drugs.owl#Aspirin">

<may_treat rdf:resource=

"http://www.owl-ontologies.com/drugs.owl#Pain"/>

<ci_with rdf:resource=

"http://www.owl-ontologies.com/drugs.owl#GastroIntestinalBleeding"/>

</Drug>

<Drug rdf:about=

"http://www.owl-ontologies.com/drugs.owl#Acetaminophen">

<may_treat rdf:resource=

"http://www.owl-ontologies.com/drugs.owl#Pain"/>

</Drug>

</rdf:RDF>

Figure 11.1: Sample Ontology in OWL

discussed in Chapter 10.5. So, by replacing the atoms MAY_TREAT(d, c) and

CONTRAINDICATION(d, c) with the corresponding dl-atoms, we can run the example

discussed in the previous section in DLVHEX. The sample ontology we use is

shown in Figure 11.1, which uses OWL.
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DLVHEX (v. 1.7.2) uses the description logic reasoner RacerPro5 for

querying ontologies. For our purpose, we use RacerPro version 1.9 for which we

obtained an educational license. It is clear from the above ontology that the

corresponding DL/first-order theory entails the following atoms:

• may_treat(Aspirin,Pain);

• may_treat(Acetaminophen,Pain); and

• contraindication(Aspirin,GastroIntestinalBleeding).

In order to run the event calculus and TAL descriptions using DLVHEX, we

use F2LP to turn the descriptions into answer set programs. However, since F2LP

outputs programs in the language of GRINGO and LPARSE, we use the python

program f2lpdlv.py6 to turn the output of F2LP into the language of DLV and

invoke DLVHEX on the resulting program. Also, since DLVHEX (v. 1.7.2) does not

allow function constants (of arity > 0) in the input program, we cannot use reified

constants to represent fluents as we do in the event calculus and TAL descriptions.

To work around this issue, we flatten the fluents by introducing a predicate equals.

For instance, equals(f1,condition,pain) represents that the constant f1

represents the fluent condition(pain). Similarly, equals(e3,admin,aspirin)

represents that the constant e3 represents the action/event

administer(aspirin). We include all these declarations and other facts in a data

file, which is shown in Figure 11.2.

In the encoding shown in the figure, DRUGS is used as an abbreviation for

the Unique Resource Identifier (URI)

http://www.owl-ontologies.com/drugs.owl

5(Racer Systems GmbH & Co. KG) http://www.racer-systems.com
6http://reasoning.eas.asu.edu/f2lp
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which represents the namespace for the ontology. The actual encoding uses the

latter. Similarly, FILE-LOC is an abbreviation for the actual location of the file.

Atoms &dlC[...](X) and &dlR[...](D,C) are the dl-atoms in the language of

DLVHEX that are used to query DL concepts and roles respectively.7 For instance,

the last rule in Figure 11.2 simply retrieves all pairs (d,c) such that

may_treat(d,c) is entailed by the ontology shown in Figure 11.1, and adds them

to the extent of may_treat. Note that while may_treat inside the construct

&dlR[...] is a description logic predicate, the same predicate outside the

construct belongs to the signature of the event calculus/TAL description. The

construct #spatom{...} directs F2LP to copy any thing within the construct

directly into the output program without any processing. This is useful to encode

constructs that are not recognized by F2LP but are supported by the answer set

solvers. For example, F2LP turns the last rule in Figure 11.2 into the following rule:

may_treat(D,C) :- &dlR["file:FILE-LOC",a,b,c,d,"may_treat"](D,C).

Figure 11.3 shows the F2LP encoding of the event calculus description

discussed in the previous section. To check if Aspirin can be administered to the

patient at timepoint 0, we add the following to the description in Figure 11.3.

% query for Aspirin

#spatom{equals(E,admin,"<DRUGS#Aspirin>")} -> happens(E,0).

-(#spatom{equals(F,condition,"<DRUGS#Pain>")} &

#spatom{equals(F1,sideEffect,"<DRUGS#Aspirin>")} &

-?[T2]:(holdsAt(F,T2) & T2 > 0) &

-?[T1]: (holdsAt(F1,T1) & T1 > 0)).

The first formula represents that Aspirin is administered at timepoint 0. The

second formula is the negation of the query we want to check. The query here is

to check if administering Aspirin treats the patient such that no side-effect is
7 http://www.kr.tuwien.ac.at/research/systems/dlvhex/dlplugin.html
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caused after administering it. We can run the resulting theory using f2lpdlv.py

as shown below.

Python 2.7.1+ (r271:86832, Apr 11 2011, 18:13:53)

[GCC 4.5.2] on linux2

Type "help", "copyright", "credits" or "license" for more information.

>>> import f2lpdlv

>>> f2lpdlv.run('f2lp usecase-data usecase-ec dec',

'dlvhex --filter=holdsAt')

The first argument to the program is the complete command line to run

F2LP on the description. The second argument is the (partial) command line for

invoking DLVHEX. The option �-filter=holdsAt is used to supress all the

predicates except holdsAt in the output. This produces the following answer set

(the existence of an answer set indicates that the query is not entailed):

{ holdsAt(f6,1), holdsAt(f6,2), holdsAt(f4,2), holdsAt(f3,1),

holdsAt(f3,2), holdsAt(f2,0), holdsAt(f2,1), holdsAt(f2,2),

holdsAt(f1,0) }

In this output, holdsAt(f4,2) indicates that a side-effect is caused at

timepoint 2. If we change the timepoint at which Aspirin is administered to 1, then

we get the following output.

{ holdsAt(f6,2), holdsAt(f4,2), holdsAt(f3,1), holdsAt(f3,2),

holdsAt(f2,0), holdsAt(f2,1), holdsAt(f2,2), holdsAt(f1,0),

holdsAt(f1,1), holdsAt(f1,2) }

This output shows that in addition to a side-effect being caused, the pain is

also not relieved (represented by holdsAt(f1,1), holdsAt(f1,2)). This is

because at the time of administering Aspirin, fluent f3 (representing

Gastrointestinal Bleeding) was true, thus defeating the positive effect axiom.
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Running similar queries by replacing Aspirin with Acetaminophen produces

no answer set as expected. Using these results, an expert system will be able to

conclude that Acetaminophen can be recommended but Aspirin cannot be

recommended.
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% File 'usecase-data'

% getting symptoms from the ontology

#spatom{&dlC["file:FILE-LOC",a,b,c,d,"Condition"](X)} -> symptom(X).

% drugs we are to reason about

#spatom{drug("<DRUGS#Aspirin>")}.

#spatom{drug("<DRUGS#Acetaminophen>")}.

% fluents

fluent(f1). fluent(f2). fluent(f3). fluent(f4). fluent(f5).

fluent(f6). fluent(f7).

#spatom{equals(f1,condition,"<DRUGS#Pain>")}.

#spatom{equals(f2,condition,"<DRUGS#Gastritis>")}.

#spatom{equals(f3,condition,"<DRUGS#GastroIntestinalBleeding>")}.

#spatom{equals(f4,sideEffect,"<DRUGS#Aspirin>")}.

#spatom{equals(f5,sideEffect,"<DRUGS#Acetaminophen>")}.

#spatom{equals(f6,administered,"<DRUGS#Aspirin>")}.

#spatom{equals(f7,administered,"<DRUGS#Acetaminophen>")}.

% events/actions

event(e1). event(e2). event(e3). event(e4).

#spatom{equals(e1,dummyEvent,"<DRUGS#Gastritis>")}.

#spatom{equals(e2,dummyEvent,"<DRUGS#GastroIntestinalBleeding>")}.

#spatom{equals(e3,admin,"<DRUGS#Aspirin>")}.

#spatom{equals(e4,admin,"<DRUGS#Acetaminophen>")}.

% domain of time

time(0). time(1). time(2).

% domain variable declarations

#domain drug(D). #domain symptom(C).

#domain symptom(C1). #domain fluent(F).

#domain fluent(F1). #domain fluent(F2).

#domain event(E).

#domain time(T). #domain time(T1).

#domain time(T2). #domain time(T3).

% facts about may_treat and contraindication from ontologies

#spatom{&dlR["file:FILE-LOC",a,b,c,d,"ci_with"](D,C)} ->

contraindication(D,C).

#spatom{&dlR["file:FILE-LOC",a,b,c,d,"may_treat"](D,C)} ->

may_treat(D,C).

Figure 11.2: F2LP encoding of the facts
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%File: 'usecase-ec'

% use case 1: which drug can be administered given the

% patient condition

equals(E,admin,D) & equals(F,administered,D) -> initiates(E,F,T).

% positive effect of drug

equals(F,condition,C) & equals(E,admin,D) & holdsAt(F,T) &

may_treat(D,C) & -ab(D,T) -> terminates(E,F,T).

% contraindications for drug => abnormality

equals(F,condition,C) & holdsAt(F,T) & contraindication(D,C) ->

ab(D,T).

% if abnormal, then sideEffect

equals(E,admin,D) & equals(F,sideEffect,D) & ab(D,T) ->

initiates(E,F,T).

% Gastritis "normally" causes gastrointestinalBleeding

#spatom{equals(E,dummyEvent,"<DRUGS#Gastritis>")} &

#spatom{equals(F,condition,"<DRUGS#GastroIntestinalBleeding>")} &

-#spatom{ab1(condition,"<DRUGS#Gastritis>",T)}

-> initiates(E,F,T).

% Indirect effect is a sideEffect if contraindications

% surface after the drug is administered

equals(F,condition,C) & equals(F1,administered,D) &

equals(F2,sideEffect,D) & initiates(E,F,T) &

holdsAt(F1,T) & contraindication(D,C) -> initiates(E,F2,T).

% DummyEvent is triggered everytime a condition holds

equals(F,condition,C) & equals(E,dummyEvent,C) &

holdsAt(F,T) -> happens(E,T).

% initial state

#spatom{equals(F,condition,"<DRUGS#Gastritis>")} ->

holdsAt(F,0).

#spatom{equals(F,condition,"<DRUGS#GastroIntestinalBleeding>")}

-> -holdsAt(F,0).

#spatom{equals(F,condition,"<DRUGS#Pain>")} ->

holdsAt(F,0).

equals(F,sideEffect,D) -> -holdsAt(F,0).

equals(F,administered,D) -> -holdsAt(F,0).

-releasedAt(F,T).

Figure 11.3: F2LP encoding of the event calculus description
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Now, consider the F2LP encoding of the TAL description for the same

example shown in Figure 11.4.8 In the encoding, for simplicity, we introduce the

abnormality predicate instead of the abnormality fluent. Given the initial state in

which only Condition(Pain) and Condition(Gastritis) hold, if we want to check if

Aspirin can be administered in the interval [0, 2], then we add the following to the

theory in Figure 11.4.

% initial state

#spatom{equals(F,condition,"<DRUGS#Gastritis>")} -> holds(0,F,true).

#spatom{equals(F,condition,"<DRUGS#GastroIntestinalBleeding>")}

-> holds(0,F,false).

#spatom{equals(F,condition,"<DRUGS#Pain>")} -> holds(0,F,true).

equals(F,sideEffect,D) -> holds(0,F,false).

% query

% can aspirin be given to the patient?

#spatom{equals(E,admin,"<DRUGS#Aspirin>")} -> occurs(0,2,E).

-(#spatom{equals(F,condition,"<DRUGS#Pain>")} &

#spatom{equals(F1,sideEffect,"<DRUGS#Aspirin>")} &

holds(2,F,false) & -?[T]: (T >=0 & T <=2 & holds(T,F1,true))).

The first formula represents that Aspirin is administered in the interval [0, 2],

and the second formula is the negation of the query we want to check. The query

here is to check if administering Aspirin treats the patient such that no side-effect

is caused in the interval [0, 2]. We can run the resulting theory using f2lpdlv.py

as follows.

>>> f2lpdlv.run('f2lp usecase-data usecase-tal',

'dlvhex --filter=holds')

8 We disregard fluents f6 and f7 for the TAL description.
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%File: 'usecase-tal'

bool(true). bool(false).

#domain bool(Bo).

#domain bool(Bo1).

% all the fluents are persistent

equals(F,sideEffect,D) & #spatom{#succ(T,T1)} & -occlude(T1,F) ->

![Bo]:(holds(T1,F,Bo) <-> holds(T,F,Bo)).

equals(F,condition,C) & #spatom{#succ(T,T1)} & -occlude(T1,F) ->

![Bo]:(holds(T1,F,Bo) <-> holds(T,F,Bo)).

% Unique Value Axioms

holds(T,F,Bo) & holds(T,F,Bo1) & Bo != Bo1 -> false.

-?[Bo]:holds(T,F,Bo) -> false.

% holds is non-intensional

holds(T,F,Bo) | -holds(T,F,Bo).

% positive effect of drug

equals(E,admin,D) & occurs(T1,T2,E) & equals(F,condition,C) ->

((holds(T1,F,true) & may_treat(D,C) &

-?[F1,C1,T]:(T >= T1 & T <= T2 & holds(T,F1,true) &

equals(F1,condition,C1) & contraindication(D,C1)))

-> ![T]:(T > T1 & T <= T2 -> occlude(T,F) & holds(T,F,false))).

% negative effect of drug (sideEffect)

equals(E,admin,D) & occurs(T1,T2,E) & equals(F,condition,C) &

equals(F1,sideEffect,D) ->

((T3 >= T1 & T3 <= T2 & holds(T3,F,true) & contraindication(D,C))

-> ![T]:(T >= T3 & T <= T2 -> occlude(T,F1) & holds(T,F1,true))).

% Gastritis "normally" causes gastrointestinalBleeding

% using dependency constraints for this instead of dummy events

#spatom{equals(F,condition,"<DRUGS#Gastritis>")} &

#spatom{equals(F1,condition,"<DRUGS#GastroIntestinalBleeding>")} &

holds(T,F,true) & -#spatom{ab1(condition,"<DRUGS#Gastritis>",T)} &

#spatom{#succ(T,T1)} ->

occlude(T1,F1) & holds(T1,F1,true).

Figure 11.4: F2LP encoding of the TAL description

205



Following is one of the answer sets produced (the existence of an answer

set indicates that the query is not entailed):

{ holds(0,f5,false), holds(0,f4,false), holds(0,f3,false),

holds(0,f2,true), holds(0,f1,true), holds(1,f5,false),

holds(1,f4,true), holds(1,f3,true), holds(1,f2,true),

holds(1,f1,true), holds(2,f5,false), holds(2,f4,true),

holds(2,f3,true), holds(2,f2,true), holds(2,f1,true) }

This output indicates that a side-effect is caused at timepoint 1 and that

administering Aspirin in the interval [0, 2] does not relieve pain. Now, consider the

initial state in which only Condition(Pain) holds. Further, assume that

Condition(Gastritis) holds at timepoint 2. Running the same query as before

produces no answer set, which indicates that the query is entailed. This in turn

indicates that Aspirin can be administered in the interval [0, 2]. This is because the

contraindication to Aspirin, which is Gastroinstestinal Bleeding, is caused outside

the interval in which Aspirin is administered.

As before, running similar queries by replacing Aspirin with Acetaminophen

produces no answer sets. From these results, an expert system will be able to

conclude that Acetaminophen can be recommended. It will also be able to

conclude that Aspirin can be recommended, unless Gastrointestinal Bleeding may

be caused in the interval in which it is to be administered.

11.5 Related Work

There has been considerable work done on integrating action formalisms and

description logics (see, for example, (Baader, Lutz, Milicic, Sattler, & Wolter, 2005;

Giacomo, Lenzerini, Poggi, & Rosati, 2006; Liu, Lutz, Milicic, & Wolter, 2006;

Drescher & Thielscher, 2007; Gu & Soutchanski, 2007)). The primary difference

between these approaches and our approach is that while these approaches focus

on DL-based reasoning about actions, our approach focuses on integrating existing
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circumscriptive action theories with non-temporal DL knowledge bases. The goal

of the DL-based approaches for reasoning about actions is to provide a decidable

yet expressive logical framework for reasoning about actions. On the other hand,

our goal is to provide a framework for ASP-based reasoning for circumscriptive

action theories which is capable of using ontologies as knowledge bases.

11.6 Proofs

Proof of Theorem 37

Follows from the straightforward application of Theorems 21, 22, and 12 (splitting

theorem). �

Proof of Theorem 38

Follows from the straightforward application of Theorems 23, 24, and 12 (splitting

theorem). �

Proof of Theorem 39

Follows from the straightforward application of Theorems 28, 29, and 12 (splitting

theorem). �
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Chapter 12

CONCLUSION

Developing formalisms that offer a suitable tradeoff between expressivity and

computational efficiency is one of the fundamental goals of KR&R. Different

existing formalisms have different limitations either with respect to expressivity or

with respect to computational efficiency. Circumscription and DLs, which belong to

the classical logic tradition, have certain limitations that are well-addressed by

ASP, which belongs to the logic programming tradition. The vice-versa also holds.

So, in this dissertation, we relate/integrate the formalisms using the framework of

the first-order stable model semantics to (partially) overcome some of their

limitations.

By relating circumscription to ASP, we are able to use answer set solvers

for computing the event calculus, the situation calculus, and TAL. As shown earlier,

this has several advantages with respect to both expressive and efficient

reasoning. By integrating DLs and ASP, we are able to perform nonmonotonic

reasoning using DL knowledge bases, thus providing a framework for integrating

rules and ontologies for the semantic web. Further, since we use the same

framework for relating circumscription to ASP, and for integrating DLs and ASP, we

are able to reformulate the problem of integrating action theories and ontologies as

a problem of integrating rules and ontologies, thus enabling us to use the

computational tools of the latter for the former. We showed an application of this in

the area of medical expert systems.

This dissertation also highlights the usefulness of the first-order stable

model semantics as a mathematical tool for relating/integrating different

knowledge representation formalisms, and for extending some well-known

properties of traditional ASP to more general programs. Since the first-order stable
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model semantics extends both first-order logic and ASP, it provides an ideal

framework for relating/integrating formalisms belonging to the different traditions of

classical logic and logic programming. Since some useful constructs in ASP, such

as “choice” and the “count” aggregate expression, can be viewed as abbreviations

for certain first-order formulas, the safety and splitting properties can be extended

to programs with these constructs by extending them to the first-order stable

model semantics.

This dissertation contributes to the following areas of KR&R:

• Reasoning about Actions: We present effective, ASP based computational

approaches for the event calculus, the situation calculus, and TAL.

• Theory of Stable Models and Answer Set Programming: We present

some interesting properties of the first-order stable model semantics and

relate the stable model semantics to circumscription and circumscriptive

action theories. We also extend the traditional safety and splitting properties

to a more general and useful class of programs.

• Integrating Different Knowledge Representation Formalisms: We

present simple and effective approaches to integrate DLs and ASP, and

circumscriptive action theories and ontologies.
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