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Abstract. Answer Set Programming Modulo Theories (ASPMT) is an approach
to combining answer set programming and satisfiability modulo theories based
on the functional stable model semantics. It is shown that the tight fragment
of ASPMT programs can be turned into SMT instances, thereby allowing SMT
solvers to compute stable models of ASPMT programs. In this paper we present
a compiler called ASPSMT2SMT, which implements this translation. The system
uses ASP grounder GRINGO and SMT solver Z3. GRINGO partially grounds input
programs while leaving some variables to be processed by Z3. We demonstrate
that the system can effectively handle real number computations for reasoning
about continuous changes.

1 Introduction

Answer Set Programming (ASP) is a widely used declarative computing paradigm. Its
success is largely due to the expressivity of its modeling language and efficiency of
ASP solvers thanks to intelligent grounding and efficient search methods that origi-
nated from propositional satisfiability (SAT) solvers. While grounding methods imple-
mented in ASP solvers are highly optimized, ASP inherently suffers when variables
range over large domains. Furthermore, real number computations are not supported
by ASP solvers because grounding cannot be even applied. Thus reasoning about con-
tinuous changes even for a small interval requires loss of precision by discretizing the
domain.

Satisfiability Modulo Theories (SMT) emerged as an enhancement of SAT, which
can be also viewed as a special case of (decidable) first-order logic in which certain
predicate and function symbols in background theories have fixed interpretations. Ex-
ample background theories are the theory of real numbers, the theory of linear arith-
metic, and difference logic.

A few approaches to loosely combining ASP and SMT/CSP exist [1–3], in which
nonmonotonicity of the semantics is related to predicates in ASP but has nothing to do
with functions in SMT/CSP. For instance, while

WaterLevel(t+1, tank, l) ← WaterLevel(t, tank, l), not ¬WaterLevel(t+1, tank, l)

(t is a variable ranging over steps; l is a variable for the water level) represents the de-
fault value of water level correctly (albeit grounding suffers when the variables range
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over a large numeric domain), rewriting it in the language of CLINGCON—a combina-
tion of ASP solver CLINGO and constraint solver GECODE—as

WaterLevel(t+1, tank)=$ l ← WaterLevel(t, tank)=$ l, not ¬(WaterLevel(t+1, tank)=$ l)

does not express the concept of defaults correctly.
In [4], it was observed that a tight integration of ASP and SMT requires a general-

ization of the stable model semantics in which default reasoning can be expressed via
(non-Herbrand) functions as well as predicates. Based on the functional stable model se-
mantics from [5], a new framework called “Answer Set Programming Modulo Theories
(ASPMT)” was proposed, which is analogous to SMT. Just like SMT is a generalization
of SAT and, at the same time, a special case of first-order logic with fixed background
theories, ASPMT is a generalization of the traditional ASP and, at the same time, a
special case of the functional stable model semantics in which certain background the-
ories are assumed. Unlike SMT, ASPMT allows expressive nonmonotonic reasoning as
allowed in ASP.

It is shown in [4], a fragment of ASPMT instances can be turned into SMT in-
stances, so that SMT solvers can be used for computing stable models of ASPMT in-
stances. In this paper, we report an implementation of this translation in the system
called “ASPMT2SMT.” The system first partially grounds the theory by replacing “ASP
variables” with ground terms, leaving other “SMT variables” ungrounded. Then, it com-
putes the completion of the theory. Under certain conditions guaranteed by the class
of ASPMT theories considered, the remaining variables can then be eliminated. After
performing this elimination, the ASPMT2SMT system then invokes the Z3 system to
compute classical models, which correspond to the stable models of the original theory.
We show that several examples involving both discrete changes as well as continuous
changes can be naturally represented in the input language of ASPMT2SMT, and can be
effectively computed.

The paper is organized as follows. In section 2, we first review the functional stable
models semantics and as its special case, ASPMT, and then review the theorem on
completion from [5]. In section 3, we describe the process of variable elimination used
by the system. In section 4, we describe the architecture of the system as well as the
syntax of the input language. Finally, in section 5, we present several experiments with
and without continuous reasoning and compare the performance to ASP solver CLINGO
when appropriate.

The system is available at http://reasoning.eas.asu.edu/aspmt.

2 Preliminaries

2.1 Review of the Functional Stable Model Semantics

We review the stable model semantics of intensional functions from [5]. Formulas are
built the same as in first-order logic.

Similar to circumscription, for predicate symbols (constants or variables) u and c,
expression u ≤ c is defined as shorthand for ∀x(u(x)→ c(x)). Expression u = c is
defined as ∀x(u(x)↔ c(x)) if u and c are predicate symbols, and ∀x(u(x) = c(x)) if
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they are function symbols. For lists of symbols u = (u1, . . . , un) and c = (c1, . . . , cn),
expression u ≤ c is defined as (u1 ≤ c1) ∧ · · · ∧ (un ≤ cn), and similarly, expression
u = c is defined as (u1 = c1) ∧ · · · ∧ (un = cn). Let c be a list of distinct predicate
and function constants, and let ĉ be a list of distinct predicate and function variables
corresponding to c. By cpred (cfunc , respectively) we mean the list of all predicate
constants (function constants, respectively) in c, and by ĉpred (ĉfunc , respectively) the
list of the corresponding predicate variables (function variables, respectively) in ĉ.

For any formula F and any list of predicate and function constants c, which we call
intensional constants, expression SM[F ; c] is defined as

F ∧ ¬∃ĉ(ĉ < c ∧ F ∗(ĉ)),

where ĉ < c is shorthand for (ĉpred ≤ cpred) ∧ ¬(ĉ = c), and F ∗(ĉ) is defined
recursively as follows.

– When F is an atomic formula, F ∗ is F ′∧F where F ′ is obtained from F by replac-
ing all intensional (function and predicate) constants c in it with the corresponding
(function and predicate) variables from ĉ;

– (G ∧H)∗ = G∗ ∧H∗; (G ∨H)∗ = G∗ ∨H∗;
– (G→ H)∗ = (G∗ → H∗) ∧ (G→ H);
– (∀xG)∗ = ∀xG∗; (∃xF )∗ = ∃xF ∗.

(We understand ¬F as shorthand for F → ⊥; > as ¬⊥; and F ↔ G as (F → G) ∧
(G→ F ).)

When F is a sentence, the models of SM[F ; c] are called the stable models of F
relative to c. They are the models of F that are “stable” on c. The definition can be
easily extended to formulas of many-sorted signatures.

This definition of a stable model is a proper generalization of the one from [6],
which views logic programs as a special case of first-order formulas.

We will often write G ← F , in a rule form as in logic programs, to denote the
universal closure of F → G. A finite set of formulas is identified with the conjunction
of the formulas in the set.

By {c= v}, we abbreviate the formula c= v ∨ ¬(c= v) which, in the functional
stable model semantics, can be intuitively understood as “by default, c is mapped to v”.

2.2 ASPMT as a Special Case of the Functional Stable Model Semantics

We review the semantics of ASPMT described in [4]. Formally, an SMT instance is a
formula in many-sorted first-order logic, where some designated function and predicate
constants are constrained by some fixed background interpretation. SMT is the prob-
lem of determining whether such a formula has a model that expands the background
interpretation [7].

The syntax of ASPMT is the same as that of SMT. Let σbg be the (many-sorted)
signature of the background theory bg. An interpretation of σbg is called a background
interpretation if it satisfies the background theory. For instance, in the theory of reals,
we assume that σbg contains the setR of symbols for all real numbers, the set of arith-
metic functions over real numbers, and the set {<,>,≤,≥,=} of binary predicates



4 Michael Bartholomew and Joohyung Lee

over real numbers. Background interpretations interpret these symbols in the standard
way.

Let σ be a signature that is disjoint from σbg . We refer to functions in σbg as inter-
preted functions and functions in σ as uninterpreted functions. We say that an interpre-
tation I of σ satisfies F w.r.t. the background theory bg, denoted by I |=bg F , if there is
a background interpretation J of σbg that has the same universe as I , and I ∪J satisfies
F . For any ASPMT sentence F with background theory σbg , interpretation I is a stable
model of F relative to c (w.r.t. background theory σbg) if I |=bg SM[F ; c]. When c is
empty, the stable models of F coincides with the models of F .

Consider the following running example from a Texas Action Group discussion1.

A car is on a road of length L. If the accelerator is activated, the car will
speed up with constant acceleration A until the accelerator is released or the
car reaches its maximum speed MS, whichever comes first. If the brake is ac-
tivated, the car will slow down with acceleration ¬A until the brake is released
or the car stops, whichever comes first. Otherwise, the speed of the car remains
constant. Give a formal representation of this domain, and write a program that
uses your representation to generate a plan satisfying the following conditions:
at duration 0, the car is at rest at one end of the road; at duration T , it should
be at rest at the other end.

This problem is an instance of planning with continuous time, which requires real
number computations.

The domain can be naturally represented in ASPMT as follows. Below s ranges
over time steps, b is a boolean variable, x, y, a, c, d are all real variables, and A and MS
are some specific numbers.

We represent that the actions Accel and Decel are exogenous and the duration of
each time step is to be arbitrarily selected as

{Accel(s) = b}, {Decel(s) = b}, {Duration(s) = x}.

Both Accel and Decel cannot be performed at the same time:

⊥ ← Accel(s) = TRUE ∧ Decel(s) = TRUE.

The effects of Accel and Decel on Speed are described as

Speed(s+ 1) = y ← Accel(s)=TRUE ∧ Speed(s)=x ∧ Duration(s)=d
∧ (y = x+A× d),

Speed(s+ 1) = y ← Decel(s)=TRUE ∧ Speed(s)=x ∧ Duration(s)=d
∧ (y = x−A× d).

The preconditions of Accel and Decel are described as

⊥ ← Accel(s)=TRUE ∧ Speed(s)=x ∧ Duration(s)=d
∧ (y = x+A× d) ∧ (y > MS),

⊥ ← Decel(s)=TRUE ∧ Speed(s)=x ∧ Duration(s)=d
∧ (y = x−A× d) ∧ (y < 0).

1 http://www.cs.utexas.edu/users/vl/tag/continuous problem
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Speed is inertial:
{Speed(s+ 1) = x} ← Speed(s) = x.

The Location is defined in terms of Speed and Duration as

Location(s+ 1) = y ← Location(s) = x ∧ Speed(s) = a ∧ Speed(s+ 1) = c
∧ Duration(s)=d ∧ y = x+ ((a+ c)/2)× d.

2.3 Theorem on Completion

We review the theorem on completion from [4]. The completion turns “tight” ASPMT
instances into equivalent SMT instances, so that SMT solvers can be used for computing
this fragment of ASPMT.

We say that a formula F is in Clark normal form (relative to the list c of intensional
constants) if it is a conjunction of sentences of the form

∀x(G→ p(x)) (1)

and
∀xy(G→ f(x)=y) (2)

one for each intensional predicate p and each intensional function f , where x is a list
of distinct object variables, y is a variable, and G is a formula that has no free variables
other than those in x and y, and sentences of the form

← G. (3)

The completion of a formula F in Clark normal form (relative to c) is obtained
from F by replacing each conjunctive term (1) with

∀x(p(x)↔ G), (4)

each conjunctive term (2) with

∀xy(f(x)=y ↔ G), (5)

and each conjunctive term (3) with ¬G.
An occurrence of a symbol or a subformula in a formula F is called strictly positive

in F if that occurrence is not in the antecedent of any implication in F .
The dependency graph of a formula F relative to c, denoted by DGc[F ], is the

directed graph that

– has all members of c as its vertices, and
– has an edge from c to d if, for some strictly positive occurrence of G → H in F ,
c has a strictly positive occurrence in H , and d has a strictly positive occurrence
in G.

We say that F is tight on c if the dependency graph of F relative to c is acyclic.
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Theorem 1 ([4, Theorem 2]) For any formula F in Clark normal form that is tight on
c, an interpretation I that satisfies ∃xy(x 6= y) is a model of SM[F ; c] iff I is a model
of the completion of F relative to c.

For example, the car example formalization contains the following implications for
the function Speed(1):

Speed(1)=y ← Accel(0)=TRUE ∧ Speed(0)=x ∧ Duration(0)=d ∧ (y = x+A× d)
Speed(1)=y ← Decel(0)=TRUE ∧ Speed(0)=x ∧ Duration(0)=d ∧ (y = x−A× d)
Speed(1)=y ← Speed(0)=y ∧ ¬¬(Speed(1)=y)

({c= v} ← G is strongly equivalent to c= v ← G ∧ ¬¬(c= v)) and the completion
contains the following equivalence.

Speed(1) = y ↔
∃xd( (Accel(0)=TRUE ∧ Speed(0)=x ∧ Duration(0)=d ∧ (y = x+A× d))
∨ (Decel(0)=TRUE ∧ Speed(0)=x ∧ Duration(0)=d ∧ (y = x−A× d))
∨ Speed(0) = y )

(6)

3 Variable Elimination

Some SMT solvers do not support variables at all (e.g. iSAT) while others suffer in
performance when handling variables (e.g. Z3). While we can partially ground the input
theories, some variables have large (or infinite) domains and should not (or cannot) be
grounded. Thus, we consider two types of variables: ASP variables—variables which
are grounded by ASP grounders—and SMT variables—variables which should not be
grounded. After eliminating ASP variables by grounding, we consider the problem of
equivalently rewriting the completion of the partially ground ASPMT theory so that the
result contains no variables.

To ensure that variable elimination can be performed, we impose some syntactic
restrictions on ASPMT instances. We first impose that no SMT variable appears in the
argument of an uninterpreted function.

We assume ASPMT2SMT programs comprised of rules of the form H ← B where

– H is ⊥ or an atom of the form f(t) = v, where f(t) is a term and v is a variable;
– B is a conjunction of atomic formulas possibly preceded with ¬.

We define the variable dependency graph of a conjunction of possibly negated
atomic formulas C1 ∧ · · · ∧ Cn as follows. The vertices are the variables occurring
in C1 ∧ · · · ∧ Cn. There is a directed edge from v to u if there is a Ci that is v = t or
t = v for some term t such that u appears in t. We say a variable v depends on a variable
u if there is a directed path from v to u in the variable dependency graph. We say a rule
H ← B is variable isolated if every variable v in it occurs in an equality t = v or v = t
that is not negated in B and the variable dependency graph of B is acyclic.

Example 1. The rule f = x ← g = 2 × x is not variable isolated because variable
x does not occur in an equality x = t or t = x in the body. Instead, we write this as
f = x← (g = y) ∧ (y = 2× x), which is variable isolated.
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The rule f = x ← (2 × x = y) ∧ (2 × y = x) is not variable isolated; although
variable y occurs in an equality of the form t = y, the dependency graph is not acyclic.

The variable elimination is performed modularly so the process needs only to be
described for a single equivalence. If an ASPMT program contains no variables in ar-
guments of uninterpreted functions, any equivalence in the completion of the ASPMT
program will be of the form

∀v(f = v ↔ ∃x(B1(v,x) ∨ · · · ∨Bk(v,x)))

where each Bi is a conjunction of possibly negated literals and has v = t as a non-
negated subformula, and the variable dependency graph of B is acyclic. In the follow-
ing, the notation F v

t denotes the formula obtained from F by replacing every occurrence
of the variable v with the term t. We define the process of eliminating variables from
such an equivalence E as follows.

1. Given an equivalence E = ∀v(f = v ↔ ∃x(B1(v,x) ∨ · · · ∨Bk(v,x))),
F := ∀v(f = v → ∃x(B1(v,x) ∨ · · · ∨Bk(v,x)));
G := ∀v(∃x(B1(v,x) ∨ · · · ∨Bk(v,x))→ f = v).

2. Eliminate variables from F as follows:
(a) F := ∃x(B1(v,x)

v
f ∨ · · · ∨Bk(v,x)

v
f ) and then equivalently,

F := ∃x(B1(v,x)
v
f ) ∨ · · · ∨ ∃x(Bk(v,x)

v
f ).

(b) Fi := ∃x(Bi(v,x)
v
f ).

(c) Eliminate variables from Fi as follows:
i. Di := Bi(v,x)

v
f .

ii. While there is a variable x still in Di, select a conjunctive term x = t or
t = x (such that no variable in t depends on x) in Di, then Di := (Di)

x
t .

iii. Fi = Di (drop the existential quantifier since there are no variables inDi).
(d) F := F1 ∨ · · · ∨ Fk.

3. Eliminate variables from G as follows:
(a) G := ∀vx((B1(v,x) ∨ · · · ∨Bk(v,x))→ f = v) and then equivalently,

G := ∀vx(B1(v,x)→ f = v) ∧ · · · ∧ ∀vx(Bk(v,x)→ f = v).
(b) Gi := ∀vx(Bi(v,x)→ f = v).
(c) Eliminate variables from Gi as follows:

i. Di := Bi(v,x)→ f = v.
ii. While there is a variable x still in Di, select a conjunctive term x = t or

t = x (such that no variable in t depends on x) from the body of Di, then
Di := (Di)

x
t .

iii. Gi = Di (drop the universal quantifier since there are no variables in Di).
(d) G := G1 ∨ · · · ∨Gk.

4. E := F ∧G.

The following proposition asserts the correctness of this method. Note that the ab-
sence of variables in arguments of uninterpreted functions can be achieved by grounding
ASP variables and enforcing that no SMT variables occur in uninterpreted functions.
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Proposition 1 For any completion of a variable isolated ASPMT program with no vari-
ables in arguments of uninterpreted functions, applying variable elimination method
repeatedly results in a classically equivalent formula that contains no variables.

For example, given the equivalence (6), Step 2a) turns the implication from left to
right into the formula

∃xd( (Accel(0)=TRUE ∧ Speed(0)=x ∧ Duration(0)=d ∧ (Speed(1)=x+A× d))
∨ (Decel(0)=TRUE ∧ Speed(0)=x ∧ Duration(0)=d ∧ (Speed(1)=x−A× d))
∨ (Speed(0) = Speed(1)))

And then step 2d) produces

(Accel(0)=TRUE ∧ Speed(1)=Speed(0) + A× Duration(0))∨
(Decel(0)=TRUE ∧ Speed(1) = Speed(0)−A× Duration(0))∨
(Speed(0) = Speed(1)).

4 ASPMT2SMT System

4.1 Syntax of Input Language

In addition to the syntactic restriction on ASPMT rules imposed in the previous section,
the current version of system ASPMT2SMT assumes that the input program is f -plain
[5], as well as “av-separated,” which intuitively means that no variable occurring in
an argument of an uninterpreted function is related to the value variable of another
uninterpreted functions via equality.2 For example, for the rule f(x) = 1 ← g =
y ∧ y = x, variable x is an argument of f and is also related to the value variable y
of g via equality y = x. The reason for this restriction is because the system sets the
equalities g = y and y = x aside (so that GRINGO does not ground them), and ground
the rule and then replace the equalities back to yield

f(1) = 1← g = y ∧ y = x
f(2) = 1← g = y ∧ y = x
. . .

rather than the intended
f(1) = 1← g = y ∧ y = 1
f(2) = 1← g = y ∧ y = 2
. . .

It should also be noted that the only background theories considered in this version of
the implementation are arithmetic over reals and integers.

System ASPMT2SMT uses a syntax similar to system CPLUS2ASP [8] for declara-
tions and a syntax similar to system F2LP [9] for rules.

There are declarations of four kinds, sorts, objects, constants, and variables.
The sort declarations specify user data types (note: these cannot be used for value sorts).
The object declarations specify the elements of the user-declared data types. The con-
stant declarations specify all of the (possibly boolean) function constants that appear
in the theory. The variables declarations specify the user-declared data types associated
with each variable. Declarations for the car example are shown below.

2 See the system homepage for the precise description of this condition.
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:- sorts
step; astep.

:- objects
0..st :: step; 0..st-1 :: astep.

:- constants
time(step) :: real[0..t]; accel(astep) :: boolean;
duration(astep) :: real[0..t]; decel(astep) :: boolean;
speed(step) :: real[0..ms]; location(step) :: real[0..l].

:- variables
S :: astep; B :: boolean.

Only propositional connectives are supported in this version of ASPMT2SMT and
these are represented in the system as follows:

∧ ∨ ¬ → ←
& | not -> <-

Comparison and arithmetic operators are represented as usual:

< ≤ ≥ > = 6= add subtract multiply divide
< <= >= > = != + - * /

a ! = b is understood as ¬(a = b). To abbreviate the formula A ∨ ¬A, which is
useful for expressing defaults and inertia, we write {A}. The rest of the car example is
shown below.

% Actions and durations are exogenous
{accel(S)=B}.
{decel(S)=B}.
{duration(S)=X}.

% no concurrent actions
<- accel(S)=true & decel(S)=true.

% effects of accel and decel
speed(S+1)=Y <- accel(S)=true & speed(S)=X & duration(S)=D & Y = X+ar*D.
speed(S+1)=Y <- decel(S)=true & speed(S)=X & duration(S)=D & Y = X-ar*D.

% preconditions of accel and decel
<- accel(S)=true & speed(S)=X & duration(S)=D & Y = X+ar*D & Y > ms.
<- decel(S)=true & speed(S)=X & duration(S)=D & Y = X-ar*D & Y < 0.

% inertia of speed
{speed(S+1)=X} <- speed(S)=X.

location(S+1)=Y <- location(S)=X & speed(S)=A &
speed(S+1)=C & duration(S)=D & Y = X+(A+C)/2*D.
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time(S+1)=Y <- time(S)=X & duration(S)=D & Y=X+D.

% problem instance
time(0)=0. speed(0)=0. location(0)=0.
<- location(st) = Z & Z != l.
<- speed(st) = Z & Z != 0.
<- time(st) = Z & Z != t.

This description can be run by the command

$aspmt2smt car -c st=3 -c t=4 -c ms=4 -c ar=3 -c l=10

which yields the output

accel(0) = true accel(1) = false accel(2) = false
decel(0) = false decel(1) = false decel(2) = true
duration(0) = 1.1835034190 duration(1) = 1.6329931618
duration(2) = 1.1835034190 location(0) = 0.0
location(1) = 2.1010205144 location(2) = 7.8989794855
location(3) = 10.0 speed(0) = 0.0
speed(1) = 3.5505102572 speed(2) = 3.5505102572
speed(3) = 0.0 time(0) = 0.0 time(1) = 1.1835034190
time(2) = 2.8164965809 time(3) = 4.0

z3 time in milliseconds: 30
Total time in milliseconds: 71

4.2 Architecture

Fig. 1. ASPMT2SMT System Architecture

The architecture of ASPMT2SMT system is shown in Figure 1. The system first con-
verts the ASPMT description to a propositional formula containing only predicates. In
addition, this step substitutes auxiliary constants for SMT variables and necessary pre-
processing for F2LP (v1.3) and GRINGO (v3.0.4) to enable partial grounding of ASP
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variables only. F2LP transforms the propositional formula into a logic program and
then GRINGO performs partial grounding on only the ASP variables. The ASPMT2SMT
system then converts the predicates back to functions and replaces the auxiliary con-
stants with the original expressions. Then the system computes the completion of this
partially ground logic program and performs variable elimination on that completion.
Finally, the system converts this variable-free description into the language of Z3 and
then relies on Z3 to produce models which correspond to stable models of the original
ASPMT description.

For instance, consider the result of variable elimination on the portion of the com-
pletion related to speed(1) of the running car example:

(Accel(0)=TRUE ∧ Speed(1)=Speed(0) + A× Duration(0))∨
(Decel(0)=TRUE ∧ Speed(1) = Speed(0)−A× Duration(0))∨
(Speed(0) = Speed(1)).

In the language of Z3, this is

(assert (or (or
(and (= accel_0_ true) (= speed_1_ (+ speed_0_ (* duration_0_ a))))
(and (= decel_0_ true) (= speed_1_ (- speed_0_ (* duration_0_ a)))))
(= speed_1_ speed_0_) ))

5 Experiments

The following experiments demonstrate the capability of the ASPMT2SMT system to
perform nonmonotonic reasoning about continuous changes. In addition, this shows a
significant performance increase compared to ASP solvers for domains in which only
SMT variables have large domains. However, when ASP variables have large domains,
similar scalability issues arise as comparable grounding still occurs.

All experiments were performed on an Intel Core 2 Duo 3.00 GHZ CPU with 4 GB
RAM running Ubuntu 13.10. The domain descriptions of these examples can be found
from the system homepage.

5.1 Leaking Bucket

c CLINGO v3.0.5 ASPMT2SMT v0.9
Run Time Run Time

(Grounding + Solving) (Preprocessing + solving)
10 0s (0s+0s) .037s (.027s + .01s)
50 .02s (02s + 0s) .089s (.079s + .01s)

100 .12s (.12s + 0s) .180s (.170s + .01s)
500 8.69s (8.68s + .01s) 1.731s (1.661s + .07s)

1000 60.32s (60.29s+ .03s) 35.326s (35.206s + .12s)

Consider a leaking bucket with
maximum capacity c that loses
one unit of water every time step
by default. The bucket can be re-
filled to its maximum capacity
by the action fill. The initial ca-
pacity is 5 and the desired ca-
pacity is 10.

We see that in this exper-
iment, ASPMT2SMT does not

yield significantly better results than CLINGO. The reason for this is that the scaling
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of this domain takes place in the number of time steps. Thus, since ASPMT2SMT uses
GRINGO to generate fluents for each of these time steps, the ground descriptions given
to CLINGO and Z3 are of similar size. Consequently, we see that the majority of the
time taken for ASPMT2SMT is in preprocessing.

5.2 Car Example

k CLINGO v3.0.5 ASPMT2SMT v0.9
Run Time Run Time

(Grounding + Solving) (Preprocessing + solving)
1 n/a .084s (.054s + .03s)
5 n/a .085s (.055s + .03s)

10 n/a .085s (.055s + .03s)
50 n/a .087s (.047s + .04s)

100 n/a .088s (.048s + .04s)
1 .61s (.6s + .01s) .060s (.050s + .01s)
2 48.81s (48.73s + .08s) .07s (.050s + .02s)
3 > 30 minutes .072s (.052s + .02s)
5 > 30 minutes .068s (.048s + .02s)

10 > 30 minutes .068s (.048s + .02s)
50 > 30 minutes .068s (.048s + .02s)

100 > 30 minutes .072s (.052s + .02s)

Recall the car example in Sec-
tion 2.2. The first half of the ex-
periments are done with the val-
ues L = 10k, A = 3k, MS =
4k, T = 4k, which yields solu-
tions with irrational values and
so cannot be solved by system
CLINGO. The second half of the
experiments are done with the
values L = 4k, A = k, MS =
4k, T = 4k, which yields so-
lutions with integral values and
so can be solved by system
CLINGO. In this example, only
the SMT variables have increas-
ing domains but the ASP vari-
able domain remains the same.

Consequently, the ASPMT2SMT system scales very well compared to the ASP system
which can only complete the two smallest size domains.

We also experimented with CLINGCON. Since CLINGCON does not allow inten-
sional functions, we need to encode the example differently using auxiliary abnormality
atoms to represent the notions of inertia and default behaviors. In the first set of exper-
iments, CLINGCON performed better than ASPMT2SMT, but like CLINGO, the current
version of CLINGCON cannot handle real numbers, so it is not applicable to the second
set of experiments.

5.3 Space Shuttle Example

k CLINGO v3.0.5 ASPMT2SMT v0.9
Run Time Run Time

(Grounding + Solving) (Preprocessing + solving)
1 0s (0s + 0s) .048s (.038s + .01s)
5 .03s (.02s + .01s) .047s (.037s + .01s)

10 .14s (.9s + .5s) .053s (.043s + .01s)
50 7.83s (3.36s + 4.47s) .050s (.040s + .01s)

100 39.65s (16.14s + 23.51s) .051s (.041s + .01s)

The following example is from [10],
which represents cumulative ef-
fects on continuous changes. A
spacecraft is not affected by any
external forces. It has two jets
and the force that can be applied
by each jet along each axis is at
most 4k. The initial position of
the rocket is (0,0,0) and its ini-
tial velocity is (0,1,1). How can

it get to (0,3k,2k) within 2 seconds? Assume the mass is 2.
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Again in this problem, the scaling lies only in the size of the value of the func-
tions involved in the description. Consequently, we see no scaling issues in either
ASPMT2SMT or CLINGCON.

5.4 Bouncing Ball Example

k CLINGO v3.0.5 ASPMT2SMT v0.9
Run Time Run Time

(Grounding + Solving) (Preprocessing + solving)
1 n/a .072s (.062s + .01s)

10 n/a .072s (.062s + .01s)
100 n/a .071s (.061s + .01s)

1000 n/a .075s (.065s + .01s)
10000 n/a .082s (.062s + .02s)

The following example is from [11].
A ball is held above the ground
by an agent. The actions avail-
able to the agent are drop and
catch. Dropping the ball causes
the height of the ball to change
continuously with time as de-
fined by Newton’s laws of mo-
tion. As the ball accelerates to-
wards the ground it gains veloc-

ity. If the ball is not caught before it reaches the ground, it hits the ground with speed
s and bounces up into the air with speed r × s where r = .95 is the rebound coeffi-
cient. The bouncing ball reaches a certain height and falls back towards the ground due
to gravity. An agent is holding a ball at height 100k. We want to have the ball hit the
ground and caught at height 50.

Again, CLINGO and CLINGCON are unable to find solutions to this domain since
solutions are not integral. Also, we see that ASPMT2SMT suffers no scaling issues here
again due to the fact that in this problem the scaling lies only in the size of the value of
the functions involved in the description.

6 Conclusion

We presented system ASPMT2SMT, which translates ASPMT instances into SMT in-
stances, and uses SMT solvers to compute ASPMT. Unlike other ASP solvers, this sys-
tem can compute effective real number computation by leveraging the effective SMT
solvers. Future work includes extending the system to handle other background theo-
ries, and investigate a larger fragment of ASPMT instances that can be turned into SMT
instances.
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