
Action Language BC+: Preliminary Report

Joseph Babb and Joohyung Lee

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, USA
{Joseph.Babb,joolee}@asu.edu

Abstract. Recently, action language BC, which combines the attractive features
of action languages B and C+, was proposed. While BC allows Prolog-style re-
cursive definitions that are not available in C+, it is less expressive than C+ in
other ways, such as inability to express non-Boolean and non-exogenous actions.
We propose a new action language called BC+, which encompasses all the fea-
tures of BC and the definite fragment of C+. The syntax of BC+ is identical to
the syntax of C+ allowing arbitrary propositional formulas in the causal laws, but
its semantics is defined in terms of propositional formulas under the stable model
semantics instead of nonmonotonic causal theories. This approach allows many
useful ASP constructs, such as choice rules and aggregates, to be directly used in
language BC+, and exploits computational methods available in ASP solvers.

1 Introduction

Action languages are formal models of parts of natural language that are used for
describing properties of actions. The semantics of such languages describe transition
systems—directed graphs whose vertices represent states and edges represent actions
that change the states. These languages are often viewed as high level notations of non-
monotonic logics. For instance, languages A [1] and B [2, Section 5] can be translated
into logic programs under the stable model semantics; languages C [3] and C+ [4] are
defined in terms of nonmonotonic causal theories.

Recently, action language BC was proposed, which combines the attractive features
of B and C+. Like C+, the inertia assumption is not built into BC, so fluents whose
behavior is described by defaults other than inertia can be conveniently represented in
BC.1 Unlike C+, the language allows the user to represent Prolog-style recursive defini-
tions available in B, which are useful in describing complex relations among fluents.2

However, BC is less expressive than C+ in several other ways. It assumes that every
action is Boolean and “exogenous”: the action description does not determine whether
that action is executed. The assumption is too strong to describe complex relations
among actions, defeasible causal laws [4, Section 4.3], action attributes [4, Section 5.6],
and additive fluents [6] that C+ is able to express conveniently. Also, C+ allows complex
formulas in causal laws, but BC allows only conjunctions of atoms.

1 For instance, the Leaking Container example from [5], also reproduced in Section 6.3.
2 For instance, the definition of InTower in the Blocks World formalization from [5], also repro-

duced in Section 5.



In this paper, we propose a new action description language BC+. The language is
sufficiently expressive to encompass all the features of BC and the definite fragment
of C+. The syntax of this language is essentially identical to C+, but its semantics is
instead defined in terms of the stable model semantics as with BC. On the other hand,
propositions of BC+ are more general than propositions of BC to allow many useful
ASP constructs, such as choice rules and aggregates. The expressiveness of BC+ can be
shown by embedding both BC and the definite fragment of C+ in BC+ in straightforward
ways.

The paper is organized as follows. Sections 2 and 3 introduce the syntax and the
semantics of BC+. Section 4 introduces useful abbreviations, which follow the ones
available in C+. Section 5 presents an example that illustrates some advantages of BC+.
Sections 6 and 7 show how BC and C+ can be embedded in BC+, and explain the
advantages of BC+ over the two other languages. Section 8 shows how propositional
formulas under the stable model semantics can be viewed as a special case of BC+.

2 Syntax of BC+

The syntax of language BC+ is essentially identical to the syntax of C+.3 The follow-
ing description repeats the syntax description in Section 4.2 from [4]. Language BC+
includes a finite set of symbols of two kinds, fluent constants and action constants. Flu-
ent constants are further divided into regular and statically determined. A finite set of
cardinality ≥ 2, called the domain, is assigned to every constant c and is denoted by
Dom(c).

We consider (propositional) formulas whose atoms have the form c= v, where c is
a constant, and v is an element of its domain. If the domain of c is {f, t} then we say
that c is Boolean; we abbreviate c= t as c and c= f as ∼c.

A fluent formula is a formula such that all constants occurring in it are fluent con-
stants. An action formula is a formula that contains at least one action constant and no
fluent constants.

A static law is an expression of the form

caused F if G (1)

where F and G are fluent formulas. An action dynamic law is an expression of the
form (1) in which F is an action formula and G is a formula. A fluent dynamic law is
an expression of the form

caused F if G after H (2)

where F and G are fluent formulas and H is a formula, provided that F does not
contain statically determined constants. Static laws can be used to talk about causal
dependencies between fluents in the same state; action dynamic laws can be used to
express causal dependencies between concurrently executed actions; fluent dynamic
laws can be used for describing direct effects of actions.

3 Strictly speaking, C+ considers “multi-valued” formulas, an extension of propositional formu-
las, but this difference is not essential in view of Theorem 1 from [9].



A causal law is a static law, an action dynamic law, or a fluent dynamic law. An
action description is a finite set of causal laws.

The formula F in a causal law (1) or (2) is called the head. We say that action
description D is definite if the head of every causal law is either ⊥, an atom c=v, or its
choice formula {c=v}, that stands for the propositional formula c=v ∨ ¬(c=v).

3 Semantics of BC+

For any action description D with a set σfl of fluent constants and a set σact of action
constants, we will define a sequence of propositional formulas PF0(D),PF1(D), . . . so
that the stable models of PFm(D) represent paths of length m in the transition system
corresponding to D. The signature σD,m of PFm(D) consists of the pairs i :c such that

– i ∈ {0, . . . ,m} and c is a fluent constant of D, and
– i ∈ {0, . . . ,m−1} and c is an action constant of D.

The domain of i : c is the same as the domain of c. By i : F we denote the result of
inserting i : in front of every occurrence of every constant in formula F . The transla-
tion PFm(D) is the conjunction of

–
i :F ← i :G (3)

for every static law (1) in D and every i ∈ {0, . . . ,m}, and (3) for every action
dynamic law (1) in D and every i ∈ {0, . . . ,m−1};4

–
i+1:F ← (i+1:G) ∧ (i :H) (4)

for every fluent dynamic law (2) in D and every i ∈ {0, . . . ,m−1};
–

{0:c=v} (5)

for every regular fluent constant c and every v ∈ Dom(c);
– ∧

v 6=w | v,w∈Dom(c)

¬(i :c = v ∧ i :c = w), (6)

¬¬
∨

v∈Dom(c)

i :c = v , (7)

for every constant i : c in σD,m, which represent the uniqueness and existence of
values for the constant i : c. The conjunction of formulas (6) and (7) can also be
abbreviated using the count aggregate as

← ¬ 1{i :c=v1, . . . , i :c=vm}1 (8)

where {v1, . . . , vm} is Dom(c). 5

4 We identify F ← G with G→ F .
5 Aggregates can be viewed as shorthands for propositional formulas [7; 8].



As shown in [9], in the presence of (6) and (7), the choice rule {i : c= v} can be
understood as assigning default value v to constant i : c (read “by default, i : c maps
to v”). In the absence of additional information about i : c, choosing i : c = v is the
only option due to the existence of value constraint (7). But if there is a conflicting
information about i : c, then not choosing i : c = v is the only option, in view of the
uniqueness of value constraint (6). We will see that this reading of choice rules in the
presence of the uniqueness and existence of value constraints is quite convenient in
representing dynamic systems.

Note how the translation PFm(D) treats regular and statically determined fluent
constants in different ways: formulas (5) are included only when c is regular.

In the example below, the following abbreviations are used. If c is a Boolean action
constant, we express that F is an effect of executing c by the fluent dynamic law

caused F if > after c,

which can be abbreviated as
c causes F.

If c is an action constant, the expression

exogenous c

stands for the action dynamic laws

caused {c=v}

for all v ∈ Dom(c). If c is a regular fluent constant, the expression

inertial c (9)

stands for the fluent dynamic laws

caused {c=v} after c=v

for all v ∈ Dom(c).
The transition system shown in Figure 1 can be described by the following action

description SD, where p is a Boolean regular fluent constant and a is a Boolean action
constant:

a causes p,
exogenous a,
inertial p.

(10)

The translation PFm(SD) turns this description into the following propositional for-
mulas. The first line of (10) is turned into the formulas

i+1:p ← i :a

(0 ≤ i < m), the second line into
{i :a},
{i :∼a} (11)



Fig. 1. The transition system described by SD.

(0 ≤ i < m), and the third into

{i+1:p} ← i :p,
{i+1:∼p} ← i :∼p (12)

(0 ≤ i < m). In addition,
{0:p},
{0:∼p}

come from (5), and

← ¬ 1{i :p, i :∼p}1 (0 ≤ i ≤ m),
← ¬ 1{i :a, i :∼a}1 (0 ≤ i < m)

come from (8).
A state is an interpretation s of σfl such that 0:s is a stable model of PF0(D). States

are the vertices of the transition system represented by D. In view of the existence and
uniqueness of value constraints for every state s and every fluent constant c, there exists
exactly one v such that c=v belongs to s; this v is considered the value of c in state s.

A transition is a triple 〈s, e, s′〉, where s and s′ are interpretations of σfl and e is an
interpretation of σact, such that 0 : s ∪ 0 : e ∪ 1 : s′ is a model of PF1(D). Transitions
correspond to the edges of the transition system: for every transition 〈s, e, s′〉, it contains
an edge from s to s′ labeled e.

The soundness of this definition is guaranteed by the following fact:

Theorem 1 For every transition 〈s, e, s′〉, s and s′ are states.

The stable models of PFm(D) represent the paths of length m in the transition
system corresponding to D. For m = 0 and m = 1, this is clear from the definition of a
transition system; for m > 1 this needs to be verified as the following theorem shows.

For every set X of elements of the signature σD,m, let Xi (i < m) be the triple
consisting of

– the set consisting of atoms A such that i :A belongs to X , and A contains fluent
constants,



– the set consisting of atoms A such that i :A belongs to X , and A contains action
constants, and

– the set consisting of atoms A such that (i + 1) :A belongs to X , and A contains
fluent constants.

Theorem 2 For every m ≥ 1, X is a stable model of PFm(D) iff X0, . . . , Xm−1 are
transitions.

We understand choice rules and count aggregates as shorthand for propositional
formulas as described in [10; 11], allowing them to be directly used in causal laws. We
will show an example in Section 5.

4 Useful Abbreviations

Language BC+ allows the same syntax of the abbreviations in C+ (c.f. [4, Appendix B]),
but understands them differently. For instance,

– default c=v if F stands for caused {c=v} if F . This is consistent with the reading
of choice formulas in the presence of uniqueness and existence of value constraints
we introduced in Section 3. Similarly,

default c=v if F after G

stands for
caused {c=v} if F after G.

This allows us to view the expression (9) as shorthand for

default c=v after c=v.

– constraint F where F is a fluent formula stands for the static law

caused ⊥ if ¬F ;
– always F stands for the fluent dynamic law

caused ⊥ if > after ¬F ;

– nonexecutable F if G stands for the fluent dynamic law

caused ⊥ if > after F ∧G.

5 Example: Blocks World

An attractive feature of BC+ is that it can use several useful ASP constructs directly
in causal laws by resorting to the underlying stable model semantics. For instance, it
allows aggregates in causal laws since aggregates can be viewed as shorthand for some
propositional formulas [7; 8]. We illustrate this advantage by formalizing in BC+ an
elaboration of the Blocks World from [5].

Let Blocks be a finite non-empty set of symbols (block names) that does not include
the symbol Table. The action description below uses the following fluent and action
constants:



– for eachB ∈ Blocks, regular fluent constant Loc(B) with the domain Blocks ∪ {Table},
and statically determined Boolean fluent constant InTower(B);

– for each B ∈ Blocks and each L ∈ Blocks ∪ {Table}, action constant Move(B,L).

In the list of static and dynamic laws, B, B1 and B2 are arbitrary elements of Blocks,
and L is an arbitrary element of Blocks ∪ {Table}.

The definition of InTower(B):

caused InTower(B) if Loc(B)=Table,
caused InTower(B) if Loc(B)=B1 ∧ InTower(B1),
default ∼InTower(B).

Blocks don’t float in the air:

constraint InTower(B).

No two blocks are on the same block:

constraint {b : Loc(b)=B}1.

Only k towers are allowed to be on the table (k > 0):

constraint {b : Loc(b)=Table}k.

The effect of moving a block:

Move(B,L) causes Loc(B)=L.

A block cannot be moved unless it is clear:

nonexecutable Move(B,L) if Loc(B1)=B.

Concurrent actions are limited by the number g of grippers:

always {bl : Move(b, l)}g.

The commonsense law of inertia:

inertial Loc(B).

6 Relation to Language BC

6.1 Review: BC

The signature σ for a BC description D is defined the same as in BC+ except that
every action constant is assumed to be Boolean. The main syntactic difference between
BC causal laws and BC+ causal laws is that the former allows only the conjunction of
atoms in the body, and distinguishes between if and if cons clauses. A BC static law is
an expression of the form

A0 if A1, . . . , Am ifcons Am+1, . . . , An (13)



(n ≥ m ≥ 0), where eachAi is an atom containing a fluent constant. It expresses, infor-
mally speaking, that every state satisfiesA0 if it satisfiesA1, . . . , Am, andAm+1, . . . , An

can be consistently assumed.
A BC dynamic law is an expression of the form

A0 after A1, . . . , Am ifcons Am+1, . . . , An (14)

(n ≥ m ≥ 0), where

– A0 is an atom containing a regular fluent constant,
– each of A1, . . . , Am is an atom containing a fluent constant, or a= t where a is an

action constant, and
– Am+1, . . . , An are atoms containing fluent constants.

It expresses, informally speaking, that the end state of any transition satisfies A0 if its
beginning state and its action satisfy A1, . . . , Am, and Am+1, . . . , An can be consis-
tently assumed about the end state.

An action description in language BC is a finite set consisting of BC static and BC
dynamic laws.

The semantics of BC is defined similar to the semantics of BC+ by using reduc-
tion PFBCm (·) to a sequence of logic programs under the stable model semantics. The
signature σD,m of PFBCm (·) is defined the same as that of PFm(·).

For any BC action description D, by PFBCm (D) we denote the conjunction of

–
i :A0 ← i : (A1 ∧ · · · ∧Am ∧ ¬¬Am+1 ∧ · · · ∧ ¬¬An) (15)

for every BC static law (13) in D and every i ∈ {0, . . . ,m};
–

(i+ 1):A0 ← i : (A1 ∧ · · · ∧Am) ∧ (i+1):(¬¬Am+1 ∧ · · · ∧ ¬¬An) (16)

for every BC dynamic law (14) in D and every i ∈ {0, . . . ,m−1};
– the formula i : (a= t∨a= f) for every action constant a and every i ∈ {0, . . . ,m−1};
– the formula (5) for every regular fluent constant c and every element v ∈ Dom(c);
– the formulas (6) and (7) for every constant i :c in σD,m.

Note how the translations (15) and (16) treat if and ifcons clauses differently by
either prepending double negations in front of atoms or not. In BC+, since the formulas
are understood under the stable model semantics, which distinguishes between A and
¬¬A, there is no need to distinguish between these two clauses.

6.2 Embedding BC in BC+

Despite the syntactic differences, language BC can be easily embedded in BC+ as fol-
lows. For any BC description D, we define the translation bc2bcp(D), which turns a
BC description into BC+, as follows:



– replace every causal law (13) with

caused A0 if A1 ∧ · · · ∧Am ∧ ¬¬Am+1 ∧ · · · ∧ ¬¬An; (17)

– replace every causal law (14) with

caused A0 if Am+1 ∧ . . . An after A1 ∧ · · · ∧Am;

– add the causal laws
caused {a= t},
caused {a= f}

for every action constant a.

Theorem 3 For any action description D in language BC, the transition system de-
scribed by D is identical to the transition system described by bc2bcp(D) in language
BC+.

The proof can be established by showing strong equivalence between the proposi-
tional formula PFBCm (D) and the propositional formula PFm(bc2bcp(D)).

6.3 Advantages of BC+ over BC

In BC, every action is assumed to be Boolean and exogenous. This is too strong an
assumption that prevents us from describing defeasible causal laws [4, Section 4.3],
action attributes [4, Section 5.6], and additive fluents [6] that BC+ and C+ are able to
express naturally. Also, syntactically, BC is not expressive enough to describe depen-
dencies among actions. For a simple example, in BC+ we can express that action a1 is
not executable when a2 is not executed at the same time as

caused ⊥ after a1 ∧ ¬a2

which is not syntactically allowed in BC.
On the other hand, the presence of choice formulas in the head of BC+ causal laws

and the different treatment of A and ¬¬A in the bodies may look subtle to those who
are not familiar with the stable model semantics for propositional formulas. Fortunately,
in many cases one can hide these constructs by using intuitive default abbreviations
introduced in Section 4 as the following example illustrates.

Consider the leaking container example from [5] in which a container loses k units
of liquid by default. This example was used to illustrate the advantages of BC over B
that is able to express defaults other than inertia. In this domain, the default decrease of
Amount over time can be represented in BC+ using the default abbreviation

default Amount=x after Amount=x+k, (18)

which stands for fluent dynamic law

caused {Amount=x} after Amount=x+k,



which can be further turned into propositional formulas

{i+1:Amount=x} ← i :Amount=x+k (19)

(i < m). On the other hand, the abbreviation (18) in BC stands for the causal law

caused Amount=x after Amount=x+k ifcons Amount=x,

which is further turned into

i+1:Amount=x ← i :Amount=x+k ∧ ¬¬(i :Amount=x)

(i < m), which is strongly equivalent to (19).

7 Relation to C+

7.1 Review: C+ in ASP

As mentioned earlier, the syntax of C+ is the same as the syntax of BC+. That is, a C+
static law is an expression of the form

caused F if G (20)

where F and G are fluent formulas. A C+ action dynamic law is an expression of the
form (20) in which F is an action formula and G is a formula. A C+ fluent dynamic law
is an expression of the form

caused F if G after H (21)

where F andG are fluent formulas andH is a formula, provided that F does not contain
statically determined constants. A C+ causal law is a static law, an action dynamic law,
or a fluent dynamic law. A C+ action description is a set of C+ causal laws.

We say that C+ action description D is definite if the head of every causal law is
either ⊥ or an atom c=v.

The original semantics of C+ is defined in terms of reduction to nonmonotonic
causal theories in [4]. In [12], the semantics of the definite C+ description is equiva-
lently reformulated in terms of reduction to propositional formulas under the the stable
model semantics as follows. 6

For any definite C+ action description D and any nonnegative integer m, the propo-
sitional formula PFC+m (D) is defined as follows. The signature of PFC+m (D) is defined
the same as PFm(D). The translation PFC+m (D) is the conjunction of

–
i :F ← ¬¬ (i :G) (22)

for every static law (20) in D and every i ∈ {0, . . . ,m}, and for every action
dynamic law (20) in D and every i ∈ {0, . . . ,m−1};

6 The translation does not work for nondefinite C+ descriptions, due to the different treatments
of the heads under nonmonotonic causal theories and under the stable model semantics.



–
i+1:F ← ¬¬(i+1:G) ∧ (i :H) (23)

for every fluent dynamic law (21) in D and every i ∈ {0, . . . ,m−1};
– the formula (5) for every regular fluent constant c and every v ∈ Dom(c).
– the formulas (6) and (7) for every constant i :c in σD,m.

Compare (22) and (23) for C+ with (3) and (4) for BC+. They are very similar
except that in (22) and (23), double negations are always introduced when if G part is
translated. This makes definite C+ descriptions not able to represent transitive closures
in cyclic graphs correctly.

7.2 Embedding Definite C+ in BC+

For any definite C+ description D, we define the translation cp2bcp(D), which turns
C+ description into BC+, as follows:

– replace every C+ causal law (20) with

caused F if ¬¬G;

– replace every C+ causal law (21) with

caused F if ¬¬G after H.

The following theorem asserts the correctness of this translation.

Theorem 4 For any definite action descriptionD in language C+, the transition system
described byD is identical to the transition system described by cp2bcp(D) in language
BC+.

Again, the proof can be established by showing the strong equivalence between the
propositional formula PFC+m (D) and the propositional formula PFm(cp2bcp(D)).

7.3 Advantages of BC+ over C+

Recall that the syntax of BC+ is identical to the syntax of C+,7 but its semantics is
given via the stable model semantics. An advantage of this approach is that it allows the
advances in ASP directly used in the context of action languages. We already obseved
that being able to use aggregates inBC+ provides a succinct representation of the Blocks
World domain.

Another advantage of BC+ is that it avoids some unintuitive behavior of C+ in repre-
senting causal dependencies among fluents. Consider two switches which can be flipped
but cannot be both up or down at the same time. If one of them is down and the other
is up, the direct effect of flipping only one switch is changing the status of that switch,

7 Recall that we understand choice formulas and aggregates as abbreviation of propositional
formulas.



Notation: s, s′ ranges over {Switch1, Switch2}; x, y ranges over {Up,Down}.
Regular fluent constants: Domains:

Status(s) {Up,Down}
Action constants: Domains:

Flip(s) Boolean

Causal laws:

Flip(s) causes Status(s)=x if Status(s)=y (x 6= y)
caused Status(s)=x if Status(s′)=y (s 6= s′, x 6= y)
inertial Status(s)
exogenous Flip(s)

Fig. 2. Two Switch

and the indirect effect is changing the status of the other switch. This domain can be
represented in BC+ as shown in Figure 2.

The description in BC+ has the following four transitions possible from the initial
state where Switch1 is Down and Switch2 is Up:
〈{St(Sw1)=Dn, St(Sw2)=Up}, {∼Flip(Sw1),∼Flip(Sw2)}, {St(Sw1)=Dn, St(Sw2)=Up}〉,
〈{St(Sw1)=Dn, St(Sw2)=Up}, {Flip(Sw1),∼Flip(Sw2)}, {St(Sw1)=Up, St(Sw2)=Dn}〉,
〈{St(Sw1)=Dn, St(Sw2)=Up}, {∼Flip(Sw1),Flip(Sw2)}, {St(Sw1)=Up, St(Sw2)=Dn}〉,
〈{St(Sw1)=Dn, St(Sw2)=Up}, {Flip(Sw1),Flip(Sw2)}, {St(Sw1)=Up, St(Sw2)=Dn}〉.

The second and the third transitions exhibit the indirect effect of the action Flip. If
this description is understood in C+, five transitions are possible from the same initial
state: in addition to the four transitions above,
〈{St(Sw1) = Dn, St(Sw2) = Up}, {∼Flip(Sw1),∼Flip(Sw2)}, {St(Sw1) = Up, St(Sw2) = Dn}〉
is also a transition according to the semantics of C+, which is obviously unintuitive.

8 Embedding ASP Programs in BC+

We defined the semantics of BC+ by reducing the language to propositional formulas
under the stable model semantics. The reduction in the opposite direction is also possi-
ble.

Any propositional formula F under the stable model semantics can be turned into
an action description in BC+ by treating every atom of F as a statically determined
fluent constant with Boolean values, and rewriting every formula F as the static law

caused F

and add
caused {c= f}

for every constant c.



Proposition 1 The stable models of a propositional formula F are exactly the states of
the transition system described by BC+ description obtained by the above translation.

The proof uses Theorem 7 from [13].

9 Implementation

Language BC+ is implemented in CPLUS2ASP [15], which was originally designed to
compute the definite fragment of C+ using ASP solvers. Version 2 of the system sup-
ports extensible multi-modal translations for other action languages. As the translation
PFC+m (D) for C+ is very similar to the translation PFm(D) for BC+, this extension is
straightforward.

For example, the BC+ description in Figure 2 is represented in the input language
of CPLUS2ASP as follows:

% File ’switch’

:- sorts
switch; status.

:- objects
s1, s2 :: switch;
on, off :: status.

:- constants
sw_status(switch) :: inertialFluent(status);
flip(switch) :: exogenousAction.

:- variables
S, S1 :: switch;
X, Y :: status.

flip(S) causes sw_status(S)=X if sw_status(S)=Y & X\=Y.

caused sw_status(S)=X if sw_status(S1)=Y & S\=S1 & X\=Y.

:- query
label :: 0;
maxstep :: 1;
0: sw_status(s1)=off & sw_status(s2)=on.

Due to lack of space we refer the reader to the system homepage

http://reasoning.eas.asu.edu/cplus2asp/

for the details of the input language.
The following is the command line to find all four transitions described in Sec-

tion 7.3.

$ cplus2asp --language=bc+ switch query=0 0



The option --language=bc+ instructs CPLUS2ASP to operate under the BC+
semantics. The 0 at the end instructs the system to find all stable models.

The following is the output:

Solution: 1
0: sw_status(s1)=off sw_status(s2)=on

1: sw_status(s1)=off sw_status(s2)=on

Solution: 2
0: sw_status(s1)=off sw_status(s2)=on

ACTIONS: flip(s1) flip(s2)

1: sw_status(s1)=on sw_status(s2)=off

Solution: 3
0: sw_status(s1)=off sw_status(s2)=on

ACTIONS: flip(s2)

1: sw_status(s1)=on sw_status(s2)=off

Solution: 4
0: sw_status(s1)=off sw_status(s2)=on

ACTIONS: flip(s1)

1: sw_status(s1)=on sw_status(s2)=off

SATISFIABLE

If the same program is run under the C+ mode,

cplus2asp --language=c+ switch query=0 0

one more solution is returned:

0: sw_status(s1)=off sw_status(s2)=on

1: sw_status(s1)=on sw_status(s2)=off

10 Conclusion

While many action languages are shown to be turned into logic programs under the
stable model semantics, language BC+ exploits the generality of the propositional for-
mulas under the stable model semantics. This approach can be further generalized by
using a more general version of the stable model semantics as the target language, such
as the first-order stable model semantics [14], which would yield a proper generaliza-
tion of BC+ to the first-order level.



Acknowledgements We are grateful to the anonymous referees for their useful com-
ments. This work was partially supported by the National Science Foundation under
Grant IIS-1319794 and by the South Korea IT R&D program MKE/KIAT 2010-TD-
300404-001.

References

1. Gelfond, M., Lifschitz, V.: Representing action and change by logic programs. Journal of
Logic Programming 17 (1993) 301–322

2. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on Artificial Intelli-
gence 3 (1998) 195–210

3. Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Preliminary
report. In: Proceedings of National Conference on Artificial Intelligence (AAAI), AAAI
Press (1998) 623–630

4. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.
Artificial Intelligence 153(1–2) (2004) 49–104

5. Lee, J., Lifschitz, V., Yang, F.: Action language BC: Preliminary report. In: Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI). (2013)

6. Lee, J., Lifschitz, V.: Describing additive fluents in action language C+. In: Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI). (2003) 1079–1084

7. Ferraris, P.: Answer sets for propositional theories. In: Proceedings of International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR). (2005) 119–131

8. Lee, J., Meng, Y.: On reductive semantics of aggregates in answer set programming. In: Pro-
ceedings of International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR). (2009) 182–195

9. Bartholomew, M., Lee, J.: Stable models of multi-valued formulas: Partial vs. total functions.
In: Proceedings of International Conference on Principles of Knowledge Representation and
Reasoning (KR). (2014) To appear.

10. Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice in answer set
programming. In: Proceedings of the AAAI Conference on Artificial Intelligence (AAAI).
(2008) 472–479

11. Lee, J., Meng, Y.: On reductive semantics of aggregates in answer set programming. In: Pro-
ceedings of International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR). (2009) 182–195

12. Lee, J.: Reformulating action language C+ in answer set programming. In Erdem, E., Lee, J.,
Lierler, Y., Pearce, D., eds.: Correct Reasoning. Volume 7265 of Lecture Notes in Computer
Science., Springer (2012) 405–421

13. Bartholomew, M., Lee, J.: Stable models of formulas with intensional functions. In: Proceed-
ings of International Conference on Principles of Knowledge Representation and Reasoning
(KR). (2012) 2–12

14. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial Intelligence
175 (2011) 236–263

15. Babb, J., Lee, J.: Cplus2asp: Computing action language C+ in answer set programming.
In: Proceedings of International Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR). (2013) 122–134

16. Ferraris, P., Lee, J., Lifschitz, V., Palla, R.: Symmetric splitting in the general theory of stable
models. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI),
AAAI Press (2009) 797–803


