
A Knowledge Module: Buying and Selling

Joohyung Lee
Department of Computer Science and Engineering

Arizona State University

Vladimir Lifschitz
Department of Computer Sciences

University of Texas at Austin

Abstract

This note shows how to formalize a small set of gen-
eral facts about buying and selling. We begin with
summarizing properties of buying/selling informally in
English, and give examples of consequences of these
assumptions. Then we formalize our assumptions in
action language C+ with additive fluents and actions
and test the adequacy of the proposed formalization
using the Causal Calculator.

Introduction

This is a “knowledge module” paper written for the
AAAI Spring Symposium on Formalizing and Compil-
ing Background Knowledge.1 It presents a small set
of general facts about buying and selling, and shows
how to formalize these facts in action language C+
(Giunchiglia et al. 2004) with symbols for additive flu-
ents (Lee and Lifschitz 2003) and additive actions (Lee
2005, Section 8.6). The organization of the paper fol-
lows the pattern suggested in the Call for Papers:

• a knowledge base written in English;

• examples of its informal consequences;

• a description of the language;

• the formalization;

• a description of testing.

Technically, our formalization is an enhancement of the
section of (Lee and Lifschitz 2003) entitled Reasoning
about Money.

Knowledge base, in English

(1) A person may own resources of various kinds. One
kind is money. Some of the other kinds are items
that may be available for sale. Every such item has
a price, which is an amount of money.

(2) Buying is a transaction between two persons, the
buyer and the seller, and every such transaction in-
volves a certain number of items of some kind that
are available for sale.

1Call for Papers: http://www.aaai.org/Symposia/
Spring/2006/sssparticipation-06.html#ss05 .

(3) Buying has the following effects:

(3a) the number of items of the kind involved in the
transaction that are owned by the buyer increases;
the increase is the same as the number of items
involved in the transaction;

(3b) the number of items of the kind involved in the
transaction that are owned by the seller decreases
by the same quantity;

(3c) the amount of money owned by the seller increases;
the increase can be calculated by multiplying the
price of the item by the number of items involved
in the transaction;

(3d) the amount of money owned by the buyer decreases
by the same quantity.

(4) When several transactions are performed simultane-
ously, the combined effect of these transactions on
the amount of any resource owned by a person can
be calculated by adding the effects of the individual
transactions.

(5) The total amount of money contributed by a person
to the transactions in which he currently participates
as a buyer does not exceed the amount of money that
he owned when these transactions started. The total
amount of any resource contributed by a person to
the transactions in which he currently participates as
a seller of this resource does not exceed the amount of
the resource that he owned when these transactions
started.

Examples of informal consequences
Example 1. Alice has $10; how many $2 roses can she
buy? Answer: 5 (or fewer).

Comments. This calculation is based on clauses (3d)
and (5) of the knowledge base. The calculation would
be similar if Alice had $100; our knowledge base does
not permit bulk discounts. Clause (5) is inconsistent
with the use of credit cards. The answer in this example
depends on the implicit assumption that there are many
roses available for sale; this assumption is retracted in
Example 5 below.

Example 2. As the previous example, except that Alice
wants also to buy a $5 orchid from the same florist.

Answer: She has enough money to get 2 roses. She can
buy the roses and the orchid at the same time, if she
wishes—there is no need to perform one action before
the other.

Example 3. As the previous example, except that Alice
wants to buy the orchid and the roses from two different
florists. The same two conclusions can be made.

Comments. The conclusion that even in this case the
two actions can be performed concurrently depends on
fact that the knowledge base does not say anything
about the buyer and the seller being at the same place
when they conduct the transaction. This conclusion is
not unreasonable; we can imagine, for instance, that
Alice performs the two transactions by sending both
florists an e-mail with individual instructions, or by
sending one of her children to get the roses and an-
other to get the orchid. In the next example we include
an additional assumption related to locations.

Example 4. As in Example 1, Alice has $10 and wants
to buy a few $2 roses, except that she can only buy
flowers in the store. Her car is currently out of gas, and
she needs at least $1 worth of gas to get there. Answer:
she’ll be able to buy 4 roses, but only after buying gas.

Comments. These conclusions depend on some facts
about driving that are not included in the knowledge
base.

Example 5. As in Example 1, Alice has $10 and wants
to buy a few roses. Her florist sells them at $2 per stem,
but he has only 2 roses left. Another florist has many
roses, but he charges $3. Answer: Alice has enough
money to buy 4 roses.

Example 6. Alice wants to make a Martini, and she has
ice at home, but neither gin nor vermouth. A bottle
of gin is available at the store for $7, and a bottle of
vermouth for $4. Will she succeed? Answer: yes, if she
has at least $11.

Example 7. Alice wants to buy a new car for $10,000.
She has $9,000 and an old car that she can sell to Bob
for $2,000. Can she get the new car? Answer: yes, but
first she’ll have to sell the old car.

Comments. Even if Bob happens to be the dealer who
is selling the new car to Alice, clause (5) still implies
that the two actions cannot be performed concurrently;
the knowledge base does not describe trade-ins or ex-
changes.

Language of the formalization
The knowledge base above is translated here from En-
glish into action language C+ (Giunchiglia et al. 2004)
with symbols for additive fluents and actions (Lee and
Lifschitz 2003), (Lee 2005, Section 8.6), as implemented
in the Causal Calculator (CCalc).2 In the rest of this
note we assume some familiarity with this language and
with the operation of CCalc.

2http://www.cs.utexas.edu/users/tag/ccalc/ .

:- sorts
agent;
resource >> item.

:- variables
Ag,Ag1 :: agent;
R :: resource;
It :: item;
N :: 1..maxAdditive;
M :: 0..maxAdditive.

:- objects
money :: resource.

:- constants
price(item,agent,agent)

:: (0..maxAdditive) + none;
has(agent,resource)

:: additiveFluent(0..maxAdditive);
spending(agent,resource)

:: additiveAction(0..maxAdditive);
buy(agent,agent,item)

:: exogenousAction;
howMany(agent,agent,item)

:: attribute(1..maxAdditive)
of buy(agent,agent,item).

Figure 1: File buy, Part 1

Formalization of the knowledge base

The formalization of the knowledge base is shown in
Figures 1–3.

The constant price takes three arguments, not just
one, because the price of an item, and even its availabil-
ity for sale, may depend on the seller and the buyer. We
did not make price a fluent, however—it is not allowed
to change. (The knowledge base is not explicit about
this.) Accordingly, we will not be able to describe re-
duced prices and bargaining.

The possible values of price are numbers from an
initial segment of nonnegative integers and the symbol
none, which is assigned as the price to the items that are
not available for sale. The upper bound maxAdditive
of the range of prices is not specified in the formalized
knowledge base; in the language of CCalc, this is the
largest integer allowed in calculations with additive flu-
ents and actions, and its value depends on the queries
that we want CCalc to answer.

The fact that has is declared as an additive fluent
constant corresponds to clause (4) in the knowledge
base. An additive fluent is a fluent with numerical val-
ues such that the effect of several concurrently executed
actions on it can be computed by adding the effects of
the individual actions (Lee and Lifschitz 2003).

The additive action constant spending is used in Fig-
ure 3, as we will see soon, to formalize clause (5). It
is similar to the action constant departing used in the

default price(It,Ag,Ag1)=none.

nonexecutable buy(Ag,Ag,It).
nonexecutable buy(Ag,Ag1,It)

if price(It,Ag1,Ag)=none.

buy(Ag,Ag1,It) increments has(Ag,It) by N
if howMany(Ag,Ag1,It)=N.

buy(Ag,Ag1,It) decrements has(Ag1,It) by N
if howMany(Ag,Ag1,It)=N.

buy(Ag,Ag1,It)
decrements has(Ag,money) by M*N
if howMany(Ag,Ag1,It)=N

& price(It,Ag1,Ag)=M
where M*N =< maxAdditive.

buy(Ag,Ag1,It)
increments has(Ag1,money) by M*N
if howMany(Ag,Ag1,It)=N

& price(It,Ag1,Ag)=M
where M*N =< maxAdditive.

Figure 2: File buy, Part 2

CCalc formalization of the Missionaries and Cannibals
problem with two boats in (Lee 2005, Section 9.2).

The action constant buy takes three arguments: the
buyer, the seller, and the kind of items that are being
bought. The number of items involved in the transac-
tion is treated as an attribute (Giunchiglia et al. 2004,
Section 5.6).

The first causal law in Figure 2 says that, by default,
an item is assumed to be not available for sale. This
default is not part of the knowledge base that we are
formalizing, but it turns out to be convenient for de-
scribing specific domains. The first of the two causal
laws beginning with nonexecutable says that a per-
son cannot buy from himself (not stated explicitly in
the English language knowledge base); the second ex-
presses our interpretation of none as the value of price.
The last four causal laws in Figure 2 are translations of
clauses (3a)–(3d).

The first two causal laws in Figure 3 describe
spending(Ag,R) as the total amount of resource R
contributed by Ag to all transactions that are being
currently executed. The third causal law represents
clause (5).

Testing

The CCalc input file shown in Figure 4 can be used to
check that our formalization of the knowledge base leads
to the expected consequences in case of Example 1.

Given a C+ action description, a query instructs
CCalc to find a path in the corresponding transition

buy(Ag,Ag1,It)
increments spending(Ag1,It) by N
if howMany(Ag,Ag1,It)=N.

buy(Ag,Ag1,It)
increments spending(Ag,money) by M*N
if howMany(Ag,Ag1,It)=N

& price(It,Ag1,Ag)=M
where M*N =< maxAdditive.

always spending(Ag,R)=<has(Ag,R).

Figure 3: File buy, Part 3

system that satisfies certain conditions, or to establish
that there is no such path. In this example, the length
maxstep of the path is 1, so that we look here for a sin-
gle transition. The two equalities following 0: express
that this transition begins in a state in which Alice has
$10, and that in the course of this transition she buys
from the florist 5 roses. There are no restrictions on the
number of roses that the florist has, in accordance with
default (c).

CCalc finds the following solution, which shows that
the action in question can be indeed executed:

0: has(alice,money)=10 has(alice,rose)=0
has(florist,money)=0 has(florist,rose)=12

ACTIONS: buy(alice,florist,rose,howmany=5)
spending(alice,money)=10
spending(alice,rose)=0
spending(florist,money)=0
spending(florist,rose)=5

1: has(alice,money)=0 has(alice,rose)=5
has(florist,money)=10 has(florist,rose)=7

If we replace 5 in the query with 6 then CCalc will

:- maxAdditive :: 12.

:- include ’buy’.

:- objects
alice,florist :: agent;
rose :: item.

price(rose,florist,Ag)=2.

:- query
maxstep :: 1;
0: has(alice,money)=10,

howMany(alice,florist,rose)=5.

Figure 4: A representation of Example 1

:- objects
alice,florist :: agent;
rose,orchid :: item.

price(rose,florist,Ag)=2.
price(orchid,florist,Ag)=5.

:- query
maxstep :: 1;
0: has(alice,money)=10,

howMany(alice,florist,orchid)=1,
howMany(alice,florist,rose)=2.

Figure 5: From a representation of Example 2

determine that the problem is unsolvable.
The main part of the formalization of Example 2 is

shown in Figure 5. As expected, CCalc finds a so-
lution, and also determines that the problem becomes
unsolvable if we replace 2 in the last line of the query
by 3. The formalization of Example 3 is similar; we
declare florist1 to be yet another agent, extend the
assumptions about prices accordingly, and replace the
last line of the query with

howMany(alice,florist1,rose)=2.

To represent Example 4, we need to include a few as-
sumptions about locations and driving (Figure 6). The
causal law beginning with nonexecutable says that Al-
ice buys anything only when she is at the same place as
the seller. The last four lines of Figure 6 express that
initially Alice is at the gas station with $10 in her purse
and no gas, and that at a certain later point in time she
buys 4 roses. The line maxstep :: 2..3 instructs
CCalc to find a sequence of 2 events satisfying these
conditions, and, if this is impossible, try to find a se-
quence of length 3. CCalc determines that 3 steps are
required: buy gas; drive; buy flowers.

The formalization of Example 5 is similar to the for-
malizations of Examples 1 and 2 above; the condition
on the actions to be performed can be expressed in the
language of CCalc by the formula

howMany(alice,florist,rose)
+howMany(alice,florist1,rose)=4.

In our formalization of Example 6 (Figure 7), the
action makeMartini does not affect the amount of gin
that Alice has, as well as the amounts of vermouth and
ice. Recall that the amount of gin is measured here
in bottles; we think of a bottle as infinitely large in
comparison with the quantity needed for one drink.

The formalization of Example 7, shown in Figure 8, is
straightforward. As expected, the goal can be achieved
in two steps, but not in one.

Conclusion

The problem of formalizing properties of buying and
selling could be solved here in a rather concise way

:- sorts
location.

:- objects
alice, gasStationAttendant,

florist :: agent;
rose,gas :: item;
gasStation, flowerShop :: location.

:- variables
L :: location.

:- constants
loc(agent) :: inertialFluent(location);
drive(location) :: exogenousAction.

price(rose,florist,Ag)=2.
price(gas,gasStationAttendant,Ag)=1.

caused loc(gasStationAttendant)=gasStation.
caused loc(florist)=flowerShop.

nonexecutable buy(alice,Ag,It)
if loc(alice)\=loc(Ag).

drive(L) causes loc(alice)=L.
nonexecutable drive(L) if has(alice,gas)=0.

:- query
maxstep :: 2..3;
0: loc(alice)=gasStation,

has(alice,money)=10,
has(alice,gas)=0;

(maxstep-1): howMany(alice,florist,rose)=4.

Figure 6: From a representation of Example 4

because of several useful features of language C+
and its CCalc implementation. This language in-
corporates a built-in solution to the frame problem
(inertialFluent declarations). Its “action language”
constructs, such as causes and nonexecutable, allow
us to avoid talking about time explicitly (except in
queries). In C+ we can declare non-Boolean fluents,
and in particular number-valued fluents, such as has.
A number-valued fluent can be declared additive, and
effects of actions on additive fluents can be described
using increments propositions.

The availability of additive fluent and action con-
stants was particularly valuable in this experiment,
because the English-language knowledge base that we
started with included assumptions about the concurrent
execution of buying/selling actions. Additive fluents
can be described also in the situation calculus (Erdem
and Gabaldon 2005).

:- objects
alice,store :: agent;
ice,gin,vermouth,martini :: item.

:- constants
makeMartini :: exogenousAction.

price(gin,store,Ag)=7.
price(vermouth,store,Ag)=4.

nonexecutable makeMartini
if has(alice,gin)=0 ++ has(alice,vermouth)=0

++ has(alice,ice)=0.

makeMartini increments has(alice,martini) by 1.

:- query
maxstep :: 1..2;
0: has(alice,money)=11,

has(alice,ice)>0,
has(alice,gin)=0,
has(alice,vermouth)=0;

(maxstep-1): makeMartini.

Figure 7: From a representation of Example 6

:- objects
alice,bob,dealer :: agent;
oldCar,newCar :: item.

price(oldCar,alice,bob)=2.
price(newCar,dealer,alice)=10.

:- query
maxstep :: 1..2;
0: has(alice,money)=9,

has(alice,oldCar)=1,
has(alice,newCar)=0;

maxstep:
has(alice,newCar)=1.

Figure 8: From a representation of Example 7

Acknowledgements

We are grateful to Michael Gelfond for suggesting that
an example of automated reasoning about money that
we have published earlier can be extended to a knowl-
edge module. Thanks to Selim Erdŏgan, Paolo Ferraris,
Wanwan Ren and anonymous referees for comments on
a draft of this note. The second author was partially
supported by the National Science Foundation under
Grant IIS-0412907.

References

Esra Erdem and Alfredo Gabaldon. Cumulative ef-
fects of concurrent actions on numeric-valued fluents.

In Proceedings of National Conference on Artificial In-
telligence (AAAI), pages 627–632, 2005.

Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz,
Norman McCain, and Hudson Turner. Nonmonotonic
causal theories. Artificial Intelligence, 153(1–2):49–
104, 2004.

Joohyung Lee and Vladimir Lifschitz. Describing ad-
ditive fluents in action language C+. In Proceedings
of International Joint Conference on Artificial Intelli-
gence (IJCAI), pages 1079–1084, 2003.

Joohyung Lee. Automated Reasoning about Actions.3

PhD thesis, University of Texas at Austin, 2005.

3http://www.cs.utexas.edu/users/appsmurf/papers/dissertation.p
.

