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Abstract

Clark’s completion is a simple nonmonotonic formalism and aspecial case of several non-
monotonic logics. Recently there has been work on extendingcompletion with “loop for-
mulas” so that general cases of nonmonotonic logics such as logic programs (under the
answer set semantics) and McCain–Turner causal logic can becharacterized by proposi-
tional logic in the form of “completion + loop formulas.” In this paper, we show that the
idea is applicable to McCarthy’s circumscription in the propositional case, with Lifschitz’s
pointwise circumscription playing the role of completion.We also show how to embed
propositional circumscription in logic programs and in causal logic, inspired by the uni-
form characterization of “completion + loop formulas.”

Key words: nonmonotonic reasoning, commonsense reasoning, knowledge representation,
circumscription, Clark’s completion, loop formulas, logic programming

1 Introduction

Clark’s predicate completion[Clark, 1978] is a simple and intuitive nonmonotonic
formalism. Normally it is applicable when the knowledge base is given as a set of
rules, and works when the rules do not yield a “cycle.”

Despite these limitations, surprisingly perhaps, predicate completion has been used
to solve many problems that were thought to require more sophisticated nonmono-
tonic logics. For instance, Reiter[1991] showed that under certain reasonable as-
sumptions, successor state axioms can be computed from action effect axioms by
predicate completion, and thus solved the frame problem when there are no state
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constraints. For state constraints, Lin[1995] argued that they should be encoded
using a notion of causality, and once they are encoded this way, successor state
axioms can once again be computed using predicate completion for a class of
causal rules that includes almost all of the benchmark planning domains[Lin, 1995;
Lin, 2003].

For the “definite” fragment of McCain–Turner causal logic[McCain and Turner,
1997; Giunchigliaet al., 2004a], the problem of determining whether a theory is
consistent can be reduced to the satisfiability problem for propositional logic by
the process of “literal completion”—a translation similarto Clark’s completion.
This idea has led to the creation of the Causal Calculator (CCALC) 1 , a system
for representing commonsense knowledge about action and change. After turn-
ing a definite causal theory into a classical propositional theory, CCALC finds the
models of the latter by invoking a satisfiability solver, such asCHAFF 2 , SATO 3

andRELSAT 4 , which in turn correspond to the models of the given causal theory.
CCALC has been successfully applied to several challenge problems in the theory
of commonsense knowledge[Lifschitz, 2000], [Lifschitz et al., 2000], [Campbell
and Lifschitz, 2003], [Akmanet al., 2004] and to the formalization of multi-agent
computational systems[Artikis et al., 2003a; Artikiset al., 2003b].

In logic programming where predicate completion is best known and commonly
referred to as program completion semantics, its relationships with other semantics,
especially the answer set semantics (also known as the stable model semantics) of
Gelfond and Lifschitz[1988], have been studied quite extensively. First of all, it
is well known that an answer set for a normal logic program is also a model of
its completion, while the converse, generally, does not hold. Fages[1994] showed
that a certain syntactic condition, which is now called “tightness,” is sufficient for
establishing the equivalence between them. Erdem and Lifschitz [2003] generalized
Fages’ theorem and extended it to programs with nested expressions (in the sense
of [Lifschitz et al., 1999]) in the bodies of rules.

Instead of looking for conditions that will guarantee the equivalence between the
completion semantics and the answer set semantics, Lin and Zhao[2002] consid-
ered how to strengthen completion to make it equivalent to the answer set seman-
tics. The idea is that, since the presence of cycles is what causes the mismatch be-
tween the models of the completion and the answer sets for a program, one should
address the problem raised by them directly. The completionsemantics captures
the intuition that for an atom to be true, one of the bodies of the rules with the
atom as the head must be true. Similarly, Lin and Zhao associated with each loop
a “loop formula” that captures the intuition that for the atoms in a loop to be true,
there must be a rule whose head belongs to the loop, and whose body is true but its

1 http://www.cs.utexas.edu/users/tag/ccalc/ .
2 http://www.ee.princeton.edu/˜chaff/ .
3 http://www.cs.uiowa.edu/˜hzhang/sato.html .
4 http://www.almaden.ibm.com/cs/people/bayardo/resour ces.html .
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positive part does not have any atom in the loop. They showed that a set of atoms is
an answer set for a nondisjunctive logic program iff it is a model of the completion
and all loop formulas of the program. This idea allows SAT solvers to be used for
finding answer sets and thus has led to the creation of SAT-based answer set solvers
ASSAT [Lin and Zhao, 2002] andCMODELS-2 [Giunchigliaet al., 2004b].

As it turned out, program completion and loop formulas are not limited to nondis-
junctive logic programs. Lee and Lifschitz[2003] extended the Lin/Zhao theorem
to disjunctive logic programs and, more generally, to arbitrary programs with nested
expressions. Lee[2004] showed that a similar result can be obtained for McCain
and Turner causal logic and based on this, showed how to embedlogic programs in
causal logic.

Given these results, one wonders how far this idea of “completion + loop formu-
las” can go. Is it general enough to capture other nonmonotonic logics? In this
paper, we answer this question positively for circumscription [McCarthy, 1980;
McCarthy, 1986] in the propositional case. Thus it is interesting to observethat
these apparently different nonmonotonic formalisms have auniform view of “com-
pletion+loop formulas.” Using this idea, we show how to embed circumscription in
logic programs and in McCain–Turner causal logic.

Hopefully, these results will lead to good implementationsof propositional cir-
cumscription using SAT solvers and/or answer set solvers. This would be a signifi-
cant progress in nonmonotonic reasoning as circumscription has found applications
in commonsense reasoning, model-based diagnoses, discourse understanding, and
others. While many of these applications in general make useof first-order cir-
cumscription, they can be solved using propositional circumscription when their
domains are given and finite.

This paper is organized as follows. In Section 2, we introduce some notations that
we will use in the rest of the paper, and recast the definition of circumscription in
the propositional case. In Section 3, we discuss Clark’s completion, and compare it
with Lifschitz’ pointwise circumscription [1987], as the latter will serve as “com-
pletion” for our purpose. In Section 4, we introduce the notion of a loop via the
notion of a dependency graph. Section 5 contains the main technical results of the
paper, which shows that circumscription can be characterized by completion plus
loop formulas. It also discusses some related work. Based onthe results in Sec-
tion 5, Section 6 shows how circumscription can be embedded in logic programs
under the answer set semantics and in McCain–Turner causal logic. We conclude
in Section 7.
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2 Logical Preliminaries

A literal is a (propositional) atom or the negation of an atom. A(propositional)
formulais formed from literals using propositional connectives. Aclauseis a finite
set of literals. We identify a clauseC with the disjunction of its elements. It is well
known that any formula can be transformed into an equivalentset of clauses.

We use variables that range over0-place connectives> and⊥, and quantify over
them. For instance, ifA(z, p1, . . . , pk) is a propositional formula built with propo-
sitional variablesz, p1, . . . , pk, we write∀zA(z, p1, . . . , pk) to denote the formula
A(>, p1, . . . , pk)∧A(⊥, p1, . . . , pk), and similarly∃zA(z, p1, . . . , pk) to denote the
formulaA(>, p1, . . . , pk) ∨ A(⊥, p1, . . . , pk).

In the following, we sometimes write a formulaA asA(P ) or A(P,Q) for tuples
P andQ of atoms. This way, whenX is a tuple of variables and atoms of the same
length asP , we useA(X) or A(X,Q) to denote the result of simultaneously re-
placing all elements ofP in A by the corresponding elements ofX. We sometimes
identify a tuple with the corresponding set when there is no confusion.

ForP = (p1, ..., pn),Q = (q1, ..., qn),

P ≤ Q stands for
∧

1≤i≤n(pi ⊃ qi),

P = Q stands for
∧

1≤i≤n(pi ≡ qi),

P < Q stands for(P ≤ Q) ∧ ¬(P = Q).

Let P andZ be tuples of atoms, andA(P, Z) a formula. The circumscription ofP
in A(P, Z) with atoms inZ allowed to vary, is the following formula:

A(P, Z) ∧ ¬∃XY (A(X, Y ) ∧X < P ). (1)

The formula is denoted by CIRC[A(P, Z);P ;Z], which may also be written as
CIRC[A(P );P ] whenZ is empty.

The second conjunct of formula (1) is actually a propositional formula as in the
following example:

CIRC[p ∨ q ; p] = (p ∨ q) ∧ ¬∃x((x ∨ q) ∧ (x ⊃ p) ∧ (x 6≡ p))

= (p ∨ q) ∧ ¬

[

(

(>∨ q) ∧ (> ⊃ p) ∧ (> 6≡ p)
)

∨

(

(⊥ ∨ q) ∧ (⊥ ⊃ p) ∧ (⊥ 6≡ p)
)

]

≡ (p ∨ q) ∧ ¬(p ∧ q).

(2)
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The models of the circumscription are{p} and{q}. 5

There is a weaker notion of circumscription that will turn out to be important here.
This is Lifschitz’spointwisecircumscription[Lifschitz, 1987]. In the propositional
case, given an atomp and a tupleZ of atoms, the pointwise circumscription ofp in
A(p, Z) with Z allowed to vary is

A(p, Z) ∧ ¬∃xY (A(x, Y ) ∧ x < p), (3)

and the pointwise circumscription of a tupleP of atoms inA with Z allowed to
vary is the conjunction of the pointwise circumscription ofeachp ∈ P in A with
Z allowed to vary. It can be seen that (3) is equivalent to CIRC[A; p;Z]. Thus the
pointwise circumscription of a tupleP of atoms inA with Z allowed to vary is
∧

p∈P CIRC[A; p;Z].

For two interpretations (i.e., truth assignments)I, J of the same signature, we write
I ≤P ;Z J 6 if

• I andJ agree on all atoms that are not inP andZ, and
• for eachpi in P , if pi ∈ I thenpi ∈ J .

We writeI <P ;Z J if I ≤P ;Z J but notJ ≤P ;Z I.

The following proposition (Proposition 1 from[Lifschitz, 1985]) provides a model-
theoretic account of circumscription.

Proposition 1 An interpretationI is a model ofCIRC[A;P ;Z] iff it is minimal 7

onP with Z allowed to vary, that is,

• I is a model ofA, and
• there is no modelJ ofA such thatJ <P ;Z I.

For example, among the three models ofp∨q, {p, q} is not a model of CIRC[p∨q; p]
because{q} <p {p, q}.

5 We identify an interpretation with the set of atoms that are true in it.
6 We may even writeI ≤P J whenZ is empty.
7 Recall Footnote (5).
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3 Completion and Pointwise Circumscription

Clark’s completion turns “if” conditions into “if and only if” conditions. For in-
stance, given the following rules aboutWet,

Raining⊃ Wet

SprinklerOn⊃ Wet,

Clark’s completion, when applied toWet, yields

Wet≡ Raining∨ SprinklerOn.

The underlying assumption here is what has been called the closed world assump-
tion [Reiter, 1978]: the given knowledge base contains complete knowledge about
what can makeWettrue. In particular, if there is no rule about a proposition,sayp,
then it is assumed to be false:p ≡ ⊥.

In general, we have the following definition.

Definition 1 LetA be a set of formulas of the formG ⊃ p whereG is a formula
and p is an atom, and suppose that the following are the only implications inA
with the consequentq: G1 ⊃ q, . . . , Gn ⊃ q. Then Clark’s completion ofA on q is
q ≡ G1 ∨ · · · ∨ Gn. Notice that whenn = 0, this isq ≡ ⊥. For a setP of atoms,
Clark’s completion ofA onP is the conjunction of Clark’s completions ofA on p,
for all p ∈ P .

Logically, Clark’s completion onq is equivalent to adding toA the sentenceq ⊃
G1 ∨ · · · ∨Gn, i.e., making theweakestsufficient condition ofq also its necessary
condition.

Unfortunately, Clark’s completion is not quite fit here for the following reasons.
One problem is that it is defined for formulas of the formG ⊃ p, rather than for
arbitrary formulas. Thus Clark’s completion can be compared with circumscription
only when formulas are given in this special form. Moreover,Clark’s completion
is sensitive to the syntactic form of the given knowledge base. For instance, while
¬p ⊃ q and¬q ⊃ p are logically equivalent, their Clark’s completions on{p, q}
are not.

Fortunately, there is another notion from the literature, Lifschitz’s pointwise cir-
cumscription[Lifschitz, 1987], that generalizes Clark’s completion, and is syntax
independent. To see this, notice first that, as we have mentioned above, Clark’s
completion onp essentially turns a “weakest” sufficient condition ofp into its nec-
essary condition. Formally, we can define the notion ofweakest sufficient conditions
as follows[Lin, 2001].
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Given a propositional formulaA and an atomq, a formulaϕ that does not mentionq
is called aweakest sufficient conditionof q if

• A |= ϕ ⊃ q, and
• for any other formulaψ such that it does not mentionq andA |= ψ ⊃ q, we have

thatA |= ψ ⊃ ϕ.

For anyA andq, weakest sufficient conditions ofq always exist and are unique up
to logical equivalence underA. In the following, given a formulaA and a setP of
atoms, we useAP

⊥ to denote the result of replacing all occurrences of atoms from
P in A by⊥. In this section,P will always be a singleton.

Proposition 2 [Lin, 2001] For any formulaA and any atomq, the formula¬A{q}
⊥

is a weakest sufficient condition ofq.

Thus we could extend Clark’s completion to arbitrary formulas as follows: Given
any formulaA and any setP of atoms, the generalized Clark’s completion ofA on
P is the conjunction ofA and formulasp ⊃ ¬A{p}

⊥ for all p ∈ P . As it turned out,
this is exactly Lifschitz’s pointwise circumscription ofP in A.

Proposition 3 For any formulaA and any atomq, CIRC[A; q] is equivalent to
A ∧ (q ⊃ ¬A

{q}
⊥ ).

Proof ¬∃x(A(x) ∧ x < q) is equivalent to

¬[(A(>) ∧ > < q) ∨ (A(⊥) ∧ ⊥ < q)],

which is equivalent to

¬[(A(>) ∧ q ∧ ¬q) ∨ (A(⊥) ∧ q)],

which is equivalent toq ⊃ ¬A{q}
⊥ .

So in the following, we shall use the term “completion” and “pointwise circum-
scription” interchangeably, and for our purpose here, we also call the pointwise
circumscription ofP in A with Z allowed to vary, thecompletion ofA onP with
Z allowed to vary.

The following proposition shows that the completion ofA is equivalent to Clark’s
completion ofB for someB that is equivalent toA.

Proposition 4 Let A be a formula, andP the set of atoms in it. There is a for-
mulaB of the required form in the definition of Clark’s completion such thatA is
equivalent toB, and the completion ofA onP is equivalent to Clark’s completion
ofB onP .
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Proof Let B0 be a set of non-tautological clauses that is equivalent toA. Now
for eachq ∈ P , each clause that containsq, sayG ∨ q, generate the rule¬G ⊃ q,
and letB be the resulting theory. ClearlyB is equivalent toB0, thus toA as well.
Clark’s completion ofB onP is the conjunction ofB andq ⊃ ¬B{q}

⊥ for all q ∈ P .
ButB is equivalent toA, andB{q}

⊥ is equivalent toA{q}
⊥ . So the proposition follows.

Lifschitz [1987] showed that circumscription always entails pointwise circumscrip-
tion (completion), but the converse does not hold in general. For instance, CIRC[p ≡
q; p, q] yields¬p ∧ ¬q. But the pointwise circumscription of(p, q) in p ≡ q is
equivalent top ≡ q. The reason is that pointwise circumscription (completion),
like Clark’s completion, does not handle “loops,” such as the one betweenp andq
in the formulap ≡ q. The main purpose of this paper is to formally define what
we mean by loops in a formula, associate a constraint with each loop, and show
that propositional circumscription is equivalent to the conjunction of pointwise cir-
cumscription and the constraints for all loops. We begin by defining the notion of a
loop. Like in logic programs, we appeal to the notion of a dependency graph.

4 Dependency Graphs and Loops

A clause likep∨ q∨¬r can be rewritten as(r∧¬q) ⊃ p or (r∧¬p) ⊃ q. So if one
wants to count ways an atom can be “derived,” this clause needs to be counted for
bothp andq. In general, if a clauseC contains an atomp, then it can be rewritten as
¬(C \ {p}) ⊃ p. 8 This motivates the following definition of a dependency graph
of a set of clauses.

Definition 2 LetA be a set of clauses, andP a set of atoms. The(positive) depen-
dency graphofA onP is the directed graph such that

• the vertices are the atoms inP , and
• an edge goes from vertexp to vertexq if there is a clauseC in A such that
p,¬q ∈ C.

A nonempty subsetL of P is called aloopof A onP if, for every pairp, q of atoms
in L, there exists a path of non-zero length fromp to q in the dependency graph of
A on P such that all vertices in this path belong toL. For example, consider the
following setA1 of clauses:

{p ∨ ¬q, ¬p ∨ q, r ∨ ¬s, ¬r ∨ s, p ∨ r}.

8 Recall that¬(C \ {p}) is equal to
∧

l∈C\{p} l wherel denotes a literal complementary to
l, according to the convention of identifying a clause with the disjunction of its literals.
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p q r s

Fig. 1. The dependency graph ofA1 on{p, q, r, s}

This theory has two loops on{p, q, r, s}, {p, q} and{r, s}, as shown by its depen-
dency graph in Figure 1.

We can make the definition of a loop slightly more general by dropping the re-
quirement that the paths be of non-zero length. That is, a nonempty subsetL of P
is called ageneralized loopof A on P if, for every pairp, q of atoms inL, there
exists a path fromp to q in the dependency graph ofA onP such that all vertices
in this path belong toL. In other words, a nonempty subsetL of P is a generalized
loop ofA onP if the subgraph of the dependency graph ofA onP induced byL
is strongly connected. Note that a singleton subset{p} of P is a loop if and only
if there is an edge fromp to itself in the dependency graph. On the other hand,
every singleton subset of atoms is a generalized loop, regardless of the presence of
such edges. For instance, in addition to the loops that we found before,A1 has four
other generalized loops on{p, q, r, s}: {p}, {q}, {r}, {s}. As we will see later, the
notion of a generalized loop simplifies the statements of many of our results such
as Theorem 1 below. It will also allow us to view loop formulasas a generalization
of completion.

For an arbitrary formulaA, its dependency graph can be defined by considering a
setB of clauses that is equivalent toA:

Definition 3 Given a formulaA, if B is a finite set of clauses that is equivalent
to A, then the dependency graph ofB on P is called the dependency graph ofA
on P underB. Similarly, the loops ofB on P are called the loops ofA on P
underB, and the generalized loops ofB on P are called the generalized loops
ofA onP underB.

5 Computing the Models of Propositional Circumscription

We begin with the simple case when there are no constants (atoms) allowed to vary.

5.1 The Basic Case

Recall that for any formulaA and any setP of atoms, byAP
⊥ we denote the result

of replacing all occurrences of atoms fromP in A by⊥.

Theorem 1 Let A be a formula, andB a finite set of clauses that is equivalent
toA. The following formulas are equivalent to each other.
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(a) CIRC[A;P ].
(b) The conjunction ofA and

∨

K ⊃ ¬AK
⊥

9

for all subsetsK ofP .
(c) The conjunction ofA and

∧

L ⊃ ¬AL
⊥ (4)

for all generalized loopsL ofA onP underB.

In view of the theorem, circumscribing a theory can be regarded as just adding to
it formulas (4) for all generalized loops. WhenL is a loop, we call formula (4) the
conjunctive loop formulaof L for CIRC[A;P ]. Notice that(c) can also be viewed
as the conjunction of the completion ofA onP and all conjunctive loop formulas.

Since conditions(b) and(c) are equivalent to each other, any intermediate condition
between the two is also equivalent to(a)–(c):

Corollary 1 The following formulas are equivalent to each of formulas(a)–(c) of
Theorem 1.

(d) The conjunction ofA and
∧

K ⊃ ¬AK
⊥

for all nonempty subsetsK ofP .
(e) The conjunction ofA and

∨

L ⊃ ¬AL
⊥ (5)

for all generalized loopsL ofA onP underB.

Note that in(d), K should be nonempty. Otherwise, the formula is unsatisfiable.
WhenL is a loop, we call formula (5) thedisjunctive loop formulaofL for CIRC[A;P ].
Note also that (4) and (5) are the same whenL is a singleton. The two formulas can
be different only whenL is a loop.

Another corollary of Theorem 1 is when the theory has no loops:

Corollary 2 For any formulaA, if there is an equivalent setB of clauses such that
there are no loops ofB onP , thenCIRC[A;P ] is equivalent to the completion ofA
onP .

Corollary 2 is more general than Proposition 3 in thatP is not required to be a
singleton. We can still compute circumscription by completion if there are no loops.
For instance, CIRC[p ∨ q; p, q] is equivalent to the completion ofp ∨ q on {p, q}.
On the other hand, Corollary 2 does not apply even whenP is a singleton ifB has
a loop. However, such a loop can only come from a tautologicalclause, which can

9 When
∨

is applied to a setK as in the antecedent, it stands for the disjunction of all
elements ofK.

∧

is similar.
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be dropped without affecting the models. After then Proposition 3 follows from
Corollary 2.

For an example theory that has loops, consider the theoryA1 and the tupleP =
(p, q, r, s) in the previous section. This theory has three models,{p, q}, {r, s} and
{p, q, r, s}, among which the last is not a model of CIRC[A1;P ] because{p, q} <P

{p, q, r, s}. Theorem 1 tells us that the models of the circumscription can be found
by computing the models of the completion and loop formulas.As we have seen in
the previous section, there are two loops ofA1 onP , {p, q} and{r, s}. Their loop
formulas arep ∧ q ⊃ ¬r andr ∧ s ⊃ ¬p, respectively. Among the models of the
completion ofA1 on P , {p, q, r, s} does not satisfy loop formulap ∧ q ⊃ ¬r (or
r∧s ⊃ ¬p), so that it is not a model of CIRC[A1;P ]. The other two satisfy all loop
formulas, and thus are the models of the circumscription.

The view of circumscription in terms of “completion+loop formulas” sometimes
helps us observe why two circumscriptions are equivalent toeach other. For in-
stance in the example above, even if we restrict atoms to be circumscribed in to
be only{p, q}, the result remains the same. The completion ofA1 on {p, q} is a
subset of the completion ofA1 on P , so that all three models ofA1 still satisfy
the completion ofA1 on {p, q}. Set{p, q, r, s} still does not satisfy loop formula
p ∧ q ⊃ ¬r for CIRC[A1; p, q], which is also a loop formula for CIRC[A1;P ].

According to Theorem 1, to compute the circumscription ofP in A with all other
atoms fixed,

(1) one first convertsA into a finite setB of clauses,
(2) constructs the dependency graph ofB onP ,
(3) finds the loops of the dependency graph, and then
(4) computes loop formulas.

In the first step, a formula may be equivalent to many different sets of clauses,
which in turn may yield different dependency graphs. (For instance, formulas

{p ∨ q ∨ ¬r, p ∨ ¬q ∨ ¬r, ¬p ∨ ¬q ∨ r, ¬p ∨ ¬q ∨ ¬r}

and
{p ∨ ¬r, ¬p ∨ ¬q}

are equivalent to each other, but their dependency graphs on{p, q, r} are different.)
For our purpose, everything else being equal, the fewer loops that a dependency
graph has the better. We believe that in general, given a formulaA, it is compu-
tationally hard to find an equivalent set of clauses that would yield the smallest
number of loops. But we do not have a proof, and it remains an open question.

A standard way of converting a formulaA (assuming all connectives other than¬,
∧, ∨ are eliminated) into an equivalent set of clauses is first to distribute¬ over∧
and∨ until it applies to atoms only, and then to distribute∨ over∧ until it applies
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to literals only. However, when distributing∨ over∧, the size of the formula could
grow exponentially in the number of atoms inA. To avoid the problem, one can
introduce new atoms. We will see in Section 5.2 that these newatoms can be treated
similarly to atoms that are allowed to vary.

Once converted into an equivalent setB of clauses (without introducing new atoms),
its dependency graph can be constructed in time polynomial to the number of atoms
in A. However, the number of loops can be exponential in the worstcase. From
the complexity point of view, we cannot do much better about this as it turned
out inevitable assuming a conjecture from the theory of computational complexity
which is widely believed to be true. Lifschitz and Razborov [2005] showed that any
equivalent translation from logic programs to propositional formulas involves a sig-
nificant increase in size assuming the conjecture. A modification of their theorem
holds for circumscription as well (Vladimir Lifschitz, personal communication).

One can also construct a dependency graph directly without actually generating a
set of clauses. Given a formulaA, NNF(A) denotes thenegation normal formof
A, that is, a formula obtained fromA by distributing¬ over∧ and∨ until it applies
to atoms only. Every formulaA can be written in the formC1 ∧ · · · ∧ Cn (n ≥ 1)
where eachCi is not a conjunction. We call eachCi conjunctive componentof A.

Definition 4 LetA be a formula, andP a set of atoms. The(positive) dependency
graphofA onP is the directed graph such that

• the vertices are the atoms inP , and
• an edge goes from vertexp to vertexq if there is a subformulaF ∨ G of some

conjunctive component of NNF(A) such thatp occurs inF and¬q occurs inG,
or the other way around.

Theorem 1 still holds if we replace “for all generalized loopsL ofA onP underB”
with “for all generalized loopsL of A onP ” under this definition. This is justified
by the following lemma:10

Lemma 1 LetA be a formula in negation normal form. There exists an equivalent
setB of clauses such that two literalsl1, l2 belong to the same clause inB iff there
is a subformulaF ∨G ofA such thatl1 ∈ F andl2 ∈ G, or the other way around.

Proof This can be proved by structural induction.

When we are given a set of clauses rather than an arbitrary formula to circumscribe
in, Theorem 1 may yield a shorter reformulation of circumscription:

Corollary 3 For any finite setA of clauses,CIRC[A;P ] is equivalent to the con-

10 The lemma is due to Paolo Ferraris.
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junction ofA and
∧

L ⊃
∨

C∈A

C∩L6=∅,C∩L=∅

¬(C \ L)

for all generalized loopsL ofA onP .

Proof Note first that for every clauseC such thatC ∩ L = ∅, CL
⊥ is equivalent to

C \L. By Theorem 1, it is sufficient to show that every model ofA does not satisfy
¬CL

⊥ such thatC ∩ L 6= ∅ orC ∩ L = ∅:

• For every clauseC in A such thatC ∩ L 6= ∅, CL
⊥ is a tautology, so that¬CL

⊥ is
unsatisfiable.

• For every clauseC in A such thatC ∩ L = ∅, C entailsCL
⊥, so that every model

of A, which satisfiesC, does not satisfy¬CL
⊥.

5.2 Varying Constants

The following proposition[Lifschitz, 1985, Proposition 2] shows how to eliminate
varied constants in general:

Proposition 5 CIRC[A(P, Z);P ;Z] is equivalent to

A(P, Z) ∧ CIRC[∃zA(P, z);P ].

Thus circumscription with varied constants reduces to the basic case to which The-
orem 1 applies: we consider the dependency graph of∃zA(P, z).

Alternatively, we can generalize the definitions of a dependency graph and a loop.
Intuitively, paths are allowed to have varied atoms and their negations as interme-
diate vertices. Given a setX of literals,X is the set of literals complementary to
literals inX.

Definition 5 LetA be a set of clauses, andP , Z be sets of atoms. The(positive)
dependency graphofA onP withZ varied is the directed graph such that

• the vertices are the literals inP ∪ Z ∪ Z, and
• an edge goes from vertexl1 to vertexl2 if there is a clauseC in A such that
l1, l2 ∈ C.

The definition is a generalization of Definition 2 in that it reduces to Definition 2
whenZ is empty. Similarly to Definition 3, we can also extend Definition 5 to an
arbitrary formula by referring to an equivalent set of clauses.

Let L0 be the set of literals such that, for every pairl1, l2 of literals inL0, there
exists a path of non-zero length froml1 to l2 in the dependency graph ofA on P
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p

zq

¬z

Fig. 2. The dependency graph ofA2 on{p, q} with {z} varied

with Z allowed to vary such that all vertices in this path belong toL0. A nonempty
setL = L0 \ (Z ∪ Z) is called aloop of A on P with Z allowed to vary. A
generalized loopof A onP with Z allowed to vary is defined similarly to the case
when no atoms are allowed to vary, by dropping the requirement that the paths be
of non-zero length.

For example,A2 is the set of clauses

{p ⊃ ¬z, ¬z ⊃ q, q ⊃ p},

and its dependency graph on{p, q} with {z} allowed to vary is shown in Figure 2.
There are three generalized loops:{p}, {q}, {p, q}, and only the last one is a loop.

The definition of a loop above is intuitive, but here is another definition that is more
economical in terms of the number of loops we get. Given a setA of clauses and a
tuple of atomsZ = (zn, . . . z1), Ak (0 ≤ k ≤ n) is defined as follows:

• A0 = A,
• Ak = Ak−1 ∪ {C1 ∪ C2 : C1 ∪ {zk}, C2 ∪ {¬zk} ∈ Ak−1}.

TheZ-collapsed set ofA is obtained fromAn by removing clausesC such thatC
contains a pair of complementary literals, or there is a proper subsetC ′ of C such
thatC ′ ∈ An.

Let AZ be theZ-collapsed set ofA, andA′
Z the set of clauses inAZ that do not

mention atoms inZ. We could then define the loops and the generalized loops ofA

onP with Z allowed to vary to be the loops and the generalized loops ofA′
Z onP .

A loop (generalized loop, respectively) according to this alternative definition is
also a loop (generalized loop, respectively) according to the definition above, but
not vice versa. The following result holds under either definition.

Theorem 2 Let A(P, Z) be a formula, andB a finite set of clauses equivalent
toA(P, Z). The following formulas are equivalent to each other.

(a) CIRC[A(P, Z);P ;Z].
(b) The conjunction ofA(P, Z) and

∨

K ⊃ ∀z¬A(P, z)K
⊥

for all subsetsK ofP .

14



(c) The conjunction ofA(P, Z) and
∧

L ⊃ ∀z¬A(P, z)L
⊥ (6)

for all generalized loopsL ofA(P, Z) onP underB withZ varied.

When L is a loop, we call formula (6) theconjunctive loop formulaof L for
CIRC[A(P, Z);P ;Z].

Theorem 2 follows from Theorem 1, Proposition 5 and the following lemma.

Lemma 2 LetA(P, Z) be a finite set of clauses. Formula∃zA(P, z) is equivalent
to the set of all clauses in theZ-collapsed set ofA that do not mention atoms inZ.

Similarly to Theorem 1, we have the following corollary to Theorem 2.

Corollary 4 The following formulas are equivalent to each of formulas(a)–(c) of
Theorem 2.

(d) The conjunction ofA(P, Z) and
∧

K ⊃ ∀z¬A(P, z)K
⊥

for all nonempty subsetsK ofP .
(e) The conjunction ofA(P, Z) and

∨

L ⊃ ∀z¬A(P, z)L
⊥

for all generalized loopsL ofA onP underB withZ varied.

WhenL is a loop, we call formula (6) thedisjunctive loop formulaofL for CIRC[A(P, Z);P ;Z].
We can again divide each of(c) and(e) into two parts: completion and loop formu-
las. Recall that the completion of a formulaA(P, Z) onP with Z allowed to vary
is defined to be the pointwise circumscription ofP in A with Z allowed to vary,
which is equivalent to the conjunction ofA(P, Z) and formulas

p ⊃ ∀z¬A(P, z)
{p}
⊥

for all atomsp in P .

Similarly to Corollary 2, we get the following corollary to Theorem 2:

Corollary 5 For any formulaA, if there is an equivalent setB of clauses such
that there are no loops ofA on P underB with Z varied, thenCIRC[A;P ;Z] is
equivalent to the completion ofA onP withZ varied.

In Section 5.1 we mentioned the use of new atoms to avoid exponential blow-up in
converting a formula into a conjunctive normal form. Here isone standard way to
do so:

15



CLAUSIFY*(F ,Γ)
if F is a conjunction of clausesC1∧· · ·∧Ck, then exit with{C1, . . . , Ck}∪Γ;
G := a minimal non-literal subformula ofF ;
u := a new atom;
F := the result of replacingG in F by u;
CLAUSIFY* (F,Γ∪ CLAUSIFY(u ≡ G)).

( CLAUSIFY(F ) returns a set of clauses equivalent toF by the method described in
Section 5.1.)

Let A(P, Z) be a formula andA′(P, Z, S) the result of CLAUSIFY*(A(P, Z),∅)
which introduces a setS of new atoms. ThenA(P, Z) is equivalent to∃sA′(P, Z, s).
According to Proposition 5,

CIRC[A(P, Z);P ;Z]≡CIRC[∃sA′(P, Z, s);P ;Z]

≡∃sA′(P, Z, s) ∧CIRC[∃zsA′(P, z, s);P ].

So it is sufficient to find the loops of the dependency graph of∃zsA′(P, z, s).
By Lemma 2, we can consider the dependency graph of(Z ∪ S)-collapsed set
of A′(P, Z, S) that do not mention atoms inZ ∪ S.

Similarly to Definition 4, we can also define a dependency graph and a loop of an
arbitrary formula, without referring to an equivalent set of clauses.

Definition 6 LetA be a formula, andP , Z be sets of atoms. The(positive) depen-
dency graphofA onP withZ varied is the directed graph such that

• the vertices are the literals inP ∪ Z ∪ Z, and
• an edge goes from vertexl1 to vertexl2 if there is a subformulaF ∨ G of some

conjunctive component of NNF(A) such thatl1 occurs inF and l2 occurs inG,
or the other way around.

Once we define a dependency graph, the definition of a loop is the same as before.
Theorem 2 still holds if we replace “for all generalized loopsL of A(P, Z) on P
underB” with “for all generalized loopsL of A(P, Z) onP ” under this definition.

Similarly to Corollary 3, when we are given a set of clauses rather than an arbi-
trary formula to circumscribe in, Theorem 2 may yield a shorter reformulation of
circumscription:

Corollary 6 For any finite setA of clauses,CIRC[A;P ;Z] is equivalent to the
conjunction ofA and

∧

L ⊃ ∀z
∨

C∈A, C∩L=∅

¬(C \ L)
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for all generalized loopsL ofA onP withZ varied.

Note that unlike Corollary 3 we do not restrict the disjunction to be overC∩L 6= ∅.
Indeed, if we did, the statement of the corollary would become incorrect. Consider
a setA3 of clauses

{¬p ∨ q,¬q ∨ p,¬r ∨ s,¬s ∨ q}.

Set{p, q, r, s} is one of the models of CIRC[A3; p, q; s], but it does not satisfy the
modified (wrong) loop formula,p ∧ q ⊃ ⊥.

Proof of Corollary 6 Note first that for every clauseC such thatC ∩ L = ∅,
CL

⊥ is equivalent toC \ L. By Theorem 2, it is sufficient to show that every model
of A does not satisfy¬CL

⊥ such thatC ∩ L 6= ∅: for every clauseC in A such that
C ∩ L 6= ∅, CL

⊥ is a tautology, so that¬CL
⊥ is unsatisfiable.

5.3 Relating to Some Known Results

Reiter[1982] was the first one to show some relationships between Clark’s predi-
cate completion and circumscription. He proved that if a theory is Horn in a pred-
icateP , then the circumscription ofP logically entails the completion onP . In
the propositional case, our new contributions are as follows. We showed that Lifs-
chitz’s pointwise circumscription extends Clark’s completion to arbitrary theories,
not just those that are Horn. With this extension of completion, we gave a general
syntactic condition that guarantees the equivalence between circumscription and
completion. Also, we defined notions of loops and loop formulas, and showed that
circumscription can be reduced to “completion + loop formulas” like answer sets in
logic programming but with completion here defined to be pointwise circumscrip-
tion.

Traditionally, computing circumscription means finding classes of first-order the-
ories for which their circumscriptions are equivalent to first-order theories (e.g.,
[Lifschitz, 1985; Lifschitz, 1987] and[Dohertyet al., 1997] ). In the propositional
case, circumscription is always equivalent to a propositional theory. So the problem
in the propositional case is not whether circumscription can be reduced to proposi-
tional logic, but how economically this can be done.

In logic programming, when the positive dependency graph ofa program has no
loops, the program is called “tight,” and the answer sets fora tight program are
exactly the models of the completion. Corollaries 2 and 5 in this paper address
a similar syntactic condition for circumscription in the propositional case. In the
following, we show that some of the known results about circumscription can easily
be explained by our corollaries.

We say that an occurrence of an atom in a formula ispositiveif it is in the range of
an even number of negations, andnegativeotherwise (assuming that⊃ and≡ have
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been eliminated in favor of other connectives). A formulaA is positiverelative
to P if all occurrences ofP in it are positive, andnegativeif all occurrences of
P are negative. We see that ifA is positive (or negative) relative toP , then there
is an equivalent set of clauses whose dependency graph onP has no loops, so
that CIRC[A;P ] is equivalent to the completion ofA onP . The result can also be
extended when some atoms are allowed to vary. The following proposition, which
is from the propositional case of Proposition 2a from[Lifschitz, 1987], is easy to
prove.

Proposition 6 For any tuple of atomsP = (p1, . . . , pn) and any formulaA that is
positive relative to eachpi, CIRC[A;P ;Z] is equivalent to the completion ofA on
P withZ allowed to vary.

Proof This follows from the fact that there exists a set of clauses equivalent toA
such that the dependency graph ofA under it has no loops.

Note that Corollary 5 provides a more general syntactic condition for the equiv-
alence between circumscription and pointwise circumscription, than the one in
Proposition 6. For example, consider CIRC[(p ⊃ q) ∧ (q ⊃ r); q, r]. The formula
has no loops, and consequently the circumscription is equivalent to its correspond-
ing pointwise circumscription by Corollary 5. But the conjunction in the formula
cannot be divided into two parts so thatq,r are positive in one part and negative in
the other, so Proposition 6 does not apply.

Sometimes it is easy to observe that the dependency graphs ofsome circumscrip-
tions have the same loops. For instance, this observation provides an easy proof of
the following proposition from[Lifschitz, 1987].

Proposition 7 For any formulaA andB, if B is negative relative to a tupleP of
atoms, thenCIRC[A ∧ B;P ] is equivalent toCIRC[A;P ] ∧B.

Proof There exists a setB′ of clauses which is equivalent toB and is negative
relative toP . Notice thatA ∧ B′ andA have the same dependency graph onP ,
hence have the same loops. We see that loop formulas ofA∧B′ onP and those of
A on P are equivalent to each other when we notice that(B′)L

⊥ for any loopL is
entailed byB′.

However, if some atoms are allowed to vary, thenA∧B may have more loops than
A (A2(P, z) in Section 5.2 withB = {p ⊃ ¬z} for example), andB may not be
“factored out.”
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6 Embedding Circumscription in Other Nonmonotonic Logics

As mentioned in the introduction, the idea of “completion + loop formulas” has
been applied to logic programs[Lin and Zhao, 2002; Lee and Lifschitz, 2003] and
to McCain–Turner causal logic[Lee, 2004]. The characterizations of these non-
monotonic logics in terms of propositional logic are usefultools for comparing
these formalisms. Based on this idea, Lee[2004] showed how to embed logic pro-
grams in causal logic.

Inspired by a similar characterization for circumscription, we show how to embed
circumscription in logic programs and in causal logic. The propositions are proved
in Appendix by turning each formalism into equivalent propositional formulas, and
then show that the translations are equivalent to each other(in propositional logic).

6.1 Embedding Circumscription in Disjunctive Logic Programs

For the semantics of disjunctive logic programs, we refer the reader to Section 5.1
of [Lifschitz, 1996].

For a literall, by lnot we denotenot l if l is positive, andl otherwise. LetA be a finite
set of clauses, andP a tuple of atoms. For each clauseC ∈ A, the corresponding
ruleRP (C) is

;
p∈C∩P

p ← ,
q∈C\P

qnot.

For example,R(p,q,r)(p ∨ q ∨ ¬r ∨ s) = p ; q ← r, not s.

By σA we denote the set of all atoms that occur inA.

Proposition 8 For any finite setA of clauses, a set of atoms is a model ofCIRC[A;P ]
iff it is an answer set for logic program

{RP (C) : C ∈ A} ∪ {a ; nota : a ∈ σA\P}.

We can also embed circumscription with varied constants in logic programs. Given
a finite setA of clauses, letAZ be theZ-collapsed set ofA. ProgramΠA;P ;Z consists
of the following rules:

• RP (C) for all clausesC in AZ that do not mention atoms inZ,
• ← ,

p∈C
pnot for all other clausesC in AZ ,

• a ; nota for all atomsa ∈ σA\P .

Proposition 9 For any finite setA of clauses, a set of atoms is a model ofCIRC[A;P ;Z]
iff it is an answer set for logic programΠA;P ;Z.
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For example, CIRC[A1; p, q, r] can be turned into:

p ← q

q ← p

r ← s

← r, not s

p ; r ←

s ; not s ←

As in the example, the translation gives us disjunctive programs in general. Thus
one could implement circumscription in logic programming systems likeDLV 11

and GnT12 using Propositions 8 and 9.13

6.2 Embedding Circumscription in Causal Logic

The semantics of McCain–Turner causal logic is given in[McCain and Turner,
1997].

LetA be a finite set of clauses, andP a tuple of atoms. For each clauseC ∈ A, the
corresponding causal ruleCRP (C) is

C ∩ (P ∪ P )⇐¬(C \ (P ∪ P )).

By σA we denote the set of all atoms that occur inA.

Proposition 10 For any finite setA of clauses, an interpretation is a model of
CIRC[A;P ] iff it is a model of causal theory

{CRP (C) : C ∈ A} ∪ {¬a⇐¬a : a ∈ σA} ∪ {a⇐a : a ∈ σA\P}.

whose signature isσA.

Proposition 10 is similar to the propositional case of Proposition 1 of [Lifschitz,
1997].

11 http://www.dbai.tuwien.ac.at/proj/dlv/ .
12 http://www.tcs.hut.fi/Software/gnt/ .
13 Strictly speaking, the current versions of these systems donot allow negation as failure in
the head of a rule, so it cannot handle such a rule asa; nota. However, there is a well-known
technique to “simulate” rules of this kind using additionalatoms.
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Extending the result to circumscription with varied constants is similar to the case
with logic programs. Given a finite setA of clauses, letAZ be theZ-collapsed set
of A. Causal theoryCTA;P ;Z consists of the following causal rules:

• CRP (C) for all clausesC in AZ that do not mention atoms inZ,
• ⇐ ¬C for all other clausesC in AZ ,
• ¬a ⇐ ¬a for all atomsa ∈ σA,
• a ⇐ a for all atomsa ∈ σA\P .

Proposition 11 For any finite setA of clauses, an interpretation is a model of
CIRC[A;P ;Z] iff it is a model of causal theory CTA;P ;Z whose signature isσA.

7 Conclusion

To recast, the following are our main contributions (all in the propositional case):

• Showed that pointwise circumscription is an extension of Clark’s completion
from Horn clauses to arbitrary formulas.

• Introduced a notion of a dependency graph for a finite set of clauses, and based
on it, notions of loops and loop formulas.

• Showed that circumscription is equivalent to completion (pointwise circumscrip-
tion) plus loop formulas, and based on this result, showed how to embed circum-
scription in other nonmonotonic logics which have similar characterizations.

These results are of both theoretical interest and practical importance. A major ob-
stacle in implementing a reasoning system for propositional circumscription is that
checking if an assignment is a model of a circumscription is NP-hard. In compari-
son, checking if an assignment is a model of a formula in propositional logic or an
answer set for a nondisjunctive logic program can be done efficiently. According to
Theorems 1 and 2, if a given formula has no loops or has only a polynomial number
of loops and these loops can be computed in polynomial time, then checking if an
assignment is a model of circumscription can be done in polynomial time as well.
Hopefully, many applications of circumscription will belong to this class, just as
many logic programs for practical problems are “tight” or “tight on the models of
completion”.

For future work, there is a need to better understand how loops can be computed.
More importantly, there is a need to extend the results of this paper to the first-order
case.
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A Appendix: Proofs

The proof of the main theorem is based on the following fact and the main lemma
below.

Fact 1 For any formulaA and any setsI,K of atoms,

I |= AK
⊥ iff I \K |= A.

Proof The proof is immediate by structural induction.

Main Lemma LetA be a formula,B a finite set of clauses equivalent toA, I a
model ofA, P a set of atoms, andK a nonempty subset ofP . If I does not satisfy
AL

⊥ for any generalized loopL of A onP underB such thatL ⊆ K, thenI does
not satisfyAK

⊥ .

The proof is given in Section A.2.

A.1 Proof of Theorem 1

Theorem 1 LetA be a formula, andB a finite set of clauses that is equivalent
toA. The following formulas are equivalent to each other.

(a) CIRC[A;P ].
(b) The conjunction ofA and

∨

K ⊃ ¬AK
⊥

for all subsetsK ofP .
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(c) The conjunction ofA and
∧

L ⊃ ¬AL
⊥

for all generalized loopsL ofA onP underB.

Proof From (b) to (c) is clear.

From (a) to (b): Let I be a model of CIRC[A;P ]. LetK be any subset ofP such
thatI ∩K 6= ∅. SinceI \K <P I, it follows thatI \K 6|= A. By Fact 1, it follows
thatI 6|= AK

⊥ .

From (c) to (a): Let I be a model of the conjunction ofA and

∧

L ⊃ ¬AL
⊥

for all generalized loopsL of A onP underB. Let J be any set of atoms such that
J <P I. We will show thatJ 6|= A. LetK = I \ J . For every generalized loopL
that is contained inK, sinceI |=

∧

L, we have thatI 6|= AL
⊥. SinceK is nonempty

andI 6|= AL
⊥ for any generalized loopL that is contained inK, by the main lemma,

it follows thatI 6|= AK
⊥ , which is equivalent toI \K 6|= A, i.e.,J 6|= A by Fact 1.

ThereforeI is a model of CIRC[A;P ].

A.2 Proof of the Main Lemma

Lemma 3 LetA be a formula,B a finite set of clauses equivalent toA, I a model
of A, P a set of atoms,K a subset ofP , andL a nonempty subset ofK. Suppose
that the dependency graph ofB has no edge from an atom inL to an atom inK \L.
If I 6|= AL

⊥, thenI 6|= AK
⊥ .

Proof We prove it for the special case whenA = B. The general case follows
because whenA andB are equivalent to each other,AL

⊥ is equivalent toBL
⊥ for any

setL of atoms.

Assume thatI 6|= AL
⊥. There exists a clauseC of A such thatI 6|= CL

⊥, or by Fact 1,

I \ L 6|= C. (A.1)

For thisC, we will show thatI 6|= CK
⊥ , from which it follows thatI 6|= AK

⊥ .

SinceI |= A,
I |= C (A.2)

also. From (A.1) and (A.2), it follows thatC contains at least one positive occur-
rence of an atom fromL. On the other hand, since the dependency graph ofA has
no edge from an atom inL to an atom inK \ L, C does not contain any negative
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occurrence of atoms fromK \ L. Then it follows from (A.1),

I \K 6|= C,

which is equivalent toI 6|= CK
⊥ by Fact 1.

Proof of the Main Lemma In view of Lemma 3, it is sufficient to show that
there exists a generalized loopL in K such that the dependency graph ofB does
not have any edge from an atom inL to an atom inK \ L. To see that there is
indeed such a generalized loop, letG be the subgraph of the dependency graph of
A which is induced byK, and letG′ be the graph obtained fromG by collapsing
strongly connected components ofG, i.e., the vertices ofG′ are the strongly con-
nected components ofG andG′ has an edge from a vertexV to a vertexV ′ iff G
has an edge from an atom inV to an atom inV ′. SinceK is nonempty, there is at
least one generalized loop inK. Consequently, there is at least one vertex inG′.
From the fact that the vertices ofG′ are the strongly connected components ofG,
it follows that there is a terminal vertex inG′. Let L be that vertex. It is clear that
there is no edge from an atom inL to an atom inK \L in the dependency graph of
B.

A.3 Proof of Lemma 2

Lemma 2 LetA(P, Z) be a finite set of clauses. Formula∃zA(P, z) is equivalent
to the set of all clauses in theZ-collapsed set ofA that do not mention atoms inZ.

Proof Since theZ-collapsed set ofA is equivalent toA|Z| (Section 5.2), it is
sufficient to prove that∃zA(P, z) is equivalent to the set of all clauses inA|Z| that
do not mention atoms inZ. The proof is by strong induction on the length ofz.
Assume that

∃zk−1, . . . , z1A(P, zk, zk−1, . . . , z1)

is equivalent to the set of all clauses inAk−1(zk) that do not mention atoms in
zk−1, . . . , z1. Let’s denote the set byA′

k−1(zk). Then∃zk, . . . , z1A(P, zk, . . . , z1) is
equivalent toA′

k−1(>) ∨ A′
k−1(⊥), from which a conjunctive normal form can be

obtained by distributing∨ over∧. Let’s denote the resulting set of clauses byBk.
One can check thatBk is equivalent to the set of all clauses inAk that do not
mention atoms inzk, . . . , z1:

• Bk contains all clauses inA′
k−1(zk) that do not mentionzk.

• every other clause inBk is entailed by a clause inA′
k−1(zk) that does not mention

zk except for clausesC1∨C2 that are obtained by taking a disjunction ofC1∨¬zk

fromA′
k−1(>) andC2 ∨ zk fromA′

k−1(⊥).

24



A.4 Proof of Theorem 2

Theorem 2 LetA(P, Z) be a formula, andB a finite set of clauses equivalent to
A(P, Z). The following formulas are equivalent to each other.

(a) CIRC[A(P, Z);P ;Z].
(b) The conjunction ofA(P, Z) and

∨

K ⊃ ∀z¬A(P, z)K
⊥

for all subsetsK ofP .
(c) The conjunction ofA(P, Z) and

∧

L ⊃ ∀z¬A(P, z)L
⊥

for all generalized loopsL ofA(P, Z) onP underB withZ varied.

Proof By Proposition 5, CIRC[A(P, Z);P ;Z] is equivalent to

A(P, Z) ∧ CIRC[∃zA(P, z);P ], (A.3)

and by Theorem 1(b), (A.3) is equivalent to the conjunction ofA(P, Z) and

∨

K ⊃ ¬∃zA(P, z)K
⊥

for all subsetsK of P . By Theorem 1(c), (A.3) is also equivalent to the conjunction
of A(P, Z) and

∧

L ⊃ ¬∃zA(P, z)L
⊥ (A.4)

for all generalized loopsL of ∃zA(P, z) under (the clausal form of)∃zB(P, z). By
Lemma 2,∃zB(P, z) is equivalent to the set of all clauses in theZ-collapsed set of
B that do not mention atoms inZ, from which we get the generalized loops ofA
onP underB with Z varied.

A.5 Proof of Proposition 9

Given a disjunctive logic programΠ without classical negation, byΠK
⊥ we denote

the program obtained fromΠ by replacing all occurrences of atoms fromK that
are not in the scope of negation as failure with⊥.
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WhenΠ is finite, propositional theoryT (Π) is the conjunction ofΠ and
∧

K ⊃ ¬ΠK
⊥

for all nonempty setsK of atoms that occur inΠ. 14

The following proposition is from Corollary 6 of[Lee, 2005b].

Proposition 12 For any finite disjunctive logic programΠ without classical nega-
tion, a set of atoms is an answer set forΠ iff it is a model ofT (Π).

Proof of Proposition 9 According to Corollary 4, CIRC[A;P ;Z] is equivalent
to the conjunction ofA and

∧

K ⊃ ¬∃zA(P, z)K
⊥ (A.5)

for all nonempty subsetsK of P ; according to Proposition 12,T (ΠA;P ;Z) is equiv-
alent to the conjunction ofΠA;P ;Z and

∧

K ⊃ ¬(ΠA;P ;Z)K
⊥ (A.6)

for all nonempty setsK of atoms fromσA.

We will show that these two theories are equivalent to each other in propositional
logic. First it is easy to check thatΠA;P ;Z is equivalent toA in propositional logic.
One can also check that every formula (A.6) whereK contains an atom fromσA\P
is a tautology due to the presence of rulesa; nota for a ∈ σA \ P .

We will now show that underΠA;P ;Z (or A) the set of formulas (A.5) for all
nonempty subsetsK of P is equivalent to the set of formulas (A.6) for all nonempty
subsetsK of P . It is sufficient to show that under the same assumption∃zA(P, z)K

⊥

is equivalent to(ΠA;P ;Z)K
⊥ for every nonempty subsetK of P . It follows from

Lemma 2 that∃zA(P, z)K
⊥ is equivalent to the conjunction ofRP (C)K

⊥ for all
clausesC in AZ that do not mention atoms inZ; for all rulesr other than such
RP (C)’s in ΠA;P ;Z, it is easy to check thatrK

⊥ is entailed byΠA;P ;Z, so that∃zA(P, z)K
⊥

is equivalent to(ΠA;P ;Z)K
⊥ as well.

A.6 Proof of Proposition 11

Given a formulaF and a consistent setK of literals, byFK we denote the formula
obtained from formulaF by replacing all occurrences of atomsa in F by

14 We identify a logic program with a propositional theory by identifying ‘not’ with ‘ ¬’, ‘ ,’
with ‘∧’, and ‘;’ with ‘ ∨’.
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• ⊥ if a ∈ K, and
• > if ¬a ∈ K.

Given a causal theoryCT, by CTK we denote the theory obtained fromCT by
replacing all rulesF ⇐ G in CT with FK ⇐ G.

WhenCT is finite, propositional theoryT (CT) is the conjunction ofCT and
∧

K ⊃ ¬CTK

for all nonempty setsK of literals from the signature ofCT. 15

Similarly to Proposition 12, the following proposition holds [Lee, 2005a, Chap-
ter 10.3, Theorem 3]:

Proposition 13 Let CT be a finite causal theory whose signature isσ. An interpre-
tation ofσ is a model of CT iff it is a model ofT (CT).

Proof of Proposition 11 According to Corollary 4, CIRC[A;P ;Z] is equivalent
to the conjunction ofA and

∧

K ⊃ ¬∃zA(P, z)K
⊥ (A.7)

for all nonempty subsetsK ofP ; according to Proposition 13,T (CTA;P ;Z) is equiv-
alent to the conjunction ofCTA;P ;Z and

∧

K ⊃ ¬(CTA;P ;Z)K (A.8)

for all nonempty setsK of literals fromσA.

We will show that these two theories are equivalent to each other in propositional
logic. FirstCTA;P ;Z is equivalent toA in propositional logic. One can also check
that every formula (A.8) whereK contains a negative literall or a literal l from
σA \ P is a tautology due to the presence of rulesl ⇐ l.

We will now show that underCTA;P ;Z (or A) the set of formulas (A.7) for all
nonempty subsetsK of P is equivalent to the set of formulas (A.8) for all nonempty
subsetsK of P . It is sufficient to show that under the same assumption∃zA(P, z)K

⊥

is equivalent to(CTA;P ;Z)K for every nonempty subsetK of P . It follows from
Lemma 2 that∃zA(P, z)K

⊥ is equivalent to the conjunction ofCRP (C)K for all
clausesC in AZ that do not mention atoms inZ; for all causal rulesr other than
suchCRP (C)’s in CTA;P ;Z, it is easy to check thatrK is entailed byCTA;P ;Z, so
that∃zA(P, z)K

⊥ is equivalent to(CTA;P ;Z)K as well.

15 We identify a causal theory with a propositional theory by identifying ‘ ⇐ ’ with mate-
rial implication.
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