Loop Formulas for Circumscription

Joohyung Lee

Department of Computer Science and Engineering
Arizona State University, AZ, USA

Fangzhen Lin

Department of Computer Science,
Hong Kong University of Science and Technology
Clear Water Bay, Kowloon, Hong Kong

Abstract

Clark’s completion is a simple nonmonotonic formalism argpacial case of several non-
monotonic logics. Recently there has been work on extenciimgpletion with “loop for-
mulas” so that general cases of honmonotonic logics sucbgas programs (under the
answer set semantics) and McCain—Turner causal logic camdracterized by proposi-
tional logic in the form of “completion + loop formulas.” Itnis paper, we show that the
idea is applicable to McCarthy’s circumscription in the positional case, with Lifschitz’s
pointwise circumscription playing the role of completioiWe also show how to embed
propositional circumscription in logic programs and in saulogic, inspired by the uni-
form characterization of “completion + loop formulas.”

Key words: nonmonotonic reasoning, commonsense reasoning, knog/keggesentation,
circumscription, Clark’s completion, loop formulas, logirogramming

1 Introduction

Clark’s predicate completioiClark, 1978 is a simple and intuitive nonmonotonic
formalism. Normally it is applicable when the knowledged&sgiven as a set of
rules, and works when the rules do not yield a “cycle.”

Despite these limitations, surprisingly perhaps, pradicampletion has been used
to solve many problems that were thought to require moreistpaited nonmono-
tonic logics. For instance, Reit€t991 showed that under certain reasonable as-
sumptions, successor state axioms can be computed froom aftect axioms by
predicate completion, and thus solved the frame problemmvithere are no state

Preprint submitted to Elsevier Science 4 November 2007

constraints. For state constraints, [i094 argued that they should be encoded
using a notion of causality, and once they are encoded thys suecessor state
axioms can once again be computed using predicate complfioa class of
causal rules that includes almost all of the benchmark pgraomaingLin, 1995;
Lin, 2003.

For the “definite” fragment of McCain—Turner causal logMcCain and Turner,
1997; Giunchigliaet al, 20044, the problem of determining whether a theory is
consistent can be reduced to the satisfiability problem fopgsitional logic by
the process of “literal completion”—a translation simitar Clark’s completion.
This idea has led to the creation of the Causal Calculatora(@g¢', a system
for representing commonsense knowledge about action aaalgeh After turn-
ing a definite causal theory into a classical propositionabty, CQ\LC finds the
models of the latter by invoking a satisfiability solver, BuESCHAFF?, SATO?
andRELSAT*, which in turn correspond to the models of the given caussdy
CCaLc has been successfully applied to several challenge prehiethe theory
of commonsense knowleddkifschitz, 2004, [Lifschitz et al,, 2004, [Campbell
and Lifschitz, 2008 [Akmanet al,, 2004 and to the formalization of multi-agent
computational systenjértikis et al,, 2003a; Artikiset al., 20031.

In logic programming where predicate completion is bestwmand commonly
referred to as program completion semantics, its relatiqssvith other semantics,
especially the answer set semantics (also known as the stedzlel semantics) of
Gelfond and Lifschit41984, have been studied quite extensively. First of all, it
is well known that an answer set for a normal logic programise a model of
its completion, while the converse, generally, does nod hehged1994 showed
that a certain syntactic condition, which is now called Htigess,” is sufficient for
establishing the equivalence between them. Erdem andhiiifd200d3 generalized
Fages’ theorem and extended it to programs with nested &sipres (in the sense
of [Lifschitz et al,, 1999) in the bodies of rules.

Instead of looking for conditions that will guarantee theligglence between the
completion semantics and the answer set semantics, Lin had[Z002 consid-
ered how to strengthen completion to make it equivalenteécatiswer set seman-
tics. The idea is that, since the presence of cycles is whestesathe mismatch be-
tween the models of the completion and the answer sets fargagm, one should
address the problem raised by them directly. The completgnantics captures
the intuition that for an atom to be true, one of the bodieshef tules with the
atom as the head must be true. Similarly, Lin and Zhao assacvaith each loop
a “loop formula” that captures the intuition that for them®in a loop to be true,
there must be a rule whose head belongs to the loop, and whdgeaditrue but its

L http://www.cs.utexas.edu/users/tag/ccalc/ .

2 http://www.ee.princeton.edu/ chaff/ .

3 http://www.cs.uiowa.edu/"hzhang/sato.html .

4 http://www.almaden.ibm.com/cs/people/bayardo/resour ces.html .

positive part does not have any atom in the loop. They shohatditset of atoms is
an answer set for a nondisjunctive logic program iff it is ad@loof the completion
and all loop formulas of the program. This idea allows SATveds to be used for
finding answer sets and thus has led to the creation of SAGebamsswer set solvers
ASSAT [Lin and Zhao, 200RandcMODELS-2 [Giunchigliaet al.,, 20044.

As it turned out, program completion and loop formulas arelinated to nondis-
junctive logic programs. Lee and Lifschif2003 extended the Lin/Zhao theorem
to disjunctive logic programs and, more generally, to agloytprograms with nested
expressions. Lef2004 showed that a similar result can be obtained for McCain
and Turner causal logic and based on this, showed how to elodedrograms in
causal logic.

Given these results, one wonders how far this idea of “cotigpler loop formu-
las” can go. Is it general enough to capture other nonmomoiogics? In this
paper, we answer this question positively for circumsmip{McCarthy, 1980;
McCarthy, 1986 in the propositional case. Thus it is interesting to obseimz
these apparently different nonmonotonic formalisms haweifmrm view of “com-
pletion+loop formulas.” Using this idea, we show how to eshbecumscription in
logic programs and in McCain—Turner causal logic.

Hopefully, these results will lead to good implementatiafpropositional cir-
cumscription using SAT solvers and/or answer set solvérs Would be a signifi-
cant progress in nonmonotonic reasoning as circumscniptis found applications
in commonsense reasoning, model-based diagnoses, disamulerstanding, and
others. While many of these applications in general makeofiggst-order cir-
cumscription, they can be solved using propositional crscription when their
domains are given and finite.

This paper is organized as follows. In Section 2, we intredsmme notations that
we will use in the rest of the paper, and recast the definitfaziroumscription in
the propositional case. In Section 3, we discuss Clark’sptetion, and compare it
with Lifschitz’ pointwise circumscription [1987], as thatter will serve as “com-
pletion” for our purpose. In Section 4, we introduce the ootof a loop via the
notion of a dependency graph. Section 5 contains the mammitead results of the
paper, which shows that circumscription can be charae@r® completion plus
loop formulas. It also discusses some related work. Baseth@mesults in Sec-
tion 5, Section 6 shows how circumscription can be embeddéagic programs
under the answer set semantics and in McCain—Turner caagial We conclude
in Section 7.

2 Logical Preliminaries

A literal is a (propositional) atom or the negation of an atom(pfopositional)
formulais formed from literals using propositional connectiveslauseis a finite
set of literals. We identify a clausé with the disjunction of its elements. It is well
known that any formula can be transformed into an equivaenof clauses.

We use variables that range oweplace connectives and_L, and quantify over
them. For instance, ifl(z, py, . . ., px) IS @ propositional formula built with propo-
sitional variables:, p1, . . ., px, We writeVzA(z, p1, . .., px) to denote the formula
A(T,p1, .., pk) NA(L, p1, ..., pr), and similarly3zA(z, py, . . ., px) to denote the
formula A(T,p1,...,pe) VAL, D1, ..., k).

In the following, we sometimes write a formukaas A(P) or A(P, Q) for tuples

P and@ of atoms. This way, wheX is a tuple of variables and atoms of the same
length asP, we useA(X) or A(X, @) to denote the result of simultaneously re-
placing all elements oP in A by the corresponding elements®t We sometimes
identify a tuple with the corresponding set when there isardusion.

FOFP - (pl; ---upn)l Q = (Qb "'7qn>l

P < @ stands forA;<;<,,(pi O ¢),

P = @ stands forA\, ;<. (pi = @),
P < @standsfo(P < Q) A —~(P = Q).

Let P andZ be tuples of atoms, and(P, 7) a formula. The circumscription ao?
in A(P, Z) with atoms inZ allowed to vary, is the following formula:

A(P,Z) A-3XY (A(X,Y)A X < P). (1)

The formula is denoted by CIR@(P, Z); P; Z], which may also be written as
CIRC[A(P); P] whenZ is empty.

The second conjunct of formula (1) is actually a proposdidormula as in the
following example:

CIRClpVg;p] = (Ve A-TFz((x Vg A(z Dp)A(z#Dp))

— v A ((Tva AT AT £0)v .
(Wvanwonawezn)

=(pVaA-(pAg).

The models of the circumscription afg} and{¢}.°

There is a weaker notion of circumscription that will turrt émbe important here.
This is Lifschitz'spointwisecircumscription Lifschitz, 1987. In the propositional
case, given an atomand a tupleZ of atoms, the pointwise circumscription fn
A(p, Z) with Z allowed to vary is

A(p, Z) N =3zY (A(z,Y) Nz < p), (3)

and the pointwise circumscription of a tupleof atoms inA with Z allowed to
vary is the conjunction of the pointwise circumscriptioneaichp € P in A with

Z allowed to vary. It can be seen that (3) is equivalent to GUR@; Z|. Thus the
pointwise circumscription of a tupl® of atoms inA with Z allowed to vary is
Npep CIRC[A; p; Z].

For two interpretations (i.e., truth assignmentsy of the same signature, we write
I <PZ J6jf

e [and.J agree on all atoms that are notihandZ, and
e foreachp; in P, if p;, € I thenp; € J.

We write I <4 Jif I <PZ J butnotJ <% J.

The following proposition (Proposition 1 frofhifschitz, 1983) provides a model-
theoretic account of circumscription.

Proposition 1 An interpretation/ is a model ofCIRC[A4; P; Z] iff it is minimal *
on P with Z allowed to varythat is,

e /is amodel of4, and
e there is no modeJ of A such that/ <%+ J.

For example, among the three modelggf;, {p, ¢} is nota model of CIRGp)Vq; p]
becauseq} <" {p, q}.

> We identify an interpretation with the set of atoms that aue in it.
6 We may even writd < J whenZ is empty.
7 Recall Footnote?).

3 Completion and Pointwise Circumscription

Clark’s completion turns “if” conditions into “if and onlyf'i conditions. For in-
stance, given the following rules abdivet

Raining > Wet
SprinklerOn> Wet

Clark’s completion, when applied W/et yields
Wet= RainingV SprinklerOn

The underlying assumption here is what has been called tiseaworld assump-
tion [Reiter, 197& the given knowledge base contains complete knowledgetabou
what can mak&\Vettrue. In particular, if there is no rule about a propositisayp,

then it is assumed to be falge= L.

In general, we have the following definition.

Definition 1 Let A be a set of formulas of the fortd > p whereG is a formula
andp is an atom, and suppose that the following are the only imaghois in A
with the consequent G; D ¢, ..., G, D ¢q. Then Clark’s completion oft ong is
q =Gy V---V G, Notice that whem = 0, thisisq = 1. For a setP of atoms,
Clark’s completion ofd on P is the conjunction of Clark’s completions dfon p,
forallp € P.

Logically, Clark’s completion omy is equivalent to adding tel the sentence D
G,V ---VG,,ie., making thaveakessufficient condition of; also its necessary
condition.

Unfortunately, Clark’s completion is not quite fit here ftvetfollowing reasons.
One problem is that it is defined for formulas of the foéin> p, rather than for
arbitrary formulas. Thus Clark’s completion can be comgavéh circumscription
only when formulas are given in this special form. Moreow&grk’s completion
is sensitive to the syntactic form of the given knowledgesb&®r instance, while
-p D q and—q D p are logically equivalent, their Clark’s completions én ¢}
are not.

Fortunately, there is another notion from the literaturigsdhitz’s pointwise cir-
cumscription[Lifschitz, 1987, that generalizes Clark’s completion, and is syntax
independent. To see this, notice first that, as we have mmeatdiabove, Clark’s
completion orp essentially turns a “weakest” sufficient conditionpahto its nec-
essary condition. Formally, we can define the notiowe#kest sufficient conditions
as follows[Lin, 2001].

Given a propositional formuld and an atong, a formulay that does not mention
is called aweakest sufficient conditiaf ¢ if

e AFypDg,and
e for any other formula) such that it does not mentigrand A = ¢ D ¢, we have
thatA = ¢ D .

For anyA andq, weakest sufficient conditions gfalways exist and are unique up
to logical equivalence undet. In the following, given a formulad and a sef’ of
atoms, we usel’’ to denote the result of replacing all occurrences of atoms fr
Pin A by L. In this section P will always be a singleton.

Proposition 2 [Lin, 2001 For any formula4 and any atony, the formulaﬁA{f}
is a weakest sufficient condition @f

Thus we could extend Clark’s completion to arbitrary forasués follows: Given
any formulaA and any seP’ of atoms, the generalized Clark’s completionbbn
P is the conjunction ofA and formulap D ﬁA{f} forall p € P. As it turned out,
this is exactly Lifschitz’s pointwise circumscription &fin A.

Proposition 3 For any formulaA and any atony, CIRC[A;q] is equivalent to
AN (gD AW,

Proof —3z(A(x) Az < g) is equivalent to
[(AT)AT <g) V(AL AL <q),
which is equivalent to
S[(A(T) Ag A =g) v (A(L) Ag)l,

which is equivalent tgq D ﬂA{f}. |

So in the following, we shall use the term “completion” anaiftwise circum-
scription” interchangeably, and for our purpose here, ve® &hll the pointwise
circumscription ofP in A with Z allowed to vary, thecompletion ofA on P with
7 allowed to vary

The following proposition shows that the completionAfs equivalent to Clark’s
completion of B for someB that is equivalent tol.

Proposition 4 Let A be a formula, andP the set of atoms in it. There is a for-
mula B of the required form in the definition of Clark’s completiarch thatA is
equivalent toB, and the completion ofl on P is equivalent to Clark’s completion
of BonP.

Proof Let By be a set of non-tautological clauses that is equivalem.tdlow
for eachq € P, each clause that containssayG V ¢, generate the ruleG O ¢,
and letB be the resulting theory. Clearly is equivalent taB,, thus toA as well.
Clark’s completion ofB on P is the conjunction o3 andg D ﬁBiq} forall ¢ € P.
But B is equivalent tcA, andBiq} is equivalent to4{f}. So the proposition follows.
|

Lifschitz [1987] showed that circumscription always elg@iointwise circumscrip-
tion (completion), but the converse does not hold in genEmalinstance, CIR(p =
q; p, q] yields —p A —q. But the pointwise circumscription dfp,¢) inp = ¢ is
equivalent top = ¢. The reason is that pointwise circumscription (complétion
like Clark’s completion, does not handle “loops,” such asahe betweep andg

in the formulap = ¢. The main purpose of this paper is to formally define what
we mean by loops in a formula, associate a constraint with &sap, and show
that propositional circumscription is equivalent to thajemction of pointwise cir-
cumscription and the constraints for all loops. We begin &yrang the notion of a
loop. Like in logic programs, we appeal to the notion of a awj@ncy graph.

4 Dependency Graphs and Loops

A clause likep \V ¢ V —r can be rewritten ag& A —¢) D p or (r A—p) D ¢. Soif one
wants to count ways an atom can be “derived,” this clauses&elde counted for
bothp andg. In general, if a claus€' contains an atormp, then it can be rewritten as
—-(C'\ {p}) D p.® This motivates the following definition of a dependency ¢rap
of a set of clauses.

Definition 2 Let A be a set of clauses, and a set of atoms. Th@ositive) depen-
dency graplof A on P is the directed graph such that

¢ the vertices are the atoms i, and
e an edge goes from vertgxto vertexq if there is a clause” in A such that
p,q € C.

A nonempty subsel of P is called doopof A on P if, for every pairp, g of atoms
in L, there exists a path of non-zero length frpro ¢ in the dependency graph of
A on P such that all vertices in this path belong&o For example, consider the
following setA; of clauses:

{pV—q, pVgq, rV-s, - rVs, pVr}.

® Recall that=(C'\ {p}) is equal to/\ ;. (,,, | wherel denotes a literal complementary to
1, according to the convention of identifying a clause with tlisjunction of its literals.

— =\ X\
pvq Tvs

Fig. 1. The dependency graph 4f on{p,q,r, s}

This theory has two loops ofp, ¢, 7, s}, {p, ¢} and{r, s}, as shown by its depen-
dency graph in Figure 1.

We can make the definition of a loop slightly more general bypging the re-
quirement that the paths be of non-zero length. That is, @ampty subseL of P

is called ageneralized loof A on P if, for every pairp, ¢ of atoms inL, there
exists a path fromp to ¢ in the dependency graph df on P such that all vertices
in this path belong td.. In other words, a nonempty subdebf P is a generalized
loop of A on P if the subgraph of the dependency graphdobn P induced byL

is strongly connected. Note that a singleton sulgétof P is a loop if and only
if there is an edge fromp to itself in the dependency graph. On the other hand,
every singleton subset of atoms is a generalized loop, déxss of the presence of
such edges. For instance, in addition to the loops that wedfdefore,A; has four
other generalized loops dp, ¢, 7, s}: {p}, {q¢}, {r}, {s}. As we will see later, the
notion of a generalized loop simplifies the statements ofynzdrour results such
as Theorem 1 below. It will also allow us to view loop formuéessa generalization
of completion.

For an arbitrary formul&, its dependency graph can be defined by considering a
setB of clauses that is equivalent t

Definition 3 Given a formulaA, if B is a finite set of clauses that is equivalent
to A, then the dependency graph Bfon P is called the dependency graph af
on P under B. Similarly, the loops ofB on P are called the loops oA on P
under B, and the generalized loops @&f on P are called the generalized loops
of A on P underB.

5 Computing the Models of Propositional Circumscription

We begin with the simple case when there are no constantagadlowed to vary.
5.1 The Basic Case

Recall that for any formulal and any sef” of atoms, byA%’ we denote the result

of replacing all occurrences of atoms frafin A by L.

Theorem 1 Let A be a formula, andB a finite set of clauses that is equivalent
to A. The following formulas are equivalent to each other.

(a) CIRC[A; P].
(b) The conjunction oA and
\/K D —|Af 9

for all subsetsi of P.
(c) The conjunction ofi and
AL > -Af (4)

for all generalized loopg. of A on P underB.

In view of the theorem, circumscribing a theory can be regaraks just adding to
it formulas (4) for all generalized loops. Whénis a loop, we call formula (4) the
conjunctive loop formulaf L for CIRC[A; P]. Notice that(c) can also be viewed
as the conjunction of the completion dfon P and all conjunctive loop formulas.

Since conditiongb) and(c) are equivalent to each other, any intermediate condition
between the two is also equivalent(ig—(c):

Corollary 1 The following formulas are equivalent to each of formula@s-(c) of
Theorem 1.

(d) The conjunction ofi and
ANK > —Af
for all nonempty subsets of P.
(e) The conjunction ofA and
\/ L D —|AJL_ (5)

for all generalized loop4. of A on P underB.

Note that in(d), K should be nonempty. Otherwise, the formula is unsatisfiable
WhenL is a loop, we call formula (5) theisjunctive loop formulaf L for CIRC[A; P].
Note also that (4) and (5) are the same wlhaa a singleton. The two formulas can
be different only wherl. is a loop.

Another corollary of Theorem 1 is when the theory has no loops

Corollary 2 For any formulaA, if there is an equivalent sét of clauses such that
there are no loops aB on P, thenCIRC[A; P] is equivalent to the completion df
onP.

Corollary 2 is more general than Proposition 3 in tiats not required to be a
singleton. We can still compute circumscription by comipletf there are no loops.
For instance, CIR(® V ¢; p, ¢ is equivalent to the completion efV ¢ on {p, ¢}.
On the other hand, Corollary 2 does not apply even whes a singleton ifB has
a loop. However, such a loop can only come from a tautologieaise, which can

9 When/ is applied to a sek as in the antecedent, it stands for the disjunction of all
elements of. A is similar.

10

be dropped without affecting the models. After then Projpmsi3 follows from
Corollary 2.

For an example theory that has loops, consider the thdergnd the tupleP” =
(p,q,7,s) in the previous section. This theory has three models;}, {r, s} and
{p, q,r, s}, among which the last is not a model of CIRG; P| becaus€p, ¢} <”
{p, q, 7, s}. Theorem 1 tells us that the models of the circumscriptiontmafound
by computing the models of the completion and loop formulaswe have seen in
the previous section, there are two loopsdgfon P, {p, ¢} and{r, s}. Their loop
formulas arep A ¢ D —r andr A s D —p, respectively. Among the models of the
completion ofA; on P, {p, q,r, s} does not satisfy loop formulaA ¢ D> —r (or
rAs D —p), so that it is not a model of CIR@;; P]. The other two satisfy all loop
formulas, and thus are the models of the circumscription.

The view of circumscription in terms of “completion+looprfvulas” sometimes
helps us observe why two circumscriptions are equivaleraich other. For in-
stance in the example above, even if we restrict atoms toroamscribed in to
be only{p, ¢}, the result remains the same. The completiomofon {p, ¢} is a
subset of the completion od; on P, so that all three models of; still satisfy
the completion of4; on {p, ¢}. Set{p, q,r, s} still does not satisfy loop formula
p A q D —r for CIRC[Ay; p, q], which is also a loop formula for CIRA,; P|.

According to Theorem 1, to compute the circumscriptionPoh A with all other
atoms fixed,

(1) one first convertsl into a finite setB of clauses,

(2) constructs the dependency graphbBobn P,

(3) finds the loops of the dependency graph, and then
(4) computes loop formulas.

In the first step, a formula may be equivalent to many diffesats of clauses,
which in turn may yield different dependency graphs. (Fetance, formulas

{pVaqV-r,pV-qV-r, —pV-qVr, -pV-qV-r}

and

{pV—=r, =pV —q}
are equivalent to each other, but their dependency grapfis,qnr-} are different.)
For our purpose, everything else being equal, the fewerslabat a dependency
graph has the better. We believe that in general, given auiarz, it is compu-
tationally hard to find an equivalent set of clauses that digugld the smallest
number of loops. But we do not have a proof, and it remains @&m gjpiestion.

A standard way of converting a formuka(assuming all connectives other than
A, V are eliminated) into an equivalent set of clauses is firsigtridute— over A
andV until it applies to atoms only, and then to distribwmt@ver A until it applies

11

to literals only. However, when distributingover A, the size of the formula could
grow exponentially in the number of atoms # To avoid the problem, one can
introduce new atoms. We will see in Section 5.2 that theseatems can be treated
similarly to atoms that are allowed to vary.

Once converted into an equivalent geof clauses (without introducing new atoms),
its dependency graph can be constructed in time polynomthEtnumber of atoms
in A. However, the number of loops can be exponential in the waase. From
the complexity point of view, we cannot do much better abbig &s it turned
out inevitable assuming a conjecture from the theory of astaional complexity
which is widely believed to be true. Lifschitz and Razbor20(5] showed that any
equivalent translation from logic programs to proposisidormulas involves a sig-
nificant increase in size assuming the conjecture. A modidicaf their theorem
holds for circumscription as well (Vladimir Lifschitz, pgenal communication).

One can also construct a dependency graph directly withziutilly generating a
set of clauses. Given a formuks, NNF(A) denotes thaegation normal fornof
A, that is, a formula obtained from by distributing— over A andV until it applies
to atoms only. Every formulal can be written in the fornt'; A --- A C,, (n > 1)
where eaclt’; is not a conjunction. We call eacl}y conjunctive componemf A.

Definition 4 Let A be a formula, andP a set of atoms. Thi@gositive) dependency
graphof A on P is the directed graph such that

¢ the vertices are the atoms ip, and

e an edge goes from vertexto vertexq if there is a subformuld’ v G of some
conjunctive component of NNR) such thafp occurs inF” and—q occurs inG,
or the other way around.

Theorem 1 still holds if we replace “for all generalized Isdpof A on P underB”
with “for all generalized loopg. of A on P” under this definition. This is justified
by the following lemma:!°

Lemma 1 Let A be a formula in negation normal form. There exists an eqenal
setB of clauses such that two literals, [, belong to the same clause iff there
is a subformulal” v G of A such that;, € F' andl, € G, or the other way around.

Proof This can be proved by structural inductionii

When we are given a set of clauses rather than an arbitranufarto circumscribe
in, Theorem 1 may yield a shorter reformulation of circunygeon:

Corollary 3 For any finite setd of clausesCIRC|[A; P] is equivalent to the con-

10 The lemma is due to Paolo Ferraris.

12

junction of A and

AL > Vo —(C\D)

CeA _
CNL#0),CNL=0

for all generalized loopg. of A on P.

Proof Note first that for every clausé such thatC N L = 0, C'* is equivalent to
C'\ L. By Theorem 1, it is sufficient to show that every modeHodloes not satisfy
-CtsuchthaCNL#QPorCNL=0:

e For every claus€' in A such thatC' N L # (), C1 is a tautology, so thatC' is
unsatisfiable.

e For every claus€’' in A suchthatC' N L = (), C entailsC%, so that every model
of A, which satisfie€”, does not satisfy-C".

5.2 Varying Constants

The following propositioriLifschitz, 1985, Proposition]Xhows how to eliminate
varied constants in general:

Proposition 5 CIRC[A(P, Z); P; Z] is equivalent to

A(P, Z) ACIRC[IzA(P, 2); P].

Thus circumscription with varied constants reduces to #sdxcase to which The-
orem 1 applies: we consider the dependency graphdf P, z).

Alternatively, we can generalize the definitions of a degery graph and a loop.
Intuitively, paths are allowed to have varied atoms and thegations as interme-
diate vertices. Given a séf of literals, X is the set of literals complementary to
literals in X.

Definition 5 Let A be a set of clauses, and, Z be sets of atoms. THpositive)
dependency grapbf A on P with Z varied is the directed graph such that

e the vertices are the literals i U Z U Z, and
e an edge goes from vertéx to vertex/, if there is a clause” in A such that
li,l, €C.

The definition is a generalization of Definition 2 in that itltees to Definition 2
whenZ is empty. Similarly to Definition 3, we can also extend Defonit5 to an
arbitrary formula by referring to an equivalent set of clesis

Let L, be the set of literals such that, for every pairi, of literals in Ly, there
exists a path of non-zero length framto /; in the dependency graph af on P

13

! \5 / -
q z
Fig. 2. The dependency graph 4§ on {p, ¢} with {z} varied

with Z allowed to vary such that all vertices in this path belon@§oA nonempty
setlL = Lo\ (ZU Z) is called aloop of A on P with Z allowed to vary. A
generalized loopf A on P with Z allowed to vary is defined similarly to the case
when no atoms are allowed to vary, by dropping the requireitiern the paths be
of non-zero length.

For example A, is the set of clauses

{p D>z —2Dq, q¢Dp},

and its dependency graph ép, ¢} with {z} allowed to vary is shown in Figure 2.
There are three generalized loogs}, {¢}, {p, ¢}, and only the last one is a loop.

The definition of a loop above is intuitive, but here is anothefinition that is more
economical in terms of the number of loops we get. Given aisaftclauses and a
tuple of atomsZ = (z,,, ... z1), Ay (0 < k < n) is defined as follows:

L] AO == A,
° Ak = Ak—l U {Cl U CQ : Cl U {Zk},Cg U {_'Zk} c Ak—l}-

The Z-collapsed set o is obtained fromA,, by removing clause§’ such that”
contains a pair of complementary literals, or there is a prgpbset”’ of C' such
thatC’ € A,,.

Let A, be theZ-collapsed set ofA, and A, the set of clauses id, that do not
mention atoms ir¥. We could then define the loops and the generalized loogs of
on P with Z allowed to vary to be the loops and the generalized loop$,06n P.

A loop (generalized loop, respectively) according to tHisraative definition is
also a loop (generalized loop, respectively) accordindghéodefinition above, but
not vice versa. The following result holds under either dadin.

Theorem 2 Let A(P, Z) be a formula, andB a finite set of clauses equivalent
to A(P, Z). The following formulas are equivalent to each other.

(a) CIRCIA(P, Z); P; Z].
(b) The conjunction ofA(P, Z) and

VK D Vz=A(P,2)F

for all subsets< of P.

14

(¢) The conjunction ofd(P, Z) and
AL D Vz=A(P,2)} (6)
for all generalized loop4. of A(P, Z) on P under B with Z varied.

When L is a loop, we call formula (6) theonjunctive loop formulaf L for
CIRC[A(P, Z); P; Z].

Theorem 2 follows from Theorem 1, Proposition 5 and the foilg lemma.

Lemma 2 Let A(P, Z) be a finite set of clauses. FormulaA(P, z) is equivalent
to the set of all clauses in thgé-collapsed set ofi that do not mention atoms it.

Similarly to Theorem 1, we have the following corollary toédrem 2.

Corollary 4 The following formulas are equivalent to each of formula@s-(c) of
Theorem 2.

(d) The conjunction ofi(P, Z) and
NEK D Vz=A(P,2)F

for all nonempty subsets of P.
(e) The conjunction of\(P, Z) and

/L D Vz=A(P,2)}
for all generalized loop4. of A on P under B with Z varied.

WhenL is a loop, we call formula (6) thaisjunctive loop formulaf L for CIRC[A(P, Z); P; Z].
We can again divide each @f) and(e) into two parts: completion and loop formu-

las. Recall that the completion of a formud P, Z) on P with Z allowed to vary

is defined to be the pointwise circumscription®fin A with Z allowed to vary,

which is equivalent to the conjunction df(P, Z) and formulas

p D Vz-A(P, z){f}
for all atomsp in P.
Similarly to Corollary 2, we get the following corollary tah€orem 2:

Corollary 5 For any formulaA, if there is an equivalent s&® of clauses such
that there are no loops oft on P under B with Z varied, thenCIRC[A; P; Z] is
equivalent to the completion af on P with Z varied.

In Section 5.1 we mentioned the use of new atoms to avoid exyi@i blow-up in
converting a formula into a conjunctive normal form. Hereie standard way to
do so:

15

CLAUSIFY*(F\I")
if F'is a conjunction of clauseés; A - - - ACy, then exit with{C, ..., C, }UT;
G := a minimal non-literal subformula af;
u ;= anew atom;
F :=the result of replacing: in F' by u;
CLAUSIFY* (F,I'U CLAUSIFY (u = G)).

(CLAUSIFY (F) returns a set of clauses equivalenftty the method described in
Section 5.1.)

Let A(P, Z) be a formula andd’(P, Z, S) the result of CAUSIFY*(A(P, Z),D)
which introduces a sét of new atoms. Therd (P, Z) is equivalenttads A’ (P, Z, s).
According to Proposition 5,

CIRCIA(P, Z); P; Z] = CIRC[3s A'(P, Z, s); P; 7]
=3sA' (P, Z,s) A CIRC[3zsA'(P, z, s); P].

So it is sufficient to find the loops of the dependency grapRofA’(P, z, s).
By Lemma 2, we can consider the dependency grapfZof) S)-collapsed set
of A'(P, Z, S) that do not mention atoms i U S.

Similarly to Definition 4, we can also define a dependency lyeapd a loop of an
arbitrary formula, without referring to an equivalent setlauses.

Definition 6 Let A be a formula, and?, Z be sets of atoms. THpositive) depen-
dency graplof A on P with Z varied is the directed graph such that

e the vertices are the literals i* U Z U Z, and

e an edge goes from vertéxto vertexl, if there is a subformulad’ v G of some
conjunctive component of NNIR) such that/; occurs inF andl, occurs inG,
or the other way around.

Once we define a dependency graph, the definition of a loogisame as before.
Theorem 2 still holds if we replace “for all generalized lsdpof A(P, Z) on P
underB” with “for all generalized loopd. of A(P, Z) on P” under this definition.

Similarly to Corollary 3, when we are given a set of clausekaathan an arbi-
trary formula to circumscribe in, Theorem 2 may yield a séoreformulation of
circumscription:

Corollary 6 For any finite setd of clausesCIRC[A; P; Z] is equivalent to the
conjunction ofA and

/\L D Vz \/ —(C'\ L)

CeA, CNL=0

16

for all generalized loop4. of A on P with Z varied.

Note that unlike Corollary 3 we do not restrict the disjunntto be over”’ N L +# ().
Indeed, if we did, the statement of the corollary would beeantorrect. Consider
a setA; of clauses

{-pVq,~qVp,—-rVs -sVq}
Set{p, ¢, r, s} is one of the models of CIR@Ajs; p, ¢; s], but it does not satisfy the
modified (wrong) loop formulagy A ¢ O L.

Proof of Corollary 6 Note first that for every claus€ such thatC' N L = 0,
Ctis equivalent ta”' \ L. By Theorem 2, it is sufficient to show that every model
of A does not satisfy.=C* such thatC N L # (: for every claus&” in A such that
CNL+#0,Ctis atautology, so thatC! is unsatisfiable.

5.3 Relating to Some Known Results

Reiter[1984 was the first one to show some relationships between Clar&di{p
cate completion and circumscription. He proved that if atizés Horn in a pred-
icate P, then the circumscription oP logically entails the completion of?. In
the propositional case, our new contributions are as faldie showed that Lifs-
chitz’s pointwise circumscription extends Clark’s contpaa to arbitrary theories,
not just those that are Horn. With this extension of comptetive gave a general
syntactic condition that guarantees the equivalence legtwecumscription and
completion. Also, we defined notions of loops and loop forsubnd showed that
circumscription can be reduced to “completion + loop forastilike answer sets in
logic programming but with completion here defined to be pwise circumscrip-
tion.

Traditionally, computing circumscription means findingsses of first-order the-
ories for which their circumscriptions are equivalent tsthorder theories (e.qg.,
[Lifschitz, 1985; Lifschitz, 198fand[Dohertyet al, 1997). In the propositional
case, circumscription is always equivalent to a propasdtitheory. So the problem
in the propositional case is not whether circumscriptiomtoa reduced to proposi-
tional logic, but how economically this can be done.

In logic programming, when the positive dependency grapa pfogram has no
loops, the program is called “tight,” and the answer setsaftight program are
exactly the models of the completion. Corollaries 2 and 5his paper address
a similar syntactic condition for circumscription in theopositional case. In the
following, we show that some of the known results about eirsaription can easily
be explained by our corollaries.

We say that an occurrence of an atom in a formulaositiveif it is in the range of
an even number of negations, amebativeotherwise (assuming that and= have

17

been eliminated in favor of other connectives). A formulds positiverelative
to P if all occurrences ofP in it are positive, andegativeif all occurrences of
P are negative. We see thatAf is positive (or negative) relative tB, then there
is an equivalent set of clauses whose dependency graph bas no loops, so
that CIRGA; P] is equivalent to the completion of on P. The result can also be
extended when some atoms are allowed to vary. The follomioggsition, which
is from the propositional case of Proposition 2a friinfschitz, 19871, is easy to
prove.

Proposition 6 For any tuple of atom$® = (py, ..., p,) and any formulaA that is
positive relative to each;, CIRC[A; P; Z] is equivalent to the completion df on
P with Z allowed to vary.

Proof This follows from the fact that there exists a set of clauspswalent toA
such that the dependency graphdfinder it has no loops. i

Note that Corollary 5 provides a more general syntactic tmmdfor the equiv-
alence between circumscription and pointwise circumsornp than the one in
Proposition 6. For example, consider CIRED ¢) A (¢ D 7); ¢, r]. The formula
has no loops, and consequently the circumscription is etgnv to its correspond-
ing pointwise circumscription by Corollary 5. But the congdion in the formula
cannot be divided into two parts so that are positive in one part and negative in
the other, so Proposition 6 does not apply.

Sometimes it is easy to observe that the dependency grapsws e circumscrip-
tions have the same loops. For instance, this observatavidas an easy proof of
the following proposition fronjLifschitz, 1987.

Proposition 7 For any formulaA and B, if B is negative relative to a tupl® of
atoms, therCIRC[A A B; P] is equivalent taCIRC[A; P] A B.

Proof There exists a seéB’ of clauses which is equivalent 8 and is negative
relative to P. Notice thatA A B’ and A have the same dependency graphign
hence have the same loops. We see that loop formuldsoB’ on P and those of
A on P are equivalent to each other when we notice)" for any loopL is
entailed byB’. 1

However, if some atoms are allowed to vary, then B may have more loops than
A (A3(P, z) in Section 5.2 withB = {p D -z} for example), and3 may not be
“factored out.”

18

6 Embedding Circumscription in Other Nonmonotonic Logics

As mentioned in the introduction, the idea of “completionop formulas” has
been applied to logic progranisin and Zhao, 2002; Lee and Lifschitz, 240shd

to McCain-Turner causal logitee, 2004. The characterizations of these non-
monotonic logics in terms of propositional logic are usedhdls for comparing
these formalisms. Based on this idea, [2@04 showed how to embed logic pro-
grams in causal logic.

Inspired by a similar characterization for circumscriptioee show how to embed
circumscription in logic programs and in causal logic. Thegwositions are proved
in Appendix by turning each formalism into equivalent prepional formulas, and
then show that the translations are equivalent to each ¢ithpropositional logic).

6.1 Embedding Circumscription in Disjunctive Logic Progra

For the semantics of disjunctive logic programs, we referrfader to Section 5.1
of [Lifschitz, 1994.

For a literall, by [,,,: we denotenot! if [is positive, and otherwise. Let4 be a finite
set of clauses, an& a tuple of atoms. For each clauSec A, the corresponding
rule Rp(C) is .

y P = y Gnot-
peCnP q€C\P

For exampleR, 4 (pV gV —rVs) =p; ¢ < r, nots.

By 04 we denote the set of all atoms that occurdin

Proposition 8 For any finite set of clauses, a set of atoms is a modeCtiRC[A; P]
iff it is an answer set for logic program

{Rp(C) : C € A} U {a; nota : a € cs\P}.
We can also embed circumscription with varied constantsgiclprograms. Given

afinite setd of clauses, lefl ; be theZ-collapsed set afl. Programl4.p.; consists
of the following rules:

e Rp(C) forall clauses” in Az that do not mention atoms if,
® — y,coProt for all other clause¢’ in A,
e a; notaforall atomsa € 04\ P.

Proposition 9 For any finite set of clauses, a set of atoms is a modeCtRC[A; P; 7]
iff it is an answer set for logic programi 4.p. 7.

19

For example, CIRCA;; p, ¢, r| can be turned into:

p<—4q
q<—7p
T S
«— r,Nots
piT e
5; NOts «—
As in the example, the translation gives us disjunctive @ots in general. Thus

one could implement circumscription in logic programminygtems likepLy
and GnT? using Propositions 8 and 9.

6.2 Embedding Circumscription in Causal Logic

The semantics of McCain-Turner causal logic is givedNttCain and Turner,
1997.

Let A be a finite set of clauses, atitla tuple of atoms. For each clauSec A, the
corresponding causal ru@Ry(C) is

CN(PUP)<=~(C\ (PUP)).

By 04 we denote the set of all atoms that occurdin

Proposition 10 For any finite setd of clauses, an interpretation is a model of
CIRC[A; P] iff itis a model of causal theory

{CRp(C) : C € A}U{—a<=—a : a€oatU{a<=a : a€os\P}.
whose sighature ig 4.

Proposition 10 is similar to the propositional case of Psijon 1 of [Lifschitz,
1991.

1 http://www.dbai.tuwien.ac.at/proj/div/ .

12 http://www.tcs.hut.fi/Software/gnt/ .

13 Strictly speaking, the current versions of these systenmotlallow negation as failure in
the head of a rule, so it cannot handle such a rute ast a. However, there is a well-known
technique to “simulate” rules of this kind using additioa&bms.

20

Extending the result to circumscription with varied conssas similar to the case
with logic programs. Given a finite set of clauses, letd; be theZ-collapsed set
of A. Causal theorfT 4.p., consists of the following causal rules:

CRp(C) for all clauses” in A that do not mention atoms i,
<= —(for all other clause§’ in A,

—a <= —aq for all atomsa € oy,

a <= aforallatomsa € o4\ P.

Proposition 11 For any finite setd of clauses, an interpretation is a model of
CIRC[A; P; Z] iff it is a model of causal theory CiI ., whose signature is 4.

7 Conclusion

To recast, the following are our main contributions (allhe propositional case):

e Showed that pointwise circumscription is an extension @&riCé completion
from Horn clauses to arbitrary formulas.

¢ Introduced a notion of a dependency graph for a finite setaafsgds, and based
on it, notions of loops and loop formulas.

e Showed that circumscription is equivalent to completiamirfpvise circumscrip-
tion) plus loop formulas, and based on this result, showadtb@mbed circum-
scription in other nonmonotonic logics which have similaaacterizations.

These results are of both theoretical interest and praatigeortance. A major ob-
stacle in implementing a reasoning system for propositioneumscription is that
checking if an assignment is a model of a circumscriptionish¥rd. In compari-
son, checking if an assignment is a model of a formula in psajmmal logic or an
answer set for a nondisjunctive logic program can be dongexftly. According to
Theorems 1 and 2, if a given formula has no loops or has onlyyepmial number
of loops and these loops can be computed in polynomial tines thecking if an
assignment is a model of circumscription can be done in mrhjal time as well.
Hopefully, many applications of circumscription will belg to this class, just as
many logic programs for practical problems are “tight” agttt on the models of
completion”.

For future work, there is a need to better understand howsloap be computed.
More importantly, there is a need to extend the results sffibper to the first-order
case.

21

Acknowledgements

We are grateful to Selim Erdogan, Paolo Ferraris, Hudsandruand the anony-
mous referees who reviewed this paper or the short versiahisfpaper pre-
sented in AAAI'04 for their useful comments. Special than&sviadimir Lifs-
chitz who provided us with valuable advice and pointers ttexavork and helped
us improve the presentation. Joohyung Lee was partiallpaied by the Texas
Higher Education Coordinating Board under Grant 003658203001. Fangzhen
Lin was partially supported by HK RGC under CERG HKUST62@H0CERG
HKUST6170/04E, and by China NSFC under grant 60496322.

A Appendix: Proofs

The proof of the main theorem is based on the following fact i@ main lemma
below.

Fact 1 For any formulaA and any setg, K of atoms,

IE=AKiff I\ K E A
Proof The proofis immediate by structural induction.

Main Lemma Let A be a formula,B a finite set of clauses equivalent#y I a
model ofA, P a set of atoms, an&” a nonempty subset éf. If I does not satisfy
AL for any generalized loo@. of A on P under B such thatl C K, then! does
not satisfyA%.

The proof is given in Section A.2.

A.1 Proof of Theorem 1

Theorem 1 Let A be a formula, andB a finite set of clauses that is equivalent
to A. The following formulas are equivalent to each other.

(a) CIRC[A; P].
(b) The conjunction ofi and
VK o> —-Af
for all subsetsk of P.

22

(¢) The conjunction oA and
/\ L D —|AJL_
for all generalized loopg. of A on P underB.

Proof From (b) to (c) is clear.

From (@) to (b): Let I be a model of CIRCA; P]. Let K be any subset oP such
that/ N K # (). Sincel \ K < I, itfollows thatl \ K [~ A. By Fact 1, it follows
that = AL,

From (c) to (a): Let I be a model of the conjunction of and
/\ L D —|AJL_

for all generalized loop& of A on P underB. Let J be any set of atoms such that
J <P I.We will show that/ [~ A. Let K = I\ J. For every generalized loop
that is contained ir(, sincel = A L, we have thaf [~ AL. SinceK is nonempty
andI (£ AL for any generalized loop that is contained i<, by the main lemma,
it follows that7 = AX, which is equivalenttd \ K (£ A, i.e.,J [~ A by Fact 1.
Thereforel is a model of CIRCA; P]. 1

A.2 Proof of the Main Lemma

Lemma 3 Let A be a formula,B a finite set of clauses equivalentg I a model
of A, P a set of atomsk a subset of?, and L a nonempty subset é&f. Suppose
that the dependency graph Bfhas no edge from an atom into an atom ink’\ L.
If I £ AL, thenl (£ A,

Proof We prove it for the special case wheén= B. The general case follows
because wher andB are equivalent to each othet} is equivalent taB’ for any
setL of atoms.

Assume thaf [~ A% . There exists a claugg of A such that’ [~ C%, or by Fact 1,
I\ LC. (A.1)
For thisC', we will show thatl (= CI*, from which it follows that/ = A%,

Sincel = A,
I=C (A.2)
also. From (A.1) and (A.2), it follows that' contains at least one positive occur-

rence of an atom fronk. On the other hand, since the dependency graph loés
no edge from an atom ih to an atom inkK \ L, C' does not contain any negative

23

occurrence of atoms frorit \ L. Then it follows from (A.1),
I\K[£C,

which is equivalent td = CX by Fact1. &

Proof of the Main Lemma In view of Lemma 3, it is sufficient to show that
there exists a generalized lodpin K such that the dependency graphitdoes
not have any edge from an atom into an atom inK \ L. To see that there is
indeed such a generalized loop, {(ebe the subgraph of the dependency graph of
A which is induced by, and letG’ be the graph obtained fro by collapsing
strongly connected components@fi.e., the vertices ofy’ are the strongly con-
nected components ¢f andG’ has an edge from a vertéxto a vertexV’ iff G
has an edge from an atom¥nto an atom inV’. SinceK is nonempty, there is at
least one generalized loop i§. Consequently, there is at least one vertexsin
From the fact that the vertices 6f are the strongly connected components:of
it follows that there is a terminal vertex {®&'. Let L be that vertex. It is clear that
there is no edge from an atomInto an atom ink" \ L in the dependency graph of
B. 1

A.3 Proof of Lemma 2

Lemma 2 LetA(P,Z) be a finite set of clauses. FormulaA(P, z) is equivalent
to the set of all clauses in thé-collapsed set ofi that do not mention atoms Ix.

Proof Since theZ-collapsed set ofd is equivalent toA ;| (Section 5.2), it is
sufficient to prove thaBizA(P, z) is equivalent to the set of all clausesAny, that
do not mention atoms i¥. The proof is by strong induction on the length of
Assume that

1,y 21 AP, 2y Zk1, -+ 5 21)

is equivalent to the set of all clauses ih_;(z;) that do not mention atoms in
Zk_1,-..,21. Let's denote the set byt) _,(zx). Then3zy, ..., 21 A(P, 2k, ..., 21) IS
equivalent tod;_,(T) v Aj,_,(L), from which a conjunctive normal form can be
obtained by distributingy over A. Let’'s denote the resulting set of clauses/y
One can check thaB, is equivalent to the set of all clauses i that do not
mention atomsin, .. ., 2;:

e B, contains all clauses id},_,(zx) that do not mention;.

e every other clause iRy, is entailed by a clause i), _,(z;) that does not mention
2z, except for clause§; vV C; that are obtained by taking a disjunction(@fv -z
from A,,_,(T)andCy V z, from A, _,(L).

24

A.4 Proof of Theorem 2
Theorem 2 Let A(P, Z) be a formula, and3 a finite set of clauses equivalent to
A(P, Z). The following formulas are equivalent to each other.

(a) CIRC[A(P, Z); P; Z].
(b) The conjunction ofd(P, Z) and

VK D Vz=A(P2)f

for all subsetsx of P.
(¢) The conjunction ofd(P, Z) and

AL D Vz=A(P,2)}

for all generalized loop4. of A(P, Z) on P under B with Z varied.

Proof By Proposition 5, CIRCA(P, Z); P; Z] is equivalent to
A(P, Z) A CIRC[3zA(P, 2); P, (A.3)
and by Theorem 1), (A.3) is equivalent to the conjunction eff(P, Z) and
VK D —3zA(P,2)}

for all subsetd< of P. By Theorem 1¢), (A.3) is also equivalent to the conjunction
of A(P, Z) and

AL D> —FAP,2)} (A.4)
for all generalized loop# of 32 A(P, z) under (the clausal form 0BzB(P, z). By
Lemma 23zB(P, z) is equivalent to the set of all clauses in thecollapsed set of
B that do not mention atoms i, from which we get the generalized loops 4f
on P underB with Z varied. 1

A.5 Proof of Proposition 9

Given a disjunctive logic prografi without classical negation, byf’* we denote
the program obtained frorl by replacing all occurrences of atoms frakhthat
are not in the scope of negation as failure with

25

WhenlII is finite, propositional theory’(I1) is the conjunction ofI and
AK > -If

for all nonempty seté# of atoms that occur ifl. 14

The following proposition is from Corollary 6 df ee, 2005kh.

Proposition 12 For any finite disjunctive logic prograrii without classical nega-
tion, a set of atoms is an answer set oiff it is a model of7’(II).

Proof of Proposition 9 According to Corollary 4, CIRC4; P; Z] is equivalent
to the conjunction oA and

ANK D —3zA(P,2)} (A.5)

for all nonempty subset&” of P; according to Proposition 1Z;(I14.p.7) is equiv-
alent to the conjunction dfi 4. . and

AEK > —(apz)f (A.6)
for all nonempty set# of atoms fromo 4.

We will show that these two theories are equivalent to eabkrah propositional
logic. First it is easy to check thal4.p.; is equivalent ta4 in propositional logic.
One can also check that every formula (A.6) wh&reontains an atom from, \ P
is a tautology due to the presence of rulesota fora € o4 \ P.

We will now show that undetl,.p., (or A) the set of formulas (A.5) for all
nonempty subsets of P is equivalent to the set of formulas (A.6) for all nonempty
subsets< of P. Itis sufficient to show that under the same assumptiofi(P, 2)’f

is equivalent tO(HA;P;Z)i(for every nonempty subsdt of P. It follows from
Lemma 2 thatdzA(P, z)f is equivalent to the conjunction d&y(C)¥ for all
clauses”' in A5 that do not mention atoms i#f; for all rulesr other than such
Rp(C)'sinlly.p.z, itis easy to check that is entailed by14.p.z, so thaz A(P,)%
is equivalent tqI14.p.z) ' as well. &

A.6 Proof of Proposition 11

Given a formulaF’ and a consistent séf of literals, by Fx we denote the formula
obtained from formuld’ by replacing all occurrences of atom £’ by

14 We identify a logic program with a propositional theory beidifying ‘not with * =", *
with *A’, and ‘" with * Vv,

26

o | ifaec K,and
o Tif a€eK.

Given a causal theorZT, by CTx, we denote the theory obtained froBGT by
replacing all ruleg” <= G in CT with Fx <= G.

WhenCT is finite, propositional theory’(CT) is the conjunction o€T and
/\ K D) _‘CTK
for all nonempty seté of literals from the signature &&T.

Similarly to Proposition 12, the following proposition lisl[Lee, 2005a, Chap-
ter 10.3, Theorem]3

Proposition 13 Let CT be a finite causal theory whose signature.ié\n interpre-
tation of o is a model of CT iff it is a model &f(CT).

Proof of Proposition 11 According to Corollary 4, CIRCA; P; Z] is equivalent
to the conjunction oA and

ANK D —3zA(P,2)} (A.7)

for all nonempty subsets’ of P; according to Proposition 13}(CT 4.p.7) is equiv-
alent to the conjunction &€ T 4.p., and

/\K D) ﬁ(CTA;p;Z)K (A8)
for all nonempty set# of literals fromo 4.

We will show that these two theories are equivalent to eabbrah propositional
logic. FirstCT 4.p. is equivalent ta4 in propositional logic. One can also check
that every formula (A.8) wheré& contains a negative literdlor a literal/ from
oa \ P is atautology due to the presence of ruleé= |.

We will now show that undeCT,.p., (or A) the set of formulas (A.7) for all
nonempty subsets of P is equivalent to the set of formulas (A.8) for all nonempty
subsetss of P. Itis sufficient to show that under the same assumptiofi(P,)¢

is equivalent to(CT 4.p.z) x for every nonempty subsét of P. It follows from
Lemma 2 thatizA(P, 2)¥ is equivalent to the conjunction @&@Ry(C)x for all
clauses” in A, that do not mention atoms i#f; for all causal rules other than
suchCRp(C)’'s in CT4.p.z, it is easy to check thaty is entailed byCT 4.p.#, SO
that32A(P, 2)¥ is equivalent tdCTa.p.z)x as well. 1

15 \We identify a causal theory with a propositional theory bgritifying * <= * with mate-
rial implication.

27

References

[Akmanet al, 2004 Varol Akman, Selim Erdogan, Joohyung Lee, Vladimir Lifgzhand
Hudson Turner. Representing the Zoo World and the TrafficléMorthe language of
the Causal Calculatonrtificial Intelligence 153(1-2):105-140, 2004.

[Artikis et al., 20034 A. Artikis, M. Sergot, and J. Pitt. An executable specifioatbf an
argumentation protocol. IRroceedings of Conference on Artificial Intelligence angvLa
(ICAIL), pages 1-11. ACM Press, 2003.

[Artikis et al., 20031 A. Artikis, M. Sergot, and J. Pitt. Specifying electronicies with
the Causal Calculator. In F. Giunchiglia, J. Odell, and Gisd/eaditorsProceedings of
Workshop on Agent-Oriented Software Engineering Il (ADERCS 2585. Springer,
2003.

[Campbell and Lifschitz, 20¢3Jonathan Campbell and Vladimir Lifschitz. Reinforcing a
claim in commonsense reasonif). In Working Notes of the AAAI Spring Symposium
on Logical Formalizations of Commonsense Reasqriidg3.

[Clark, 1978 Keith Clark. Negation as failure. In Herve Gallaire and Jifikker, editors,
Logic and Data Basegpages 293-322. Plenum Press, New York, 1978.

[Dohertyet al, 1997 Patrick Doherty, Witold tukaszewicz, and Andrzey Szatas.
Computing circumscription revisited: A reduction algbnt. Journal of Automated
Reasoning18(3):297-336, 1997.

[Erdem and Lifschitz, 20d3Esra Erdem and Vladimir Lifschitz. Tight logic programs.
Theory and Practice of Logic Programming499-518, 2003.

[Fages, 1994F. Fages. Consistency of clark’s completion and existefstable of stable
models.Journal of Methods of Logic in Computer Sciente&1-60, 1994.

[Gelfond and Lifschitz, 1988Vlichael Gelfond and Vladimir Lifschitz. The stable model
semantics for logic programming. IRroc. Fifth International Conference and
Symposium on Logic Programmingages 1070-1080, 1988.

[Giunchigliaet al,, 20044 Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Noan
McCain, and Hudson Turner. Nonmonotonic causal theori@sdificial Intelligence
153(1-2):49-104, 2004.

[Giunchigliaet al,, 20048 Enrico Giunchiglia, Yuliya Lierler, and Marco Maratea. SAT
based answer set programming.Aroc. AAAI-04 pages 61-66, 2004.

[Lee and Lifschitz, 2003Joohyung Lee and Vladimir Lifschitz. Loop formulas for
disjunctive logic programs. IRroc. ICLP-03 pages 451-465, 2003.

[Lee, 2004 Joohyung Lee. Nondefinite vs. definite causal theories.Proe. 7th Int'l
Conference on Logic Programming and Nonmonotonic Reagpmages 141-153,
2004.

16 http://lwww.cs.utexas.edu/users/vl/papers/sams.ps .

28

[Lee, 20054 Joohyung Lee Automated Reasoning about Actio®hD thesis, University
of Texas at Austin, 2005.

[Lee, 2005b Joohyung Lee. A model-theoretic counterpart of loop foasul In
Proc. IJCAI-05 pages 503-508, 2005.

[Lifschitz and Razborov, 2005/ladimir Lifschitz and Alexander Razborov. Why are there
so many loop formulasACM Transactions on Computational LogR005. To appeatr.

[Lifschitz et al,, 1999 Vladimir Lifschitz, Lappoon R. Tang, and Hudson Turner. tées
expressions in logic programs.Annals of Mathematics and Atrtificial Intelligence
25:369-389, 1999.

[Lifschitz et al., 200d Vladimir Lifschitz, Norman McCain, Emilio Remolina, and
Armando Tacchella. Getting to the airport: The oldest plagmproblem in Al. In Jack
Minker, editor,Logic-Based Atrtificial Intelligengepages 147-165. Kluwer, 2000.

[Lifschitz, 1983 Vladimir Lifschitz. Computing circumscription. IRroc. IJCAI-85 pages
121-127, 1985.

[Lifschitz, 1987 Vladimir Lifschitz. Pointwise circumscription. In MattheGinsberg,
editor, Readings in nonmonotonic reasonjimmages 179-193. Morgan Kaufmann, San
Mateo, CA, 1987.

[Lifschitz, 1998 Vladimir Lifschitz. Foundations of logic programming. Ine@hard
Brewka, editor, Principles of Knowledge Representatiopages 69-128. CSLI
Publications, 1996.

[Lifschitz, 1997 Vladimir Lifschitz. On the logic of causal explanation.Artificial
Intelligence 96:451-465, 1997.

[Lifschitz, 200Q Vladimir Lifschitz. Missionaries and cannibals in the CaluSalculator.
In Principles of Knowledge Representation and Reasoningc.Psgventh Int’l Conf.
pages 85-96, 2000.

[Lin and Zhao, 200PFangzhen Lin and Yuting Zhao. ASSAT: Computing answer skts o
a logic program by SAT solvers. IRroceedings of National Conference on Atrtificial
Intelligence (AAAl)pages 112-117, 2002.

[Lin, 1995 Fangzhen Lin. Embracing causality in specifying the inctieffects of actions.
In Proceedings of the Fourteenth International Joint Corierzon Artificial Intelligence
(IJCAI-95), I3CAI Inc. Distributed by Morgan Kaufmann, Sdateo, CA, pages 1985—
1993, 1995.

[Lin, 2001] Fangzhen Lin. On strongest necessary and weakest suffioteitions.
Artificial Intelligence 128(1-2):143-159, 2001.

[Lin, 2003 Fangzhen Lin. Compiling causal theories to successor steitems and
STRIPS-like systemslournal of Artificial Intelligence Researcth9:279-314, 2003.

[McCain and Turner, 199™orman McCain and Hudson Turner. Causal theories of action
and change. IiProc. AAAI-97 pages 460465, 1997.

29

[McCarthy, 1980 John McCarthy. Circumscription—a form of non-monotoniagening.
Avrtificial Intelligence 13:27-39,171-172, 1980. ReproducedNrtCarthy, 199).

[McCarthy, 1986 John McCarthy. Applications of circumscription to fornzitig common
sense knowledgertificial Intelligence 26(3):89-116, 1986. Reproduced McCarthy,
199d.

[McCarthy, 1990 John McCarthyFormalizing Common Sense: Papers by John McCarthy
Ablex, Norwood, NJ, 1990.

[Reiter, 1978 Raymond Reiter. On closed world data bases. In H. GallaideJaMinker,
editors,Logics and Data Basepages 55-76. Plenum Press, New York, 1978.

[Reiter, 1982 Raymond
Reiter. Circumscription implies predicate completionnistimes). InProceedings of
AAAI-82 pages 418-420, 1982.

[Reiter, 1991 Raymond Reiter. The frame problem in the situation calcudusimple
solution (sometimes) and a completeness result for goakssmn. In Viadimir
Lifschitz, editor, Artificial Intelligence and Mathematical Theory of Compida:
Papers in Honor of John McCarthyages 418-420. Academic Press, San Diego, CA,
1991.

30

