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Abstract

Nonmonotonic causal logic, introduced by Norman McCain and Hudson Turner, became
a basis for the semantics of several expressive action languages. McCain’s embedding of
definite propositional causal theories into logic programming paved the way to the use of
answer set solvers for answering queries about actions described in such languages. In this
paper we extend this embedding to nondefinite theories and to first-order causal logic.
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1 Introduction

Propositional nonmonotonic causal logic (McCain and Turner 1997) and its gener-

alizations became a basis for the semantics of several expressive action languages

(Giunchiglia and Lifschitz 1998; Giunchiglia et al. 2004; Lifschitz and Ren 2006;

Lifschitz and Ren 2007; Ren 2009). The Causal Calculator (CCalc)1 is a partial

1 http://www.cs.utexas.edu/users/tag/ccalc/
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implementation of this logic that allows us to automate some kinds of reasoning

and planning in action domains described in such languages. It has been used to

solve several challenging commonsense reasoning problems, including problems of

nontrivial size (Akman et al. 2004), to provide a group of robots with high-level

reasoning (Caldiran et al. 2009), to give executable specifications of norm-governed

computational societies (Artikis et al. 2009), and to automate the analysis of busi-

ness processes under authorization constraints (Armando et al. 2009).

An important theorem due to Norman McCain (McCain 1997, Proposition 6.7)

shows how to embed a fragment of propositional causal logic into the language of

logic programming under the answer set semantics (Gelfond and Lifschitz 1991).

This result, reviewed below, paved the way to the development of an attractive

alternative to CCalc—the software system coala (Gebser et al. 2010) that uses

answer set programming (Marek and Truszczyński 1999; Niemelä 1999; Lifschitz

2008) for answering queries about actions described in causal logic.

A causal theory in the sense of (McCain and Turner 1997) is a set of “causal

rules” of the form F ⇐ G , where F and G are propositional formulas (the head

and the body of the rule). The rule reads “F is caused if G is true.” Distinguishing

between being true and having a cause turned out to be essential for the study of

commonsense reasoning. The assertion “if the light is on at time 0 and you toggle

the switch then the light will be off at time 1” can be written as an implication:

on0 ∧ toggle → ¬on1·

In causal logic, on the other hand, we can express that under the same assumption

there is a cause for the light to be off at time 1:

¬on1 ⇐ on0 ∧ toggle·

(Performing the toggle action is the cause.) McCain and Turner showed that dis-

tinctions like this help us solve the frame problem (see Example 5 in Section 5.2)

and overcome other difficulties arising in the theory of reasoning about actions.

The semantics of theories of this kind defines when a propositional interpreta-

tion (truth assignment) is a model of the given theory (is “causally explained” by

the theory, in the terminology of McCain and Turner). We do not reproduce the

definition here, because a more general semantics is described below in Section 3.

But here is an example: the causal theory

p ⇐ ¬q
¬q ⇐ p

(1)

has one model, according to the semantics from (McCain and Turner 1997). In this

model, p is true and q is false. (Since the bodies of both rules are true in this model,

both rules “fire”; consequently the heads of the rules are “caused”; consequently

the truth values of both atoms are “causally explained.” This will be discussed

formally in Section 3.)

McCain’s translation is applicable to a propositional causal theory T if the head

of each rule of T is a literal, and the body is a conjunction of literals:

L⇐ A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ¬An · (2)
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The corresponding logic program consists of the logic programming rules

L← not ¬A1, . . . ,not ¬Am ,not Am+1, . . . ,not An (3)

for all rules (2) of T . This program involves two kinds of negation: negation as

failure (not) and strong, or classical, negation (¬). According to Proposition 6.7

from (McCain 1997), complete answer sets of this logic program are identical to

the models of T . (A set of literals is complete if it contains exactly one member

of each complementary pair of literals A,¬A. We identify a complete set of literals

with the corresponding truth assignment.)

For instance, McCain’s translation turns causal theory (1) into

p ← not q

¬q ← not ¬p· (4)

The only answer set of this program is {p,¬q}. It is complete, and it corresponds

to the model of causal theory (1).

In this paper we generalize McCain’s translation in several ways. First, we discard

the requirement that the bodies of the given causal rules be conjunctions of literals.

Second, instead of requiring that the head of each causal rule be a literal, we

allow the heads to be disjunctions of literals. In this more general setting, the logic

program corresponding to the given causal theory becomes disjunctive as well.

Third, we study causal rules with heads of the form L1 ↔ L2, where L1 and

L2 are literals. Such a rule says that there is a cause for L1 and L2 to be equiv-

alent (“synonymous”) under some condition, expressed by the body of the rule.

Synonymity rules play an important role in the theory of commonsense reasoning

in view of the fact that humans often explain the meaning of words by referring to

their synonyms. A synonymity rule

L1 ↔ L2 ⇐ G (5)

can be translated into logic programming by rewriting it as the pair of rules

L1 ∨ L2 ⇐ G

L1 ∨ L2 ⇐ G

(L stands for the literal complementary to L) and then using our extension of

McCain’s translation to rules with disjunctive heads. It turns out, however, that

there is no need to use disjunctive logic programs in the case of synonymity rules.

If, for instance, G in (5) is a literal then the following group of nondisjunctive rules

will do:

L1 ← L2,not G

L2 ← L1,not G

L1 ← L2,not G

L2 ← L1,not G ·
Finally, we extend the translation from propositional causal rules to first-order

causal rules in the sense of (Lifschitz 1997). This version of causal logic is useful for

defining the semantics of variables in action descriptions (Lifschitz and Ren 2007).

As part of motivation for our approach to transforming causal theories into logic
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programs, we start with a few additional comments on McCain’s translation (Sec-

tion 2). After reviewing the semantics of causal theories and logic programs in

Sections 3 and 4, we describe four kinds of causal rules that we are interested in

and show how to turn a theory consisting of such rules into a logic program (Sec-

tion 5). This translation is related to answer set programming in Section 6, and its

soundness is proved in Section 7.

Preliminary reports on this work are published in (Ferraris 2006; Ferraris 2007;

Lee et al. 2010; Lifschitz and Yang 2010). Some results appear here for the first time,

including the soundness of a representation of a synonymity rule with variables by

a nondisjunctive logic program.

2 McCain’s Translation Revisited

2.1 Incorporating Constraints

In causal logic, a constraint is a rule with the head ⊥ (falsity). McCain’s translation

can be easily extended to constraints with a conjunction of literals in the body—

causal rules of the form

⊥ ⇐ A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An · (6)

In the language of logic programming, (6) can be represented by a rule similar

to (3):

⊥ ← not ¬A1, . . . ,not ¬Am ,not Am+1, . . . ,not An · (7)

Furthermore, each of the combinations not ¬ in (7) can be dropped without de-

stroying the validity of the translation; that is to say, the rule

⊥ ← A1, . . . ,Am ,not Am+1, . . . ,not An (8)

can be used instead of (7).

2.2 Eliminating Strong Negation

As observed in (Gelfond and Lifschitz 1991), strong negation can be eliminated from

a logic program in favor of additional atoms. Denote the new atom representing a

negative literal ¬A by Â. Then (3) will become

A0 ← not Â1, . . . ,not Âm ,not Am+1, . . . ,not An (9)

if L is a positive literal A0, and

Â0 ← not Â1, . . . ,not Âm ,not Am+1, . . . ,not An (10)

if L is a negative literal ¬A0. The modified McCain translation of a causal theory T

consisting of rules of the forms (2) and (6) includes

• rules (8) corresponding to the constraints (6) of T ,

• rules (9), (10) corresponding to the other rules of T , and
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• the completeness constraints

← A, Â

← not A,not Â
(11)

for all atoms A.

For instance, the modified McCain translation of (1) is

p ← not q

q̂ ← not p̂

← p, p̂

← not p,not p̂

← q , q̂

← not q ,not q̂ ·

(12)

The only answer set (stable model2) of this program is {p, q̂}.
This modification is useful to us in view of the fact that eliminating strong

negation in favor of aditional atoms is part of the definition of a stable model

proposed in (Ferraris et al. 2011, Section 8).

2.3 Rules as Formulas

The definition of a stable model for propositional formulas given in (Ferraris 2005)

and the definition of a stable model for first-order sentences proposed in (Ferraris

et al. 2011) become generalizations of the original definition (Gelfond and Lifschitz

1988) when we rewrite rules as logical formulas. For instance, rules (9) and (10),

rewritten as propositional formulas, become

¬Â1 ∧ · · · ∧ ¬Âm ∧ ¬Am+1 ∧ · · · ∧ ¬An → A0 (13)

and

¬Â1 ∧ · · · ∧ ¬Âm ∧ ¬Am+1 ∧ · · · ∧ ¬An → Â0· (14)

Rule (8) can be identified with the formula

A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ . . . ∧ ¬An → ⊥ (15)

or, alternatively, with

¬(A1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ . . . ∧ ¬An)· (16)

The completeness constraints for an atom A turn into the formulas

¬(A ∧ Â)

¬(¬A ∧ ¬Â)·
(17)

2 The term “stable model” was introduced in (Gelfond and Lifschitz 1988) to describe the meaning
of logic programs with negation as failure but without strong negation. When the stable model
semantics was extended to programs with strong negation in (Gelfond and Lifschitz 1991), the
term “answer set” was proposed as a replacement.
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Here is program (12) rewritten in the syntax of propositional logic:

¬q → p

¬p̂ → q̂

¬(p ∧ p̂)

¬(¬p ∧ ¬p̂)

¬(q ∧ q̂)

¬(¬q ∧ ¬q̂)·

(18)

Note that the process of rewriting a rule as a formula is applicable only when

the rule does not contain strong negation; the symbol ¬ in the resulting formula

corresponds to the negation as failure symbol (not) in the rule.

One of the advantages of writing rules as formulas is that it allows us to relate

properties of stable models to subsystems of classical logic. We know, for instance,

that if the equivalence of two sentences can be proved in intuitionistic logic (or even

in the stronger logic of here-and-there) then these sentences have the same stable

models (Ferraris et al. 2011, Theorem 5). This fact will be used here many times.

2.4 Translating Arbitrary Definite Theories

The requirement, in the definition of McCain’s translation, that the bodies of all

causal rules should be conjunctions of literals can be lifted by slightly modifying

the translation process. Take any set T of causal rules of the forms

A⇐ G , (19)

¬A⇐ G , (20)

⊥ ⇐ G , (21)

where A is an atom and G is an arbitrary propositional formula (rules of these

forms are called definite). For each rule (19), take the formula ¬¬G → A; for

each rule (20), the formula ¬¬G → Â; for each rule (21), the formula ¬G . Then

add completeness constraints (17) for all atoms A. Answer sets of this collection of

propositional formulas correspond to the models of T .

In application to example (1), this modification of McCain’s translation gives

¬¬¬q → p

¬¬p → q̂

¬(p ∧ p̂)

¬(¬p ∧ ¬p̂)

¬(q ∧ q̂)

¬(¬q ∧ ¬q̂)·

(22)

It is not surprising that (22) has the same answer set as (18): the two collections

of formulas are intuitionistically equivalent to each other.3

3 Indeed, ¬¬¬q is intuitionistically equivalent to ¬q; the equivalence between ¬¬p and ¬p̂ is
intuitionistically entailed by the formulas ¬(p ∧ p̂) and ¬(¬p ∧ ¬p̂), which belong both to (18)
and to (22).
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3 Review: First-Order Causal Theories

According to (Lifschitz 1997), a first-order causal theory T is defined by

• a list p of distinct predicate constants,4 called the explainable symbols of T ,5

and

• a finite set of causal rules of the form F ⇐ G , where F and G are first-order

formulas.

The semantics of first-order causal theories can be described as follows. For each

p ∈ p, choose a new predicate variable υp of the same arity, and let υp stand for

the list of all these variables. By T †(υp) we denote the conjunction of the formulas

∀x(G → Fp
υp) (23)

for all rules F ⇐ G of T , where x is the list of all free variables of F , G . (The expres-

sion Fp
υp denotes the result of substituting the variables υp for the corresponding

constants p in F .)

We view T as shorthand for the sentence

∀υp(T †(υp)↔ (υp = p))· (24)

(By υp = p we denote the conjunction of the formulas ∀x(υp(x) ↔ p(x)) for all

p ∈ p, where x is a tuple of distinct object variables.) Accordingly, by a model

of T we understand a model of (24) in the sense of classical logic. The models of T

are characterized, informally speaking, by the fact that the interpretation of the

explainable symbols p in the model is the only interpretation of these symbols that

is “causally explained” by the rules of T .

In the definite case (see Section 2.4) second-order formula (24) can be replaced

by an equivalent first-order formula using a process similar to Clark’s completion

(Clark 1978), called literal completion (McCain and Turner 1997), (Lifschitz 1997,

Section 5). This process is used in the operation of CCalc.

Example 1. Let T be causal theory (1) with both p and q explainable. Then

T †(υp, υq) is

(¬q → υp) ∧ (p → ¬υq)

(υp, υq are propositional variables), so that T is understood as shorthand for the

second-order propositional formula (“QBF”)

∀(υp)(υq)((¬q → υp) ∧ (p → ¬υq)↔ (υp ↔ p) ∧ (υq ↔ q))· (25)

This formula is equivalent to p ∧ ¬q .6

4 We view propositional symbols as predicate constants of arity 0, so that they are allowed in p.
Equality, on the other hand, may not be declared explainable.

5 To be precise, the definition in (Lifschitz 1997) is more general: object and function constants
can be treated as explainable as well.

6 This fact can be verified by replacing the universal quantifier in (25) with the conjunction of
the four propositional formulas obtained by substituting all possible combinations of values for
the variables υp, υq, and simplifying the result. Alternatively, one can apply literal completion
to rules (1) and simplify the result.
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Example 2. Let T be the causal theory consisting of two rules:

p(a)⇐ >

(here > is the logical constant true) and

¬p(x )⇐ ¬p(x ),

with the explainable symbol p. The first rule says that there is a cause for a to have

property p. The second rule says that if an object does not have property p then

there is a cause for that; including this rule in a causal theory has, informally speak-

ing, the same effect as saying that p is false by default (Lifschitz 1997, Section 3).

In this case, T †(υp) is

υp(a) ∧ ∀x (¬p(x )→ ¬υp(x )),

so that T is understood as shorthand for the sentence

∀υp(υp(a) ∧ ∀x (¬p(x )→ ¬υp(x ))↔ ∀x (υp(x )↔ p(x )))·

This sentence is equivalent to the first-order formula

∀x (p(x )↔ x = a), (26)

as can be verified by applying literal completion to the rules of T .

4 Review: Stable Models

Some details of the definition of a stable model proposed in (Ferraris et al. 2011)

depend on which propositional connectives are treated as primitives, and which are

viewed as abbreviations. The convention there is to take the 0-place connective ⊥
and the binary connectives ∧, ∨, → as primitives; ¬F is shorthand for F → ⊥.

In this paper we adopt the view that first-order formulas are formed using a

slightly larger set of propositional connectives:

>, ⊥, ¬, ∧, ∨, →

(as well as the quantifiers ∀, ∃). On the other hand, stable models are only defined

here for sentences of a special syntactic form. A first-order sentence is a rule7 if it

has the form ∀̃(F → G) and has no occurrences of → other than the one explicitly

shown.8 If a sentence F does not contain implication then we will identify it with

the rule > → F . For instance, propositional formulas (13)–(18) are rules. A logic

program is a conjunction of rules. The definition of a stable model below is more

limited than the definition from (Ferraris et al. 2011) because it is only applicable

to programs, not to arbitrary sentences. For instance, it does not cover the formulas

(p → q) → r and (p → q) ∨ r . On the other hand, it is simpler than the general

definition, and it is sufficient for our present purposes.

7 Or program rule, to distinguish it from causal rules in the sense of Section 3.
8 ∀̃F stands for the universal closure of F .
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We need the following notation from (Lifschitz 1994). If p and q are predicate

constants of the same arity then p ≤ q stands for the formula

∀x(p(x)→ q(x)),

where x is a tuple of distinct object variables. If p and q are tuples p1, . . . , pn and

q1, . . . , qn of predicate constants then p ≤ q stands for the conjunction

(p1 ≤ q1) ∧ · · · ∧ (pn ≤ qn),

and p < q stands for (p ≤ q)∧¬(q ≤ p). In second-order logic, we apply the same

notation to tuples of predicate variables.

Let p be a list of distinct predicate constants; members of p will be called in-

tensional predicates.9 For each p ∈ p, choose a predicate variable υp of the same

arity, and let υp stand for the list of all these variables. For any logic program F ,

by SMp[F ] we denote the second-order sentence

F ∧ ¬∃υp((υp < p) ∧ F �(υp)), (27)

where F �(υp) is the formula obtained from F by replacing, for every p ∈ p, each

occurrence of p that is not in the scope of negation with υp. A model of F is stable

(relative to the set p of intensional predicates) if it satisfies SMp[F ].10

Example 3. Let F be the propositional formula ¬p → q (the one-rule program

q ← not p, in traditional notation). If both p and q are intensional then F �(υp, υq)

is

¬p → υq ,

so that SMpq [F ] is

(¬p → q) ∧ ¬∃(υp)(υq)(((υp, υq) < (p, q)) ∧ (¬p → υq))·

This formula is equivalent to ¬p ∧ q .11 Consequently F has one stable model: p is

false and q is true.

Example 4. Let F be the formula

∀x (¬p(x )→ (q(x ) ∨ ¬q(x ))) (28)

(it can be thought of as a formula representation of the lparse choice rule

9 This list usually consists of all predicate symbols occurring in the heads of rules; those are the
predicates that we “intend to characterize” by the rules of the program. The original definition
of a stable model (Gelfond and Lifschitz 1988) treats all predicates as intensional.

10 We can make two comments about the relation of this treatment of stable models to earlier work.
First, if we drop from the definition of SM the words “that is not in the scope of negation” then
it will turn into the definition of parallel circumscription (McCarthy 1986; Lifschitz 1985). It
follows that if a logic program does not contain negation then the class of its stable models is
identical to the class of its minimal models. The stipulation in the description of F�(υp) that
intensional predicates in the scope of negation are not replaced by variables is a reflection of
the idea of negation as failure. Second, the operator of SM as defined in (Ferraris et al. 2011)
produces, in application to a logic program, a second-order formula that is usually more complex
than (27) but is equivalent to it.

11 Methods for simplifying the result of applying the operator SM are discussed in (Ferraris et al.
2011).
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{q(X)} :- not p(X)).12 If we take q to be the only intensional predicate then F �(υq)

is

∀x (¬p(x )→ (υq(x ) ∨ ¬q(x )))·
Consequently SMq [F ] is

∀x (¬p(x )→ (q(x ) ∨ ¬q(x ))) ∧ ¬∃υq((υq < q) ∧ ∀x (¬p(x )→ (υq(x ) ∨ ¬q(x ))))·

The first conjunctive term here is logically valid and can be dropped. The second is

equivalent to the first-order formula ¬∃x (p(x ) ∧ q(x )), which reflects the intuitive

meaning of the choice rule above: q is an arbitrary set disjoint from p.

The relationship between the definition of a stable model given above and the

operation of answer set solvers is discussed in Section 6.

If programs F and G are intuitionistically equivalent then SMp[F ] is equival-

ent to SMp[G ], that is to say, F and G have the same stable models. Moreover,

for establishing that F and G have the same stable models we only need to de-

rive F ↔ G intuitionistically from the excluded middle formulas ∀̃(H ∨ ¬H ) for

some formulas H that do not contain intensional predicates. This fact follows from

(Ferraris et al. 2011, Theorem 5).

5 Turning a Causal Theory into a Logic Program

5.1 Four Types of Causal Rules

In the rest of the paper, we assume that the bodies of causal rules do not contain

implication. This is not an essential limitation, because in classical logic → can be

expressed in terms of other connectives, and the meaning of a causal rule does not

change if we replace its body (or head) by a classically equivalent formula.

Here are four types of rules that we are going to consider, in the order of increasing

complexity of their heads:

• The head is ⊥, that is, the rule is a constraint. Such causal rules will be also

called C-rules.

• The head is a literal containing an explainable predicate symbol. These are

L-rules.

• The head has the form L1 ↔ L2, where each Li is a literal containing an

explainable predicate symbol. These are synonymity rules, or S-rules.

• The head has the form L1 ∨ · · · ∨ Ln (n ≥ 0), where each Li is a literal

containing an explainable predicate symbol. These are D-rules.

All C-rules and L-rules can be viewed also as D-rules, and any S-rule can be

replaced with an equivalent pair of D-rules (see Lemma 11 in Section 7.2). Nev-

ertheless, we give special attention here to rules of the first three types, and the

reason is that our translation handles such rules in special ways. It appears that

12 This rule would not be accepted by lparse, however, because it is “nonrestricted.” For a descrip-
tion of the language of lparse see http://www.tcs.hut.fi/Software/ smodels/lparse.ps.
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causal rules of types C, L, and S will be more important than general D-rules in

applications of this work to the automation of reasoning about actions.

On the other hand, the possibility of reducing types C, L, and S to type D plays

an important role in the proof of the soundness of our translation (Section 7). This

is one of the reasons why we are interested in general D-rules.

The requirement, in the definitions of types L, S and D, that the literals in the

head of the rule contain explainable predicate symbols is not an essential limitation.

If, for instance, the predicate symbol in the head of L⇐ G is not explainable then

this rule can be equivalently replaced by the C-rule ⊥ ⇐ G ∧ L. If a rule has the

form

L1 ↔ L2 ⇐ G

and the predicate symbol in L1 is not explainable then the rule can be replaced by

L2 ⇐ G ∧ L1,

L2 ⇐ G ∧ L1·

If a rule has the form

L1 ∨ · · · ∨ Ln ⇐ G

and the predicate symbol in L1 is not explainable then the rule can be replaced by

L2 ∨ · · · ∨ Ln ⇐ G ∧ L1·

5.2 Translating C-Rules and L-Rules

The transformation described in this section generalizes McCain’s translation, in

the form described in Section 2.4, to first-order causal theories.

The operator Trc , which transforms any C-rule into a program rule, is defined

by the formula

Trc [⊥ ⇐ G ] = ∀̃¬G ·
The operator Trl , which transforms any L-rule into a program rule, is defined by

the formulas

Trl [p(t)⇐ G ] = ∀̃(¬¬G → p(t)),

Trl [¬p(t)⇐ G ] = ∀̃(¬¬G → p̂(t))

(t is a tuple of terms).

If T is a causal theory consisting of C-rules and L-rules then its translation Tr[T ]

is the logic program obtained by conjoining

• the rules obtained by applying Trc to the C-rules of T ,

• the rules obtained by applying Trl to the L-rules of T , and

• the completeness constraints

∀x¬(p(x) ∧ p̂(x)),

∀x¬(¬p(x) ∧ ¬p̂(x))
(29)

(x is a tuple of distinct object variables) for all explainable predicate symbols p

of T .
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Let p be the list of explainable predicate symbols p of T , and let p̂ be the list

of the corresponding predicate symbols p̂. Take the union of p and p̂ to be the set

of intensional predicates. Then the stable models of the logic program Tr[T ] are

“almost identical” to the models of T ; the difference is due to the fact that the

language of T does not contain the symbols p̂. Let CC be the conjunction of all

completeness constraints (29). Then the relationship between T and Tr[T ] can be

described as follows:

SMpp̂[Tr[T ]] is equivalent to T ∧ CC · (30)

This claim, expressing the soundness of our translation, is extended in Sections 5.3

and 5.4 to causal theories containing S-rules and D-rules, and its proof is given in

Section 7.

Since the conjunction of formulas (29) is classically equivalent to

∀x(p̂(x)↔ ¬p(x)), (31)

sentence CC can be viewed as the conjunction of explicit definitions of the pred-

icates p̂ in terms of the predicates p. Consequently the relationship (30) shows

that SMpp̂[Tr[T ]] is a definitional extension of T . The models of Tr[T ] that are

stable relative to pp̂ can be characterized as the models of T extended by the

interpretations of the predicates p̂ that are provided by definitions (31).

Example 1, continued. If T is causal theory (1) with both p and q explainable

then Tr[T ] is the conjunction of formulas (22). The result of applying the operator

SMpqp̂q̂ to this conjunction is equivalent to

p ∧ ¬q ∧ ¬p̂ ∧ q̂ ·

Recall that T is equivalent to the first half of this conjunction (Section 3). The

second half tells us that the truth values of p̂, q̂ are opposite to the truth values

of p, q . In the only stable model of (22), p and q̂ are true, and p̂ and q are false; if

we “forget” the truth values of p̂ and q̂ then we will arrive at the model of (1).

Example 2, continued. Our translation turns the causal theory from Example 2

into the conjunction of the rules

¬¬> → p(a),

∀x (¬¬¬p(x )→ p̂(x )),

∀x¬(p(x ) ∧ p̂(x )),

∀x¬(¬p(x ) ∧ ¬p̂(x )),

or, after intuitionistically equivalent transformations,

p(a),

∀x (¬p(x )→ p̂(x )),

∀x¬(p(x ) ∧ p̂(x )),

∀x¬(¬p(x ) ∧ ¬p̂(x ))·

The result of applying SMpp̂ to the conjunction of these formulas is equivalent to

the conjunction of (26) with the formula ∀x (p̂(x ) ↔ ¬p(x )), which says that p̂ is

the complement of p.
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Example 5. Consider the following causal rules:

on1(x ) ⇐ toggle(x ) ∧ ¬on0(x ),

¬on1(x ) ⇐ toggle(x ) ∧ on0(x ),

on1(x ) ⇐ on0(x ) ∧ on1(x ),

¬on1(x ) ⇐ ¬on0(x ) ∧ ¬on1(x )·

(32)

The first pair of rules describes the effect of toggling a switch x : this action causes

the fluent on(x ) at time 1 to take the value opposite to its value at time 0. The

second pair solves the frame problem (Shanahan 1997) for the fluent on(x ) by

postulating that if the value of that fluent at time 1 is equal to its previous value

then there is a cause for this. (Inertia, in the sense of commonsense reasoning, is

the cause.) Let T be the causal theory with rules (32) and with on1 as the only

explainable symbol. Using literal completion, we can check that T is equivalent to

∀x (on1(x )↔ ((on0(x ) ∧ ¬toggle(x )) ∨ (¬on0(x ) ∧ toggle(x ))))· (33)

Our translation turns T into the conjunction of the rules

∀x (¬¬(toggle(x ) ∧ ¬on0(x ))→ on1(x )),

∀x (¬¬(toggle(x ) ∧ on0(x ))→ ôn1(x )),

∀x (¬¬(on0(x ) ∧ on1(x ))→ on1(x )),

∀x (¬¬(¬on0(x ) ∧ ¬on1(x ))→ ôn1(x )),

∀x¬(on1(x ) ∧ ôn1(x )),

∀x¬(¬on1(x ) ∧ ¬ôn1(x )),

(34)

or, equivalently,13

∀x (toggle(x ) ∧ ¬on0(x )→ on1(x )),

∀x (toggle(x ) ∧ on0(x )→ ôn1(x )),

∀x (on0(x ) ∧ ¬ôn1(x )→ on1(x )),

∀x (¬on0(x ) ∧ ¬on1(x )→ ôn1(x )),

∀x¬(on1(x ) ∧ ôn1(x )),

∀x¬(¬on1(x ) ∧ ¬ôn1(x ))·

(35)

The result of applying SMon1ôn1
to this program is equivalent to the conjunction

of (33) with the formula ∀x (ôn1(x ) ↔ ¬on1(x )), which says that ôn1 is the com-

plement of on1.

Example 6. The constraint

⊥ ⇐ toggle(badswitch)

expresses that badswitch is stuck: the action of toggling it is not executable. If we

add this constraint to the causal theory from Example 5 then the rule

¬toggle(badswitch)

13 Removing the double negations in the first two lines of (34) is possible because neither toggle nor
on0 is intensional (see the comment on equivalent transformations of logic programs at the end
of Section 4). In a similar way, the antecedent of the third impication in (34) can be replaced
by on0(x) ∧ ¬¬on1(x); the equivalence between ¬¬on1(x) and ¬ôn1(x) is intuitionistically
entailed by the last two lines of (34). The fourth line of (34) is simplified in a similar way.
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will be added to its translation (35).

The bodies of causal rules in Examples 5 and 6 are syntactically simple: they

are conjunctions of literals. The general definitions of a C-rule and an L-rule do

not impose any restrictions on the form of the body, and in applications of causal

logic to formalizing commonsense knowledge this generality is often essential. For

instance, the statement “each position must have at least one neighbor” in the

landscape structure of the Zoo World14 would be represented in causal logic by a

C-rule with a quantifier in the body.

5.3 Translating S-Rules

We will turn now to translating synonymity rules (Section 5.1). The operator Trs ,

transforming any such rule into a logic program, is defined by the formulas

Trs [p1(t1)↔ p2(t2)⇐ G ] = Trs [¬p1(t1)↔ ¬p2(t2)⇐ G ]

= ∀̃(¬¬G ∧ p1(t1)→ p2(t2)) ∧ ∀̃(¬¬G ∧ p2(t2)→ p1(t1))∧
∀̃(¬¬G ∧ p̂1(t1)→ p̂2(t2)) ∧ ∀̃(¬¬G ∧ p̂2(t2)→ p̂1(t1)),

Trs [¬p1(t1)↔ p2(t2)⇐ G ] = Trs [p1(t1)↔ ¬p2(t2)⇐ G ]

= ∀̃(¬¬G ∧ p̂1(t1)→ p2(t2)) ∧ ∀̃(¬¬G ∧ p2(t2)→ p̂1(t1))∧
∀̃(¬¬G ∧ p1(t1)→ p̂2(t2)) ∧ ∀̃(¬¬G ∧ p̂2(t2)→ p1(t1))

(t1, t2 are tuples of terms). The definition of program Tr[T ] from Section 5.2 is

extended to causal theories that may contain S-rules, besides C-rules and L-rules,

by adding that Tr[T ] includes also

• the rules obtained by applying Trs to the S-rules of T .

Example 7. Extend the theory from Example 5 by the rule

dark ↔ ¬on1(myswitch)⇐ >, (36)

where dark is explainable. The corresponding logic program is obtained from (35)

by adding the rules

d̂ark → on1(myswitch),

on1(myswitch)→ d̂ark ,

dark → ôn1(myswitch),

ôn1(myswitch)→ dark ,

¬(dark ∧ d̂ark),

¬(¬dark ∧ ¬d̂ark)·

(37)

We will see that the soundness property (30) holds for arbitary causal theories

consisting of rules of types C, L, and S.

14 The challenge of formalizing the Zoo World was proposed as part of the Logic Modelling Work-
shop (http:/www/ida.liu.se/ext/etai/lmw/). The possibility of addressing this challenge using
CCalc is discussed in (Akman et al. 2004, Section 4).
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5.4 Translating D-Rules

A D-rule (Section 5.1) has the form∨
A∈Pos

A ∨
∨

A∈Neg

¬A⇐ G (38)

for some sets Pos, Neg of atomic formulas.

If A is an atomic formula p(t), where p ∈ p and t is a tuple of terms, then by Â

we will denote the formula p̂(t). The operator Trd transforms D-rule (38) into the

program rule

∀̃

¬¬G ∧ ∧
A∈Pos

(Â ∨ ¬Â) ∧
∧

A∈Neg

(A ∨ ¬A) →
∨

A∈Pos

A ∨
∨

A∈Neg

Â

 · (39)

Example 8. The result of applying Trd to the D-rule

p ∨ ¬q ∨ ¬r ⇐ s

is

¬¬s ∧ (p̂ ∨ ¬p̂) ∧ (q ∨ ¬q) ∧ (r ∨ ¬r)→ p ∨ q̂ ∨ r̂ ·

The number of “excluded middle formulas” conjoined with ¬¬G in (39) equals

the number of disjunctive terms in the head of D-rule (38). In particular, if (38) is

an L-rule then the antecedent of (39) contains one such formula. For instance, in

application to the first rule of (1) Trd produces the program rule

¬¬¬q ∧ (p̂ ∨ ¬p̂)→ p,

which is more complex than the first rule of (22).

For a fixed collection p of explainable symbols, let C , L, S , and D be finite sets

of causal rules of types C, L, S, and D respectively. By Tr[C ,L,S ,D ] we denote the

logic program obtained by conjoining

• the rules obtained by applying Trc to all rules from C ,

• the rules obtained by applying Trl to all rules from L,

• the programs obtained by applying Trs to all rules from S ,

• the rules obtained by applying Trd to all rules from D ,

• the completeness constraints (29) for all explainable symbols p.

Our most general form of the soundness theorem, proved in Section 7, asserts that

SMpp̂[Tr[C ,L,S ,D ]] is equivalent to T ∧ CC (40)

for the causal theory T with the set of rules C∪L∪S∪D . In the special case when D

is empty this theorem turns into the assertion stated at the end of Section 5.3.
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6 Using Answer Set Solvers to Generate Models of a Causal Theory

The discussion of answer set solvers in this section, as almost any discussion of

software, is somewhat informal. We assume here that the first-order language under

consideration does not contain function constants of nonzero arity.

An answer set solver can be viewed as a system for generating stable models in

the sense of Section 4, with three caveats. First, currently available solvers require

that the input program have a syntactic form that is much more restrictive than

the syntax of first-order logic.15 Preprocessing based on intuitionistically equivalent

transformations often helps us alleviate this difficulty. There exists a tool, called

f2lp (Lee and Palla 2009), that converts first-order formulas of a rather general

kind into logic programs accepted by lparse. The rules produced by the process

described in the previous section have no existential quantifiers in their heads, and

all quantifiers in their bodies are in the scope of negation. Consequently, these

rules satisfy a syntactic condition that guarantees the correctness of the translation

implemented in f2lp.

Second, answer set solvers represent stable models by sets of ground atoms. To

introduce such a representation, we usually choose a finite set of object constants

that includes all object constants occurring in the program, and restrict attention

to Herbrand interpretations of the extended language. The #domain construct of

lparse16 can be used to specify the object constants constituting the domain of

the variables in the program.

Third, most existing answer set solvers are unaware of the possibility of non-

intensional (or extensional) predicates. Treating a predicate constant as extensional

can be simulated using a choice rule (Ferraris et al. 2011, Theorem 2). There is also

another approach to overcoming this limitation. Take a conjunction E of some

ground atoms containing extensional predicates, and assume that we are interested

in the Herbrand stable models of a program F that interpret the extensional pred-

icates in accordance with E (every atom from E is true; all other atoms containing

extensional predicates are false). Under some syntactic conditions,17 these stable

models are identical to the Herbrand stable models of F ∧ E with all predicate

constants treated as intensional. This can be proved using the splitting theorem

from (Ferraris et al. 2009).

Example 4, continued. We would like to find the stable models of (28), with q

intensional, that have the universe {a, b, c, d} and make p true on a, b and false

on c, d . This is the same as to look for the Herbrand stable models of the formula

∀x (¬p(x )→ (q(x ) ∨ ¬q(x ))) ∧ p(a) ∧ p(b),

with c and d viewed as object constants of the language along with a and b, and

with both p and q taken to be intensional.

15 They also require that the input satisfy some safety conditions. See, for instance, Chapter 3 of
the dlv manual, http://www.dbai.tuwien.ac.at/proj/dlv/man/.

16 See Footnote (12).
17 Specifically, under the assumption that every occurrence of every extensional predicate in F is

in the scope of negation or in the antecedent of an implication.
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u(a;b;c;d).

#domain u(X).

{q(X)} :- not p(X).

p(a;b).

Fig. 1. Example 4 with a 4-element universe in the language of lparse

A representation of this example in the language of lparse is shown in Figure 1.

The auxiliary predicate u describes the universe of the interpretations that we are

interested in. The first line is shorthand for

u(a). u(b). u(c). u(d).

and the last line is understood by lparse in a similar way.

Given this input, the answer set solver smodels generates 4 stable models, rep-

resenting the subsets of {a, b, c, d} that are disjoint from {a, b}:

Answer: 1

Stable Model: p(b) p(a) u(d) u(c) u(b) u(a)

Answer: 2

Stable Model: p(b) p(a) q(d) u(d) u(c) u(b) u(a)

Answer: 3

Stable Model: p(b) p(a) q(c) u(d) u(c) u(b) u(a)

Answer: 4

Stable Model: p(b) p(a) q(d) q(c) u(d) u(c) u(b) u(a)

In application to the logic program obtained from a causal theory T as described

in Section 5, this process often allows us to find the models of T with a given

universe and given extents of extensional predicates.

Example 7, continued. There are two switches, myswitch and hisswitch. It is

dark in my room at time 1 if and only if myswitch is not on at time 1. At time 0,

both switches are on; then hisswitch is toggled, and myswitch is not. Is it dark

in my room at time 1? We would like to answer this question using answer set

programming.

This example of commonsense reasoning involves inertia (the value of the fluent

on(myswitch) does not change because this fluent is not affected by the action that

is executed) and indirect effects of actions: whether or not it is dark in the room

at time 1 after performing some actions is determined by the effect of these actions

on the fluent on(myswitch).

Mathematically, we are talking here about the causal theory T with rules (32)

and (36), with the object constant hisswitch added to the language, and with the

explainable symbols on1 and dark . We are interested in the Herbrand models of T

in which the extents of the extensional predicates are described by the atoms

on0(myswitch), on0(hisswitch), toggle(hisswitch)·

As we have seen, the logic program Tr[T ] is equivalent to the conjunction of
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u(myswitch;hisswitch).

#domain u(X).

on1(X) :- toggle(X), not on0(X).

-on1(X) :- toggle(X), on0(X).

on1(X) :- on0(X), not -on1(X).

-on1(X) :- not on0(X), not on1(X).

:- not on1(X), not -on1(X).

on1(myswitch) :- -dark.

-dark :- on1(myswitch).

-on1(myswitch) :- dark.

dark :- -on1(myswitch).

:- not dark, not -dark.

on0(myswitch;hisswitch).

toggle(hisswitch).

Fig. 2. Example 7 with two switches in the language of lparse

rules (35) and (37). The corresponding lparse input file is shown in Figure 2. In

this file, the “true negation” symbol - is used in the ASCII representations of the

symbols ôn1 and d̂ark ; the lparse counterparts of the rules

∀x¬(on1(x ) ∧ ôn1(x )),

¬(dark ∧ d̂ark)

are dropped, because such “coherence” conditions are verified by the system auto-

matically.

Given this input, smodels generates the only model of T satisfying the given

conditions:

Answer: 1

Stable Model: -on1(hisswitch) on1(myswitch) -dark toggle(hisswitch)

on0(hisswitch) on0(myswitch) u(hisswitch) u(myswitch)

The presence of -dark in this model tells us that it is not dark in the room at

time 1.

The example above is an example of “one-step temporal projection”—predicting

the value of a fluent after performing a single action in a given state. Some other

kinds of temporal reasoning and planning can be performed by generating models of

simple modifications of the given causal theory (Giunchiglia et al. 2004, Section 3.3);

this is one of the ideas behind the design of CCalc and coala. McCain’s transla-

tion reviewed in the introduction and its generalization presented in Section 5 allow

us to solve such problems automatically using an answer set solver.
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7 Proof of Soundness

To prove claim (40), which expresses the soundness of our translation, we will first

establish it for the case when C = L = S = ∅ (Section 7.1). In this “leading special

case” all rules of the given causal theory are D-rules, and they are converted to

program rules using the translation Trd . Then we will derive the soundness theorem

in full generality (Section 7.2).

7.1 Leading Special Case

Let T be a finite set of causal rules of the form (38). Let Π be the conjunction of the

corresponding program rules (39), and let CC , as before, stand for the conjunction

of the completeness constraints (29) for all explainable symbols p of T . We want

to show that

SMpp̂[Π ∧ CC ] is equivalent to T ∧ CC · (41)

The key steps in the proof below are Lemma 5 (one half of the equivalence) and

Lemma 8 (the other half).

In the statement of the following lemma, ¬p stands for the list of predicate

expressions18 λx¬p(x), where x is a list of distinct object variables, for all p from p.

By υp, υp̂ we denote the lists of predicate variables used in the second-order formula

SMpp̂[Π ∧ CC ] (see Section 4).

Lemma 1

Formula (υp, υp̂) < (p,¬p) is equivalent to∨
p∈p

(((υp, υp̂) ≤ (p,¬p)) ∧ ∃x(¬υp(x) ∧ ¬υp̂(x)))·

Proof

Note first that

(υp, υp̂) < (p,¬p)

⇔ ((υp, υp̂) ≤ (p,¬p)) ∧ ¬ ((p,¬p) ≤ (υp, υp̂))

⇔ ((υp, υp̂) ≤ (p,¬p)) ∧
∨

p∈p ∃x((p(x) ∧ ¬υp(x)) ∨ (¬p(x) ∧ ¬υp̂(x)))

⇔
∨

p∈p(((υp, υp̂) ≤ (p,¬p)) ∧ ∃x((p(x) ∧ ¬υp(x)) ∨ (¬p(x) ∧ ¬υp̂(x))))·

The disjunction after ∃x is equivalent to

(p(x) ∨ ¬υp̂(x)) ∧ (¬υp(x) ∨ ¬p(x)) ∧ (¬υp(x) ∨ ¬υp̂(x))· (42)

Since (υp, υp̂) ≤ (p,¬p) entails

υp(x)→ p(x) and υp̂(x)→ ¬p(x),

the first conjunctive term of (42) can be rewritten as ¬υp̂(x), and the second term

as ¬υp(x), so that (42) will turn into ¬υp(x) ∧ ¬υp̂(x).

18 See (Lifschitz 1994, Section 3.1).
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For any formula F , by FΣ1 we denote the formula

F
(υp)(υp̂)
(υp∧p)(¬υp∧¬p)

where υp ∧ p is understood as the list of predicate expressions

λx(υp(x) ∧ p(x))

for all p ∈ p, and ¬υp ∧ ¬p is understood in a similar way.19

Lemma 2

Formula

((υp, υp̂) < (p,¬p))Σ1

is equivalent to υp 6= p.

Proof

In view of Lemma 1, ((υp, υp̂) < (p,¬p))Σ1 is equivalent to the disjunction of the

formulas(∧
p∈p ∀x(υp(x)→ p(x))Σ1

)
∧

(∧
p∈p ∀x(υp̂(x)→ ¬p(x))Σ1

)
∧ ∃x(¬υp(x) ∧ ¬υp̂(x))Σ1

(43)

for all p ∈ p. It is easy to verify that

(υp(x)→ p(x))Σ1 = (υp(x) ∧ p(x)→ p(x)) ⇔ > ,

(υp̂(x)→ ¬p(x))Σ1 = (¬υp(x) ∧ ¬p(x)→ ¬p(x)) ⇔ >,

(¬υp(x) ∧ ¬υp̂(x))Σ1 ⇔ ((¬υp(x) ∨ ¬p(x)) ∧ ¬(¬υp(x) ∧ ¬p(x)))

⇔ (υp(x)↔ ¬p(x))

⇔ ¬(υp(x)↔ p(x))·

Therefore (43) is equivalent to ∃x¬(υp(x) ↔ p(x)), so that the disjunction of all

formulas (43) is equivalent to υp 6= p.

If A is an atomic formula p(t), where p ∈ p and t is a tuple of terms, then we

will write υA for υp(t), and Â for υp̂(t). By ∀̃objF we denote the formula ∀xF ,

where x is list of all free object variables of F (“object-level universal closure”).

Define H (υp, υp̂) to be the conjunction of the implications

∀̃obj

G →
∨

A∈Pos

((υÂ ∨A)→ υA) ∨
∨

A∈Neg

((υA ∨ ¬A)→ υÂ)

 (44)

for all rules (38) in T .

Lemma 3

Formula SMpp̂[Π ∧ CC ] is equivalent to

Π ∧ CC ∧ ∀(υp)(υp̂)(((υp, υp̂) < (p,¬p))→ ¬H (υp, υp̂))· (45)

19 For the definition of F
p
υp see Section 3.
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Proof
Every occurrence of every intensional predicate in CC is in the scope of a negation.

Consequently SMpp̂[Π ∧ CC ] is

Π ∧ CC ∧ ¬∃(υp)(υp̂)(((υp, υp̂) < (p, p̂)) ∧Π�(υp, υp̂) ∧ CC ),

which is equivalent to

Π ∧ CC ∧ ∀(υp)(υp̂)(((υp, υp̂) < (p,¬p))→ ¬Π�(υp, υp̂))·

We will conclude the proof by showing that CC entails

Π�(υp, υp̂)↔ H (υp, υp̂)·

The left-hand side of this equivalence is the conjunction of the formulas

∀̃obj

¬¬G ∧ ∧
A∈Pos

(υÂ ∨ ¬Â) ∧
∧

A∈Neg

(υA ∨ ¬A)→
∨

A∈Pos

υA ∨
∨

A∈Neg

υÂ


for all rules (38) in T . Under the assumption CC this formula can be rewritten as

∀̃obj

G →
∨

A∈Pos

¬(υÂ ∨A) ∨
∨

A∈Neg

¬(υA ∨ ¬A) ∨
∨

A∈Pos

υA ∨
∨

A∈Neg

υÂ

 ·
The last formula is equivalent to

∀̃obj

G →
∨

A∈Pos

(¬(υÂ ∨A) ∨ υA) ∨
∨

A∈Neg

(¬(υA ∨ ¬A) ∨ υÂ)

 ·
and consequently to (44).

Lemma 4
T †(υp) is equivalent to H (υp, υp̂)Σ1.

Proof
Formula T †(υp) is the conjunction of the formulas

∀̃obj

G →
∨

A∈Pos

υA ∨
∨

A∈Neg

¬υA

 (46)

for all rules (38) in T . On the other hand, H (υp, υp̂)Σ1 is the conjunction of the

formulas

∀̃obj

G →
∨

A∈Pos

((υÂ ∨A)→ υA)Σ1 ∨
∨

A∈Neg

((υA ∨ ¬A)→ υÂ)Σ1

 (47)

for all rules (38) in T . It remains to observe that

((υÂ ∨A)→ υA)Σ1 = (¬υA ∧ ¬A) ∨A→ υA ∧A

⇔ ¬υA ∨A→ υA ∧A

⇔ (υA ∧ ¬A) ∨ (υA ∧A)

⇔ υA,
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and that, similarly, ((υA ∨ ¬A)→ υÂ)Σ1 is equivalent to ¬υA.

Lemma 5
SMpp̂[Π ∧ CC ] |= T ∧ CC .

Proof
Recall that, according to Lemma 3, SMpp̂[Π∧CC ] is equivalent to (45). The second

conjunctive term of (45) is CC . The first conjunctive term is equivalent to T †(p).

From the other two terms we conclude:

∀υp(((υp, υp̂) < (p, p̂))Σ1 → ¬H (υp, υp̂)Σ1)·

By Lemma 2 and Lemma 4, this formula is equivalent to

∀υp((υp 6= p)→ ¬T †(υp)),

and consequently to

∀υp(T †(υp)→ (υp = p))·
The conjunction of the last formula with T †(p) is equivalent to (24).

For any formula F , by FΣ2 we denote the formula

F υp(((υp,υp̂)≤(p,¬p))∧¬υp∧¬υp̂)↔¬p

where the subscript

(((υp, υp̂) ≤ (p,¬p)) ∧ ¬υp ∧ ¬υp̂)↔ ¬p

is understood as the list of predicate expressions

λx((((υp, υp̂) ≤ (p,¬p)) ∧ ¬υp(x) ∧ ¬υp̂(x))↔ ¬p(x))

for all p ∈ p.

Lemma 6
Formula

(υp 6= p)Σ2

is equivalent to (υp, υp̂) < (p,¬p).

Proof
Formula (υp 6= p)Σ2 is equivalent to∨

p∈p
∃x(υp(x)↔ ¬p(x))Σ2

that is,∨
p∈p
∃x((((υp, υp̂) ≤ (p,¬p)) ∧ ¬υp(x) ∧ ¬υp̂(x)↔ ¬p(x))↔ ¬p(x))·

This formula can be equivalently rewritten as∨
p∈p

(((υp, υp̂) ≤ (p,¬p)) ∧ ∃x(¬υp(x) ∧ ¬υp̂(x))),

which is equivalent to (υp, υp̂) < (p,¬p) by Lemma 1.
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Lemma 7

The implication

(υp, υp̂) ≤ (p,¬p)→ (T †(υp)Σ2 ↔ H (υp, υp̂))

is logically valid.

Proof

Recall that T †(υp) is the conjunction of implications (46) for all rules (38) in T .

Consequently T †(υp)Σ2 is the conjunction of the formulas

∀̃obj

G →
∨

A∈Pos

(υA)Σ2 ∨
∨

A∈Neg

¬(υA)Σ2

 ,

that is to say,

∀̃obj (G →
∨

A∈Pos((((υp, υp̂) ≤ (p,¬p)) ∧ ¬υA ∧ ¬υÂ)↔ ¬A)∨∨
A∈Neg ¬((((υp, υp̂) ≤ (p,¬p)) ∧ ¬υA ∧ ¬υÂ)↔ ¬A)·

Under the assumption

(υp, υp̂) ≤ (p,¬p) (48)

the last formula can be equivalently rewritten as

∀̃obj

G →
∨

A∈Pos

((υA ∨ υÂ)↔ A) ∨
∨

A∈Neg

((υA ∨ υÂ)↔ ¬A)

 ·
It remains to check that, under assumption (48),

(υA ∨ υÂ)↔ A (49)

can be equivalently rewritten as

υÂ ∨A→ υA, (50)

and

υA ∨ υÂ↔ ¬A (51)

can be rewritten as

υA ∨ ¬A→ υÂ· (52)

Formula (49) is equivalent to

(υA→ A) ∧ (υÂ→ A) ∧ (A→ υA ∨ υÂ)· (53)

Since assumption (48) entails υA→ A and υÂ→ ¬A, formula (53) can be rewritten

as

¬υÂ ∧ (A→ υA)· (54)

On the other hand, formula (50) is equivalent to

(υÂ→ υA) ∧ (A→ υA),
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which, under assumption (48), can be rewritten as (54) as well. In a similar way,

each of the formulas (51), (52) can be transformed into

¬υA ∧ (¬A→ υÂ) ·

Lemma 8

T ∧ CC |= SMpp̂[Π ∧ CC ].

Proof

Recall that T is equivalent to

T †(p) ∧ ∀υp(T †(υp)→ (υp = p))· (55)

Since the first conjunctive term is equivalent to Π, T ∧ CC entails

Π ∧ CC · (56)

From the second conjunctive term of (55) we conclude

T †(υp)Σ2 → (υp = p)Σ2

and consequently

∀(υp)(υp̂)((υp 6= p)Σ2 → ¬T †(υp)Σ2)·

By Lemma 6, this is equivalent to

∀(υp)(υp̂)(((υp, υp̂) < (p,¬p))→ ¬T †(υp)Σ2)

and, by Lemma 7, to

∀(υp)(υp̂)(((υp, υp̂) < (p,¬p))→ ¬H (υp, υp̂))·

By Lemma 3, the conjunction of this formula with (56) is equivalent to sentence

SMpp̂[Π ∧ CC ].

Assertion (41) follows from Lemmas 5 and 8.

7.2 General Case

Lemma 9

For any C-rule R, Trc [R] is intuitionistically equivalent to Trd [R].

Proof

If R is ⊥ ⇐ G then Trc [R] is ∀̃¬G , and Trd [R] is ∀̃(¬¬G → ⊥).

Lemma 10

For any L-rule R, the conjunction CC of completeness constraints intuitionistically

entails

Trl [R]↔ Trd [R]·
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Proof

If R is p(t)⇐ G then Trl [R] is

∀̃(¬¬G → p(t)),

and Trd [R] is

∀̃(¬¬G ∧ (p̂(t) ∨ ¬p̂(t))→ p(t))·
Since CC intuitionistically entails

¬(p(t)↔ p̂(t)), (57)

it is sufficient to check that p(t) can be derived from (57) and

p̂(t) ∨ ¬p̂(t)→ p(t) (58)

by the deductive means of intuitionistic propositional logic. Since (58) is equivalent

to p(t) in classical propositional logic, it is easy to see that ¬p̂(t) can be derived

from (57) and (58) in classical propositional logic. By Glivenko’s theorem,20 it fol-

lows that it can be derived intuitionistically as well. Since p(t) is intuitionistically

derivable from (58) and ¬p̂(t), we can conclude that p(t) is intuitionistically deriv-

able from (57) and (58).

The case when R is ¬p(t)⇐ G is similar.

Lemma 11

If R is an S-rule

L1 ↔ L2 ⇐ G (59)

and R1, R2 are the D-rules

L1 ∨ L2 ⇐ G and L1 ∨ L2 ⇐ G (60)

then the conjunction CC of completeness constraints intuitionistically entails

Trs [R]↔ Trd [R1] ∧ Trd [R2]·

Proof

If each of the literals Li is an atom Ai then Trs [R] is the conjunction of the formulas

∀̃(¬¬G ∧A1 → A2),

∀̃(¬¬G ∧A2 → A1),

∀̃(¬¬G ∧ Â1 → Â2),

∀̃(¬¬G ∧ Â2 → Â1),

(61)

Trd [R1] is

∀̃(¬¬G ∧ (Â1 ∨ ¬Â1) ∧ (A2 ∨ ¬A2)→ A1 ∨ Â2), (62)

20 This theorem (Glivenko 1929), (Mints 2000, Theorem 3.1) asserts that if a formula beginning
with negation can be derived from a set Γ of formulas in classical propositional logic then it can
be derived from Γ in intuitionistic propositional logic as well.



26 P. Ferraris, J. Lee, Y. Lierler, V. Lifschitz, and F. Yang

and Trd [R2] is

∀̃(¬¬G ∧ (A1 ∨ ¬A1) ∧ (Â2 ∨ ¬Â2)→ Â1 ∨A2)· (63)

We need to show that CC intuitionistically entails the equivalence between the

conjunction of formulas (61) and the conjunction of formulas (62), (63). Since CC

intuitionistically entails

¬(A1 ↔ Â1) (64)

and

¬(A2 ↔ Â2), (65)

it is sufficient to check that the conjunction of formulas (64), (65),

A1 ↔ A2 (66)

and

Â1 ↔ Â2 (67)

is equivalent in intuitionistic propositional logic to the conjunction of formulas (64), (65),

(Â1 ∨ ¬Â1) ∧ (A2 ∨ ¬A2)→ A1 ∨ Â2 (68)

and

(A1 ∨ ¬A1) ∧ (Â2 ∨ ¬Â2)→ Â1 ∨A2· (69)

Left-to-right: Assume (64)–(67) and

(Â1 ∨ ¬Â1) ∧ (A2 ∨ ¬A2); (70)

our goal is to derive intuitionistically A1 ∨ Â2. Consider two cases, in accordance

with the first disjunction in (70). Case 1: Â1. Then, by (67), Â2, and consequently

A1∨Â2. Case 2: ¬Â1. Consider two cases, in accordance with the second disjunction

in (70). Case 2.1: A2. Then, by (66), A1, and consequently A1∨ Â2. Case 2.2: ¬A2.

Then, by (66), ¬A1, which contradicts (64).

Thus we proved that (68) is intuitionistically derivable from (64)–(67). The proof

for (69) is similar.

Right-to-left: Let Γ be the set consisting of formulas (64), (65), (68), (69) and A1.

We claim that A2 can be derived from Γ in intuitionistic propositional logic. Note

that, classically,

• Formula (64) is equivalent to A1 ↔ ¬Â1,

• Formula (65) is equivalent to A2 ↔ ¬Â2, and

• Formula (69) is equivalent to Â1 ∨A2.

It follows that ¬Â2 is derivable from Γ in classical propositional logic. By Glivenko’s

theorem, it follows that ¬Â2 is derivable from Γ intuitionistically as well. Hence the

antecedent of (69) is an intuitionistic consequence of Γ, and so is the consequent

Â1 ∨A2. In combination with A1 and (64), this gives us A2.

We conclude that A1 → A2 is intuitionsistically derivable from (64), (65), (68)
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and (69). The derivability of the implication A2 → A1 from these formulas can be

proved in a similar way. Thus (66) is an intuitionistic consequence of (64), (65),

(68), and (69).

The derivability of (67) from these formulas in propositional intuitionistic logic

is proved in a similar way.

The cases when the literals Li are negative, or when one of them is positive and

the other is negative, are similar.

Proof of the soundness property (40). Let C , L, S , and D be sets of causal rules of

types C, L, S, and D respectively, and let T be the causal theory with the set of

rules C ∪ L ∪ S ∪ D . Consider the causal theory T ′ obtained from T by replacing

each rule (59) from S with the corresponding rules (60). According to the result (41)

of Section 7.1,

SMpp̂[Π ∧ CC ] is equivalent to T ′ ∧ CC ,

where Π is the conjunction of the program rules Trd [R] for all rules R of T ′. It is

clear that Π ∧ CC is Tr[T ′], and that T ′ is equivalent to T . Consequently

SMpp̂[Tr[T ′]] is equivalent to T ∧ CC · (71)

On the other hand, Lemmas 9, 10 and 11 show that the formulas Tr[T ′] and

Tr[C ,L,S ,D ] are intuitionistically equivalent to each other, because each of them

contains CC as a conjunctive term. It follows that

SMpp̂[Tr[T ′]] is equivalent to SMpp̂[Tr[C ,L,S ,D ]]· (72)

Assertion (40) follows from (71) and (72).

8 Conclusion

In this paper we generalized McCain’s embedding of definite causal theories into

logic programming. We expect that this work will provide a theoretical basis for

extending the system coala to more expressive action languages, including the

modular action language MAD (Ren 2009). It is essential, from this perspective,

that our translation is applicable to synonymity rules, because such rules are closely

related to the main new feature of MAD, its import construct.

Our translation is not applicable to causal rules with quantifiers in the head. It

may be possible to extend it to positive occurrences of existential quantifiers, since

an existentially quantified formula can be thought of as an infinite disjunction.

But the translation would be a formula with positive occurrences of existential

quantifiers as well, and it is not clear how to turn such a formula into executable

code.

In the future, we would like to extend the translation described above to causal

theories with explainable function symbols, which correspond to non-Boolean flu-

ents in action languages. Since the definition of a stable model does not allow

function symbols to be intensional, such a generalization would have to involve

extending the language by auxiliary predicate symbols.
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