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1. Introduction
Mao et al. [4] introduced the CLEVRER 1 dataset for

systematic evaluation of computational models on descrip-
tive, explanatory, predictive, and counterfactual questions
about the movement of several objects with various shapes,
colors, and materials. Noting that the state-of-the-art neural
models had difficulty reasoning about temporal and causal
structures for answering those questions, they proposed a
neuro-symbolic model called NS-DR [4], which outper-
forms the previous models by using symbolic representa-
tion to allow for compositionality of vision, language, and
dynamics. The result advocates that the use of explicit sym-
bolic representation, combined with neural network per-
ception, could significantly improve reasoning about com-
plex visual events. On the other hand, this point is chal-
lenged by Ding et al. [2], who demonstrate that an end-to-
end attention-based neural model with the right inductive
bias could outperform NS-DR. Does this imply that neuro-
symbolic models are inferior to end-to-end neural models
for visual causal and temporal reasoning, contrary to what
they were thought to be promising at?

In this paper, we revisit the neuro-symbolic baseline
model NS-DR. With the incorporation of more explicit
causal and temporal constraints, we show that the enhanced
model outperforms the previous models. This note briefly
describes how we made modular improvements to NS-DR.
2

2. Modular Improvements
Building upon NS-DR, our work improves a few com-

ponents in the baseline and adds more expressive symbolic
reasoning modules. Due to the modular design of the base-
line, we could identify the cause and proportion of fail-
ures among components and, as shown in Figure 1, add
additional components for improvement. The main insight
is that perception accuracy about dynamic events can be

1http://clevrer.csail.mit.edu/.
2For more details, we refer the reader to a longer version.

further improved by symbolic reasoning reflecting physics
constraints, and neural network prediction about unseen and
counterfactual events can be enhanced by leveraging ex-
pressive symbolic reasoning with temporal and causal con-
straints to determine which intermediate results to pay more
attention to. Table 1 records the test set accuracy with state-
of-the-art models on the CLEVRER task.

Table 1. Accuracy comparison on CLEVRER test set

Model Descriptive
Explanatory Predictive Counterfactual
opt. ques. opt. ques. opt. ques.

NS-DR [4] 88.1 87.6 79.6 82.9 68.7 74.1 42.2
DCL [1] 90.7 89.6 82.8 90.5 82.0 80.4 46.5
Aloe [2] 94.0 98.4 96.0 93.5 87.5 91.4 75.6

Ours 95.6 99.9 99.8 90.8 90.8 90.7 78.3

2.1. Descriptive and Explanatory Query Answering

NS-DR achieves 88.1% accuracy on descriptive ques-
tions in the CLEVRER task. Due to the challenging task of
dynamic movement recognition, the neural dynamics pre-
dictor in NS-DR makes some mistakes. For example, object
occlusion leads it to predict unrealistic movement, where
some object suddenly disappears or moves abnormally fast
for some interval. We apply trajectory smoothing to the
mask R-CNN outputs by drawing a virtual line to connect
the trajectories and use interpolation for the frames where
an object is missing. Also, instead of using the center of
the mask proposal as the object’s position, we use the top-
most as the position, which enhances the accuracy since the
topmost part is less likely to be occluded. We refer to these
enhancements as improved object detection (IOD). The in-
corporation of the IOD module leads to 95.6% accuracy on
descriptive questions, and 99.9% (per option)/ 99.8% (per
question) accuracies on explanatory questions.

2.2. Predictive Query Answering

Predictive questions inquire about collision events that
could happen after the video ends. When NS-DR evaluates
predictive questions, the symbolic executor calls the func-
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Figure 1. Overview of our enhanced model

tional module unseen events, which returns the post-video
collision events that PropNet generates. From an experi-
ment with the validation set, we find that the PropNet’s post-
video prediction is the primary source of errors. The errors
are overwhelmingly false negatives (≈ 89.06%), i.e., fail-
ure to detect a collision that happens. To alleviate this, we
introduce a simple physics trajectory module that computes
objects’ linear post-video trajectories and collision events
using simple kinematic equations with the parameters ob-
tained from observation. These enhancements lifts accura-
cies to 90.8% (per option) and 90.8% (per question).

2.3. Counterfactual Query Answering
NS-DR addresses counterfactual questions by using

PropNet to predict collision events that would happen when
some object is removed. As with predictive questions, the
PropNet prediction is often wrong.

Our main improvement on counterfactual QA utilizes an-
swer set programming (ASP) [3], a declarative logic pro-
gramming paradigm that could encode various kinds of
complex knowledge, including causal and temporal knowl-
edge. For the CLEVRER task, we encode causal relation-
ships among collision events. We invoke an ASP solver to
determine the presence of causal relationship between the
removed objects and the objects in the choice. If there is no
causal relation, we do not need to include error-prone sim-
ulation and use the perception result directly as if the object
in the question were not removed. Since the perception is
more accurate than simulation, this way improves the accu-
racy.

On the other hand, if there is a causal relation, we re-
place PropNet’s counterfactual predictions with the simple
physics trajectory module (Section 2.2) and start the simu-
lation from particular frames determined by the answer set
for each relevant object. Even though the physics module is
less expressive than PropNet, in conjunction with the par-
ticular frames that the answer set pinpoints, our model sim-
ulates only when it needs to (exactly after it is affected by

the object to be removed), and the performance turns out to
be better than using PropNet.

In other words, for counterfactual QA, we use the ASP
reasoning module to ensure that when it is okay to use the
perception result, which is more reliable than PropNet’s
simulation, and if it is not, to find which particular frames to
start the simulation by the physics module. In either case,
we do not use PropNet to compute counterfactual events.
These enhancements lifts accuracies to 90.7% (per option)
and 78.3% (per question).

3. Conclusion
Our updates to NS-DR are relatively simple, thanks to

its modular design. Without retraining the neural network
models in NS-DR, the main reason for the improvement
could be attributed to using explicit symbolic reasoning in
ASP to determine what intermediate results the attention
should be paid to, and augmenting the mistakes in percep-
tion to follow physical constraints.
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