
Representing the Language of the Causal
Calculator in Answer Set Programming
Michael Casolary and Joohyung Lee

School of Computing, Informatics and Decision Systems Engineering
Arizona State University, Tempe, AZ, USA
Michael.Casolary@asu.edu, joolee@asu.edu

Abstract
Action language C+, a formalism based on nonmonotonic causal logic, was designed for describ-
ing properties of actions. The definite fragment of C+ was implemented in system the Causal
Calculator (CCalc), based on a reduction of nonmonotonic causal logic to propositional logic.
On the other hand, in this paper, we represent the language of CCalc in answer set program-
ming (ASP), by translating nonmonotonic causal logic into formulas under the stable model
semantics. We design a standard library which describes the constructs of the input language
of CCalc in terms of ASP, allowing a simple modular method to represent CCalc input pro-
grams in the language of ASP. Using the combination of system f2lp and answer set solvers, our
prototype implementation of this approach, which we call Cplus2ASP, achieves functionality
close to CCalc while taking advantage of answer set solvers to yield efficient computation that
is orders of magnitude faster than CCalc on several benchmark examples.

1998 ACM Subject Classification I.2.4 Knowledge Representation Formalisms and Methods

Keywords and phrases answer set programming, nonmonotonic causal logic, action languages

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

Action languages are formal models of parts of natural language that are used for describing
properties of actions. Among them, language C+ [9] and its predecessor C [10] are based
on nonmonotonic causal logic. The definite fragment of nonmonotonic causal logic can be
turned into propositional logic by the literal completion method, which resulted in an effi-
cient way to compute C+ using satisfiability (SAT) solvers. The Causal Calculator (CCalc)
is an implementation of this idea. Version 1 of CCalc was created by McCain [16], accept-
ing C as its input language; Version 2 is an enhancement described in [11], which accepts
C+ as its input language. Language C+ is significantly more enhanced than C in several
ways, such as being able to represent multi-valued formulas, defined fluents, additive fluents,
rigid constants and defeasible causal laws. Although CCalc was not aimed at large scale
applications, it has been applied to several challenging commonsense reasoning problems,
including problems of nontrivial size [1], to provide a group of robots with high-level reason-
ing [4], to give executable specifications of norm-governed computational societies [3], and
to automate the analysis of business processes under authorization constraints [2].

An alternative way to compute C+ is to turn it into answer set programs and to use
existing answer set solvers. This can be achieved by first turning multi-valued causal logic
into Boolean-valued causal logic as described in [11] and then turning the latter into answer
set programs as described in [16; 5; 15]. In fact, a system called Coala (Compiler for action
languages) was implemented based on this idea [8]. The system turns a fragment of language
Conference title on which this volume is based on.
Editors: Billy Editor, Bill Editors; pp. 1–11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


2 Representing the Language of the Causal Calculator in ASP

C+ into the input language of Gringo1, but that fragment lacks several important features
of C+ mentioned above, which are available in CCalc.

In this paper, we provide a way to encode CCalc input language in answer set program-
ming, and present a prototype implementation called Cplus2ASP based on this idea. Our
approach differs from that of Coala in a few ways. First, Cplus2ASP can handle multi-
valued constants, which Coala does not allow. Second, we turn the language of CCalc
into formulas under the stable model semantics [7], and use system f2lp2 (“f ormulas to
logic programs”) [14] to turn them into the input language of ASP solvers. This allows
users to write the same complex formulas as in the input language of CCalc. Third, we
design a standard library that defines the constructs of the CCalc input language in terms
of the language of Gringo. Using the standard library and reusing the existing software
f2lp and Clingo3 allowed a simple design of Cplus2ASP that achieves functionality close
to CCalc. Also thanks to the efficiency of answer set solvers, our experiments show that
Cplus2ASP is orders of magnitude faster than CCalc in several benchmark examples.

The paper is organized as follows. Section 2 provides preliminaries, and Section 3 shows
how to encode the language of CCalc in ASP, and presents the prototype implementation
Cplus2ASP. We compare the efficiency of Cplus2ASP against that of CCalc in Section 4.

2 Preliminaries

2.1 Nonmonotonic Causal Theories and C+
Due to lack of space, the reviews in this section are rather dense. We refer the reader to [9]
for the details. In C+, formulas are multi-valued. A (multi-valued propositional) signature
is a set σ of symbols called constants, along with a nonempty finite set Dom(c) of symbols
called the domain of c. An atom of a signature σ is an expression of the form c=v (“the value
of c is v”) where c ∈ σ and v ∈ Dom(c). A (multi-valued) formula of σ is a propositional
combination of atoms. A causal rule is an expression of the form

F ⇐ G

where F and G are multi-valued propositional formulas. A causal theory is a set of causal
rules.

Language C+ is a high level notation for causal theories that was designed for describing
transition systems—directed graphs whose vertices represent states and edges are labeled
by actions that affect the states. In C+, constants are partitioned into fluent constants
and action constants. Fluent constants are further partitioned into simple and statically
determined fluents. A fluent formula is a formula where all constants occurring in it are
fluent constants. An action formula is a formula that contains at least one action constant
and no fluent constants. A static law is an expression of the form

caused F if G (1)

where F and G are fluent formulas. An action dynamic law is an expression of the form (1)
in which F is an action formula and G is a formula. A fluent dynamic law is an expression

1 http://potassco.sourceforge.net
2 http://reasoning.eas.asu.edu/f2lp
3 Clingo is a system that combines Gringo and Clasp in a monolithic way, available from the same
link as the one in Footnote 1.



Michael Casolary and Joohyung Lee 3

of the form

caused F if G after H (2)

where F and G are fluent formulas and H is a formula, provided that F does not contain
statically determined constants. A causal law is a static law, or an action dynamic law, or
a fluent dynamic law. An action description is a set of causal laws.

The semantics of C+ in [9] is described via a translation into causal logic. For any action
description D and any nonnegative integer m, the causal theory Dm is defined as follows.
The signature of Dm consists of the pairs i :c such that

i ∈ {0, . . . ,m} and c is a fluent constant of D, or
i ∈ {0, . . . ,m− 1} and c is an action constant of D.

The domain of i :c is the same as the domain of c. By i :F we denote the result of inserting
i : in front of every occurrence of every constant in a formula F , and similarly for a set of
formulas. The rules of Dm are

i :F ⇐ i :G (3)

for every static law (1) in D and every i ∈ {0, . . . ,m}, and for every action dynamic law (1)
in D and every i ∈ {0, . . . ,m− 1};

i+1:F ⇐ (i+1:G) ∧ (i :H) (4)

for every fluent dynamic law (2) in D and every i ∈ {0, . . . ,m− 1};

0:c=v ⇐ 0:c=v (5)

for every simple fluent constant c and every v ∈ Dom(c).
The causal models of Dm correspond to the paths of length m in the transition system

described by D.

2.2 Language of the Causal Calculator
The language of CCalc provides a convenient way of expressing C+ descriptions. It allows
us to declare sorts, objects, variables and constants, as well as to describe causal laws.
A causal law may contain variables, which are understood in terms of grounding. Such
causal laws are schemas for ground instances, as in answer set programming.

The left column of Figure 1 is a simple C+ description in the language of CCalc. The
symbol >> in the sort declaration between the names of two sorts expresses that the second
is a subsort of the first, so that every object that belongs to the second sort belongs also to
the first. Lines 1–2 declare that s_num is a subsort of num. Lines 11–13 introduce objects
of the two sorts. The integers from 0 to n− 1 belong to sort s_num; the integers from 0 to
n belong to sort num. Line 19 declares that has is an inertial fluent whose domain is num.
CCalc understands this line the same as the declaration

has :: simpleFluent(num)

followed by the fluent dynamic law

caused has=X if has=X after has=X

where X ranges over all objects of sort num. Similarly, Line 22 declares that buy is an
exogenous action with Boolean values. Lines 32–35 represent a simple query for finding a
path of length 3 from the initial state where has=2 to the goal state where has=4.



4 Representing the Language of the Causal Calculator in ASP

2.3 Stable Model Semantics of First-Order Formulas and System f2lp
We refer the reader to [7; 14] for the details. The stable model semantics from [7] is defined
for first-order formulas, which allow for arbitrary nesting of connectives and quantifiers as
in first-order logic. Strong negation (∼) occurs only in front of an atom. For instance,

¬ ∼p(x)→ p(x) (6)

expresses that x belongs to p by default.
System f2lp can be used to turn any “almost universal sentence” into an answer set

program so that answer set solvers can be used to compute the Herbrand stable models of
the almost universal sentence. As far as this paper is concerned, it is sufficient to know that
any sentence where every quantifier is in the scope of negation is almost universal. (6) can
be encoded in the language of f2lp as

p(X) <- not -p(X).

(In the language of f2lp, the default negation (¬) is expressed as not; the strong negation
(∼) is encoded as -, following the convention in the input language of ASP solvers. In
addition, ? and ! denote the existential and universal quantifiers, respectively; | denotes
disjunction and & denotes conjunction.) The input language of f2lp also allows aggregates
and choice rules as in the language of Gringo.

1 :- sorts
2 num >> s_num.
3

4

5

6

7

8

9

10

11 :- objects
12 0..n-1 :: s_num;
13 n :: num.
14

15 :- variables
16 K :: s_num.
17

18 :- constants
19 has :: inertialFluent(num);
20

21

22 buy :: exogenousAction(boolean).
23

24

25 buy causes has=K+1 if has=K.
26

27

28

29 nonexecutable buy if has=n.
30

31

32 :- query
33 maxstep :: 3;
34 0: has=2;
35 maxstep: has=4.

1

2 sort(num).
3 #domain num(V_num).
4 sort_object(num,V_num).
5

6 sort(s_num).
7 #domain s_num(V_s_num).
8 sort_object(num,V_s_num).
9

10 num(V_s_num).
11

12 s_num(0..n-1).
13 num(n).
14

15

16 #domain s_num(K).
17

18

19 inertialFluent(has).
20 constant_sort(has,num).
21

22 exogenousAction(buy).
23 constant_sort(buy,boolean).
24

25 h(eql(has,K+1),V_astep+1) <-
26 h(eql(buy,true),V_astep) &
27 h(eql(has,K),V_astep).
28

29 false <-
30 h(eql(buy,true),V_astep) &
31 h(eql(has,n),V_astep).
32

33 false <- query_label(0) &
34 not (h(eql(has,2),0) &
35 h(eql(has,4),maxstep)).

Figure 1 Simple Transition System in the Language of CCalc and in the Language of f2lp



Michael Casolary and Joohyung Lee 5

3 Representing the Language of the Causal Calculator in ASP

3.1 Translating C+ into Answer Set Programs
We consider a finite definite C+ description D of signature σ, where the heads of the rules
are either an atom or ⊥. Without losing generality, we assume that, for any constant c
in σ, Dom(c) has at least two elements. Description D can be turned into a logic program
following these steps: (i) turn D into the corresponding multi-valued causal theory Dm (as
explained in Section 2.1); (ii) turn Dm into a Boolean-valued causal theory D′

m; (iii) turn
D′

m into formulas under the stable model semantics; (iv) turn the result further into a logic
program (using f2lp as explained in Section 2.3). In this section we explain Steps (ii) and
(iii).

Definite Elimination of Multi-Valued Constants Consider the causal theory Dm

with signature σm consisting of rules of the form (3), (4) and (5). Consider all constants
i : c (0 ≤ i ≤ m) in σm, where c is a fluent constant of D. By σc

m we denote the signature
obtained from σm by replacing every constant i : c with Boolean constants i : eql(c, v) for
all v ∈ Dom(c).

The causal theory Dc
m with signature σc

m is obtained from Dm by replacing each oc-
currence of an atom i : c = v in Dm with i : eql(c, v) = t, and adding the causal rules

i : eql(c, v′)= f ⇐ i : eql(c, v)=t (0 ≤ i ≤ m) (7)

for all v, v′ ∈ Dom(c) such that v 6= v′.
The following proposition is a simplification of Proposition 9 from [11].4

I Proposition 1. There is a 1-1 correspondence between the models of Dm and the models
of Dc

m.

The elimination of multi-valued action constants is similar.

Turning Boolean-valued Action Descriptions into SM In [6], McCain’s translation
is modified and extended as follows. Take any set T of causal rules of the forms

A⇐ G, (8)
¬A⇐ G, (9)
⊥ ⇐ G, (10)

where A is an atom and G is an arbitrary propositional formula. For each rule (8), take
the formula ¬¬G → A; for each rule (9), the formula ¬¬G → ∼A; for each rule (10), the
formula ¬G. Also add the following completeness constraints for all atoms A:

¬A ∧ ¬∼A→ ⊥ . (11)

Note that, for T , which is definite, the modified McCain translation yields a first-order
theory that is tight [7].

Consider D′
m which is obtained from Dm by eliminating all multi-valued constants in

favor of Boolean constants. h(i : F ) is a formula obtained from i : F by replacing every

4 Proposition 9 from [11] involves adding two kinds of rules. Vladimir Lifschitz pointed out that one
kind of rules can be dropped if the given theory is definite.



6 Representing the Language of the Causal Calculator in ASP

occurrence of i : eql(c, v)= t in it with h(eql(c, v), i) and every occurrence of i : eql(c, v)= f
with ∼h(eql(c, v), i). According to the modified McCain translation, the causal rules (3)
that represent a static law (1) are represented by formulas under the stable model semantics
as

h(i : F )← ¬¬h(i : G) (12)

(i ∈ {0, . . . ,m}). The translation of causal rules for an action dynamic law is similar except
that i ranges over {0, . . . ,m − 1}. In the special case when h(i : F ) and h(i : G) are the
same literal, (12) can be represented using choice rules in ASP:

{h(i :F )}. (13)

This is because (12) is strongly equivalent to h(i :F ) ∨ ¬h(i :F ), which can be abbreviated
as (13) [12]. In fact, we observe in many cases (13) can be used in place of (12).

Similarly, the modified McCain translation turns the causal rules (4) that correspond to
a fluent dynamic law (2) into

h(i+1:F ) ← ¬¬
(
h(i+1:G) ∧ h(i :H)

)
.

In fact, we can also turn (4) into

h(i+1:F ) ← ¬¬h(i+1:G) ∧ h(i :H) (14)

because the change does not affect the stable models of the resulting theory, which is tight
[7]. Similarly, certain occurrences of ¬¬ in (12) and (14) can be further dropped if removing
them does not cause the resulting theory to become non-tight.

Again in the special case when h(i+1 :F ) and h(i+1 :G) are the same literal, (14) can
be represented using choice rules as follows:

{h(i+1:F )} ← h(i :H).

3.2 Representing Domain Descriptions in the Language of f2lp
Figure 1 shows a side-by-side comparison of an example CCalc input program and its
representation in the language of f2lp. As shown, the translation is modular. For each
sort name S that is declared in the CCalc input program, the translation introduces a fact
sort(S) and a variable VS that ranges over all objects of sort S by the line #domain S(VS),
and relates the sort name and the objects by the fact sort_object(S, VS). (This “meta
predicate,” together with another meta predicate constant_sort that is shown later, is
used in the standard library to associate constants with their domains.) As an example,
Lines 2–8 in the right column of Figure 1 is a representation of sort declarations in the
language of Gringo. In addition, the declaration that S1 is a supersort of S2 is represented
by S1(VS2), as illustrated in Line 10.

The ASP representation of the object and variable declarations are straightforward. The
declaration that O is an object of sort S is encoded as a fact S(O). In order to declare a
user-defined variable V of sort S, we write #domain S(V ). See Lines 12–13, and Line 16
for example.

A constant declaration in the language of CCalc of the form

C :: CompositeSort(V )



Michael Casolary and Joohyung Lee 7

Figure 2 The Hierarchy of Atomic Formulas

is turned into a fact CompositeSort(C), followed by another fact constant_sort(C, V ),
which is used in the standard library. See Lines 19–23 for example.

Encoding causal laws in the language of f2lp follows the method in Section 3.1. Like
the input language of CCalc, the variables in the f2lp rules are understood as schemas for
ground terms. Lines 25–31 are example encodings of causal laws in the language of f2lp.
Since every variable is sorted, these f2lp rules are safe according to the definition of safety
in [13], and its translation into an ASP program also results in a safe logic program.

Note that Figure 1 does not contain the other causal laws (the inertial assumption for
has and the exogeneity assumption for buy). Since such causal laws and rules are frequently
used, they are described in the standard library, which we explain in the next section.

3.3 Standard Library
The standard library5 declares built-in sorts and objects, such as sort boolean and its
objects true and false; sorts step and astep and the integer objects that belong to the
sorts (0, . . . , maxstep for step and 0, . . . , maxstep − 1 for astep). More importantly, it
contains postulates specific to each kind of fluents and actions.

3.3.1 Postulates for Specific Fluents and Actions
First, we assume the presence of certain meta-variables that are used in the postulates.
For instance, V_inertialFluentAF is a meta-variable that ranges over all ground terms
of the form eql(c, v) where c is an inertialFluent and v is an object in the domain
of c as introduced in the domain description. For the domain description in Figure 1,
V_inertialFluentAF ranges over eql(has, 0), eql(has, 1), . . . , eql(has, n). Similarly, we
have other meta-variables V_fluentAF, V_simpleFluentAF, V_sdFluentAF, V_rigidAF,
V_actionAF, V_exogenousActionAF, V_attributeAF that range over ground terms of the
form eql(c, v) where c and v range over corresponding constants and values. We show later
how to prepare a program so that meta-variables range over the atoms as intended.

The inertial assumption for inertialFluents is represented by

{h(V_inertialFluentAF,V_astep+1)} <- h(V_inertialFluentAF,V_astep).

5 See http://reasoning.eas.asu.edu/cplus2asp for the complete file.



8 Representing the Language of the Causal Calculator in ASP

The exogeneity assumption (5) for simple fluents at time 0 is represented by

{h(V_simpleFluentAF,0)}.

The exogeneity assumption for exogenousAction is stated as

{h(V_exogenousActionAF,V_astep)}.

The completeness assumption (11) for fluents is represented as follows.

false <- not h(V_fluentAF,V_step) & not -h(V_fluentAF,V_step).

or equivalently as

false <- {h(V_fluentAF,V_step), -h(V_fluentAF,V_step)}0.

The definite elimination rules for multi-valued fluent constants corresponding to (7) can
be represented as

-h(eql(V_fluent,Object1),V_step) <-
h(eql(V_fluent,Object),V_step) & constant_object(V_fluent,Object)
& constant_object(V_fluent,Object1) & Object != Object1.

Here V_fluent is a meta-variable that ranges over all fluent constants. The predicate
constant_object is defined in terms of sort_object and constant_sort:

constant_object(V_constant,Object) <-
constant_sort(V_constant,V_sort) & sort_object(V_sort,Object).

(Recall that sort_object is introduced in translating sort declarations from the domain
description and constant_sort is introduced in translating constant declarations from
the domain description.)
The definite elimination rules and the completeness assumptions for action constants are
similar to those for fluent constants.

3.4 Meta-Sorts and Meta-Variables
In order to make grounding replace all meta-variables with the corresponding ground terms
as intended in the previous section, we first introduce meta-level sorts for representing the
constant hierarchy in C+. This is done in the same way as the object-level (user-defined)
sorts are introduced. For instance, the following are sort declarations for simpleFluent and
inertialFluent, and the declaration of their subsort relation.

sort(simpleFluent). #domain simpleFluent(V_simpleFluent).
sort_object(simpleFluent,V_simpleFluent).

sort(inertialFluent). #domain inertialFluent(V_inertialFluent).
sort_object(inertialFluent,V_inertialFluent).

simpleFluent(V_inertialFluent).

Recall that in Figure 1, the constant declarations included the fact inertialFluent(has);
the variable V_simpleFluent ranges over all simple fluent constants, including the inertial
fluent has.

Similarly, we introduce meta-level sorts for different kinds of atomic formulas depending
on the different kinds of constants. For instance, the following is a part of the declaration
for simpleFluentAF and inertialFluentAF.



Michael Casolary and Joohyung Lee 9

sort(simpleFluentAF). #domain simpleFluentAF(V_simpleFluentAF).
sort_object(simpleFluentAF,V_simpleFluentAF).

sort(inertialFluentAF). #domain inertialFluentAF(V_inertialFluentAF).
sort_object(inertialFluentAF,V_inertialFluentAF).

simpleFluentAF(V_inertialFluentAF).

These declarations are used to define domain predicates ConstantAFs which contain
terms of the form eql(c, v) where c is a constant of meta-level sort Constant and v is a
value in the domain of c. For instance, the following represents that inertialFluentAF
is a domain predicate that contains all ground terms of the form eql(c, v) where c is an
inertialFluent, and v is a value in the domain of c, using the meta-predicate constant_
object.

inertialFluentAF(eql(V_inertialFluent,Object)) <-
constant_object(V_inertialFluent,Object).

(Recall the definition of constant_object in the previous section.) The grounding process
replaces the meta-variable V_inertialFluentAF by every ground term of the form eql(c, v)
where c is a constant of meta-level sort inertialFluent and v is an element in the domain
of c, as specified by the constant_object relation. So once the user declares that c is an
inertialFluent (or one of its subsorts) in the domain description, the postulates for the
inertial assumption for c are generated by ASP grounders.

4 Implementation and Experiments

We implemented the techniques described in Section 3 in a prototype implementation, which
we call Cplus2ASP. The system achieves functionality close to CCalc by using the stan-
dard library and the combination of the existing software f2lp and Clingo. As documented
in Figure 3, the system turns the CCalc domain description into the language of f2lp, calls
f2lp to turn it into the language of Clingo, calls Clingo to find answer sets, and displays
them in CCalc-style solutions (as2transition is a post-processor that takes answer sets
and transforms them into a format of CCalc output.) Cplus2ASP is designed to be com-
patible with the input language of CCalc. It supports most of the basic features of CCalc,
but does not yet handle features like user-defined macros, where clauses, and shifting. The
system was written in C++, utilizing the tools flex and bison to aid in the creation of a
CCalc language grammar and syntax parser.

Figure 3 The Architecture of Cplus2ASP



10 Representing the Language of the Causal Calculator in ASP

Problem CCalc with zchaff Cplus2ASP with Clingo
Total Preparationa Solving Total Preparationb Solvingc

Traffic World:
Scenario 1
(maxstep=5)

1.55s 1.52s
(1.06s + 0.29s +
0.17s)

0.03s 0.22s 0.20s
(0.11s + 0.09s)

0.02s
(0.02s + 0.00s)

Traffic World:
Scenario 2
(maxstep=3)

22.74s 22.38s
(17.85s + 3.45s
+ 1.08s)

0.36s 1.42s 1.14s
(0.11s + 1.03s)

0.28s
(0.28s + 0.00s)

Traffic World:
Scenario 3
(maxstep=5)

6.29s 6.05s
(4.48s + 0.99s +
0.58s)

0.24s 0.52s 0.40s
(0.08s + 0.32s)

0.12s
(0.12s + 0.00s)

Traffic World:
Scenario 3-1
(maxstep=11)

608.76s 558.46s
(415.06s +
85.45s + 57.95s)

50.30s 59.84s 34.42s
(0.08s + 33.34s)

25.42s
(17.95s + 7.47s)

a (grounding time + completion time + shifting & writing input clause time)
b (Cplus2ASP processing time + Clingo grounding time)
c (Clingo pre-processing time + solving time)

Figure 4 Experiments with CCalc and Cplus2ASP

We ran both CCalc and Cplus2ASP on a series of benchmark problems designed to
utilize a variety of CCalc syntactic elements and tested the speed of each program with
respect to grounding and solving. These tests included all examples from [9] along with
specific versions of the larger domains described in [1]. Figure 4 shows the performance
comparison of CCalc and Cplus2ASP on the Traffic World domain from [1] using the
same scenarios described there, plus one more that is a scaled-up version of Scenario 3.
All tests were run in a native install of Ubuntu on a machine with a 3.2 GHz Pentium 4
processor and 2 GB of RAM. Overall Cplus2ASP consistently performs significantly faster
than CCalc, producing identical solutions to those of CCalc. The preparation times that
are spent for Cplus2ASP in producing the input to Clingo are negligible, as they do not
involve grounding.

5 Conclusion

Based on the theoretical result that turns nonmonotonic causal logic into the stable model
semantics, we presented a method that represents the language of the Causal Calculator in
answer set programming, and implemented it in a prototype called Cplus2ASP. In com-
parison with Coala, Cplus2ASP allows the full expressivity of action language C+ using
input language syntax that is almost identical to the language of CCalc. Our ongoing work
involves making Cplus2ASP fully compatible with CCalc by implementing the remaining
features of CCalc missing in Cplus2ASP.

Acknowledgements: We are grateful to Michael Bartholomew, Vladimir Lifschitz, Yun-
song Meng, Ravi Palla, and anonymous referees for their useful comments on this paper.
The authors were partially supported by the National Science Foundation under Grant IIS-
0916116 and by the IARPA SCIL program.



Michael Casolary and Joohyung Lee 11

References
[1] Varol Akman, Selim Erdoğan, Joohyung Lee, Vladimir Lifschitz, and Hudson Turner. Rep-

resenting the Zoo World and the Traffic World in the language of the Causal Calculator.
Artificial Intelligence, 153(1–2):105–140, 2004.

[2] Alessandro Armando, Enrico Giunchiglia, and Serena Elisa Ponta. Formal specification
and automatic analysis of business processes under authorization constraints: an action-
based approach. In Proceedings of the 6th International Conference on Trust, Privacy and
Security in Digital Business (TrustBus’09), 2009.

[3] Alexander Artikis, Marek Sergot, and Jeremy Pitt. Specifying norm-governed computa-
tional societies. ACM Transactions on Computational Logic, 9(1), 2009.

[4] Ozan Caldiran, Kadir Haspalamutgil, Abdullah Ok, Can Palaz, Esra Erdem, and Volkan
Patoglu. Bridging the gap between high-level reasoning and low-level control. In Pro-
ceedings of International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR), 2009.

[5] Paolo Ferraris. A logic program characterization of causal theories. In Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI), pages 366–371, 2007.

[6] Paolo Ferraris, Joohyung Lee, Yuliya Lierler, Paolo Lifschitz, and Fangkai Yang. Repre-
senting first-order causal theories by logic programs. TPLP, 2010. To appear.

[7] Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. Stable models and circumscription.
Artificial Intelligence, 175:236–263, 2011.

[8] Martin Gebser, Torsten Grote, and Torsten Schaub. Coala: A compiler from action lan-
guages to asp. In Proceedings of European Conference on Logics in Artificial Intelligence
(JELIA), pages 360–364, 2010.

[9] Enrico Giunchiglia, Joohyung Lee, Vladimir Lifschitz, Norman McCain, and Hudson
Turner. Nonmonotonic causal theories. Artificial Intelligence, 153(1–2):49–104, 2004.

[10] Enrico Giunchiglia and Vladimir Lifschitz. An action language based on causal explana-
tion: Preliminary report. In Proceedings of National Conference on Artificial Intelligence
(AAAI), pages 623–630. AAAI Press, 1998.

[11] Joohyung Lee. Automated Reasoning about Actions6. PhD thesis, University of Texas at
Austin, 2005.

[12] Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. A reductive semantics for counting and
choice in answer set programming. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI), pages 472–479, 2008.

[13] Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. Safe formulas in the general theory of
stable models (preliminary report). In Proceedings of International Conference on Logic
Programming (ICLP), pages 672–676, 2008.

[14] Joohyung Lee and Ravi Palla. System f2lp – computing answer sets of first-order formu-
las. In Procedings of International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR), pages 515–521, 2009.

[15] Vladimir Lifschitz and Fangkai Yang. Translating first-order causal theories into answer set
programming. In Proceedings of the European Conference on Logics in Artificial Intelligence
(JELIA), 2010.

[16] Norman McCain. Causality in Commonsense Reasoning about Actions7. PhD thesis, Uni-
versity of Texas at Austin, 1997.

6 http://peace.eas.asu.edu/joolee/papers/dissertation.pdf
7 ftp://ftp.cs.utexas.edu/pub/techreports/tr97-25.ps.gz


	Introduction
	Preliminaries
	Nonmonotonic Causal Theories and C+
	Language of the Causal Calculator
	Stable Model Semantics of First-Order Formulas and System f2lp

	Representing the Language of the Causal Calculator in ASP
	Translating C+ into Answer Set Programs
	Representing Domain Descriptions in the Language of f2lp
	Standard Library
	Postulates for Specific Fluents and Actions

	Meta-Sorts and Meta-Variables

	Implementation and Experiments
	Conclusion

