
Cplus2ASP: Computing Action Language C+
in Answer Set Programming

Joseph Babb and Joohyung Lee

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, USA
{Joseph.Babb,joolee}@asu.edu

Abstract. We present Version 2 of system Cplus2ASP, which imple-
ments the definite fragment of action language C+. Its input language is
fully compatible with the language of the Causal Calculator Version 2,
but the new system is significantly faster thanks to modern answer set
solving techniques. The translation implemented in the system is a com-
position of several recent theoretical results. The system orchestrates a
tool chain, consisting of f2lp, clingo, iclingo, and as2transition.
Under the incremental execution mode, the system translates a C+ de-
scription into the input language of iclingo, exploiting its incremental
grounding mechanism. The correctness of this execution is justified by
the module theorem extended to programs with nested expressions. In
addition, the input language of the system has many useful features, such
as external atoms by means of Lua calls and the user interactive mode.
The system supports extensible multi-modal translations for other action
languages, such as B and BC, as well.

1 Introduction

Action language C+ is a high level language for nonmonotonic causal theories,
which allows us to describe transition systems succinctly [1]. The definite frag-
ment of C+ is expressive enough to represent various properties of actions, and
was implemented in Version 2 of the Causal Calculator (CCalc)1. The sys-
tem translates an action description in C+ into formulas in propositional logic
and calls SAT solvers to compute the models. Though CCalc is not a highly
optimized system, it has been used to solve several challenging commonsense
reasoning problems, including problems of nontrivial size [2], to provide a group
of robots with high-level reasoning [3], to give executable specifications of norm-
governed computational societies [4, 5], and to automate the analyses of business
processes under authorization constraints [6].

An alternative way to compute the definite fragment of Boolean-valued C+ is
to translate it into answer set programs as studied in [7, 8]. The system reported
in [9] and system coala [10] are implementations of this method and accept the
definite fragment of C, a predecessor of language C+. In particular, coala was

1 http://www.cs.utexas.edu/users/tag/cc

2 Joseph Babb and Joohyung Lee

shown to be effective for several benchmark problems due to efficiency of ASP
solvers.

However, the input language of coala is missing several important features
of C+, such as multi-valued fluents, defined fluents, additive fluents, defeasible
causal laws, and syntactically complex formulas. Also, it does not support many
useful language constructs allowed in the input language of CCalc, such as
user-defined macros, implicit declarations of sorts, and external atoms.

The design aim of system Cplus2ASP [11] is to utilize the efficient ASP
solving techniques as in coala while supporting the full features of the input
language of CCalc. Its design utilizes a standard library with meta-level sorts
and meta-level variables, which yields a simple modular and extensible method
to represent CCalc input programs in ASP. However, the first version of the
system was a prototype implementation for a proof of concept.

This paper presents Version 2 of Cplus2ASP, which is significantly enhanced
in several ways.

– Its input language is fully compatible with the language of CCalc incorpo-
rating the features that were missing in Cplus2ASP v1.

– The system supports extensible multi-modal translations for different action
languages. Currently, in addition to C+, the system supports language B [12],
and a recently proposed language BC [13]. Language BC combines features
of languages B and C, and allows Prolog-style recursive definitions, which
are not allowed in C+.

– The system provides two execution modes: the command line mode and the
interactive mode. The interactive mode gives a user-friendly interface for
running various commands.

– In CCalc, external atoms are useful for some deterministic computation
which is difficult to express directly in C+. For example, they were utilized
in [3] for a loose integration of task planning and motion planning. The new
version of Cplus2ASP supports this feature by utilizing Lua call available
in the language of gringo.

– The new system provides an incremental computation of action descriptions,
which often saves a significant amount of time. Since the translation of action
descriptions into answer set programs may contain complex formulas, the
justification of this computation uses the module theorem from [14], which
extends the module theorem from [15] to first-order formulas under the stable
model semantics [16].

In [11], the translation of a definite C+ description into the input language
of ASP solvers was explained in multiple steps. A C+ description is first turned
into a multi-valued causal theory, and then to a Boolean-valued causal theory
by the method described in [17]. The resulting theory is further turned into
logic programs with nested expressions by the translation in [8], and then the
translation in [18] is applied to turn it into the input language of gringo.

In Section 2, we explain the translation in a simpler way by avoiding refer-
ence to causal theories but instead by using a recent proposal of multi-valued

Cplus2ASP: Computing Action Language C+ in Answer Set Programming 3

propositional formulas under the stable model semantics [19]. A C+ description
is turned into multi-valued formulas under the stable model semantics, which is
further turned into propositional formulas under the stable model semantics [20].
The result is further turned into the input language of gringo by the translation
described in [18]. Section 3 introduces system Cplus2ASP v2 and the features
of its input language, and Section 4 compares the system with other similar sys-
tems. Our experiments show that the new system is significantly faster than the
others.

2 From C+ to ASP

2.1 Review: Multi-Valued Propositional Formulas

A (multi-valued propositional) signature is a set σ of symbols called constants,
along with a nonempty finite set Dom(c) of symbols, disjoint from σ, assigned
to each constant c. Dom(c) is called the domain of c. A Boolean constant is
one whose domain is the set {true, false}. An atom of a signature σ is an
expression of the form c=v (“the value of c is v”) where c ∈ σ and v ∈ Dom(c).
A (multi-valued propositional) formula of σ is a propositional combination of
atoms. We often write G← F , in a rule form as in logic programs, to denote the
implication F → G. A finite set of formulas is identified with the conjunction of
the formulas in the set.

A (multi-valued propositional) interpretation of σ is a function that maps
every element of σ to an element in its domain. An interpretation I satisfies
an atom c=v, (symbolically, I |= c=v) if I(c) = v. The satisfaction relation is
extended from atoms to arbitrary formulas according to the usual truth tables
for the propositional connectives. I is a model of a formula if I satisfies it. We
often write an interpretation I with the set of atoms c=v such that I(c) = v.

The stable models of a multi-valued propositional formula can be defined
in terms of a reduct [19]. Let F be a multi-valued propositional formula of
signature σ, and let I be a multi-valued propositional interpretation of σ. The
reduct F I of a multi-valued propositional formula F relative to a multi-valued
propositional interpretation I is the formula obtained from F by replacing each
maximal subformula that is not satisfied by I with ⊥. I is a (multi-valued) stable
model of F if I is the unique multi-valued interpretation of σ that satisfies F I .

Example 1. Assume σ = {c}, and Dom(c) = {1, 2, 3}. Each of the three inter-
pretations is a model of c= 1 ← c= 1, but none of them is stable because each
reduct has no unique model. Formula c= 1 ← ¬¬(c= 1) has the same models
as c=1← c=1, but it has one stable model, {c=1}: the reduct of the formula
relative to this interpretation is c= 1 ← ¬⊥, and {c= 1} is its unique model.
Similarly, one can check that (c= 1 ← ¬¬(c= 1)) ∧ (c= 2) has only one stable
model {c=2}, which illustrates nonmonotonicity of the semantics.

4 Joseph Babb and Joohyung Lee

2.2 C+ as Multi-valued Propositional Formulas under SM

Begin with a multi-valued signature partitioned into fluent constants and action
constants. The fluent constants are assumed to be further partitioned into simple
and statically determined.

A fluent formula is a formula such that all constants occurring in it are
fluent constants. An action formula is a formula that contains at least one action
constant and no fluent constants.

A static law is an expression of the form

caused F if G (1)

where F and G are fluent formulas. An action dynamic law is an expression
of the form (1) in which F is an action formula and G is a formula. A fluent
dynamic law is an expression of the form

caused F if G after H (2)

where F and G are fluent formulas and H is a formula, provided that F does
not contain statically determined constants. A causal law is a static law, or an
action dynamic law, or a fluent dynamic law. An action description is a finite
set of causal laws.

An action description is called definite if F in every causal law (1) and (2)
is either an atom or ⊥.

For any definite action description D and any nonnegative integer m, the
multi-valued propositional theory cplus2mvpf (D,m) (“C+ to multi-valued propo-
sitional formulas”) is defined as follows.2 The signature of cplus2mvpf (D,m)
consists of the pairs i :c such that

– i ∈ {0, . . . ,m} and c is a fluent constant of D, or
– i ∈ {0, . . . ,m− 1} and c is an action constant of D.

The domain of i : c is the same as the domain of c. Recall that by i : F we
denote the result of inserting i : in front of every occurrence of every constant in
a formula F , and similarly for a set of formulas. The rules of cplus2mvpf (D,m)
are:

i :F ← ¬¬(i :G) (3)

for every static law (1) in D and every i ∈ {0, . . . ,m}, and for every action
dynamic law (1) in D and every i ∈ {0, . . . ,m− 1};

i :F ← ¬¬(i :G) ∧ (i−1:H) (4)

for every fluent dynamic law (2) in D and every i ∈ {1, . . . ,m};

0 :c=v ← ¬¬(0 :c=v) (5)

2 The translation can be applied to non-definite C+ descriptions as well, but then the
semantics does not agree with C+.

Cplus2ASP: Computing Action Language C+ in Answer Set Programming 5

for every simple fluent constant c and every v ∈ Dom(c).
Note how the definition of cplus2mvpf (D,m) treats simple fluent constants

and statically determined fluent constants in different ways: rules (5) are included
only when c is simple.

The translation of BC into multi-valued propositional formulas is similar. Due
to lack of space, we refer the reader to [13, Section 9].

2.3 Translating Multi-Valued Propositional Formulas to
Propositional Formulas under SM

Note that even when we restrict attention to Boolean constants only, the stable
model semantics for multi-valued propositional formulas does not coincide with
the stable model semantics for propositional formulas. Syntactically, they are
different (one uses expressions of the form c = true and c = false; the other
uses propositional atoms). Semantically, the former relies on the uniqueness of
(Boolean)-functions, while the latter relies on the minimization on propositional
atoms. Nonetheless there is a simple reduction from the former to the latter.

Begin with a multi-valued propositional signature σ. By σprop we denote the
signature consisting of Boolean constants c(v) for all constants c in σ and all
v ∈ Dom(c). For any multi-valued propositional formula F of σ, by F prop we
denote the propositional formula that is obtained from F by replacing each oc-
currence of a multi-valued atom c=v with c(v). For any constant c with Dom(c),
by UEC (c) we denote the existence and uniqueness constraints for c:

⊥ ← (c(v) ∧ c(v′))
for all v, v′ ∈ Dom(c) such that v 6= v′, and

⊥ ← ¬
∨

v∈Dom(c)

c(v) .

By UEC σ we denote the conjunction of UEC (c) for all c ∈ σ.
For any interpretation I of σ, by Iprop we denote the interpretation of σprop

that is obtained from I by defining Iprop |= c(v) iff I |= c=v.
There is a one-to-one correspondence between the stable models of F and the

stable models of F prop. The following theorem is a special case of Corollary 1
from [19].

Theorem 1 Let F be a multi-valued propositional formula of a signature σ such
that, for every constant c in σ, Dom(c) has at least two elements. (I) An inter-
pretation I of σ is a multi-valued stable model of F iff Iprop is a propositional
stable model of F prop ∧ UEC σ. (II) An interpretation J of σprop is a proposi-
tional stable model of F prop ∧ UEC σ iff J = Iprop for some multi-valued stable
model I of F .

2.4 Incremental Computation of C+

In answer set planning [21], the length of a plan needs to be specified. When the
length is not known in advance, a plan can be found by iteratively increasing the

6 Joseph Babb and Joohyung Lee

possible plan length. Cplus2ASP Version 1 calls clingo for each such iteration,
resulting in redundant computations each time.

Instead, by default, Cplus2ASP v2 uses iclingo, which accepts incremen-
tal logic programs. Gebser et al. [22] define an incremental logic program to be
a triple 〈B,P [t], Q[t]〉, where B is a disjunctive logic program, and P [t], Q[t]
are incrementally parameterized disjunctive logic programs. Informally, B is the
base program component, which describes static knowledge; P [t] is the cumu-
lative program component, which contains information regarding every step t
that should be accumulated during execution; Q[t] is the volatile query program
component, containing constraints or information regarding the final step. Con-
ceptually, system iclingo computes B ∪P [1]∪ · · · ∪P [k]∪Q[k] by increasing k
one by one, but avoids reproducing ground rules in each step. Also, previously
learned heuristics, conflicts, or loops are reused without having to recompute
them. This method turns out to be quite effective. The correctness of this com-
putation assumes that 〈B,P [t], Q[t]〉 is acyclic [14].

Below we show that the translation from C+ described previously can be
modified to yield an incremental logic program, which is always acyclic, and
thus can be computed by iclingo.

For any C+ description D, and any formula F (t) (called a query) of the same
signature as cplus2mvpf (D, t), where t is a parameter denoting a nonnegative
integer, we define the corresponding incremental logic program 〈B,P [t], Q[t]〉 as
follows:

– B consists of
• 0:UEC (f) for every fluent constant f ;
• 0:c(v)← ¬¬(0 :c(v)) for every simple fluent c and every v ∈ Dom(c);
• 0:F prop ← ¬¬(0 :Gprop) for every static law (1) in D.

– P [t] (t ≥ 1) consists of
• t :UEC (f) for every fluent constant f ;
• (t−1) :UEC (a) for every action constant a;
• t :F prop ← ¬¬(t :Gprop) for every static law (1) in D;
• (t−1) :F prop ← ¬¬((t−1) :Gprop) for every action dynamic law (1) in D;
• t :F prop ← ¬¬(t :Gprop)∧((t−1) :Hprop) for every fluent dynamic law (2)

in D.
– Q[t] is ⊥ ← ¬(F [t])prop.

Upon receiving this input and a range of nonnegative integers [min . . .max],
iclingo will find an answer set of the module Rk with k = min,min + 1, . . .
until it finds an answer set, or k = max, whichever comes first. In [14], module
Rk is defined from 〈B,P [t], Q[t]〉 as follows.

P0 = FM (B, ∅),
Pi = Pi−1 t FM (P [i],Out(Pi−1)), (1 ≤ i ≤ k)

Rk = Pk t FM (Q[k],Out(Pk)) .

(Due to lack of space, we refer the reader to [14] for the notations.)
The following theorem states the correctness of incremental execution in

Cplus2ASP.

Cplus2ASP: Computing Action Language C+ in Answer Set Programming 7

Theorem 2 For any definite C+ description D, any non-negative integer k, and
any formula F (k) of the same signature as cplus2mvpf (D, k), an interpretation
I is a multi-valued stable model of cplus2mvpf (D, k)∪{⊥ ← ¬F (k)} iff Iprop is
a stable model of Rk. Conversely, an interpretation J is a stable model of Rk

iff J = Iprop for some multi-valued stable model of cplus2mvpf(D, k) ∪ {⊥ ←
¬F (k)}.

Proof. (Sketch) We can check that 〈B,P [t], Q[t]〉 obtained from the C+ de-
scription and a query as above is acyclic according to Definition 12 from [14].
Then the claim follows from Proposition 5 from [14].

The translation of BC into an incremental logic program is similar.

3 System Cplus2ASP v2

Fig. 1. Cplus2ASP v2 System Architecture

System Cplus2ASP v2 is a re-engineering of the prototypical Cplus2ASP
v1 system [11] and is available under Version 3 of the GNU Public License.
Like its predecessor, Cplus2ASP v2 uses a highly modular architecture that
is designed to take advantage of the existing tools, including system f2lp [18]
and highly-optimized ASP grounders and solvers in addition to a number of
packaged sub-components. Figure 1 shows a high-level conceptualization of the
interaction of the sub-components in the Cplus2ASP v2 architecture.

For a description of the input language of Cplus2ASP, we refer the reader to
the Cplus2ASP homepage at http://reasoning.eas.asu.edu/cplus2asp
or CCalc 2 homepage at http://www.cs.utexas.edu/˜tag/ccalc/. A
typical run of Cplus2ASP involves the user interacting with the interactive
bridge, a tightly-coupled shell-like interface for Cplus2ASP, in order to config-
ure the Cplus2ASP run. Cplus2ASP.bin, a translator sub-component, is then
called to compile a CCalc 2 input program into a logic program containing
complex formulas. Following this, system f2lp further turns the program in the
input language of gringo. The result of this compilation is given to clingo, or

8 Joseph Babb and Joohyung Lee

a similar answer set solver, and one or more answer sets are calculated. Finally,
as2transition is invoked in order to format the answer sets into a readable
format.

Cplus2ASP accepts a CCalc 2 style syntax of language BC as well, for
which the user can select a different language mode for running. In addition,
Cplus2ASP is able to provide two target translations, a static translation to
traditional ASP, and an incremental variant, as described in section 2.4.

3.1 Running Modes of System Cplus2ASP v2

In this section we briefly review the usage of Cplus2ASP v2. For more complete
documentation and information on obtaining and installing Cplus2ASP v2 we
invite the reader to visit the Cplus2ASP homepage.

Cplus2ASP v2 currently offers two distinct user-interaction methods: command-
line and interactive shell. A brief introduction to both modes is provided below.

Using the Command-Line Mode The command-line mode is designed pri-
marily for interacting with a script or a seasoned Cplus2ASP user who is famil-
iar with the options available to them. The command-line mode is the default
user-interaction mode when a query is provided while calling Cplus2ASP.

For instance, to run a query labeled “simple” on a C+ description stored
in file bw-test, one can run the command:

cplus2asp bw-test query=simple

In order to run the command under the BC semantics, the flag --language=bc
should be asserted in the command line call.3

If more solutions are desired, the number of solutions can be appended to
the end of the command-line. As an example, appending 4 to the end of the
command will return up to four solutions, while appending all or 0 will return
all solutions.

The system provides the following options to write the output of a toolchain
component into a file. Below [PROGRAM] may be one of pre-processor,
grounder, solver, or post-processor.

--[PROGRAM]-output=[FILE] Writes the output of the toolchain compo-
nent [PROGRAM] to a persistent output file [FILE].

--to-[PROGRAM] Executes the program toolchain up to and including [PROGRAM].
Similarly, --from-[PROGRAM] selects a program to initiate execution with
and continue from.

As an example, if the user wants to run the toolchain up to the preprocessor
and store the results for use later, he could use the command

cplus2asp bw-test --to-pre-processor > bw-test.lp.

3 The bw-test example program, along with other examples, can be found from the
Cplus2ASP homepage.

Cplus2ASP: Computing Action Language C+ in Answer Set Programming 9

Later, he could then run the command

cplus2asp bw-test.lp --from-grounder query=simple

to continue execution.

Using the Interactive Mode The user-interactive mode provides a shell-like
interface which allows the user to perform many of the configurations available
from the command line. In general, the user-interactive mode is entered any
time the user fails to provide all necessary information within the command-line
arguments. As such, the easiest way to enter the user-interactive mode is to
neglect to specify a query on the command-line. As an example, the command

cplus2asp bw-test

will enter the user-interactive mode.
While in the user-interactive mode, the following commands, among others,

are available to the user:

help Displays the list of available commands.
config Reveals the currently selected running options.
queries Displays the list of available queries to run.
minstep=[#] Overrides the minimum step to solve for the next query selected.
maxstep=[#] Overrides the maximum step to solve for the next query selected.
sol=[#] Selects the number of solutions to display.
query=[QUERY] Runs the selected query and returns the results.
exit Exits the program.

Following successful execution of a query, the system will return to the inter-
active prompt and the process can be repeated. For more information on using
Cplus2ASP v2, we invite the reader to explore the documentation available
at http://reasoning.eas.asu.edu/cplus2asp or within the help usage
message available by executing cplus2asp --help.

3.2 Lua in System Cplus2ASP v2

System Cplus2ASP v2 allows for embedding external Lua function calls in
the system, which are evaluated at grounding time. These Lua calls allow the
user a great deal of flexibility when designing a program and can be used for
complex computation that is not easily expressible in logic programs. A Lua
function must be encapsulated in #begin lua ...#end lua. tags, and, can
optionally be included in a separate file ending in .lua. Lua calls occurring
within the Cplus2ASP program are restricted to occurring within the where
clause 4 of each rule and must be prefaced with an @ sign.

For example, one can say moving a block does not always work.5

4 The condition in the where clause is evaluated at grounding time.
5 Note that this is decided at grounding time so this is not truly random.

10 Joseph Babb and Joohyung Lee

move(B,L) causes loc(B)=L where @roll(1,2).

with Lua function defined as

#begin_lua
math.randomseed(os.time())
function roll(a,n)--returns 1 with probability a/n

if(math.random(n) <= a) then return 1
else return 0
end

end
#end_lua.

A more complete description of the system’s Lua functionality and additional
examples of its use are available from the Cplus2ASP homepage.

4 Experiments

In order to compare the performance of the Cplus2ASP v2 system with its
predecessors, we used large variants of several widely known domains 6 and com-
pared the performance of Cplus2ASP’s running modes with the performance
of CCalc v2, Cplus2ASP v1, and the incremental and static running modes
of coala (where applicable). All experiments were performed on an Intel Core
2 Duo 3.00 GHZ CPU with 4 GB RAM running Ubuntu 11.10. The CCalc v2
tests used relsat 2.0 as a SAT solver while Cplus2ASP v1, v2, and coala
tests used the same version of clingo, v3.0.5.

The domains tested include a large variant of the Traffic World [2], which
models the behavior of cars on a road; a variant of the Blocks World where
actions have costs [23]; the Spacecraft Integer [23], which models a spacecraft’s
movement with multiple independent jets; the Towers of Hanoi; and the Fer-
ryman domain, which involves moving a number of wolves and sheep across a
river without allowing the sheep to be eaten. The Towers of Hanoi and Ferry-
man descriptions are from examples packaged with coala v1.0.1. In order to
run on other systems, we manually turned them into the syntax of CCalc input
language.

Table 1 compares the results of the test benchmarks for each of the available
configurations. Each measured time includes translation, grounding, and solv-
ing for all possible maximum steps between 0 and the horizon (#), as well as
the number of atoms and rules produced below each timing. In all test cases
Cplus2ASP’s incremental running mode showed a significant performance ad-
vantage compared to the other systems, performing roughly 3 times faster than
coala’s incremental mode and an order of magnitude faster than its predecessor
Cplus2ASP v1. coala’s incremental running mode comes in the second place
in all but one benchmark. Cplus2ASP v2’s static mode tended to outperform
its predecessor on the more computation-heavy domains with additive fluents,

6 All benchmark programs are available from the Cplus2ASP homepage.

Cplus2ASP: Computing Action Language C+ in Answer Set Programming 11

Domain steps CCalc 2 Cplus2ASP v1
coala Cplus2ASP v2

static incr. static incr.

traffic
11

878.59 s + 1 s
a

95.43 s + 25.95 s
–b –

82.16 s 14.2 s
(altmerge)

– –
+ 26.57 s + 2.6 s

[531552 / 3671940] [2722247 / 3341068] [2262231 / 2766459]

bw-cost
8

131.1 s + 5 s 76.16 s + 0.4 s
– –

17.09 s 3.47 s
(15)c + 3.16 s + 0.16 s

[149032 / 624439] [123517 / 260282] [43052 / 526923]
bw-cost

9
52 s + 987 s 271 s + 9.17 s

– –
63.26 s 13.45 s

(20) + 66.58 s + 2.24 s
[374785 / 1584778] [279869 / 626496] [102426 / 1745166]

spacecraft
3

173.62 s + 0 s 16.07 s + 2.65 s
– –

5.57 s 2.33 s

(15/8)d + 0.06 s + 0.01 s
[128262 / 622158] [146056 / 146056] [132918 / 253514]

spacecraft
4 timeout

208.2 s + 480.24 s
– –

67.55 s 17.46 s
(25/10) + 3.42 s + 0.35 s

[760673 / 1653650] [732860 / 1427771]

hanoi
64

14 s + 1983 s 38.9 s + 137.27 s
1039.15 s 1.4 s 547.9 s 0.76 s

(6/3) e + 507.12 s + 51.13 s + 47.53 s + 3.5 s
[13710 / 221895] [37297 / 298047] [13798 / 410559] [10086 / 202694]

towers
33 timeout

31.19 s + 102.69 s
304.02 s 1.51 s 102.81 s 1.04 s

(8/4) + 3017.87 s + 470.23 s + 89.36 s + 14.8 s
[35041 / 433660] [12922 / 655436] [9074 / 324668]

ferryman
16

39.45 s + 0 s 8.27 s + 2.98 s
40.85 s 0.87 s 21.59 s 0.66 s

(10/4) f + 8.71 s + 1.85 s + 2.37 s + 0.25 s
[55905 / 308909] [14122 / 120693] [4973 / 358772] [12721 / 112912]

ferryman
26

1004.26 s + 0 s 85.21 s + 39.54 s
793.13 s 6.13 s 318.4 s 4.18 s

(15/4) + 169.18 s + 14.73 s + 34.4 s + 2.97 s
[256590 / 1452554] [42687 / 539513] [15718 / 2275992] [39536 / 515167]

a preprocessing time + solving time [# atoms / # rules]
b The input language is not expressive enough to represent the domain.
c maximum cost
d domain size (15× 15× 15) / goal position (8× 8× 8)
e # disks / # pegs
f # animals / boat capacity

Table 1. Benchmarking Results

but was subsequently outmatched in the others. Finally, CCalc 2 and coala’s
static mode came in last (with CCalc performing slightly worse in most cases).

Figure 2 shows a more detailed analysis of the execution of the first 100 steps
of solving an extreme variant of the ferryman domain consisting of 120 of each
animal by graphing the time spent (in seconds) on each step by each configura-
tion. While the static configurations were required to completely re-ground and
re-solve the translated answer set program for each maximum step, resulting in
an ever-growing amount of work to be performed at each step, Cplus2ASP v2’s
incremental running mode is able to avoid this by only grounding the new cu-
mulative (P [t]) and volatile (Q[t]) components and leveraging heuristics learned
from previous iterations. This results in far less time being required for checking
each increment.

Although coala’s incremental mode uses the same reasoning engine iclingo
as Cplus2ASP v2’s incremental mode, system Cplus2ASP sees a significant
overall speed-up over coala. This is related to a significant reduction in the

12 Joseph Babb and Joohyung Lee

Fig. 2. Ferryman 120/4 Long Horizon Analysis

number of atoms and rules produced during grounding, which also accounts for
far fewer conflicts and restarts during solving in all test cases.

5 Conclusion

A distinct advantage that Cplus2ASP v2 has over its prototypical predeces-
sor is that it was re-engineered in order to allow for far greater flexibility and
extensibility via a multi-modal execution model. This makes it suitable for use
as a base-platform for future input language implementations, input language
extensions, or target languages/platforms.

The advances in ASP solving techniques account for the efficiency of system
Cplus2ASP. We expect that the significant speed-up of the system demon-
strated by Cplus2ASP v2, as well as the enhanced expressivity of the input
language, will contribute to widening application of action languages in various
domains.

Acknowledgements: We are grateful to Michael Bartholomew and the anony-
mous referees for their useful comments. This work was partially supported by
the National Science Foundation under Grant IIS-0916116 and by the South
Korea IT R&D program MKE/KIAT 2010-TD-300404-001.

References

1. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic
causal theories. Artificial Intelligence 153(1–2) (2004) 49–104

2. Akman, V., Erdoğan, S., Lee, J., Lifschitz, V., Turner, H.: Representing the Zoo
World and the Traffic World in the language of the Causal Calculator. Artificial
Intelligence 153(1–2) (2004) 105–140

3. Caldiran, O., Haspalamutgil, K., Ok, A., Palaz, C., Erdem, E., Patoglu, V.: Bridg-
ing the gap between high-level reasoning and low-level control. In: LPNMR. (2009)
342–354

Cplus2ASP: Computing Action Language C+ in Answer Set Programming 13

4. Artikis, A., Sergot, M., Pitt, J.: Specifying norm-governed computational societies.
ACM Transactions on Computational Logic 9(1) (2009)

5. Desai, N., Chopra, A.K., Singh, M.P.: Representing and reasoning about commit-
ments in business processes. In: AAAI. (2007) 1328–1333

6. Armando, A., Giunchiglia, E., Ponta, S.E.: Formal specification and automatic
analysis of business processes under authorization constraints: an action-based ap-
proach. In: Proceedings of the 6th International Conference on Trust, Privacy and
Security in Digital Business (TrustBus’09). (2009)

7. McCain, N.: Causality in Commonsense Reasoning about Actions. PhD thesis,
University of Texas at Austin (1997)

8. Ferraris, P., Lee, J., Lierler, Y., Lifschitz, V., Yang, F.: Representing first-order
causal theories by logic programs. TPLP 12(3) (2012) 383–412

9. Doğandağ, S., Alpaslan, F.N., Akman, V.: Using stable model semantics (SMOD-
ELS) in the Causal Calculator (CCALC). In: Proceedings 10th Turkish Symposium
on Artificial Intelligence and Neural Networks. (2001) 312–321

10. Gebser, M., Grote, T., Schaub, T.: Coala: A compiler from action languages to
ASP. In: Proceedings of European Conference on Logics in Artificial Intelligence
(JELIA). (2010) 360–364

11. Casolary, M., Lee, J.: Representing the language of the causal calculator in answer
set programming. In: ICLP (Technical Communications). (2011) 51–61

12. Gelfond, M., Lifschitz, V.: Action languages. Electronic Transactions on Artificial
Intelligence 3 (1998) 195–210

13. Lee, J., Lifschitz, V., Yang, F.: Action language BC: Preliminary report. In: In
Proc. IJCAI 2013. (2013) To appear.

14. Babb, J., Lee, J.: Module theorem for the general theory of stable models. TPLP
12(4-5) (2012) 719–735

15. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of
disjunctive stable models. Journal of Artificial Intelligence Research 35 (2009)
813–857

16. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial
Intelligence 175 (2011) 236–263

17. Lee, J.: Automated Reasoning about Actions. PhD thesis, University of Texas at
Austin (2005)

18. Lee, J., Palla, R.: System f2lp – computing answer sets of first-order formulas. In:
Procedings of International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR). (2009) 515–521

19. Bartholomew, M., Lee, J.: Stable models of formulas with intensional functions.
In: Proceedings of International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR). (2012) 2–12

20. Ferraris, P.: Answer sets for propositional theories. In: Proceedings of Interna-
tional Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR).
(2005) 119–131

21. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence
138 (2002) 39–54

22. Gebser, M., Grote, T., Kaminski, R., Schaub, T.: Reactive answer set program-
ming. In: Proceedings of International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR), Springer (2011) 54–66

23. Lee, J., Lifschitz, V.: Describing additive fluents in action language C+. In: Pro-
ceedings of International Joint Conference on Artificial Intelligence (IJCAI). (2003)
1079–1084

