
Reformulating Action Language C+
in Answer Set Programming

Joohyung Lee

School of Computing, Informatics and Decision Systems Engineering
Arizona State University
Tempe, AZ, 85287, USA
joolee@asu.edu

Abstract. Action language C+ is a high level notation of nonmonotonic causal
logic for describing properties of actions. The definite fragment of C+ is imple-
mented in Version 2 of the Causal Calculator (CCALC) based on the reduction
of nonmonotonic causal logic to propositional logic. On the other hand, here we
present two reformulations of the definite fragment of C+ in terms of different
versions of the stable model semantics. The first reformulation is in terms of the
recently proposed stable model semantics of formulas with intensional functions,
and can be encoded in the input language of CSP solvers. The second reformu-
lation is in terms of the stable model semantics of propositional logic programs,
which can be encoded in the input language of ASP systems. The second one is
obtained from the first one by eliminating intensional functions in favor of inten-
sional predicates.

1 Introduction

Action languages are formal models of parts of natural language that are used for de-
scribing properties of actions. Among them, language C+ [1] and its predecessor C [2]
are based on nonmonotonic causal logic. The definite fragment of nonmonotonic causal
logic can be turned into propositional logic by the literal completion method, which re-
sulted in an efficient way to compute C+ using propositional satisfiability (SAT) solvers.
The Causal Calculator (CCALC) is an implementation of this idea. Language C+ has
many features that are not available in C, such as being able to represent multi-valued
formulas, defined fluents, additive fluents, rigid constants and defeasible causal laws.

Nonmonotonic causal logic is closely related to logic programs under the stable
model semantics [5, 6]. Proposition 6.7 from [3] states how a fragment of Boolean-
valued causal logic can be turned into logic programs under the stable model semantics
[6]. This result was extended to non-definite theories and to first-order causal theories
in [7]. Based on these embeddings, Casolary and Lee [8] show how to represent the
language of CCALC in the input language of ASP systems following these steps: (i)
turn the given C+ action description D into the corresponding multi-valued causal the-
ory Dm; (ii) turn Dm into a Boolean-valued causal theory D′

m; (iii) turn D′
m into

formulas with intensional predicates under the stable model semantics; (iv) turn the
result further into an answer set program. The prototype implementation CPLUS2ASP

reported there takes the advantage of answer set solvers to yield efficient computation
that is orders of magnitude faster than CCALC on several benchmark examples.

In this note, we provide an alternative reformulation of C+ in answer set program-
ming. Instead of step (ii) above, we turn Dm into multi-valued propositional formulas
under the stable model semantics, which is a special case of first-order formulas with
intensional functions [9]. The resulting theory can be encoded in the input language
of CSP solvers, or it can be further turned into the input language of ASP systems by
eliminating intensional functions in favor of intensional predicates.

2 Preliminaries

2.1 Multi-Valued Propositional Formulas

We first review the definition of a multi-valued propositional formula from [1], where
atomic parts of a formula can be equalities of the kind found in constraint satisfaction
problems.

A (multi-valued propositional) signature is a set σ of symbols called constants,
along with a nonempty finite set Dom(c) of symbols, disjoint from σ, assigned to each
constant c. We call Dom(c) the domain of c. A Boolean constant is one whose domain
is the set {TRUE, FALSE}. An atom of a signature σ is an expression of the form c=v
(“the value of c is v”) where c ∈ σ and v ∈ Dom(c). A (multi-valued propositional)
formula of σ is a propositional combination of atoms.

A (multi-valued propositional) interpretation of σ is a function that maps every ele-
ment of σ to an element in its domain. An interpretation I satisfies an atom c=v (sym-
bolically, I |= c=v) if I(c) = v. The satisfaction relation is extended from atoms to
arbitrary formulas according to the usual truth tables for the propositional connectives.

2.2 Nonmonotonic Causal Theories and C+

Let σ be a multi-valued propositional signature. A (multi-valued propositional) causal
rule is an expression of the form

F ⇐ G , (1)

where F andG are multi-valued propositional formulas. A (multi-valued propositional)
causal theory is a finite set of causal rules.

Let T be a causal theory, and let I be a multi-valued propositional interpretation of
its signature. The reduct of T relative to I , denoted by T I , is the set of the heads of all
rules in T whose bodies are satisfied by I . We say that I is a (causal) model of T if I is
the unique model of T I .

A causal theory is called definite if the heads of the rules are either an atom or ⊥.
Language C+ is a high level notation for causal theories that was designed for de-

scribing transition systems—directed graphs whose vertices represent states and edges
are labeled by actions that affect the states. In C+, constants in σ are partitioned into
the set σfl of fluent constants and the set σact of action constants. Fluent constants are
further partitioned into simple and statically determined fluents. A fluent formula is a
formula where all constants occurring in it are fluent constants. An action formula is a

formula that contains at least one action constant and no fluent constants. A static law
is an expression of the form

caused F if G (2)

where F and G are fluent formulas. An action dynamic law is an expression of the
form (2) in which F is an action formula and G is a formula. A fluent dynamic law is
an expression of the form

caused F if G after H (3)

where F andG are fluent formulas andH is a formula, provided that F does not contain
statically determined fluent constants. A causal law is a static law, or an action dynamic
law, or a fluent dynamic law. An action description is a set of causal laws.

The semantics of C+ in [1] is described via a translation into causal logic. For any
action description D and any nonnegative integer m, the causal theory Dm is defined
as follows. The signature of Dm consists of the pairs i :c such that

– i ∈ {0, . . . ,m} and c is a fluent constant of D, or
– i ∈ {0, . . . ,m− 1} and c is an action constant of D.

The domain of i : c is the same as the domain of c. By i : F we denote the result of
inserting i : in front of every occurrence of every constant in a formula F , and similarly
for a set of formulas. The rules of Dm are

i :F ⇐ i :G (4)

for every static law (2) in D and every i ∈ {0, . . . ,m}, and for every action dynamic
law (2) in D and every i ∈ {0, . . . ,m− 1};

i+1:F ⇐ (i+1:G) ∧ (i :H) (5)

for every fluent dynamic law (3) in D and every i ∈ {0, . . . ,m− 1};

0:c=v ⇐ 0:c=v (6)

for every simple fluent constant c and every v ∈ Dom(c).
The causal models ofDm correspond to the paths of lengthm in a transition system

— a directed graph whose vertices represent the states and edges are labeled by actions
that affect the states. A state is an interpretation s of σfl such that 0:s is a model ofD0.
States are the vertices of the transition system represented by D. A transition is a triple
〈s, e, s′〉, where s and s′ are interpretations of σfl and e is an interpretation of σact,
such that 0:s∪ 0:e∪ 1:s′ is a model of D1. Transitions correspond to the edges of the
transition system: for every transition 〈s, e, s′〉, it contains an edge from s to s′ labeled
e. These labels e are called events.

Notation: b, b1, b2 range over the blocks in the domain
l ranges over the locations (the blocks and the table)

Simple fluent constant: Domain:
Loc(b) the set of locations

Action constant: Domain:
Move(b, l) Boolean

Causal laws:

constraint ¬(Loc(b1)=b ∧ Loc(b2)=b) for b1 6= b2

Move(b, l) causes Loc(b)= l
nonexecutable Move(b, l) if Loc(b1)=b
nonexecutable Move(b, b1) ∧ Move(b1, l)

exogenous Move(b, l)

inertial Loc(b)

Fig. 1. Blocks World in C+

Example 1. Figure 1 shows a description of the Blocks World in C+. The semantics of
C+ turns the causal laws in Figure 1 into a causal theory Dm:

⊥ ⇐ j : (Loc(b1)=b ∧ Loc(b2)=b) (b1 6= b2)
i+1:Loc(b)= l ⇐ i :Move(b, l)=TRUE

⊥ ⇐ i : (Move(b, l)=TRUE ∧ Loc(b1)=b)
⊥ ⇐ i : (Move(b, b1)=TRUE ∧Move(b1, l)=TRUE)

i :Move(b, l)=TRUE ⇐ i :Move(b, l)=TRUE
i :Move(b, l)= FALSE ⇐ i :Move(b, l)= FALSE

i+1:Loc(b)= l ⇐ i+1:Loc(b)= l ∧ i :Loc(b)= l
0:Loc(b)= l ⇐ 0:Loc(b)= l

(7)
(0 ≤ j ≤ m, 0 ≤ i ≤ m−1).

3 Stable Model Semantics

We review two versions of the stable model semantics. One is the stable model se-
mantics for propositional formulas defined by Ferraris [10]. The other is the stable
model semantics for multi-valued propositional formulas defined by Bartholomew and
Lee [9]. We understand propositional logic programs (multi-valued logic programs, re-
spectively) as an alternative notation of some special syntactic class of propositional
formulas (multi-valued propositional formulas, respectively).

3.1 Stable Models of a Propositional Formulas

The following definition is from [10]. For any propositional formula F , the reduct FX

of F relative to a set X of atoms is the formula obtained from F by replacing each
maximal subformula that is not satisfied byX with⊥. We say thatX is a (propositional)
stable model of F if X is a minimal set of atoms satisfying FX .

By a propositional logic program, we denote a set of rules that have the form

F ← G (8)

where F andG are propositional formulas that do not contain implications. We identify
a logic program with the conjunction of propositional formulas G → F for each rule
(8) in it.

3.2 Stable Models of a Multi-Valued Propositional Logic Programs

Bartholomew and Lee [9] define stable models of first-order formulas containing in-
tensional functions. There, stable models of a multi-valued propositional formula are
understood as a special case of stable models of a first-order formula with intensional
functions. We review the stable model semantics of multi-valued propositional formulas
by using the notion of a reduct that is similar to the reduct in the previous section.

Let F be a multi-valued propositional formula of signature σ, and let I be a multi-
valued propositional interpretation of σ. The reduct F I of a multi-valued propositional
formula F relative to a multi-valued propositional interpretation I is the formula ob-
tained from F by replacing each maximal subformula that is not satisfied by I with ⊥.
I is a (multi-valued) stable model of F if I is the unique multi-valued interpretation
of σ that satisfies F I .

By a multi-valued logic program, we denote the set of rules that have the form

F ← G (9)

where F and G are multi-valued propositional formulas as defined in Section 2.1. We
identify a multi-valued logic program with the conjunction of multi-valued proposi-
tional formulas G→ F for each rule (9) in it.

3.3 Turning Multi-Valued Propositional Formulas into Propositional Formulas
under the Stable Model Semantics

Note that even when we restrict attention to Boolean constants only, the stable model
semantics for multi-valued propositional formulas does not coincide with the stable
model semantics for propositional formulas. Syntactically, they are different (one uses
an expression of the form c = TRUE, c = FALSE and the other uses the usual notion
of an atom). Semantically, the former relies on the uniqueness of (Boolean)-functions,
while the latter relies on the minimization of atoms. Nonetheless there is a simple re-
duction from the former to the latter.

Begin with a multi-valued propositional signature σ. By σp we denote the signature
consisting of Boolean constants c(v) for all constants c in c and all v ∈ Dom(c).

For any multi-valued propositional formula F of σ, by Fσ we denote the proposi-
tional formula that is obtained from F by replacing each occurrence of a multi-valued
atom c=v with c(v), and adding the formulas

¬(c(v) ∧ c(v′)) (10)

for all v, v′ ∈ Dom(c) such that v 6= v′, and also adding

¬¬
∨

v∈Dom(c)

c(v). (11)

For any interpretation I of σ, by Iσ we denote the interpretation of σP that is ob-
tained from I by defining c(I(c))I = TRUE iff cI = I(c).

The following proposition is a special case of Corollary 2 of [9].

Theorem 1 Let F be a multi-valued propositional formula of a signature σ such that,
for every constant c in σ, Dom(c) has at least two elements. (i) An interpretation I of σ
is a multi-valued stable model of F iff Iσ is a propositional stable model of Fσ . (ii)
An interpretation J of σP is a propositional stable model of Fσ iff J = Iσ for some
multi-valued stable model I of F .

4 Representing Definite C+ in Multi-Valued Propositional
Formulas Under SM

4.1 Turning Definite Causal Theories into Multi-Valued Logic Programs

For any definite causal theory T , by cl2mvlp(T) we denote the multi-valued logic pro-
gram consisting of rules

F ← ¬¬G
for each rule (1) in T . The causal models of such T coincide with the multi-valued
stable models of cl2mvlp(T).

The following theorem is a special case of Theorem 13 from [9].

Theorem 2 For any definite causal theory T of a signature σ, a multi-valued interpre-
tation I of σ is a causal model of T iff it is a multi-valued stable model of cl2mvlp(T).

4.2 Reformulating Definite C+ in Multi-Valued Logic Programs

We consider a finite definite C+ description D of signature σ, where the heads of the
rules are either an atom or ⊥. Without loss of generality, we assume that, for any con-
stant c in σ, Dom(c) has at least two elements. Description D can be turned into a
logic program following these steps: (i) turn D into the corresponding multi-valued
causal theory Dm (as explained in Section 2.2); (ii) turn Dm into a logic program with
multi-valued constants cl2mvlp(Dm); (iii) Eliminate multi-valued atoms in favor of
propositional atoms. The resulting program can be executed by ASP solvers.

For any definite action description D and any nonnegative integer m, the logic pro-
gram Πm is defined as follows. The signature of Πm consists of the pairs i : c such
that

– i ∈ {0, . . . ,m} and c is a fluent constant of D, or
– i ∈ {0, . . . ,m−1} and c is an action constant of D.

The domain of i : c is the same as the domain of c. By i : F we denote the result of
inserting i : in front of every occurrence of every constant in a formula F , and similarly
for a set of formulas. The rules of Πm are:

i :F ← ¬¬ (i :G) (12)

for every static law (2) in D and every i ∈ {0, . . . ,m}, and for every action dynamic
law (2) in D and every i ∈ {0, . . . ,m− 1};

i+1:F ← ¬¬(i+1:G) ∧ (i :H) (13)

for every fluent dynamic law (3) in D and every i ∈ {0, . . . ,m− 1};

0:c=v ← ¬¬ (0 :c=v) (14)

for every simple fluent constant c and every v ∈ Dom(c).

Example 2. In view of Theorem 2, the causal theory Dm in Example 1 can be repre-
sented in multi-valued logic programs as follows.

⊥ ← ¬¬(j : (Loc(b1)=b ∧ Loc(b2)=b)) (b1 6= b2)
i+1:Loc(b)= l ← i :Move(b, l)=TRUE

⊥ ← ¬¬(i : (Move(b, l)=TRUE ∧ Loc(b1)=b))
⊥ ← ¬¬(i : (Move(b, b1)=TRUE ∧Move(b1, l)=TRUE)

i :Move(b, l)=TRUE ← ¬¬(i :Move(b, l)=TRUE)
i :Move(b, l)= FALSE ← ¬¬(i :Move(b, l)= FALSE)

i+1:Loc(b)= l ← ¬¬(i+1:Loc(b)= l) ∧ i :Loc(b)= l
0:Loc(b)= l ← ¬¬(0 :Loc(b)= l)

(15)
(0 ≤ j ≤ m; 0 ≤ i ≤ m−1).

According to the theorem on strong equivalence in [9], replacing a rule ⊥ ← ¬¬F
with ⊥ ← F does not affect the stable models.

Let Π be a multi-valued logic program of signature σ such that the heads of the
rules are either an atom or ⊥. The dependency graph of Π , denoted by DG[Π], is the
directed graph that

– has all multi-valued constants of σ as its vertices, and
– has an edge from c to d if, for some rule F ← G of Π , c occurs in F and d has a

positive occurrence in G that is not in the scope of any negation.

We say that Π is tight if the graph DG[Π] is acyclic. For example, program (15) is
tight. Indeed, it is not difficult to check that cl2mvlp(T) for any definite causal theory
T is tight.

Any tight multi-valued logic programs can be turned into “completion,” similar to
Clark’s completion [11]. We say that a multi-valued logic programΠ is in Clark normal
form if it is a conjunction of sentences of the form

c=v ← F (16)

one for each pair of c and v, and sentences of the form

⊥ ← F (17)

The (functional) completion of a multi-valued logic program Π is obtained from Π
by replacing each conjunctive term (16) in Π with c=v ↔ F and (17) with ¬F .

Theorem 3 Let Π be a multi-valued logic program such that for each multi-valued
constant c, Dom(c) has at least two elements. For any multi-valued interpretation I , I
is a multi-valued stable model of Π iff I is a model of the completion of Π .

Example 3. The following theory is the completion of this program. Its stable models
are the same as the models of the completion according to Theorem 3.

i+1 : Loc(b)= l↔ i :Move(b, l)=TRUE ∨ (i+1 : Loc(b)= l) ∧ i :Loc(b)= l
j : (Loc(b1)=b ∧ Loc(b2)=b) (b1 6= b2)
i : (Move(b, l)=TRUE ∧ Loc(b1)=b)
i : (Move(b, b1)=TRUE ∧Move(b1, l)=TRUE)

(0 ≤ j ≤ m; 0 ≤ i ≤ m−1).

The completion can be computed by CSP solvers, as shown in [9].

4.3 Reformulating Definite C+ in Propositional Logic Programs

Multi-valued logic program Πm in the previous section can be further turned into
propositional logic program (Πm)σ , as described in Section 3.3. We abbreviate a rule
F ← ¬¬F ∧G as {F} ← G .

The rules of (Πm)σ are:

i :Fσ ← ¬¬ (i :Gσ) (18)

for every static law (2) in D and every i ∈ {0, . . . ,m}, and for every action dynamic
law (2) in D and every i ∈ {0, . . . ,m− 1};

i+1:Fσ ← ¬¬(i+1:Gσ) ∧ (i :Hσ) (19)

for every fluent dynamic law (3) in D and every i ∈ {0, . . . ,m− 1};

{0:c(v)} (20)

for every simple fluent constant c and every v ∈ Dom(c). Also, we add rules

⊥ ← i : (c(v) ∧ c(v′)) (21)

⊥ ← i :
(∧
v∈Dom(c)

¬c(v)
)
. (22)

for all c ∈ c and all v, v′ ∈ Dom(c) such that v 6= v′.

Example 4. Action description D in Figure 1 is represented by the following proposi-
tional logic program:

⊥ ← j : (Loc(b1, b) ∧ Loc(b2, b)) (b1 6= b2)
i+1:Loc(b, l)← i :Move(b, l, TRUE)

⊥ ← i : (Move(b, l, TRUE) ∧ Loc(b1, b))
⊥ ← i : (Move(b, b1, TRUE) ∧Move(b1, l, TRUE))

{i :Move(b, l, TRUE)}
{i :Move(b, l, FALSE)}

{i+1:Loc(b, l)} ← i :Loc(b, l)
{0:Loc(b, l)}

⊥ ← i : (Loc(b, l) ∧ Loc(b, l′)) (l 6= l′)
⊥ ← i : (Move(b, l, TRUE) ∧Move(b, l, FALSE))

⊥ ← i : (
∧
l∈Locations ¬Loc(b, l))

⊥ ← i : (¬Move(b, l, TRUE) ∧ ¬Move(b, l, FALSE))
(23)

We can simplify some rules containing Boolean constants. Replace Move(b, l, TRUE)
with Move(b, l) and Move(b, l, FALSE) with ¬Move(b, l). We also drop rules that con-
tain Move(b, l, FALSE) from program (23).

⊥ ← j : (Loc(b1, b) ∧ Loc(b2, b)) (b1 6= b2)
i+1:Loc(b, l)← i :Move(b, l)

⊥ ← i : (Move(b, l) ∧ Loc(b1, b))
⊥ ← i : (Move(b, b1) ∧Move(b1, l))

{i :Move(b, l)}
{i+1:Loc(b, l)} ← i :Loc(b, l)
{0:Loc(b, l)}

⊥ ← i : (Loc(b, l) ∧ Loc(b, l′)) (l 6= l′)
⊥ ← i : (

∧
l∈Locations ¬Loc(b, l))

(24)

4.4 Representing Definite C+ in the Language of ASP

The logic program representation of C+ introduced in the previous section can be en-
coded in the input language of ASP grounders.

We rewrite i : G as h(G, i), where h(G, i) is obtained from i : G by replacing every
atomic formula i : c(v) in it by

– h(c(v), i) if c is non-Boolean,
– h(c, i) if c is Boolean and v is TRUE, and
– ∼h(c, i) if c is Boolean and v is FALSE. (‘ ∼′ is the symbol for strong negation.)

Each rule (4) is represented by

h(Fσ, i)← ¬¬h(Gσ, i) ;

Each rule (5) is represented by

h(Fσ, i+1)← ¬¬h(Gσ, i) ∧ h(Hσ, i) ;

Each rule (6) is represented by
{h(c(v), 0)}.

Rules (21) and (22) can be succinctly represented by cardinality constraints [12]. If
c is nonBoolean, rule (21) can be encoded as

← 2{h(c(v), i) : Domain(v)}

(Domain is a domain predicate that defines the range of variable v) and rule (22) can be
encoded as

⊥ ← {c(v) : Domain(v)}0.

If c is Boolean, rule (22) can be encoded as

⊥ ← {h(c, i),∼h(c, i)}0.

and we do not need to represent rule (10).

Example 5. Program (23) can be encoded in the input language of GRINGO as follows:

step(0..maxstep). astep(0..maxstep-1) :- maxstep > 0.

#domain step(ST). #domain astep(T).
#domain block(B). #domain block(B1).
#domain location(L).

% every block is a location
location(B) <- block(B).

% the table is a location
location(table).

% two blocks can’t be on the same block at the same time
<- 2{h(loc(BB,B),ST): block(BB)}.

% direct effect
h(loc(B,L),T+1) <- h(move(B,L),T).

% preconditions
<- h(move(B,L),T) & h(loc(B1,B),T).
<- h(move(B,B1),T) & h(move(B1,L),T).

{h(loc(B,L),0)}.
{h(move(B,L),T)}.
{h(loc(B,L),T+1)} <- h(loc(B,L),T).

% existence constraint

<- {h(loc(B,LL),ST): location(LL)}0.

% uniqueness constraint
<- 2{h(loc(B,LL),ST): location(LL)}.

5 Monkey and Bananas in the Language of F2LP

The monkey and bananas domain is the main example used in [1] to illustrate the ex-
pressivity of definite C+. The C+ action description MB is reproduced in Figure 2. The
propositional logic program representation of MB may not be directly accepted by an
ASP solver as it may contain syntactically complex formulas. For example, the causal
rule

nonexecutable PushBox(l) if ¬
(∨
l′∈{L1,L2,L3}

(
Loc(Monkey)= l′∧Loc(Box)= l′

))
is turned into 1

⊥ ← i :

(
PushBox(l) ∧ ¬

(∧
l′∈{L1,L2,L3}

Loc(Monkey)= l′ ∧ Loc(Box)= l′
))

.

In order to handle this, we use system F2LP [13] (“formulas to logic programs”)2, a
front-end that allows ASP solvers to compute stable models of the general programs de-
fined in [14, 15]. Figure 3 is the propositional logic program representation of MB in the
input language of F2LP. We show how planning, prediction, and postdiction problems
can be answered by using the combination of F2LP and CLINGO3.

Planning

Find the shortest sequence of actions that would allow the monkey to have the bananas.

The problem can be formalized as follows: Find an answer set of (MBm)σ , where
σ is the underlying signature, that satisfies the initial conditions

0:Loc(Monkey)=L1, 0:Loc(Bananas)=L2, 0:Loc(Box)=L3 (25)

and the goal
m :HasBananas (26)

where m is the smallest number for which such a model exists. To solve this problem,
we take consecutivelym = 0, 1, . . . and look for an answer set of (MBm)c that satisfies
the constraint in File planning. Such an interpretation will be first found for m = 4.

1 In multi-valued propositional logic, Loc(Monkey) = Loc(Box) is shorthand for∨
l′∈{L1,L2,L3}(Loc(Monkey)= l′ ∧ Loc(Box)= l′).

2 http://reasoning.eas.asu.edu/f2lp
3 http://potassco.sourceforge.net

Notation: x ranges over {Monkey,Bananas,Box}; l ranges over {L1, L2, L3}.

Simple fluent constants: Domains:
Loc(x) {L1, L2, L3}
HasBananas,OnBox Boolean

Action constants: Domains:
Walk(l), PushBox(l), ClimbOn, ClimbOff , GraspBananas Boolean

Causal laws:

caused Loc(Bananas)= l if HasBananas ∧ Loc(Monkey)= l
caused Loc(Monkey)= l if OnBox ∧ Loc(Box)= l

Walk(l) causes Loc(Monkey)= l
nonexecutable Walk(l) if Loc(Monkey)= l
nonexecutable Walk(l) if OnBox

PushBox(l) causes Loc(Box)= l
PushBox(l) causes Loc(Monkey)= l
nonexecutable PushBox(l) if Loc(Monkey)= l
nonexecutable PushBox(l) if OnBox
nonexecutable PushBox(l) if Loc(Monkey) 6=Loc(Box)

ClimbOn causes OnBox
nonexecutable ClimbOn if OnBox
nonexecutable ClimbOn if Loc(Monkey) 6=Loc(Box)

ClimbOff causes ¬OnBox
nonexecutable ClimbOff if ¬OnBox

GraspBananas causes HasBananas
nonexecutable GraspBananas if HasBananas
nonexecutable GraspBananas if ¬OnBox
nonexecutable GraspBananas if Loc(Monkey) 6=Loc(Bananas)

nonexecutable Walk(l) ∧ PushBox(l)
nonexecutable Walk(l) ∧ ClimbOn
nonexecutable PushBox(l) ∧ ClimbOn
nonexecutable ClimbOff ∧ GraspBananas

exogenous c for every action constant c

inertial c for every simple fluent constant c

Fig. 2. Action description MB

% File: mb

step(0..maxstep).
astep(0..maxstep-1) :- maxstep > 0.

#domain step(ST). #domain astep(T).
#domain thing(TH).

thing(monkey;bananas;box).

#domain location(L).

location(l1;l2;l3).

% state description
h(loc(bananas,L),ST) <- h(hasBananas,ST) & h(loc(monkey,L),ST).
h(loc(monkey,L),ST) <- h(onBox,ST) & h(loc(box,L),ST).

%% effect and preconditions of actions
h(loc(monkey,L),T+1) <- h(walk(L),T).
<- h(walk(L),T) & h(loc(monkey,L),T).
<- h(walk(L),T) & h(onBox,T).

h(loc(box,L),T+1) <- h(pushBox(L),T).
h(loc(monkey,L),T+1) <- h(pushBox(L),T).
<- h(pushBox(L),T) & h(loc(monkey,L),T).
<- h(pushBox(L),T) & h(onBox,T).
<- h(pushBox(L),T) & - (?[L]: (h(loc(monkey,L),T) & h(loc(box,L),T))).

h(onBox,T+1) <- h(climbOn,T).
<- h(climbOn,T) & h(onBox,T).
<- h(climbOn,T) & - (?[L]: (h(loc(monkey,L),T) & h(loc(box,L),T))).

-h(onBox,T+1) <- h(climbOff,T).
<- h(climbOff,T) & -h(onBox,T).

h(hasBananas,T+1) <- h(graspBananas,T).
<- h(graspBananas,T) & h(hasBananas,T).
<- h(graspBananas,T) & -h(onBox,T).
<- h(graspBananas,T) & - (?[L]: (h(loc(monkey,L),T) & h(loc(bananas,L),T))).

% no concurrency
<- h(walk(L),T) & h(pushBox(L),T).
<- h(walk(L),T) & h(climbOn,T).
<- h(pushBox(L),T) & h(climbOn,T).
<- h(climbOff,T) & h(graspBananas,T).

% fluents are initially exogenous
{h(hasBananas,0), -h(hasBananas,0)}. {h(onBox,0), -h(onBox,0)}.
{h(loc(TH,L),0)}.

% actions are exogenous
{h(walk(LL),T): location(LL)}. {h(pushBox(LL),T): location(LL)}.
{h(climbOn,T)}. {h(climbOff,T)}. {h(graspBananas,T)}.

% commonsense law of inertia
{h(hasBananas,T+1)} <- h(hasBananas,T). {-h(hasBananas,T+1)} <- -h(hasBananas,T).
{h(onBox,T+1)} <- h(onBox,T). {-h(onBox,T+1)} <- -h(onBox,T).
{h(loc(TH,L),T+1)} <- h(loc(TH,L),T).

% Eliminating multi-valued constants
<- {h(onBox,ST), -h(onBox,ST)}0. <- {h(hasBananas,ST), -h(hasBananas,ST)}0.
<- {h(loc(TH,LL),ST): location(LL)}0.

<- 2{h(loc(TH,LL),ST): location(LL)}.

Fig. 3. Action description MB in ASP

% File: planning

% initial condition
<- not (-h(hasBananas,0) & -h(onBox,0) & h(loc(monkey,l1),0) &

h(loc(box,l3),0) & h(loc(bananas,l2),0)).

% goal
<- not h(hasBananas,maxstep).

The following is the trace of the program. AS2TRANSITION 4 is a utility program
that displays answer sets in the format of a transition system.

$ f2lp mb planning | clingo -c maxstep=4 | as2transition
Solution 1:

0: h(loc(bananas,l2),0) h(loc(box,l3),0) h(loc(monkey,l1),0)

ACTIONS: h(walk(l3),0)

1: h(loc(bananas,l2),1) h(loc(box,l3),1) h(loc(monkey,l3),1)

ACTIONS: h(pushBox(l2),1)

2: h(loc(bananas,l2),2) h(loc(box,l2),2) h(loc(monkey,l2),2)

ACTIONS: h(climbOn,2)

3: h(loc(bananas,l2),3) h(loc(box,l2),3) h(loc(monkey,l2),3)
h(onBox,3)

ACTIONS: h(graspBananas,3)

4: h(hasBananas,4) h(loc(bananas,l2),4) h(loc(box,l2),4)
h(loc(monkey,l2),4) h(onBox,4)

Models : 1
Time : 0.000 (Parsing: 0.000)

Prediction

Initially, the monkey is at L1, the bananas are at L2, and the box is at L3. The monkey
walks to L3 and then pushes the box to L2. Does it follow that in the resulting state the
monkey, the bananas and the box are at the same location?

4 http://reasoning.eas.asu.edu/cplus2asp/downloads.html

This question can be formalized as follows: Determine whether every answer set of
MB2 satisfies the following formula:

[(0 :Loc(Monkey)=L1) ∧ (0 :Loc(Bananas)=L2) ∧ (0 :Loc(Box)=L3)
∧ (0 :Walk(L3)) ∧ (1 :PushBox(L2))]

→ 2:(Loc(Monkey)=Loc(Bananas) ∧ Loc(Bananas)=Loc(Box)).
(27)

This is equivalent to checking if MB2 conjoined with the negation of the formula
above has no answer sets. The negation of the formula above can be represented in the
input language of F2LP as follows: 5

% File: prediction

not
(h(loc(monkey,l1),0) & h(loc(bananas,l2),0) & h(loc(box,l3),0) &
h(walk(l3),0) & h(pushBox(l2),1)
-> ?[L]:(h(loc(monkey,L),2) & h(loc(bananas,L),2) & h(loc(box,L),2))).

The following command is used to answer the prediction query.

$ f2lp mb prediction | clingo -c maxstep=2 | as2transition

CLINGO returns no answer set as expected.

Postdiction

The monkey walked to location L3 and then pushed the box. Does it follow that the box
was initially at L3?

This question can be formalized as follows: Determine whether MB2 entails the
formula [

(0 :Walk(L3)) ∧

(
1:
∨
l

PushBox(l)

)]
→ 0:Loc(Box)=L3. (28)

It can be reduced to the satisfiability problem in the same way as the prediction problem
above. The answer to this question is yes. Similarly, the negation of the query can be
represented as follows.

% File: postdiction

not (h(walk(l3),0) & ?[L]: h(pushBox(L),1) -> h(loc(box,l3),0)).

5 F2LP allows us to represent a formula of the form ¬F where F is an arbitrary formula, includ-
ing implication (->), and quantifiers (? for ∃, ! for ∀).

6 Discussion

Based on the theoretical result that turns nonmonotonic causal logic into the stable
model semantics, we presented a method that represents the definite fragment of C+ in
the language of answer set programming.

Our reformulation always yields a tight logic program due to the use of double nega-
tions, and in this sense the use of SAT solvers and ASP solvers are not distinguishable.
However, it is worthwhile to note that the reformulation in terms of the stable model
semantics may provide a way to extend language C+ by allowing recursive definitions.
For instance, one may consider extending static causal laws to

caused F if G assuming H ,

which can be translated into propositional logic program rules

i :Fσ ← i : (Gσ ∧ ¬¬Hσ) .

In the absence of if G, this is essentially the translation (18). In the absence of assumingH ,
this is close to the treatment in language B [16].

References

1. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.
Artificial Intelligence 153(1–2) (2004) 49–104

2. Giunchiglia, E., Lifschitz, V.: An action language based on causal explanation: Preliminary
report. In: Proceedings of National Conference on Artificial Intelligence (AAAI), AAAI
Press (1998) 623–630

3. McCain, N.: Causality in Commonsense Reasoning about Actions6. PhD thesis, University
of Texas at Austin (1997)

4. Lee, J.: Automated Reasoning about Actions7. PhD thesis, University of Texas at Austin
(2005)

5. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In Kowal-
ski, R., Bowen, K., eds.: Proceedings of International Logic Programming Conference and
Symposium, MIT Press (1988) 1070–1080

6. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive databases.
New Generation Computing 9 (1991) 365–385

7. Ferraris, P., Lee, J., Lierler, Y., Lifschitz, V., Yang, F.: Representing first-order causal theories
by logic programs. Theory and Practice of Logic Programming (2011) Available on CJO
2011 doi:10.1017/S1471068411000081.

8. Casolary, M., Lee, J.: Representing the language of the causal calculator in answer set
programming. In: ICLP (Technical Communications). (2011) 51–61

9. Bartholomew, M., Lee, J.: Stable models of formulas with intensional functions. In: Proceed-
ings of International Conference on Principles of Knowledge Representation and Reasoning
(KR). (2012) To appear.

10. Ferraris, P.: Answer sets for propositional theories. In: Proceedings of International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR). (2005) 119–131

6 ftp://ftp.cs.utexas.edu/pub/techreports/tr97-25.ps.gz
7 http://peace.eas.asu.edu/joolee/papers/dissertation.pdf

11. Clark, K.: Negation as failure. In Gallaire, H., Minker, J., eds.: Logic and Data Bases.
Plenum Press, New York (1978) 293–322

12. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138 (2002) 181–234

13. Lee, J., Palla, R.: System F2LP – computing answer sets of first-order formulas. In: Pro-
cedings of International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR). (2009) 515–521

14. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI). (2007) 372–379

15. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial Intelligence
175 (2011) 236–263

16. Gelfond, M., Lifschitz, V.: Action languages8. Electronic Transactions on Artificial Intelli-
gence 3 (1998) 195–210

8 http://www.ep.liu.se/ea/cis/1998/016/

