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Abstract

Recently, Ferraris, Lee and Lifschitz presented a
general definition of a stable model that is similar
to the definition of circumscription, and can even
be characterized in terms of circumscription. In
this paper, we show the opposite direction, which
is, how to turn circumscription into the general sta-
ble model semantics, and based on this, how to turn
circumscriptive event calculus into answer set pro-
grams. The reformulation of the event calculus in
answer set programming allows answer set solvers
to be applied to event calculus reasoning, handling
more expressive reasoning tasks than the current
SAT-based approach. Our experiments also show
clear computational advantages of the answer set
programming approach.

1 Introduction
The stable model semantics is the mathematical basis of
answer set programming [Marek and Truszczyński, 1999;
Niemelä, 1999; Lifschitz, 2008]. Recently, Ferraris, Lee and
Lifschitz [2007] presented a general definition of a stable
model that applies to the syntax of arbitrary first-order sen-
tences, under which logic programs are viewed as a special
class of first-order sentences. The new semantics is sim-
ilar to the definition of circumscription [McCarthy, 1980;
1986], and can even be characterized in terms of circum-
scription [Ferraris et al., 2007, Corollary 1]. Essentially the
same characterization was also independently given in [Lin
and Zhou, 2007].

The opposite direction, turning (parallel) circumscription
into the stable model semantics, was shown in [Lee and Lin,
2004; Janhunen and Oikarinen, 2004] limited to the propo-
sitional case. The first contribution of this paper is a gen-
eralization of the result from [Lee and Lin, 2004]: turning
first-order circumscription into the general stable model se-
mantics. Such close relationship between the two formalisms
is curious since they have formed rather disparate traditions
in knowledge representation. In particular, they have pro-
vided different solutions to the frame problem. A group
of action formalisms, such as circumscriptive event calcu-
lus [Shanahan, 1995] and temporal action logics [Doherty

et al., 1998], is based on classical logic, using circumscrip-
tion to handle the frame problem. On the other hand, the
solution provided by answer set programming (ASP), that is
carried over to high level action language A [Gelfond and
Lifschitz, 1998] and many of its descendants that are based
on ASP, uses both default negation (not) and strong nega-
tion (¬)—the idea of which is closely related to Reiter’s de-
fault logic solution [Reiter, 1980]. Interestingly, the devel-
opment of the event calculus has spanned over both clas-
sical logic and logic programming traditions. The original
version of the event calculus [Kowalski and Sergot, 1986]
was formulated as logic programs but not under the stable
model semantics (that was the time before the invention of
the stable model semantics). More extensive later develop-
ments of the event calculus have been carried out under the
classical logic setting via circumscription [Shanahan, 1995;
Miller and Shanahan, 1999].

In this paper we show how to embed circumscriptive event
calculus into the general language of stable models, and
furthermore into answer set programs under certain condi-
tions. The reformulation of the event calculus in the sta-
ble model semantics here can be viewed as turning back the
event calculus to the logic program tradition, in the modern
form of answer set programming. In contrast to the SAT-
based approaches from [Shanahan and Witkowski, 2004;
Mueller, 2004a] which turn circumscription into completion
and hence cannot handle certain recursive axioms of the event
calculus, we show that the ASP approach can compute the
full version of the event calculus assuming that the domain is
given and finite. Our work shows that the new stable model
semantics is a nonmonotonic formalism as general as circum-
scription, with the unique advantage of having efficient ASP
solvers as computational tools.

Our work is motivated by Mueller’s work that is available
on the webpage

http://decreasoner.sourceforge.net/csr/ecas/,
where a few example answer set programs are given to illus-
trate that event calculus like reasoning can be done using ASP
solvers. However, this is rather a “proof of concept” and no
formal justification is provided there.

2 Review of the Event Calculus
Here we follow the extensive syntax of circumscriptive event
calculus described in [Mueller, 2006, Chapter 2].



We assume a many-sorted first-order language, which con-
tains an event sort, a fluent sort, and a timepoint sort. A fluent
term is a term whose sort is a fluent; an event term and a
timepoint term are defined similarly. A condition is defined
recursively as follows:
• A comparison (τ1 < τ2, τ1 ≤ τ2, τ1 ≥ τ2, τ1 > τ2,
τ1 = τ2, τ1 6= τ2) for terms τ1, τ2 is a condition;
• If f is a fluent term and t is a timepoint term, then

HoldsAt(f, t) and ¬HoldsAt(f, t) are conditions;
• If γ1 and γ2 are conditions, then γ1 ∧ γ2 and γ1 ∨ γ2 are

conditions;
• If v is a variable and γ is a condition, then ∃vγ is a con-

dition.
We will use e and ei to denote event terms, f and fi to de-

note fluent terms, t and ti to denote timepoint terms, and γ
and γi to denote conditions. We understand formula F ↔ G
as shorthand for (F → G) ∧ (G → F ); formula > as short-
hand for ⊥ → ⊥; formula ¬F as shorthand for F → ⊥.

An event calculus domain description is defined as 1

CIRC[Σ ; Initiates,Terminates,Releases]
∧ CIRC[∆ ; Happens] ∧ Ξ. (1)

where
• Σ is the conjunction of universal closures of axioms of

the form
γ → Initiates(e, f, t)
γ → Terminates(e, f, t)
γ → Releases(e, f, t)
γ ∧ π1(e, f1, t)→ π2(e, f2, t) (“effect constraint”)
γ ∧ [¬]Happens(e1, t) ∧ · · · ∧ [¬]Happens(en, t)

→ Initiates(e, f, t)
γ ∧ [¬]Happens(e1, t) ∧ · · · ∧ [¬]Happens(en, t)

→ Terminates(e, f, t)
where each of π1 and π2 is either Initiates or Terminates;
• ∆ is the conjunction of universal closures of tempo-

ral ordering formulas (comparisons between timepoint
terms) and axioms of the form
γ → Happens(e, t)
σ(e, t) ∧ π1(e1, t) ∧ · · · ∧ πn(en, t)→ Happens(e, t)

(“causal constraints”)
Happens(e, t)→ Happens(e1, t) ∨ · · · ∨ Happens(en, t)

(“disjunctive event axiom”)
where σ is Started or Stopped and each πj (1 ≤ j ≤ n)
is either Initiated or Terminated, which are defined as
follows:

Started(f, t)
def↔ (HoldsAt(f, t)∨

∃e(Happens(e, t) ∧ Initiates(e, f, t))) (CC1)

Stopped(f, t)
def↔ (¬HoldsAt(f, t)∨

∃e(Happens(e, t) ∧ Terminates(e, f, t))) (CC2)

Initiated(f, t)
def↔ (Started(f, t)∧

¬∃e(Happens(e, t) ∧ Terminates(e, f, t))) (CC3)

Terminated(f, t)
def↔ (Stopped(f, t)∧

¬∃e(Happens(e, t) ∧ Initiates(e, f, t))) (CC4)
1The syntax from [Mueller, 2006, Chapter 2] allows

CIRC[Θ ; Ab1, . . . , Abn] where Θ is a conjunction of cancel-
lation axioms, which we omit here for simplicity of presentation.

• Ξ is a conjunction of first-order sentences (outside the
scope of circumscription) including unique name ax-
ioms, state constraints, and one of the two axiom-
atizations of the event calculus, EC and DEC ax-
ioms [Mueller, 2006].

As listed, circumscriptive event calculus descriptions look
different from logic programs. The former may contain exis-
tential quantifiers; only some parts of the description are cir-
cumscribed on selected lists of predicates. Nonetheless, we
will see that the differences are not essential.

3 Review of the General Stable Model
Semantics

Under the new definition of stable models presented in [Fer-
raris et al., 2007] that is applicable to arbitrary first-order
sentences, a logic program is identified with a universal for-
mula, called the FOL-representation. For example, the FOL-
representation of the program

p(a) q(b) r(x)← p(x), not q(x)

is
p(a) ∧ q(b) ∧ ∀x((p(x) ∧ ¬q(x))→ r(x)). (2)

The review here follows [Ferraris et al., 2010], a journal
version of [Ferraris et al., 2007], in which the stable model
operator was extended to distinguish between intensional and
extensional predicates. Let p be a list of distinct predicate
constants p1, . . . , pn, and let u be a list of distinct predicate
variables u1, . . . , un of the same length as p. By u ≤ p we
denote the conjunction of the formulas ∀x(ui(x) → pi(x))
for all i = 1, . . . n where x is a list of distinct object variables
whose length is the same as the arity of pi. Expression u < p
stands for (u ≤ p) ∧ ¬(p ≤ u).

For any first-order sentence F , expression SM[F ; p] stands
for the second-order sentence2

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where p is the list p1, . . . , pn of predicate constants that are
called intensional, u is a list u1, . . . , un of distinct predicate
variables corresponding to p, and F ∗(u) is defined recur-
sively:
• pi(t)∗ = ui(t) for any tuple t of terms;
• F ∗ = F for any atomic formula F that does not contain

members of p;
• (F ∧G)∗ = F ∗ ∧G∗; • (F ∨G)∗ = F ∗ ∨G∗;
• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
• (∀xF )∗ = ∀xF ∗; • (∃xF )∗ = ∃xF ∗.
SM[F ] defined in [Ferraris et al., 2007] is identical to

SM[F ; p] where intensional predicate constants p range over
all predicate constants occurring in F . Let σ(F ) be the sig-
nature consisting of the object, function and predicate con-
stants occurring in F . According to [Ferraris et al., 2007], an
interpretation of σ(F ) that satisfies SM[F ; p] is called a sta-
ble model of F , where p is the list of all predicate constants

2Here we use expression SM[F ; p] in place of SMp[F ] used in
[Ferraris et al., 2010].



in σ(F ). If F contains at least one object constant, an Her-
brand stable model of F is called an answer set of F . The
answer sets of a logic program Π are defined as the answer
sets of the FOL-representation of Π. It turns out that this def-
inition, applied to the syntax of logic programs, is equivalent
to the traditional definition of answer sets based on grounding
and fixpoint construction [Ferraris et al., 2007].

The fact that intensional predicates p in SM[F ; p] is al-
lowed not to include some predicates occurring in the for-
mula is not essential in view of the following proposition. By
pr(F ) we denote the list of all predicate constants occurring
in F ; by Choice(p) we denote the conjunction of “choice for-
mulas” ∀x(p(x) ∨ ¬p(x)) for all predicate constants p in p
where x is a list of distinct object variables whose length is
the same as the arity of p.

Proposition 1 [Ferraris et al., 2010, Theorem 2] If p is a
subset of pr(F ), then

SM[F ; p]↔ SM[F ∧ Choice(pr(F )\p); pr(F )]

is logically valid.

However, it will be convenient to describe our main results in
this paper by allowing p to be partial.

4 Turning Circumscription and Event
Calculus Descriptions into SM

We say that an occurrence of a predicate constant in a for-
mula F is strictly positive if that occurrence is not in the an-
tecedent of any implication. For instance, in (p → q) → r,
only r has a strictly positive occurrence.

For any set p of predicate constants and any formulas G
and H , we call implication G→ H canonical (relative to p)
if
• every occurrence of every predicate constant from p

in G is strictly positive in G, and
• every occurrence of every predicate constant from p

in H is strictly positive in H .
For instance, p(x)→ q(x) is a canonical implication relative
to {p, q}, while its contraposition ¬q(x) → ¬p(x) is not.
Also ∃x p(x) → ∃x q(x) is a canonical implication relative
to {p, q}.

By a canonical theory (relative to p) we mean the conjunc-
tion of sentences of the form

∀x(G→ H)

where x is a list of variables (possibly empty), and G→ H
is a canonical implication (relative to p). For instance,

(> → p(a)) ∧ (∃x p(x)→ ∃x q(x)) (3)

is a canonical theory relative to {p, q}, while

(> → p(a, a)) ∧ ∃x(p(x, a)→ p(b, x)) (4)

is not a canonical theory relative to {p} (it becomes canon-
ical if ∃ is replaced with ∀). Note that any quantifier-free
formula (and universal formula) can be equivalently rewrit-
ten as a conjunction of canonical implications. One way is by
converting to a conjunctive normal form and then rewriting

each clause as a canonical implication. An arbitrary sentence
that contains existential quantifiers can still be turned into a
canonical theory using Skolemization, which preserves satis-
fiability.

The following proposition shows that, for any canonical
theory, circumscription coincides with the stable model se-
mantics.

Proposition 2 For any canonical theory F relative to p,

CIRC[F ; p]↔ SM[F ; p]

is logically valid.

For instance, for (3) that is canonical relative to {p, q}, for-
mulas CIRC[(3); p, q] and SM[(3); p, q] are equivalent to each
other. Also any sentence F is clearly equivalent to a canon-
ical theory relative to ∅, so that CIRC[F ; ∅] is equivalent to
SM[F ; ∅], which in turn is equivalent to F . On the other
hand, for (4) that is not canonical relative to p, CIRC[(4); p] is
not equivalent to SM[(4); p]: the only Herbrand model of the
signature {p/2, a, b} that satisfies CIRC[(4); p] is {p(a, a)}
while the Herbrand models of the same signature that satisfy
SM[(4); p] are {p(a, a)} and {p(a, a), p(b, a)}.

It turns out that canonical theories cover a wide range of
formalisms based on circumscription. Indeed, in the syntax of
the event calculus described in Section 2, all axioms in Σ are
already canonical relative to {Initiates,Terminates,Releases};
all axioms in ∆ are already canonical relative to {Happens}.
Though not described here in detail, one can check that de-
scriptions in temporal action logics are canonical as well.

The following theorem shows a few equivalent reformula-
tions of circumscriptive event calculus in terms of the stable
model semantics. We assume that Ξ was already equivalently
rewritten so that it contains no strictly positive occurrences of
Initiates, Terminates, Releases, Happens (by prepending ¬¬
to such occurrences).

Theorem 1 Given an event calculus description (1), let p be
the set of all predicate constants (other than equality and
comparisons) occurring in it. The following theories are
equivalent to each other:3

(a) CIRC[Σ; I, T,R] ∧ CIRC[∆;H] ∧ Ξ
(b) SM[Σ; I, T,R] ∧ SM[∆;H] ∧ Ξ ;
(c) SM[Σ ∧∆ ∧ Ξ; I, T,R,H] ;
(d) SM[Σ ∧∆ ∧ Ξ ∧ Choice(p \ {I, T,R,H}); p].

The equivalence between (a) and (b) is immediate from
Proposition 2; the equivalence between (b) and (c) follows
from the general splitting theorem for the stable model se-
mantics [Ferraris et al., 2009]; the equivalence between (c)
and (d) is immediate from Proposition 1.

5 Turning Event Calculus Descriptions into
Answer Set Programs

Like answer set programs, the intensional predicates of for-
mula (d) in Theorem 1 are all the predicates that occur in

3Due to lack of space, we abbreviate the names of circumscribed
predicates.



the event calculus description. On the other hand, the de-
scription contains formulas that may not be in the rule form,
and may contain existential quantifiers, which are not al-
lowed in answer set programs. In this section we provide
a translation of the event calculus into answer set programs
so that ASP solvers can be applied for event calculus rea-
soning. To facilitate the discussion, we introduce the notion
of RASPL-1M programs. Syntactically similar codes are ac-
cepted by LPARSE4 —the front-end of several ASP solvers,
such as SMODELS5, CMODELS6, CLASP, and CLINGO7.

5.1 RASPL-1M Programs
The definition of stable models reviewed in Section 3 can be
easily extended to many-sorted first-order languages, simi-
lar to the extension of circumscription to many-sorted first-
order languages (Section 2.4 of [Lifschitz, 1994]). We define
RASPL-1M programs as a special class of sentences under
this extension, which are essentially a many-sorted extension
of RASPL-1 programs from [Lee et al., 2008]. We assume
that the underlying signature contains an integer sort and con-
tains several built-in symbols, such as integer constants, built-
in arithmetic functions, such as +, −, and comparison oper-
ators, such as <, ≤, >, ≥. Since we do not need counting
aggregates in this paper, for simplicity, we will assume that
every “aggregate expression” is an atom or a negated atom.
That is, a rule is an expression of the form
A1 ; . . . ; Ak ← Ak+1, . . . , Am, not Am+1, . . . , not An,

not not An+1, . . . , not not Ap

(0 ≤ k ≤ m ≤ n ≤ p), where each Ai is an atom, possibly
equality or comparison. A program is a finite list of rules.

The “choice rule” of the form {A} ← Body where A is an
atom, stands for A← Body, not not A.

The semantics of a RASPL-1M program is understood
by turning it into its corresponding many-sorted FOL-
representation, as in RASPL-1. The integer constants and
built-in symbols are evaluated in the standard way, and we
consider only those “standard” interpretations. The answer
sets of a RASPL-1M program are the Herbrand interpreta-
tions of the signature consisting of the object, function and
predicate constants occurring in the program, that satisfy
SM[F ; p], where F is the FOL-representation of the program
and p is the list of predicate constants occurring in F .

5.2 Turning Event Calculus Descriptions to
RASPL-1M Programs

The following procedure turns an event calculus descrip-
tion into a RASPL-1M program. As before, we assume
that Ξ was already equivalently rewritten so that it con-
tains no strictly positive occurrences of Initiates, Terminates,
Releases, Happens (by prepending ¬¬ to such occurrences).
Definition 1 (Translation EC2ASP) 1. Rewrite all the def-

initional axioms of the form

∀x(p(x)
def↔ G) (5)

4http://www.tcs.hut.fi/Software/smodels
5http://www.tcs.hut.fi/Software/smodels .
6http://www.cs.utexas.edu/users/tag/cmodels.html .
7http://potassco.sourceforge.net .

as ∀x(G→ p(x)).
2. For each axiom that contains existential quantifiers, re-

peat the following until there are no existential quanti-
fiers:

(a) Replace maximal negative occurrences of ∃yG(y)
in the axiom by G(z) where z is a new variable.

(b) Replace maximal positive occurrences of
∃yG(x, y) in the axiom where x is the list of
all free variables of ∃yG(x, y), by the formula
¬¬pG(x) where pG is a new predicate constant,
and add the axiom

∀xy(G(x, y)→ pG(x)). (6)

3. Add choice formulas ∀x(p(x) ∨ ¬p(x)) for all
the predicate constants p except for those in
{Initiates,Terminates,Releases,Happens} ∪ p1 ∪ p2

where
• p1 is the set of all predicate constants p considered

in Step 1.
• p2 is the set of all new predicate constants pG in-

troduced in Step 2.
4. Identifying the formulas with programs with nested ex-

pressions [Lifschitz et al., 1999], apply the conversion
from [Lifschitz et al., 1999] that turns programs with
nested expressions into disjunctive logic programs.

For example, consider DEC5 axiom:
(HoldsAt(f, t) ∧ ¬ReleasedAt(f, t+1)∧

¬∃e(Happens(e, t) ∧ Terminates(e, f, t)))
→ HoldsAt(f, t+1).

(7)

In order to eliminate the positive occurrence of the existential
quantifier in the formula, we apply Step 2(b), introducing the
formula

Happens(e, t) ∧ Terminates(e, f, t)→ q(f, t),
and replacing (7) with 8

(HoldsAt(f, t) ∧ ¬ReleasedAt(f, t+1) ∧ ¬¬¬q(f, t))
→ HoldsAt(f, t+1).

Step 4 turns these formulas into rules
q(f, t)← Happens(e, t), Terminates(e, f, t)

HoldsAt(f, t+1)← HoldsAt(f, t),
not ReleasedAt(f, t+1), not q(f, t).

Due to lack of space, instead of presenting a formal proof,
we attempt to give the idea of the translation. Step 1 can
be dropped without affecting the correctness, but keeping it
yields a simpler program. Step 2 eliminates existential quan-
tifiers. Step 2(a) is one of the steps in prenex normal form
conversion. Eliminating positive occurrences of existential
quantifiers using new predicates as in Step 2(b) works only
if G contains no strictly positive occurrences of predicates to
minimize, which is the case with the syntax of the event cal-
culus (Section 2). The following proposition justifies this step
of eliminating existential quantifiers.

8The proof of Theorem 2 uses the fact that ¬¬ is put in front of
pG(x) in Step 2(b). Indeed, the translation would be incorrect if ¬¬
was simply dropped.



Proposition 3 Let F be a sentence, let p be a list of distinct
predicate constants and let q be a predicate constant that does
not belong to the signature of F . For any occurrence of a sub-
formula ∃xG(x,y) of F where y is the list of all free vari-
ables in ∃xG(x,y), let F ′ be the formula obtained from F by
replacing that occurrence with ¬¬q(y). If G(x,y) contains
no strictly positive occurrences of predicate constants from p,
then the models of

SM[F ′ ∧ ∀xy(G(x,y)→ q(y)); p, q]

restricted to the signature of F are precisely the models of
SM[F ; p].

Alternatively, if the domain is known and finite, existential
quantifiers can be replaced with multiple disjunctions. But
this translation is not modular, and such multiple disjunc-
tions need to be updated when the domain changes. Also one
would imagine Skolemization, but there is a problem since
answer sets are Herbrand models. Consider

p(a) ∧ ∃x p(x) ∧ ∀xy(p(x) ∧ p(y) ∧ x 6=y → ⊥),

which asserts that p is a singleton. If Step 2 was re-
placed with Skolemization, the translation would yield
RASPL-1M program

p(a) p(b) ← p(x), p(y), x 6=y p(x) ; not p(x)

(b is a Skolem constant), which has no answer sets. Step 3
is to expand the list of intensional predicates to cover all the
predicates occurring in the description, as in Proposition 1.
The transformation until Step 3 yields a set of implications
where each antecedent and consequent is formed from atoms
by allowing ¬, ∧, and ∨ nested arbitrarily, similar to the syn-
tax of a program with nested expressions from [Lifschitz et
al., 1999]. The well-known transformation that turns a pro-
gram with nested expressions into a disjunctive logic program
from [Lifschitz et al., 1999] can be applied to turn these set
of implications into a RASPL-1M program.

Theorem 2 Let T be an event calculus domain descrip-
tion, let σ be the signature consisting of the object, func-
tion and predicate constants occurring in T , and let Π be
a RASPL-1M program obtained by applying the translation
EC2ASP to T . The stable models of Π restricted to σ (dis-
regarding all new predicate constants pG introduced in Step
2 (b)) are precisely the models of T of signature σ.

Turning the resulting RASPL-1M program further into the
input language of LPARSE requires minor rewriting, such
as moving equality or negated atoms to the body (e.g.,
not p(t) ← . . . into← . . . , p(t)), and adding domain predi-
cates in the body for all variables occurring in the rule. 9

6 Experiments
We have implemented a prototype of an ASP-based event cal-
culus reasoner called ECASP, based on the translation in Sec-
tion 5.2. The implementation, along with the results of our
experiments are available at the ECASP homepage:

9If we are only interested in answer sets, rather than (non-
Herbrand) stable models (recall the distinction described in Sec-
tion 3), UNA axioms can be dropped.

http://reasoning.eas.asu.edu/ecasp .

The system turns an event calculus description into the input
language of LPARSE.

6.1 Comparison with SAT-based Approach
The Discrete Event Calculus (DEC) reasoner10 is an
implementation of the event calculus written by Erik
Mueller [2004b]. The system reduces event calculus rea-
soning into satisfiability checking by turning circumscription
into predicate completion ([Lifschitz, 1994, Proposition 2])
and then finds the models using SAT solvers. Thanks to the
availability of efficient SAT solvers, the system outperforms
traditional abductive event calculus planners. Compared
to another similar approach in [Shanahan and Witkowski,
2004], the system handles a wider range of reasoning tasks.
Out of the 14 benchmark problems from [Shanahan, 1997;
1999], the DEC reasoner was shown to be able to handle 11 of
them, while the other approach can handle only one [Mueller,
2004a].

However, since circumscription is not always reducible to
completion, the DEC reasoner is unable to handle effect con-
straints, disjunctive event axioms and compound events. For
example, it is well known that the following effect constraints
that describe the indirect effects of the agent’s walking on
the objects that he is holding cannot be handled by predicate
completion.

HoldsAt(Holding(a, o), t) ∧ Initiates(e, InRoom(a, r), t)
→ Initiates(e, InRoom(o, r), t)

On the other hand, the rule corresponding to this formula can
be directly handled by answer set solvers. Indeed, our imple-
mentation can handle all event calculus axioms reviewed in
Section 2, and solved all 14 benchmark problems.

We compared the performance of (i) the DEC reasoner
(v 1.0) running RELSAT (v 2.0) with (ii) ECASP with LPARSE
(v 1.1.1)+CMODELS (v 3.75) running RELSAT (v 2.0), (iii)
ECASP with GRINGO (v 2.0.2) +CLASP (v 1.1.3) (CLASPD
(v 1.1) used for disjunctive programs), and (iv) ECASP with
CLINGO (v 2.0.2). ECASP turns the input in the language of
the DEC reasoner into the language of LPARSE. Both LPARSE
and GRINGO turn the result into a ground ASP program.
CMODELS turns this ground program into a set of clauses
and then invokes a SAT solver to compute answer sets, while
CLASP computes answer sets using the techniques similar to
those used in SAT solvers but without generating clauses.
CLINGO is a system that combines GRINGO and CLASP in
a monolithic way. We have tested many examples and some
notable differences are reported in the table. The first five ex-
amples are part of the benchmark problems from [Shanahan,
1997; 1999]. The next four are from [Mueller, 2006]. (We
increased timepoints to see more notable differences.) All
experiments were done on a Pentium machine with 3.00 GHz
CPU and 2GB RAM running 64 bit Linux. The reported run
times were obtained using the Linux time command, ex-
cept for the DEC reasoner for which we recorded the times
reported by the system. This was to avoid including the time

10http://decreasoner.sourceforge.net .



Problem DEC ECASP w/ ECASP w/ ECASP
(max. step) reasoner LPA + CMO GRI + CLA w/ CLI

BusRide — 0.48 0.04 —
(15) (0.42+0.06) (0.03+0.01)

A:156/R:7899 A:733/R:3428
C:188

Commuter — 498.11 44.42 28.79
(15) (447.50+50.61) (37.86 + 6.56)

A:4913/R:7383943 A:24698/R:5381620
C:4952

Kitchen 71.10 43.17 2.47 2.03
Sink (25) (70.70+0.40) (37.17+6.00) (1.72+0.75)

A:1014/C:12109 A:123452/R:482018 A:114968/R:179195
C:0

Thielscher 13.9 0.53 0.07 0.05
Circuit (20) (13.6+0.3) (0.48+0.05) (0.05+0.02)

A:5138/C:16122 A:4336/R:11399 A:1743/R:5669
C:0

Walking — 0.05 0.04 0.01
Turkey (15) (0.04+0.01) (0.01+0.03)

A:556/R:701 A:364/R:503
C:0

Falling w/ 270.2 0.74 0.10 0.08
AntiTraj (15) (269.3+0.9) (0.66+0.08) (0.08+0.02)

A:416/C:3056 A:5757/R:10480 A:4121/R:7820
C:0

Falling w/ 107.70 34.77 2.90 2.32
Events (25) (107.50+0.20) (30.99+3.78) (2.01+0.89)

A:1092/C:12351 A:1197/R:390319 A:139995/R:208282
C:1393

HotAir 61.10 0.19 0.04 0.03
Baloon (15) (61.10+0.00) (0.16+0.03) (0.03+0.01)

A:288/C:1163 A:489/R:2958 A:1137/R:1909
C:678

Telephone1 18.20 1.70 0.31 0.25
(40) (17.70+0.50) (1.51+0.19) (0.26+0.05)

A:5419/C:41590 A:23978/R:29841 A:21333/R:27037
C:0

A: number of atoms, C: number of clauses, R: number of ground rules

spent by the DEC reasoner in producing output in a neat for-
mat. For the DEC reasoner, the times in parentheses are “(en-
coding time + SAT solving time).” For the others, they are the
times spent by each of the grounder and the solver. CMOD-
ELS time includes the time spent in converting the ground
program generated by LPARSE into a set of clauses, and call-
ing the SAT solver. The time spent by ECASP in translating
an event calculus description into a logic program (with vari-
ables) is negligible for these problems. ’—’ denotes that the
system cannot solve the example due to the limited expres-
sivity. For instance, BusRide includes disjunctive event ax-
ioms, which results in a disjunctive program that cannot be
handled by CLINGO.

Overall, ECASP with CLINGO was the clear winner, fol-
lowed by ECASP with GRINGO+CLASP. Though the DEC
reasoner and CMODELS call the same SAT solver RELSAT,
the number of atoms produced by the DEC reasoner is in
general much smaller. This is because the DEC reasoner
adopts an encoding method (that is based on predicate com-
pletion) which avoids a large number of ground instances
of atoms such as Initiates(e, f, t), Terminates(e, f, t), and
Releases(e, f, t). On the other hand, in several examples,
the number of clauses generated by CMODELS is 0, which
means that the answer sets were found without calling the
SAT solver. This is because for these examples the unique an-
swer set coincides with the well-founded model, which is effi-
ciently computed by CMODELS without calling SAT solvers.
Out of the 14 benchmark examples from [Shanahan, 1997;
1999], eight of them belong to this case. Another reason for
the good performance of the ASP approach is the efficient
grounding methods implemented in LPARSE and GRINGO,
which are drastically faster than that of the DEC reasoner.

6.2 Comparison with Mueller’s ASP Approach
Though no general method was given in Mueller’s ASP ap-
proach on the webpage cited in the introduction, we observe
a few notable differences. One difference is that no choice
rules were used in Mueller’s examples so that all predicates
are to be minimized, which resulted in considering prediction
problems only. On the other hand, our approach can handle
planning and postdiction problems as well. To solve a plan-
ning problem, Happens should be exempt from minimization
in logic programs, which can be achieved by adding choice
rules for it. More examples can be found from the ECASP
homepage.

7 Conclusion
The possibility of embedding circumscriptive theories into
the new language of stable models indicates that the latter
is as general as the former, and that ASP is a viable approach
to computing circumscriptive theories. We observe that the
ASP approach can compute the full version of the event cal-
culus, assuming that the domain is known and finite. Thanks
to remarkable progress of ASP solvers in computing stable
models, together with efficient grounding methods, our ex-
periments showed promising results.

More synergies are expected from the relationship between
the event calculus and ASP. In addition to action languages,
circumscriptive event calculus can now be regarded as an-
other useful high level action formalism for ASP, addressing
some issues that are not well regarded in the context of ac-
tion languages, such as describing continuous change and hi-
erarchical planning. Embedding both the event calculus and
action languages into ASP may be useful in comparing these
high level formalisms and even merging the descriptions writ-
ten in each of them.
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