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Abstract. Recently, Ferraris, Lee and Lifschitz presented a generalized
definition of a stable model that applies to the syntax of arbitrary first-
order sentences, under which a logic program is viewed as a special class
of first-order sentences. The new definition of a stable model is similar to
the definition of circumscription, and can even be characterized in terms
of circumscription. In this paper, we show the opposite direction, that
is, how to embed circumscription into the new stable model semantics,
and based on this, how to turn some versions of the classical logic event
calculus into the general language of stable models. By turning the latter
to answer set programs under certain conditions, we show that answer
set solvers can be used for classical logic event calculus reasoning, allow-
ing more expressive query answering than what can be handled by the
current SAT-based implementations of the event calculus. We prove the
correctness of our translation method and compare our work with the
related work by Mueller.

1 Introduction

Recently, Ferraris, Lee and Lifschitz [1] presented a generalized definition of a
stable model that applies to the syntax of arbitrary first-order sentences. Un-
der this framework, a logic program is viewed as a special class of first-order
sentences, in which negation as failure (not) is identified with classical negation
(¬) under the stable model semantics. The new definition of a stable model is
given by a translation into second-order logic, and does not refer to ground-
ing to define the meaning of variables. This allowed to lift the notion of sta-
ble models to a special class of first-order models, not restricted to Herbrand
models. The new definition is similar to the definition of circumscription [2;
3], and was even characterized in terms of circumscription [1], extending the
work by Lin [4]. The same characterization was also independently given in [5].

The opposite direction, turning (parallel) circumscription into the stable
model semantics, was shown in [6], limited to the propositional case. In this
paper, we start with generalizing this result: turning first-order circumscription
into the generalized language of stable models. This leads to the following natu-
ral question: how are the formalisms for reasoning about actions and change that
are based on circumscription, related to the stable model semantics? Recall that
as nonmonotonic formalisms, circumscription and the stable model semantics



have served to provide (different) solutions to the frame problem. A group of ac-
tion formalisms, such as the classical logic event calculus [7] and temporal action
logic [8], take (monotonic) first-order logic as the basis, augmented with circum-
scription to handle the frame problem. On the other hand, action language A
and many of its descendants [9] refer to logic programs under the stable model
semantics (a.k.a. answer set programs) as the underlying formalism. Although
there have been some papers that relate classical logic based action formalisms
to each other (e.g., [10; 11]), not much work was done in relating them to action
languages and to answer set programs.

As an initial step, we show how to turn the classical logic event calculus into
the general language of stable models. Note that the event calculus is a family
of languages with some variance. Here we consider versions of the event calculus
that are based on classical logic, one defined by Miller and Shanahan [12], and
the other by Mueller [13], which is a simplified version of the former. The fact
that circumscription can be reduced to completion [14] under certain syntactic
conditions ([15, Proposition 2]) allowed efficient satisfiability solvers (SAT) to be
used for event calculus reasoning [16; 13], similar to the idea of SAT-based answer
set programming. Interestingly, early versions of the event calculus [17] were
based on logic programs but this was the time before the invention of the stable
model semantics, while more extensive later developments of the event calculus
were carried out under the classical logic setting. Our work here can be viewed
as turning back to the logic program tradition, in the modern form of answer
set programming. This is not only interesting from a theoretical perspective, but
also interesting from a computational perspective, as it allows answer set solvers
to be used for event calculus reasoning. In contrast to the SAT-based approaches
from [16; 13] which rely on completion and hence cannot allow certain recursive
axioms in the event calculus, we show that the answer set programming approach
handles all the axioms correctly, modulo grounding. Our work shows that the
new language of stable models is a suitable nonmonotonic formalism as general
as circumscription to be applied in commonsense reasoning, with the unique
advantage of having efficient ASP solvers as computational tools.

Our work is motivated by Erik Mueller’s work that is available on the web-
page http://decreasoner.sourceforge.net/csr/ecas/, where a few exam-
ple answer set programs were used to illustrate that event calculus like reasoning
can be done in answer set programming. However, this was a kind of “proof of
concept” 1 and no formal justification was provided.

The paper is organized as follows. In the following two sections, we review
the syntax of the event calculus and the generalized language of stable models.
In Section 4, we present the language RASPLM (“Many-sorted extension of
Reductive Answer Set Programming Language”), for which syntactically similar
codes are accepted by lparse,2 the front-end of smodels and several other
answer set solvers. We show how to turn circumscription into the first-order
language of stable models in Section 5, and how to turn a description in the
event calculus into a RASPLM program in Section 6. We compare our method
with Mueller’s work in Section 7.

1 Personal communication with Erik Mueller.
2 http://www.tcs.hut.fi/Software/smodels



2 Review of the Event Calculus

Since the notion of equivalence under classical logic is weaker than the notion of
equivalence under the stable model semantics, classically equivalent formulas do
not necessarily have the same stable models. Thus any translation from classical
logic based formalisms into the stable model semantics will need to fix the syntax
of the former. Here we follow the syntax of the classical logic event calculus as
described in [18, Chapter 2].

We assume a many-sorted first-order language, which contains an event sort,
a fluent sort, and a timepoint sort. A fluent term is a term whose sort is a fluent,
an event term is a term whose sort is an event and a timepoint term is a term
whose sort is a time point. A condition in the event calculus is defined recursively
as follows:

– A comparison (τ1 < τ2, τ1 ≤ τ2, τ1 ≥ τ2, τ1 > τ2, τ1 = τ2, τ1 6= τ2) for terms
τ1, τ2 is a condition;

– If f is a fluent term and t is a timepoint term, then HoldsAt(f, t) and
¬HoldsAt(f, t) are conditions;

– If γ1 and γ2 are conditions, then γ1 ∧ γ2 and γ1 ∨ γ2 are conditions;
– If v is a variable and γ is a condition, then ∃vγ is a condition.

In all the subsequent sections, we will use e and ei to denote event terms,
f and fi to denote fluent terms, t and ti to denote timepoint terms, and γ
and γi to denote conditions. We understand formula F ↔ G as shorthand for
(F → G) ∧ (G → F ); formula > as shorthand for ⊥ → ⊥; formula ¬F as
shorthand for F → ⊥.

An event calculus domain description is defined as

CIRC[Σ ; Initiates,Terminates,Releases] ∧ CIRC[∆1 ∧∆2 ; Happens]
∧CIRC[Θ ; Ab1, . . . ,Abn] ∧Ω ∧ Ψ ∧Π ∧ Γ ∧ E

where

– Σ is a conjunction of axioms of the form

γ → Initiates(e, f, t)
γ → Terminates(e, f, t)
γ → Releases(e, f, t)
γ ∧ π1(e, f1, t)→ π2(e, f2, t) (“effect constraint”)
γ ∧ [¬]Happens(e1, t) ∧ · · · ∧ [¬]Happens(en, t)→ Initiates(e, f, t)
γ ∧ [¬]Happens(e1, t) ∧ · · · ∧ [¬]Happens(en, t)→ Terminates(e, f, t)

where each π1 and π2 is either Initiates or Terminates;
– ∆1 is a conjunction of axioms of the form Happens(e, t) and temporal order-

ing formulas which are comparisons between timepoint terms;
– ∆2 is a conjunction of axioms of the form

γ → Happens(e, t)
σ(e, t) ∧ π1(e1, t) ∧ · · · ∧ πn(en, t)→ Happens(e, t)
Happens(e, t)→ Happens(e1, t) ∨ · · · ∨Happens(en, t) (“disjunctive event axiom”)



where σ is Started or Stopped and each πj (1 ≤ j ≤ n) is either Initiated
or Terminated . Predicates Started , Stopped , Initiated and Terminated are
defined as follows:

Started(f, t)
def↔ (HoldsAt(f, t) ∨ ∃e(Happens(e, t) ∧ Initiates(e, f, t)))

(CC1)

Stopped(f, t)
def↔ (¬HoldsAt(f, t) ∨ ∃e(Happens(e, t) ∧ Terminates(e, f, t)))

(CC2)

Initiated(f, t)
def↔ (Started(f, t) ∨ ¬∃e(Happens(e, t) ∧ Terminates(e, f, t)))

(CC3)

Terminated(f, t)
def↔ (Stopped(f, t) ∨ ¬∃e(Happens(e, t) ∧ Initiates(e, f, t)))

(CC4)

– Θ is a conjunction of axioms of the form γ → Abi(. . . , t);
– Ω is a conjunction of unique name axioms ;
– Ψ is a conjunction of axioms of the form 3

γ, γ1 → γ2, γ1 ↔ γ2

Happens(e, t)→ γ
Happens(e1, t) ∧ γ ∧ [¬]Happens(e2, t)→ ⊥ ;

– Π is a conjunction of trajectory axioms and anti-trajectory axioms of the
form

γ → (Anti)Trajectory(f1, t1, f2, t2) ;

– Γ is a conjunction of observations of the form HoldsAt(f, t) and ReleasedAt(f, t);
– E is a conjunction of the event calculus axioms DEC or EC . 4

As shown, a classical logic event calculus description may contain existential
quantifiers; some parts of the description are circumscribed on a partial list of
predicates, while some others are not circumscribed. These features look different
from logic programs. Nonetheless we show that the classical logic event calculus
can be embedded into logic programs.

3 Review of the New Stable Model Semantics and the
New Splitting Theorem

Under the new definition of stable models presented in [19] that is applicable to
arbitrary first-order sentences, a logic program is identified as a universal for-
mula, called the FOL-representation. First, we identify the logical connectives—
the comma, the semicolon, and not with their counterparts in classical logic ∧,

3 The last formula is a minor rewriting of the formula from [18] which is
Happens(e1, t) ∧ γ → [¬]Happens(e2, t). This rewriting simplifies the later
presentation.

4 Due to lack of space, we refer the reader to [18, Chapter 2] for these axioms.



∨ and ¬. The FOL-representation of a rule Head ← Body is the universal clo-
sure of the implication Body → Head. The FOL-representation of a program is
the conjunction of the FOL-representations of its rules. For example, the FOL-
representation of the program

p(a)
q(b)
r(x)← p(x),not q(x)

is
p(a) ∧ q(b) ∧ ∀x((p(x) ∧ ¬q(x))→ r(x)) (1)

We review the new definition of stable models from [19]. Let p be a list of
distinct predicate constants p1, . . . , pn, and let u be a list of distinct predicate
variables u1, . . . , un of the same length as p. By u = p we denote the conjunction
of the formulas ∀x(ui(x) ↔ pi(x)), where x is a list of distinct object variables
of the same arity as the length of pi, for all i = 1, . . . n. By u ≤ p we denote
the conjunction of the formulas ∀x(ui(x)→ pi(x)) for all i = 1, . . . n, and u < p
stands for (u ≤ p) ∧ ¬(u = p).

For any first-order sentence F (p), expression SM[F ; p] stands for the second-
order sentence

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where p is the list p1, . . . , pn of predicate constants that are called intensional, u
is a list u1, . . . , un of distinct predicate variables corresponding to p, and F ∗(u)
is defined recursively:

–

pi(t1, . . . , tm)∗ =

{
ui(t1, . . . , tm) if pi belongs to p,
pi(t1, . . . , tm) otherwise;

– (t1 = t2)∗ = (t1 = t2);
– ⊥∗ = ⊥;
– (F ∧G)∗ = F ∗ ∧G∗;
– (F ∨G)∗ = F ∗ ∨G∗;
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
– (∀xF )∗ = ∀xF ∗;
– (∃xF )∗ = ∃xF ∗.

As before, we understand formula F ↔ G as shorthand for (F → G)∧ (G→
F ); formula > as shorthand for ⊥ → ⊥; formula ¬F as shorthand for F → ⊥.

SM[F ] defined in [1] is identical to SM[F ; p] where intensional predicate
constants p range over all predicate constants that occur in F . According to
[1], the models of SM[F ] whose signature σ consists of the object, function and
predicate constants occurring in F are called the stable models of F . Among
those stable models we call the Herbrand models of signature σ, the answer
sets of F . The definition of stable models is closely related to the definition
of quantified equilibrium model [20; 1]. The answer sets of a logic program Π
are defined as the answer sets of the FOL-representation of Π. Proposition 1
from [1] shows that, for normal logic programs, this definition is equivalent to
the definition of answer sets from [21].



As shown in [19], the extended notion of SM by a partial list of intensional
predicates is not essential in the sense that it can be rewritten so that intensional
predicates become exactly those that occur in the formula. By Choice(p) we
denote the conjunction of “choice formulas” ∀x(p(x) ∨ ¬p(x)) for all predicate
constants p in p where x is a list of distinct variables whose length is the same as
the arity of p; by False(p) we denote the conjunction of ∀x¬p(x) for all predicate
constants p in p; by pr(F ) we denote the list of all predicate constants occurring
in F .

Proposition 1 ([19])

SM[F ; p]↔ SM[F ∧ Choice(pr(F ) \ p)] ∧ False(p \ pr(F ))

is logically valid.

However, it is convenient to describe our main results and the following splitting
theorem using the generalized notion of SM.

Recall that the occurrence of one formula in another is called positive if the
number of implications containing that occurrence in the antecedent is even, and
negative otherwise. We say that an occurrence of a subformula or a predicate
constant in a formula F is strictly positive if the number of implications in F
containing that occurrence in the antecedent is 0. For example, in (1), both
occurrences of q are positive, but only the first is strictly positive. By the head
predicates of F , denoted by h(F ), we mean the set of predicate constants that
have at least one strictly positive occurrence in F . We call a formula negative
if it has no strictly positive occurrences of predicate constants. We say that a
predicate constant p depends on a predicate constant q in an implication G→ H
if

– p has a strictly positive occurrence in H, and
– q has a positive occurrence in G that does not belong to any occurrence of

a negative formula in G.

The predicate dependency graph of a formula F is the directed graph such that

– its vertices are the predicate constants occurring in F , and
– it has an edge from a vertex p to a vertex q if p depends on q in an implication

that has a strictly positive occurrence in F .

A nonempty finite subset l of V is called a loop of F if the subgraph of the
predicate dependency graph of F induced by l is strongly connected.

We say that F and G interact on p if F ∧G has a loop l such that

– l is contained in p,
– l contains an element of h(F ), and
– l contains an element of h(G).

The following theorem shows how formula SM[F ∧G; p] can be split :

Theorem 1 ([22]) If F and G don’t interact on p, then SM[F ∧G; p] is equiv-
alent to



(a) SM[F ; p \ h(G)] ∧ SM[G; p \ h(F )], and to
(b) SM[F ; p \ h(G)] ∧ SM[G; p ∩ h(G)], and to
(c) SM[F ; p ∩ h(F )] ∧ SM[G; p ∩ h(G)] ∧ False(p \ h(F ) \ h(G)).

The theorem will be used to justify our translation method.

4 RASPLM Programs

The definition of SM above can be easily extended to many-sorted first-order
languages, similar to the extension of circumscription to many-sorted first-order
languages (Section 2.4 of [15]). We define RASPLM programs as a special class of
sentences under this extension, which are essentially a many-sorted extension of
RASPL-1 programs from [23]. We assume that the underlying signature contains
an integer sort and contains several built-in symbols, such as integer constants,
built-in arithmetic functions +, −, and comparison operators <, ≤, > ≥. Since
we do not need counting aggregates in this paper, for simplicity, we will assume
that every “aggregate expression” is an atom or a negated atom. That is, a rule
is an expression of the form

A1 ; . . . ; Ak ← Ak+1, . . . , Am,not Am+1, . . . ,not An,
not not An+1, . . . ,not not Ap

(0 ≤ k ≤ m ≤ n ≤ p), where each Ai is an atom, possibly equality or compar-
isons. A program is a finite list of rules.

The “choice rule” of the form {A} ← Body where A is an atom, stands for
A← Body ,not not A.

The semantics of a RASPLM program is understood by turning it into its
corresponding many-sorted FOL-representation, as in RASPL-1. The integer
constants and built-in symbols will be evaluated in the standard way, and we will
consider only those “standard” interpretations. The answer sets of a RASPLM

program are the Herbrand interpretations of the signature consisting of object,
function and predicate constants occurring in the program, that satisfies SM[F ],
where F is the FOL-representation of the program.

Though RASPLM programs have no implementation, syntactically similar
codes are accepted by lparse, whose language is essentially many-sorted.

5 Turning Circumscription to SM

Definition 1. For any list p of predicate constants, and any formulas G and
H in each of which every occurrence of predicate constants from p is strictly
positive, we call implication G→ H canonical w.r.t. p.

Proposition 2 Let F be the universal closure of a conjunction of canonical
implications w.r.t. p. Then

SM[F ; p]↔ CIRC[F ; p]

is logically valid.



Note that in the syntax of the event calculus described in Section 2, all axioms
in Σ are already canonical implications w.r.t. Initiates,Terminates,Releases; all
axioms in ∆1 ∧ ∆2 are canonical implications w.r.t. Happens; all axioms in Θ
are canonical implications w.r.t. Abi.5

The proof of Proposition 2 is immediate from the following lemma, which
can be proved by induction.

Lemma 1. For any formula F in which every occurrence of predicate constants
from p is strictly positive,

(u ≤ p)→ (F ∗(u)↔ F (u))

is logically valid, where u is a list of distinct predicate variables of the same
length as p.

6 Turning Event Calculus Descriptions to SM

Theorem 2 Given an event calculus description, let F be the conjunction of
Ω,Ψ,Π, Γ and E, and let p be the set of all predicates (other than equality and
comparisons) occurring in the event calculus description. The following theories
are equivalent:

(a) CIRC[Σ; Initiates,Terminates,Releases] ∧ CIRC[∆; Happens]
∧CIRC[Θ; Ab1, . . . ,Abn] ∧ F ;

(b) SM[Σ; Initiates,Terminates,Releases] ∧ SM[∆; Happens]
∧SM[Θ; Ab1, . . . ,Abn] ∧ F ;

(c) SM[Σ ∧∆∧Θ ∧F ; Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn] ;
(d) SM[Σ∧∆∧Θ∧F∧Choice(p\{Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn})].

Proof. Between (a) and (b): Follows immediately from Proposition 2.

Between (b) and (c): Note first that F is equivalent to SM[F ; ∅]. Since Σ, ∆, Θ,
F do not interact on {Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn},
from Theorem 1 (b) (applying it multiple times), it follows that (b) and (c) are
equivalent.

Between (c) and (d): Follows immediately from Proposition 1.

6.1 Turning Event Calculus Descriptions to RASPLM Programs

The formulas in Theorem 2 may still contain existential quantifiers, which are not
allowed in RASPLM programs. The following procedure turns an event calculus
description into a RASPLM program by eliminating existential quantifiers using
new atoms.

Definition 2 (Translation ec2asp).

5 We understand an axiom such as Happens(e, t) as an abbreviation for implication
> → Happens(e, t).



1. Simplify all the definitional axioms of the form

∀x(p(x)
def↔ ∃yG(x,y)) (2)

except for CC1 − CC4, where y is a list of all free variables in G that are
not in x, as ∀xy(G(x,y)→ p(x)).

2. For each axiom that contains existential quantifiers, repeat the following until
there are no existential quantifiers:
(a) Replace maximal negative occurrences of ∃yG(y) in the axiom by G(z)

where z is a new variable.
(b) Replace maximal positive occurrences of ∃yG(x, y) in the axiom, where

x is the list of all free variables of ∃yG(x, y), by the formula ¬¬pG(x)
where pG is a new predicate constant, and add the axiom

∀xy(G(x, y)→ pG(x)). (3)

3. Add choice formulas ∀x(p(x)∨¬p(x)) for all the predicate constants p except
for {Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn,p1,p2} where
– p1 is a list of all predicate constants p considered in Step 1.
– p2 is a list of all new predicate constants pG introduced in Step 2.

4. Apply the conversion from [24] that turns programs with nested expressions
into disjunctive logic programs.

For example, consider DEC5 axiom:

∀ft((HoldsAt(f, t) ∧ ¬ReleasedAt(f, t+1)∧
¬∃e(Happens(e, t) ∧ Terminates(e, f, t)))→ HoldsAt(f, t+1)). (4)

In order to eliminate the positive occurrence of ∃e(Happens(e, t)∧Terminates(e, f, t))
in the formula, we apply Step 2(b), introducing the formula

∀eft(Happens(e, t) ∧ Terminates(e, f, t)→ q(f, t)),

and replacing (4) with

∀ft((HoldsAt(f, t) ∧ ¬ReleasedAt(f, t+ 1) ∧ ¬¬¬q(f, t))→ HoldsAt(f, t+ 1)),

from which ¬¬¬q(f, t) is simplified as ¬q(f, t) by Step 4.6
We will present the proof in the next section. Here we attempt to give the

idea of the translation. Step 1 can be dropped without affecting the correct-
ness, but it yields a more succinct transformation. The simplification does not
apply for CC1 − CC4 since these axioms, together with other axioms in the
description, may yield loops (A more detailed explanation follows in the next
section). Step 2 (a) is one of the steps in prenex normal form conversion. In-
stead of Skolemization, which will introduce an infinite Herbrand universe, Step
2 (b) eliminates existential quantifiers using new atoms. The transformation
yields a set of implications where each antecedent and consequent are formed
6 In general we put ¬¬ in front of pG(y) in order to prevent from introducing unnec-

essary loops. A more precise explanation is given in the proof of Theorem 3.



from atoms by allowing ¬, ∧, and ∨ nested arbitrarily, similar to the syntax of
a program with nested expressions from [24]. The transformation that turns a
program with nested expressions into a disjunctive logic program from [24] can
be straightforwardly extended to turn these set of implications into a RASPLM

program.
Turning the resulting RASPLM program further into the input language of

lparse requires minor rewriting, such as moving equality or negated atoms to
the body (e.g., ¬p(t)← . . . into ← . . . , p(t)), and adding domain predicates in
the body for all variables occurring in the rule. 7

6.2 Proof of the Correctness of the Translation

The following theorem states the correctness of the translation.

Theorem 3 Let T be an event calculus domain description, and let Π be a
RASPLM program obtained by applying the translation ec2asp to T . The stable
models of Π restricted to the signature of T are precisely the models of T .

We will use the following fact for the proof.

Lemma 2. Let F be a first-order formula, let p be a predicate constant not
occurring in F , let G(x) be a subformula of F where x is the list of all free
variables of G(x), and let F ′ be a formula obtained from F by replacing an
occurrence of G(x) with ¬¬p(x). The models of F ′∧∀x(G(x)↔ p(x)) restricted
to the signature of F are exactly the models of F .

We will also use the proposition below that relates SM to completion, ex-
tending the results of Propositions 6,8 from [1].

Let Π be a finite set of rules that have the form

A← F (5)

where A is an atom and F is a first-order formula (that may contain quantifiers).
We say that Π is in normal form w.r.t. a set p of predicate constants if, for each
predicate constant p in p, there is exactly one rule

p(x)← F (6)

where x is the list of object variables whose length is the same as the arity of p
and F is a formula. It is clear that every program whose rules have the form (5)
can be turned into a normal form w.r.t p. Given a program Π in normal form
w.r.t. p, the completion of Π w.r.t p is the conjunction of the universal closure
of formulas obtained from Π by replacing (6) with

p(x)↔ ∃yF

where y is the list of free variables occurring in F that are not in x.
We say that a first-order formula F is tight on p if the subgraph of the

dependency graph of F induced by p is acyclic.
7 If we are only interested in answer sets, rather than stable models (note the distinc-

tion made in Section 3), UNA axioms can be disregarded.



Proposition 3 Let Π be a program in normal form w.r.t. p and let F be the
FOL-representation of Π. If F is tight on p, then SM[F ; p] is equivalent to the
completion of Π w.r.t. p.

Proof of Theorem 3 Assume that T is

CIRC[Σ; Initiates,Terminates,Releases] ∧ CIRC[∆; Happens]
∧ CIRC[Θ; Ab1, . . . ,Abn] ∧ F ,

which is equivalent to

SM[Σ; Initiates,Terminates,Releases] ∧ SM[∆; Happens]
∧ SM[Θ; Ab1, . . . ,Abn] ∧ F

by Theorem 2.
Let D1 be the set of all definitions of the form (2) except for CC1 − CC4.

Let Step 1′ be the transformation that turns each formula (2) in D1 into

SM[∀xy(G(x,y)→ p(x)); p], (7)

and let Step 2′ be a modification of Step 2 in ec2asp by introducing

∀xy(G(x, y)↔ pG(x)) (8)

instead of (3) in Step 2 (b).
Let Σ′, ∆′, Θ′, F ′ be the formulas obtained from Σ, ∆, Θ, F by applying

Steps 1′ and 2′. By Proposition 3, Step 1′ is an equivalent transformation. By
Lemma 2, the models of

SM[Σ′; Initiates,Terminates,Releases] ∧ SM[∆′; Happens]
∧ SM[Θ′; Ab1, . . . ,Abn] ∧ F ′ (9)

restricted to the signature of T are precisely the models of T . Let D2 be the
set of all definitions (8) that are introduced in Step 2′. Note that these formulas
are introduced only for some formulas in F (other than D1), and not for Σ,
∆ and Θ; formulas Σ′, ∆′ and Θ′ are obtained by applying Step 2 (a) only
since, according to the syntax of the event calculus (Section 2), every occurrence
of existential quantification is negative in each of Σ, ∆ and Θ. Let F ′′ be the
axioms in F ′ excluding D2 and all formulas (7) for D1.

By Proposition 3 again, each formula (8) in D2 is equivalent to

SM[∀xy(G(x, y)→ pG(x)); pG].

Consequently (9) is equivalent to

SM[Σ′; Initiates,Terminates,Releases] ∧ SM[∆′; Happens]
∧ SM[Θ′; Ab1, . . . ,Abn] ∧ SM[F ′′; ∅]
∧

∧
(2)∈D1

SM[∀xy(G(x,y)→ p(x)); p]
∧

∧
(8)∈D2

SM[∀xy(G(x, y)→ pG(x)); pG].

(10)



SinceΣ′ and∆′ do not interact on {Initiates,Terminates,Releases,Happens},
by Theorem 1 (b), formula (10) is equivalent to

SM[Σ′ ∧∆′; Initiates,Terminates,Releases,Happens]
∧ SM[Θ′; Ab1, . . . ,Abn] ∧ SM[F ′′; ∅]
∧

∧
(2)∈D1

SM[∀xy(G(x,y)→ p(x)); p]
∧

∧
(8)∈D2

SM[∀xy(G(x, y)→ pG(x)); pG].

(11)

Similarly, by applying Theorem 1 multiple times, it is clear that formula (11) is
equivalent to

SM[Σ′ ∧∆′ ∧Θ′ ∧ F ′′; Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn]
∧ SM[

∧
(2)∈D1

∀xy(G(x,y)→ p(x)); p1]
∧ SM[

∧
(8)∈D2

∀xy(G(x, y)→ pG(x)); p2]
(12)

where p1 is a list of all predicate constants p defined in D1, and p2 is a list of
all new predicate constants pG defined in D2.

According to the syntax of the event calculus (Section 2), Σ′ ∧∆′ ∧Θ′ ∧ F ′′
and ∧

(2)∈D1

∀xy(G(x,y)→ p(x))

do not interact on

{Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn,p1},

so that, by Theorem 1 (b), (12) is equivalent to

SM[Σ′ ∧∆′ ∧Θ′ ∧ F ′′ ∧
∧

(2)∈D1
∀xy(G(x,y)→ p(x));

Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn,p1]
∧ SM[

∧
(8)∈D2

∀xy(G(x, y)→ pG(x)); p2].
(13)

From the fact that every occurrence of a predicate constant from p2 in F ′′ is
preceded with ¬¬, we conclude that the formula in the first SM and the formula
in the second SM in (13) do not interact on

{Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn,p1,p2}

so that, by Theorem 1 (b), (13) is equivalent to

SM[Σ′ ∧∆′ ∧Θ′ ∧ F ′′ ∧
∧

(2)∈D1
∀xy(G(x,y)→ p(x))

∧
∧

(8)∈D2
∀xy(G(x, y)→ pG(x));

Initiates,Terminates,Releases,Happens,Ab1, . . . ,Abn,p1,p2]
(14)

Formula (14) is exactly the formula obtained from Steps 1 and 2. The rest
of the proof follows immediately from Proposition 1, and a straightforward ex-
tension of Proposition 7 from [24].

If we were to treat CC1 − CC4 same as the other definitional axioms, then
Theorem 1 (b) won’t justify that (12) is equivalent to (13), since there may be a



loop, such as {Started ,Happens,Initiated}, on which ∆′ and CC1−CC4 interact.
Indeed, (12) and (13) are not equivalent in general if CC1 −CC4 were regarded
to belong to D1.

7 Comparison with Mueller’s Work

7.1 Comparison with Mueller’s ASP Approach

The answer set programming approach on the webpage

http://decreasoner.sourceforge.net/csr/ecas/

illustrates the idea using some examples only, and misses formal justification.
Still we observe a few differences.8

First, these examples use classical negation, while our method does not. We
do not need both negations—negation as failure (not) and classical negation
(¬)—to embed the two-valued event calculus into answer set programming. Sec-
ond, no choice rules were used, which resulted in limiting attention to temporal
projection problems—to determine the states that result from performing a se-
quence of actions. On the other hand, our approach can handle not only tempo-
ral projection problems, but also planning and postdiction problems. To solve
a planning problem Happens should not be minimized. Adding choice rules for
Happens is a way to exempt it from minimization in logic programs. The follow-
ing example is a logic program counterpart of the planning problem example on
page 244 of [18].

agent(james).
fluent(awake(A)) :- agent(A).
event(wakeUp(A)) :- agent(A).
initiates(wakeUp(A), awake(A), T) :- agent(A).
:- holdsAt(awake(james), 0).
holdsAt(awake(james), 1).
:- releasedAt(F, 0).
0 {happens(E, T)} 1 :- T<1.

When the above program along with the DEC axioms is provided as input,
smodels returns an answer set that contains happens(wakeup(james), 0).

More examples can be found from http://reasoning.eas.asu.edu/ecasp.

7.2 Comparison with the DEC Reasoner

The DEC reasoner9 is an implementation of the event calculus written by Erik
Mueller. The system reduces event calculus reasoning into satisfiability and calls
SAT solvers [25]. Since circumscription is not always reducible to completion,
some event calculus axioms like effect constraints and disjunctive event axioms
8 Our version of EC/DEC axioms is available at
http://reasoning.eas.asu.edu/ecasp.

9 http://decreasoner.sourceforge.net/.



(Section 2) cannot be handled by the DEC reasoner. For example, consider the
following event calculus axioms that describe the indirect effects of the agent
walking from one room to another on the objects that he is holding:

HoldsAt(Holding(a, o), t) ∧ Initiates(e, InRoom(a, r), t)
→ Initiates(e, InRoom(o, r), t)

HoldsAt(Holding(a, o), t) ∧ Terminates(e, InRoom(a, r), t)
→ Terminates(e, InRoom(o, r), t)

(15)

Since these axioms involve non-trivial loops, they cannot be reduced to comple-
tion. On the other hand, the logic program corresponding to (15) can be directly
handled by answer set solvers.

8 Conclusion

Our contributions are as follows.

– We showed how to embed circumscription into the new language of stable
models.

– Based on it we showed how to turn the classical logic event calculus into
answer set programs, and proved the correctness of the translation. This
approach can handle the full version of the event calculus, modulo grounding.

We plan to implement this transformation method, and compare it with the
DEC reasoner. Another future work is to extend the embedding method to other
action formalisms, such as temporal action logics and situation calculus.
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