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Abstract

By introducing the concepts of a loop and a loop formula,
Lin and Zhao showed that the answer sets of a nondisjunctive
logic program are exactly the models of its Clark’s comple-
tion that satisfy the loop formulas of all loops. Recently,
Gebser and Schaub showed that the Lin-Zhao theorem
remains correct even if we restrict loop formulas to a specia
class of loops called “elementary loops.” In this paper, we
simplify and generalize the notion of an elementary loop,
and clarify its role. We propose the notion of an elementary
set, which is almost equivalent to the notion of an elemgntar
loop for nondisjunctive programs, but is simpler, and, kenli
elementary loops, can be extended to disjunctive programs
without producing unintuitive results. We show that the
maximal unfounded elementary sets for the “relevant” part o
a program are exactly the minimal sets among the nonempty
unfounded sets. We also present a graph-theoretic characte
zation of elementary sets for nondisjunctive programsgtvhi

is simpler than the one proposed in (Gebser & Schaub 2005).
Unlike the case of nondisjunctive programs, we show that
the problem of deciding an elementary setad\P-complete

for disjunctive programs.
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that the mappind.F, which turns loops into loop formu-
las, can be applied to arbitrary sets of atoms, not only to
loops: AddingLF(Y") for a non-loopY” does not affect the
models of the theory becauk&(Y) is always entailed by
LF(L) for some loopL. Though this reformulation of the
Lin-Zhao theorem, in whiclLF is not restricted to loops,
is less economical, it is interesting to note that it is es-
sentially a theorem on assumption sets (Sacca & Zaniolo
1990), or unfounded sets (Van Gelder, Ross, & Schlipf 1991;
Leone, Rullo, & Scarcello 1997), which has been known for
many years. In this sense, the most original contribution
of (Lin & Zhao 2004) was not the mapping that turns loops
into loop formulas, but the definition of a loop, which yields
a relatively small class of sets of atoms for the mappiRg
However, for nondisjunctive programs, even the defini-
tion of a loop turned out still “too generous.” Gebser and
Schaub (2005) showed that restricting the mapping even
more to a special class of loops called “elementary loops,”
yields a valid modification of the Lin-Zhao theorem (or the
Sacca-Zaniolo theorem). That is, some loops are identified
as redundant, just as all non-loops are redundant. They note
that the notion of a positive dependency graph, which is used
for defining a loop, is not expressive enough to distinguish
between elementary and non-elementary loops, and instead

Lin and Zhao (2004) showed that the answer sets (a.k.a. sta-proposed another graph-theoretic characterizationdoaise

ble models) of a nondisjunctive logic program are exactly
the models of its Clark’s completion (Clark 1978) that sat-
isfy the loop formula&F (L) of all loopsL for the program.

the notion of a so-called “body-head dependency graph.”
Our work is motivated by the desire to understand the role
of an elementary loop further and to extend the results to

This important result has shed new light on the relationship disjunctive programs. For nondisjunctive programs, we pro
between answer sets and completion, and allowed us to com-pose a simpler notion corresponding to an elementary loop,
pute answer sets using SAT solvers, which led to the design which we call an “elementary set,” and provide a further en-

of answer set solversssSAT! (Lin & Zhao 2004) ancEMOD-
ELS? (Giunchiglia, Lierler, & Maratea 2004).

The concepts of a loop and a loop formula were fur-
ther clarified in (Lee 2005). By slightly modifying the
definition of a loop, Lee observed that adding loop for-

mulas can be viewed as a generalization of completion,

which allows us to characterize the stability of a model
in terms of loop formulas: A model is stable iff it sat-
isfies the loop formulas of all loops. He also observed
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hancement of the Lin-Zhao theorem based on it. Unlike
elementary loops, elementary sets can be extended to dis-
junctive programs without producing unintuitive resultée
show that a special class of unfounded elementary sets co-
incides with the minimal sets among nonempty unfounded
sets. Instead of relying on the notion of a body-head de-
pendency graph, we present a simpler graph-theoretic char-
acterization of elementary sets, based on a subgraph of the
positive dependency graph.

Nondisjunctive Programs
Review of Loop Formulas: Nondisjunctive Case
A nondisjunctive rulés an expression of the form



aj < ao, . .,nota,, (1)

wheren > m > 1 anday,...,a, are propositional atoms.
A nondisjunctive prograns a finite set of nondisjunctive
rules.

We will identify a nondisjunctive rule (1) with the propo-
sitional formula

coy Gy, NOt Ay g1, -

(a2 A+ ANam A —app1 A+ A —ay) — ar,
and will often write (1) as
ay < B, F (2)

whereB is as, . .., a,, andF isnota,,+1,...,no0ta,. We
will sometimes identifyB with its corresponding set.
For the definition of a stable model of a nondisjunctive
program, we refer the reader to (Lee 2005, Section 2.1).
Let IT be a nondisjunctive program. Thpositive) de-
pendency grapbf 11 is the directed graph such that its ver-
tices are the atoms occurringlify and its edges go fromy
to aso, ..., a,, for all rules (1) ofII. A nonempty setl, of
atoms is called doop of 1T if, for every pairp, ¢ of atoms
in L, there exists a path (possibly of lengthfrom p to ¢ in
the dependency graph Bf such that all vertices in this path
belong toL. In other words/. is a loop oflI iff the subgraph
of the dependency graph tfinduced byL is strongly con-
nected. Clearly, any set consisting of a single atom is a.loop
For example, the following prograi;

p«<nNots p«—r q—1r Tr<Dpgq

has sevenloopp}, {¢},{r}, {s}, {p, 7}, {¢, 7}, {p.q,7}.

For any selt” of atoms, theexternal support formulaf Y
for I1, denoted bES; (Y'), is the disjunction of conjunctions
B A F forall rules (2) ofll such thatz; € Y andBNY =
(). The first condition expresses that the atom “supported”
by (2) is an element df". The second condition ensures that
this support is “external”: The atoms i that it relies on
do not belong tdY". ThusY is calledexternally supported
by IT w.r.t. a setX of atoms if X satisfieEES;(Y).2

For any set” of atoms, byLF;(Y) we denote the follow-

ing formula:
Nacya — ES1(Y) . 3

Formula (3) is called thgconjunctive) loop formulaf Y

for I1.* Note that we still call (3) a loop formula even when
Y is not a loop. The following reformulation of the Lin-
Zhao theorem, which characterizes the stability of a model
in terms of loop formulas, is a part of the main theorem
from (Lee 2005) for the nondisjunctive case.

Theorem 1 (Lee 2005) LetI be a nondisjunctive program,
and X a set of atoms occurring ifi.. If X satisfiedl, then
the following conditions are equivalent:

(a) X is stable;

(b) X satisfies Lin(Y") for all nonempty sety” of atoms
that occur inII;

3We identify an interpretation with the set of atoms that aue t
init.

“If the conjunction in the antecedent is replaced with the dis
junction, the formula is calledlisjunctive loop formulglLin &
Zhao 2004). Our results stated in terms of conjunctive laop f
mulas can be stated in terms of disjunctive loop formulasels w

(c) X satisfies LI (Y") for all loopsY of II.

According to the equivalence between conditions (a)
and (b) in Theorem 1, a model &f; is stable iff it satis-
fies the loop formulas of all fifteen nonempty sets of atoms
occurring inII;. On the other hand, condition (c) tells us
that it is sufficient to restrict attention to the followingven
loop formulas:

p—sVr
q—T

r—=pAgq
s — L

pAr — =8
gNhr— L
PAGNAT — s

ProgramIl; has six models: {p}, {s}, {p,s}, {q,s},
{p,q,r}, and{p, q,r, s}. Among them{p} is the only sta-
ble model, which is also the only model that satisfies all loop
formulas (4). In the next section, we will see that in fact the
last loop formula can be disregarded as well, if we take ele-
mentary sets into account.

As noted in (Lee 2005), the equivalence between condi-
tions (a) and (c) is a reformulation of the Lin-Zhao theorem;
the equivalence between conditions (a) and (b) is a reformu-
lation of Corollary 2 of (Sacca & Zaniolo 1990), and Theo-
rem 4.6 of (Leone, Rullo, & Scarcello 1997) (for the nondis-
junctive case), which characterizes the stability of a nhode
in terms ofunfounded setd~or setsX, Y of atoms, we say
thatY is unfoundedby IT w.r.t. X if Y is not externally sup-
ported byIT w.r.t. X. Condition (b) can be stated in terms of
unfounded sets as follows:

(4)

(b’) X contains no nonempty unfounded subsets Tior
w.rt. X.

Elementary Sets for Nondisjunctive Programs
As mentioned in the introduction, (Gebser & Schaub 2005)
showed thalF in Theorem 1 can be further restricted to
“elementary loops.” In this section, we present a simpler re
formulation of their results. We will compare our reformu-
lation with the original definition from (Gebser & Schaub
2005) later in this paper.

LetIT be a nondisjunctive program. The following propo-
sition tells us that a loop can be defined even without refer-
ring to a dependency graph.

Proposition 1 For any nondisjunctive prograrfi and any
nonempty set” of atoms occurring ifl, Y is a loop oflI iff,
for every nonempty proper subséif Y, there is a rule (2)
inIIsuchthaty; € ZandB N (Y \ Z) # 0.

For any set” of atoms and any subsgtof Y, we say that
Z is outboundn Y for II if there is a rule (2) iflI such that
a1 €Z, BN(Y\Z)#0,andBN Z = 0.

For any nonempty sét of atoms that occur ifil, we say
thatY is elementanyfor II if all nonempty proper subsets
of Y are outbound iry” for II.

As with loops, it is clear from the definition that every
set consisting of a single atom occurringlins elementary
for II. It is also clear that every elementary set fbiis a
loop of I1, but a loop is not necessarily an elementary set:
The conditions for being an elementary set are stronger than
the conditions for being a loop as given in Proposition 1. For
instance, one can check that fdx, {p, ¢, 7} is not elemen-
tary since{p, r} (or {q, r}) is not outbound i{p, ¢, r}. All



the other loops ofI; are elementary. Note that an elemen-

However, in the following we show that if we consider the

tary set may be a proper subset of another elementary set“relevant” part of the program w.r.t. a given interpretatid

(both{p} and{p, r} are elementary sets fér; ).

From the definition of an elementary set above, we get an
alternative, equivalent definition by requiring that onet
loops contained iY” be outbound, instead of requiring that
all nonempty proper subsets Bfbe outbound.

Proposition 2 For any nondisjunctive prograrffl and any
nonempty set” of atoms that occur ifil, Y is an elementary
set forll iff all loops Z of IT such thatZ C Y are outbound
inY for IL.5

Note that a subset of an elementary set, even if that subset

is a loop, is not necessarily elementary. For instance, for
program
pP—Dpq
q<—Dpq
set{p, q,r} is elementary, bufp, ¢} is not.
The following proposition describes a relationship be-
tween loop formulas of elementary sets and those of arbi-
trary sets.

Proposition 3 LetII be a nondisjunctive progran a set
of atoms, and” a nonempty set of atoms that occudin If

X satisfies LI (Z) for all elementary set& of IT such that
Z CY,thenX satisfies Lig(Y).

Proposition 3 suggests that condition (c) of Theorem 1
can be further enhanced by taking only loop formulas of el-
ementary sets into account. This yields the following theo-
rem, which is a reformulation of Theorem 3 from (Gebser &
Schaub 2005) in terms of elementary sets.

per
q<—T

T D
r<4q,

Theorem 1(d) The following condition is equivalent to con-
ditions (a)—(c) of Theorem 1.

(d) X satisfies LIi(Y) for all elementary set¥” of I1.
According to Theorem 1(d), a model oF, is stable iff
it satisfies the first six formulas in (4); the loop formula of

non-elementary s€ip, ¢, 7} (the last one in (4)) can be dis-
regarded.

Elementarily Unfounded Sets for Nondisjunctive
Programs

If we modify condition (c) of Theorem 1 by replacing
“loops” in its statement with “maximal loops,” the conditio

is sufficient to restrict attention to maximal elementangse

Given a nondisjunctive prograih and a sefX of atoms,
by IIx we denote the set of rules (2) d@f such that
X E B,F. The following proposition tells us that all
nonempty proper subset of an elementary seffgrare ex-
ternally supported w.r.tx .

Proposition 4 For any nondisjunctive progranil, any
setX of atoms, and any elementary 3éffor I1x, X satis-
fies ESi(Z) for all nonempty proper subsefsof Y.

From Proposition 4, it follows that every unfounded ele-
mentary set” for IIx w.r.t. X is maximal among the ele-
mentary sets fofl x. One can show that ¥ is a nonempty
unfounded set foll w.r.t. X that does not contain a maximal
elementary set fofl x, thenY consists of atoms that do not
occur inlTx. From this, we obtain the following result.

Theorem 1(e) The following condition is equivalent to con-
ditions (a)—(c) of Theorem 1.

(e) X satisfies LI (Y") for every set” of atoms such that
is a maximal elementary set fbirx, or a singleton whose
atom occurs ifdl.

We say that a set” of atoms occurring idI is elemen-
tarily unfoundedby 11 w.r.t. X if Y is an elementary set
for ITx that is unfounded byl w.r.t. X, orY is a singleton
that is unfounded byl w.r.t. X .6 From Proposition 4, every
non-singleton elementarily unfounded setfbw.r.t. X is a
maximal elementary set fdaf x .

Itis clear from the definition that every elementarily un-
founded set fofl w.r.t. X is an elementary set féf and that
itis also an unfounded set fokw.r.t. X. However, a set that
is both elementary foll and unfounded byl w.r.t. X is not
necessarily an elementarily unfounded set fow.r.t. X.

For example, consider the following program:

p < g,notr q < p,notr . (6)
Set{p, ¢} is both elementary for (6), and unfounded by (6)
w.r.t. {p,q,r}, but it is not an elementarily unfounded set
w.r.t. {p,q,7}.

The following corollary, which follows from Proposi-
tion 4, tells us that all nonempty proper subsets of an el-
ementarily unfounded set are externally supported. It is
essentially a reformulation of Theorem 5 from (Gebser &

becomes weaker, and the modified statement of Theorem 1 gchaub 2005).

does not hold. For instance, progréhp has only two max-
imal loops, {p, q¢,7} and{s}, and their loop formulas are
satisfied by the non-stable model, ¢, 7}. In fact, maximal
loop {p, q,r} is not even an elementary set fids.

This is also the case with maximal elementary sets: The-
orem 1(d) does not hold if “elementary sets” in its statement
is replaced with “maximal elementary sets” as the following
program shows:

p < g,notp q < p,notp p. ()
Program (5) has two model§p} and{p, ¢}, but the latter is

not stable. Yet, both models satisfy the loop formula of the
only maximal elementary sép, ¢} for (5) (p A g — T).

Note that Proposition 2 remains correct even after repdacin
“all loops” in its statement with “all elementary sets.”

Corollary 1 LetII be a nondisjunctive progrank’ a set of
atoms, and” an elementarily unfounded set fArw.r.t. X.

ThenX does not satisfy E]Y'), but satisfies E§(Z) for

all nonempty proper subsefof Y.

Corollary 1 tells us that elementarily unfounded sets form
an “anti-chain”; One of them cannot be a proper subset of
another. In combination with Proposition 4, this tells us that
elementarily unfounded sets are minimal among nonempty
unfounded sets. Interestingly, the converse also holds.

5Elementarily unfounded sets are closely related to “aatliee
mentary loops” in (Gebser & Schaub 2005).

"Recall that the anti-chain property does not hold for elemen
tary sets folll: An elementary set may contain another elementary
set as its proper subset.



Proposition 5 For any nondisjunctive prograrfl and any | R
setsX, Y ofatomsy is an elementarily unfounded set figr

w.r.t. X iff Y is minimal among the nonempty sets of atoms Figure 1: The elementary subgraph{ef ¢, r} for II;
occurring inII that are unfounded b} w.r.t. X.

Theorem 1(e) can be stated in terms of elementarily is clear that an elementary subgraph is a subgraph of a de-
unfounded sets, thereby restricting attention to minimal pendency graph and that it is not necessarily the same as the
unfounded sets. subgraph of the dependency graph inducedbyFigure 1

_ ) shows the elementary subgraph{ef ¢, r} for IT;, which is
(¢) X contains no elementarily unfounded subsetsTor not strongly connected.
w.rt. X The following theorem is similar to (Gebser & Schaub

The notion of an elementarily unfounded set may help 2005, Theorem 10), but instead of referring to the notion of

improve computation performed by SAT-based answer set & Pody-head dependency graph, it refers to an elementary
solvers. Since there are exponentially many loops in the Subgraphas defined above.

worst case, SAT-based answer set solvers do not add all loop Theorem 2 For any nondisjunctive programil and any
formulas at once. Instead, they check whether a model re- setY of atoms occurring ifil, Y is an elementary set fdil
turned by a SAT solver is an answer set. If not, a loop for- iff the elementary subgraph &ffor I1 is strongly connected.

mula that is not satisfied by the current model is added, and Clearly, constructing an elementary subgraph and check-
the SAT solver is invoked agafh.This process is repeated ing whether it is strongly connected can be done in poly-

until an answer set is found, or the search space is exhausted ,omial time. Therefore. the problem of deciding whether a

In view _of_ Theo_rgm 1(8, when loop formulas need to b(_e given set of atoms is elementary is tractable.
added, it is sufficient to add loop formulas of elementarily

unfom_mded sets only. This guarantees that Ioop_ formulas Disjunctive Programs
considered are only those of elementary sets. Since every i s .
elementary set is a loop, but not vice versa, the process may Review of Loop Formulas: Disjunctive Case
involve fewer loop formulas overall than the case when ar- A disjunctive rulés an expression of the form

bitrary loops are considered. In view of Proposition 3 and a1;...;ak < Qk41,-.-.,0;,N0ta141, ..., NOta,,, )

Corollary 1, this would yield reasonably the most economi- not nota,, 1, . . ., not nota,,

cal way to eliminate unfounded models. wheren > m > 1> k > 0 andai, . . ., a,, are propositional
atoms. Adisjunctive progranis a finite set of disjunctive

Deciding Elementary Sets: Nondisjunctive Case rules

The above definition of an elementary set involves all its e will identify a disjunctive rule (7) with the proposi-
nonempty proper subsets (or at least all loops that are sub-tjgnal formula

sets of that set). This seems to imply that deciding whether
a set is elementary is a computationally hard problem. But
in fact, (Gebser & Schaub 2005) showed that, for nondis- , )
junctive programs, deciding an elementary loop can be done @nd will often write (7) as

(g1 A= Nag A=agpr A A =amA
i1 A Amag) — (@ Ve Vag)

efficiently. They noted that positive dependency graphs are _ A < B, F _ (8)
not expressive enough to allow us to distinguish between el- whereAisa,...,ax, Bisagy1,...,a;, andF is
ementary and non-elementary loops, and instead introduced  notg;,4, ..., Nnota,,, N0t NOta,, 41, . . ., NOt NOta,,.

the so-called “body-head dependency graph” to identify el-
ementary loops. In this section, we simplify this result by
still referring to positive dependency graphs. We show that
removing some “unnecessary” edges from the dependency
graphis just enough to distinguish elementary sets from non
elementary sets.

For any nondisjunctive prografl and any setY” of

We will sometimes identifyd and B with their correspond-
ing sets.

For the definition of a stable model of a disjunctive pro-
gram, we refer the reader to (Lee 2005, Section 2.2).

The definition of a dependency graph is extended to a dis-
junctive program in a straightforward way: The vertices of
the graph are the atoms occurring in the program, and its

atoms: edges go from the elements 4fto the elements aoB for all
ECL(Y)=10, rules (8) of the program. The definition of a loop in terms
Ecﬁl(y) = ECL(Y) U{(a1,b) | thereis arule (2) il of the dependency graph remains the same as in the case of
such thab € B and the grapltY, EC5(Y)) has a nondisjunctive programs.
strongly connected subgraph containing all atoms Let IT be a disjunctive program. For any skt of
inBNY}, atoms, theexternal support formulaf Y for II, denoted
ECh(Y) = Ui>oECﬁ(Y) _ by ES:(Y'), is the disjunction of conjunctions

Note that this is a “bottom-up” construction. We call the BAEN /\GEA\YW
graph(Y, EC;1(Y)) the elementary subgrapsf Y for II. It for all rules (8) ofll such thatA NY # @ andBNY = 0.
WhenlI is nondisjunctive, this definition reduces to the def-
8To be precisegcMoDELS adds “conflict clauses.” inition of ESy for nondisjunctive programs given earlier.



The notion ofLF; and the term(conjunctive) loop for-
mulasimilarly apply to formulas (3) whefl is a disjunc-
tive program. As shown in (Lee 2005), Theorem 1 remains
correct after replacing “nondisjunctive program” in itatst
ment with “disjunctive program.”

Elementary Sets for Disjunctive Programs

In this section, we generalize the definition of an elementar
set to disjunctive programs.

Note that a loop of a disjunctive program can be also de-
fined without referring to a dependency graph: Proposition 1
remains correct after replacing “nondisjunctive” in itatst
ment with “disjunctive,” “(2)” with “(8),” and ‘a; € Z” with
“ANZ £0r

Let IT be a disjunctive program. For any Sétof atoms,
we say that a subsét of Y is outboundn Y for II if there
isarule (8)inll suchthatdAN Z # 0, BN (Y \ Z) # 0,
AN(Y\ Z)=10,andBn Z = (. Note that wherl is
nondisjunctive, this definition reduces to the correspogdi
definition given before.

As with nondisjunctive programs, for any nonemptyset
of atoms that occur ifil, we say that” is elementanjor 11
if all nonempty proper subsets Bfare outbound iry” for I1.
Similarly, every set consisting of a single atom occurrimg i
ITis an elementary set féf, and every elementary set fr
is a loop ofII. The definition of an elementary set for a dis-
junctive program is stronger than the alternative definitio
of a loop provided in Proposition 1 for the disjunctive case:
It requires that the rules satisfy two additional condisipn
ANn(Y\Z)=0andBnN Z = 0.

With these extended definitions, Propositions 2 and 3 re-
main correct after replacing “nondisjunctive program” in
their statements with “disjunctive program.” Theorem 1(d)
holds even wheifl is disjunctive.

To illustrate the definition, consider the following pro-
gram:

D;q<Dp pP—q p < notr

Among the four loops of the program{p}, {q}, {r},

and {p, ¢}, the last one is not an elementary set because
{q} is not outbound in{p,q}: The first rule contains

g in the head andy in the body, but it also contains
{p,a} N ({p,q} \ {¢}) = {p} in the head. According to the
extension of Theorem 1(d) to disjunctive programs, the loop
formula of {p, ¢} can be disregarded.

Elementarily Unfounded Sets for Disjunctive
Programs

LetII be a disjunctive program. For any séfsY of atoms,
by IIx y we denote the set of all rules (8) of such that
X = B,FandX N (A\Y) = 0. ProgramlIx y contains
all rules oflI that can provide supports fof w.r.t. X. When
IT is nondisjunctive and every atom in Y has a rule (2)
inIIsuchthatX = B, F, setY is elementary fofly y iff
it is elementary folly.

We extend the definition of an elementarily unfounded set
to disjunctive programs by replacingI’x” with “IIx y”
and by identifyingll as a disjunctive program. It is clear
from the definition that every elementarily unfounded set

for IT w.r.t. X is an elementary set fdil and that it is also
an unfounded set fdd w.r.t. X.

Propositions 4, 5, Corollary 1, and Theorems 1(e);)1(e
remain correct after replacing “nondisjunctive program” i
their statements with “disjunctive program” and x” with
“IIx y.” For preserving the intended meaning of Theo-
rem 1(e), Y is a maximal elementary set fdfx” can be
alternatively replaced withY" is maximal among all setg
of atoms that are elementary frx "

Deciding Elementary Sets: Disjunctive Case

Although deciding an elementary set can be done efficiently
for nondisjunctive programs, it turns out that the corre-
sponding problem for (arbitrary) disjunctive programgis i
tractable.

Proposition 6 For any disjunctive prograrfil and any set”
of atoms, deciding wheth@f is elementary foikl is cCONP-
complete.

This result can be explained by the close relationship to the
problem of deciding whether a set of atomauisfounded-
free (Leone, Rullo, & Scarcello 1997), which means that
the set contains no nonempty unfounded subsets. In fact,
the reduction from deciding unfounded-freeness to degidin
elementariness is straightforward.

However, for the class of disjunctive programs called
“head-cycle-free” (Ben-Eliyahu & Dechter 1994), deciding
an elementary set is tractable. A disjunctive progiars
calledhead-cycle-fred, for every rule (8) inIl, there is no
loop L of IT such thatAN L| > 1.

The definition of an elementary subgraph for a nondis-
junctive program can be extended to a head-cycle-free pro-
gram by replacing “(2)” with “(8)” and b € B” with
“a; € A, b € B”in the equation forEC;{!. With this
extended definition of an elementary subgraph, Theorem 2
remains correct after replacing “nondisjunctive program”
its statement with “head-cycle-free program.”

Comparison
In this section, we compare our reformulation of elementary
loops with the original definition given in (Gebser & Schaub
2005) for nondisjunctive programs.

LetIT be a nondisjunctive program. A loop Hfis called
trivial if it consists of a single atom such that the dependency
graph oflI does not contain an edge from the atom to itself.
Non-trivial loops were called simply loops in (Lin & Zhao
2004; Gebser & Schaub 2005). For a non-trivial ldgp

Rp(L)y={(2)el | a1 € L, BNL =0},
Ri(L)={(2) €Il | a1 € L, BNL#0}.
Definition 1 (Gebser & Schaub 2005, Definition 1) Given
a nondisjunctive prograrfi and a non-trivial loopL ofII, L
is called aGS-elementary loofor 11 if, for each non-trivial
loop L’ of I such thatl’ C L, Ry (L") N R (L) # 0.°

Proposition 7 For any nondisjunctive prograrfl and any
non-trivial loop L of II, L is a GS-elementary loop faf iff
L is an elementary set fdl.

%A GS-elementary loop was called an “elementary loop” in
(Gebser & Schaub 2005). Here we put “GS-" in the name, to dis-
tinguish it from a loop that is elementary under our defimitio



There are a few differences between Definition 1 and our disjunctive programs in a straightforward way. For nondis-
definition of an elementary set. First, the definition of an el  junctive and head-cycle-free programs, we have provided a
ementary set does not assume a priori that the set is a loop.graph-theoretic characterization of elementary sets;hnisi
Rather, the fact that an elementary set is a loop is a conse- simpler than the one proposed in (Gebser & Schaub 2005).
guence of our definition. Second, our definition is simpler For disjunctive programs, we have shown that deciding ele-
because it does not refer to a dependency graph. Third, the mentariness isoNP-complete, which can be explained by
two definitions do not agree on trivial loops: A trivial loap i the close relationship to deciding unfounded-freeness of a
an elementary set, but not a GS-elementary loop. This orig- given interpretation.
inates from the difference between the definition of a loop Elementary sets allow us to find more relevant unfounded
adopted in (Lin & Zhao 2004) and its reformulation given sets than what loops allow. An apparent application is to
in (Lee 2005). As shown in the main theorem of (Lee 2005), consider elementarily unfounded sets in place of arbitrary
identifying a trivial loop as a loop provides a simpler re- unfounded loops as considered in the current SAT-based an-
formulation of the Lin-Zhao theorem by omitting reference  swer set solvers, at least for the tractable cases. For stondi
to completion. Furthermore, in the case of elementary sets, junctive programs, an efficient algorithm for computing el-
this reformulation also enables us to see a close relatipnsh ementarily unfounded sets is described in (Anger, Gebser,
between maximal elementary sets (elementarily unfounded & Schaub 2006), which can be extended to head-cycle-free
sets) and minimal nonempty unfounded sets. It also allows programs as well. Based on the theoretical foundations pro-
us to extend the notion of an elementary set to disjunctive vided in this paper, we plan to integrate elementarily un-

programs without producing unintuitive results, unliketwi
GS-elementary loops. To see this, consider the following
program:

piger piTq g;r—p. (9
The non-trivial loops of this program arg, ¢}, {p,r},
{¢,r}, and {p,q,r}, but not singletons{p}, {q}, and
{r}. If we were to extend GS-elementary loops to dis-
junctive programs, a reasonable extension would say that
{p, q,r} is a GS-elementary loop for program (9) because all
its non-trivial proper subloops are “outbound” {p, ¢, r}.
Note that{p,q,r} is unfounded w.r.t{p,q,r}. More-
over, every singleton is unfounded w.{p, ¢,r} as well.
This is in contrast with our Proposition 4, according to
which all nonempty proper subsets of an elementary set
for program (9) w.rt.{p,q,r} are externally supported
w.r.t. {p,q,r}. This anomaly does not arise with our defi-
nition of an elementary set sinég, ¢, 7} is not elementary
for (9). More generally, an elementary set is potentially el
ementarily unfounded w.r.t. some model, which is not the
case with GS-elementary loops extended to disjunctive pro-
grams.

Conclusion

We have proposed the notion of an elementary set and pro-
vided a further refinement of the Lin-Zhao theorem based on
it, which simplifies the Gebser-Schaub theorem and extends
it to disjunctive programs.

We have shown properties of elementary sets that allow
us to disregard redundant loop formulas. One property is
that, if all elementary subsets of a given set of atoms are ex-
ternally supported, the set is externally supported as. well
Another property is that, for a maximal set that is elemen-
tary for the relevant part of the program w.r.t. some inter-
pretation, all its nonempty proper subsets are externafly s
ported w.r.t. the same interpretation. Related to this, aveh
proposed the concept of elementarily unfounded sets, which
turn out to be precisely the minimal sets among nonempty
unfounded sets.

Unlike elementary loops proposed in (Gebser & Schaub
2005), elementary sets and the related results are extémded

founded set computation intoMODELS for an empirical
evaluation.
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