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Abstract that the mappind.F, which turns loops into loop formu-
las, can be applied to arbitrary sets of atoms, not only to
By introducing the concepts of a loop and a loop formula, loops: AddingLF(Y") for a non-loopY” does not affect the

Lin and Zhao showed that the answer sets of a nondisjunctive  ,odels of the theory becauk&(Y) is always entailed by
logic program are exactly the models of its Clark’s comple- LF(L) for some loopL. Though this reformulation of the

tion that satisfy the loop formulas of all loops. Recentlghs . ) . . h
ser and Schaub showed that the Lin-Zhao theorem remains _L|n-Zhao theorem, n V\./h'(.:h‘F IS _not restricted to I_oqps,
is less economical, it is interesting to note that it is es-

correct even if we restrict loop formulas to a special cldss o : . ) ;
loops called “elementary loops.” In this paper, we simplify sentially a theorem on assumption sets (Sacca & Zaniolo

and generalize the notion of an elementary loop, and clarify ~ 1990), or unfounded sets (Van Gelder, Ross, & Schlipf 1991;
its role. We propose the notion of an elementary set, which Leone, Rullo, & Scarcello 1997), which has been known for
is almost equivalent to the notion of an elementary loop for many years. In this sense, the most original contribution

nondisjunctive programs, but is simpler, and, unlike eleme of (Lin & Zhao 2004) was not the mapping that turns loops
tary loops, can be extended to disjunctive programs without jntg loop formulas, but the definition of a loop, which yields
producing unintuitive results. We show that the maximal un- a relatively small class of sets of atoms for the mapjtifig

founded elementary sets for the “relevant” part of a program . . .
are exactly the minimal sets among the nonempty unfounded However, for nondisjunctive programs, even the defini

sets. We also present a graph-theoretic characterizatieln o tion of a loop turned out still *too ge_nerous." Geb§er and
ementary sets for nondisjunctive programs, which is simple Schaub (2005) showed that restricting the mapping even

than the one proposed in (Gebser & Schaub 2005). Unlikein ~ More to a special class of loops called “elementary loops,”
the case of nondisjunctive programs, we show that the prob-  Yyields a valid modification of the Lin-Zhao theorem (or the

lem of deciding an elementary setdgNP-complete for dis- Sacca-Zaniolo theorem). That is, some loops are identified
junctive programs. as redundant, just as all non-loops are redundant. Theg note
that the notion of a positive dependency graph, which is used
) for defining a loop, is not expressive enough to distinguish
Introduction between elementary and non-elementary loops, and instead
By introducing the concepts of a loop and a loop formula, Proposed another graph-theoretic characterizationdoase
Lin and Zhao (2004) showed that the answer sets (a.k.a. sta-th€ notion of a so-called *body-head dependency graph.
ble mode|s) of a nondisjunctive |Ogic program are exacﬂy Our work is motivated by the desire to understand the role
the models of its Clark’s completion (Clark 1978) that sat- Of an elementary loop further and to extend the results to
isfy the loop formulad.F (L) of all loopsL for the program. disjunctive programs. For nondisjunctive programs, we pro
This important result has shed new light on the relationship POSe & simpler notion corresponding to an elementary loop,
between answer sets and completion, and allowed us to com-Which we call an “elementary set,” and provide a further en-
pute answer sets using SAT solvers, which led to the design hancement of the Lin-Zhao theorem based on it. Unlike
of answer set solverssSAT! (Lin & Zhao 2004) andMOD- elementary loops, elementary sets can be extended to dis-
ELS? (Giunchiglia, Lierler, & Maratea 2004). junctive programs without producing unintuitive resulfée
The concepts of a loop and a loop formula were fur- _shc_)w that_ a speC|a_1I _class of unfounded elementary sets co-
ther clarified in (Lee 2005). By slightly modifying the incides with the m|n|r_nal sets among honempty unfounded
definition of a loop, Lee observed that adding loop for- S€ts. Instead of relying on the notion of a body-head de-
mulas can be viewed as a generalization of completion, Pe€ndency graph, we present a simpler graph-theoretic char-
which allows us to characterize the stability of a model &cterization of elementary sets, based on a subgraph of the
in terms of loop formulas: A model is stable iff it sat- Positive dependency graph.
isfies the loop formulas of all loops. He also observed
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A nondisjunctive rulés an expression of the form

a1 < A2, ..,am, NOtAp 41, ..., N0 ay, (1)

wheren > m > 1 anday,...,a, are propositional atoms.
A nondisjunctive prograns a finite set of nondisjunctive
rules.

We will identify a nondisjunctive rule (1) with the propo-
sitional formula

(a2 A+ ANam A —pp1 A+ A —ay) — ar,
and will often write (1) as
ay «— B, F (2)

whereB is as, . .., a,, andF isnota,,+1,...,nota,. We
will sometimes identifyB with its corresponding set.

Let IT be a nondisjunctive program. The rediict of II
with respect to a seX of atoms is obtained frofl by

o deleting each rule (2) such that (£ F', and
e replacing each remaining rule (2) by <+ B.

Set X is ananswer set (stable modefj 11 if it is minimal
among the models that satigfy* .3

The (positive) dependency graptf 11 is the directed
graph such that

e its vertices are the atoms occurringlin and
e its edges go from; to as, . . . a,, for all rules (1) ofll.

A nonempty sefl, of atoms is called doop of 1T if, for ev-
ery pairp, g of atoms inL, there exists a path (possibly of
length0) from p to ¢ in the dependency graph Bfsuch that
all vertices in this path belong tb. In other words,L is a
loop of IT iff the subgraph of the dependency graphoin-

/\ /\
Pw__ ~Tw__  _~q S

Figure 1: The dependency graph of Progidm

The first condition expresses that the atom “supported”
by (2) is an element of". The second condition ensures
that this support is “external”: The atoms Bthat it relies
ondo notbelong td&”. ThusY is calledexternally supported
by IT w.r.t. a setX of atoms ifX satisfieES;(Y).

For any set” of atoms, byL F;(Y) we denote the follow-
ing formula:

A a—ESi(Y). ®

acY

Formula (3) is called th¢conjunctive) loop formulaf Y
for I1.* Note that we still call (3) a loop formula even when
Y is not a loop.

The following reformulation of the Lin-Zhao theorem,
which characterizes the stability of a model in terms of loop
formulas, is a part of the main theorem from (Lee 2005) for
the nondisjunctive case.

Theorem 1 (Lee 2005) LetI be a nondisjunctive program,
and X a set of atoms occurring ifil. If X satisfiedl, then
the following conditions are equivalent:

(a) X is stable;

(b) X satisfies Lig(Y) for all nonempty set§” of atoms
that occur inII;

(c) X satisfies LI (Y") for all loopsY of II.
According to the equivalence between conditions (a)

and (b) in Theorem 1, a model &f; is stable iff it satis-
fies the loop formulas of all fifteen nonempty sets of atoms

duced byL is strongly connected. Clearly, any set consisting occurring inIl;. On the other hand, condition (c) tells us

of a single atom is a loop.

that it is sufficient to restrict attention to the followingven

For instance, Figure 1 shows the dependency graph of the 100p formulas:

following programil;:

p < nots
pe=r
q—r
r<=D,q.

ProgramIl; has seven loops{p}, {q}, {r}, {s}, {p,7},

{a.r} Ap. g, r}.
For any selt” of atoms, theexternal support formulaf Y
for I, denoted b¥eS(Y'), is the disjunction of conjunctions

BAF

for all rules (2) ofII such that
e a1 €Y,and
e BNY = 0.

3We identify an interpretation with the set of atoms that are

true in it. Recall that we identify a rule with the correspomp
propositional formula.

p — sVr
q — T
r — pAgq
s — L 4)
pAr — -8
gNhr — L
PAGgNAT — —8.

ProgramIl; has six models: {p}, {s}, {p,s}, {q,s},
{p,q,r}, and{p, ¢, r, s}. Among them{p} is the only sta-
ble model, which is also the only model that satisfies all loop
formulas (4). In the next section, we will see that in fact the
last loop formula can be disregarded as well, if we take ele-
mentary sets into account.

As noted in (Lee 2005), the equivalence between condi-

tions (a) and (c) is a reformulation of the Lin-Zhao theorem;

4If the conjunction in the antecedent is replaced with the dis
junction, the formula is calledlisjunctive loop formulalLin &

Zhao 2004). Our results stated in terms of conjunctive laop f
mulas can be stated in terms of disjunctive loop formulasels w



the equivalence between conditions (a) and (b) is a reformu-

lation of Corollary 2 of (Sacca & Zaniolo 1990), and Theo-
rem 4.6 of (Leone, Rullo, & Scarcello 1997) (for the nondis-
junctive case), which characterizes the stability of a nhode
in terms ofunfounded setd~or setsX, Y of atoms, we say
thatY is unfoundedy IT w.r.t. X if Y is not externally sup-
ported byIT w.r.t. X. Condition (b) can be stated in terms of
unfounded sets as follows:

(b’) X contains no nonempty unfounded subsets Tior
w.rt. X.

Elementary Sets for Nondisjunctive Programs

As mentioned in the introduction, (Gebser & Schaub 2005)
showed thalF in Theorem 1 can be further restricted to
“elementary loops.” In this section, we present a simpler re
formulation of their results. We will compare our reformu-
lation with the original definition from (Gebser & Schaub
2005) later in this paper.

LetIT be a nondisjunctive program. The following propo-
sition tells us that a loop can be defined even without refer-
ring to a dependency graph.

Proposition 1 For any nondisjunctive prograrfl and any
nonempty set” of atoms occurring idl, Y is a loop oflI iff,
for every nonempty proper subsgéif Y, there is a rule (2)
in IT such that

e a1 € Z, and
e BN(Y\ Z)#0.

For any set” of atoms and any subsgtof Y, we say that
Z is outboundn Y for II if there is a rule (2) iflI such that
e ay € Z,

e BN(Y\ Z)#0,and
e BNZ=10.

For any nonempty sét of atoms that occur ifil, we say
thatY is elementanyfor 11 if all nonempty proper subsets
of Y are outbound it for II.

As with loops, it is clear from the definition that every
set consisting of a single atom occurrindlins elementary

for II. It is also clear that every elementary set fbiis a
loop of IT, but a loop is not necessarily an elementary set:

The conditions for being an elementary set are stronger than

the conditions for being a loop as given in Proposition 1. For
instance, one can check that fér, {p, ¢, r} is not elemen-
tary since{p,r} (or {q, r}) is not outbound iqp, ¢, r}. All

the other loops ofI; are elementary. Note that an elemen-

tary set may be a proper subset of another elementary set

(both{p} and{p, r} are elementary sets féf ).
The following program replaces the last ruldbf by two

rules:
p < nots

per
q—r
TP
T q.

This program has the same dependency graph as pro-

gramII; and thus has the same set of loops. However, its
elementary sets are different: All its loops are elementary

From the definition of an elementary set above, we get an
alternative, equivalent definition by requiring that onfet
loops contained iY” be outbound, instead of requiring that
all nonempty proper subsets Bfbe outbound.

Proposition 2 For any nondisjunctive prograrfl and any
nonempty set” of atoms that occur ifil, Y is an elementary
set forIl iff all loops Z of IT such that” C Y are outbound
inY forI1.5

Note that a subset of an elementary set, even if that subset
is a loop, is not necessarily elementary. For instance, for
program

p<—Dq
q<—p9q
pe—r
q<—r
r<<p
r—gq,

set{p, ¢, r} is elementary, bufp, ¢} is not.

The following proposition describes a relationship be-
tween loop formulas of elementary sets and those of arbi-
trary sets.

Proposition 3 LetII be a nondisjunctive progran¥ a set
of atoms, and” a nonempty set of atoms that occudin If

X satisfies LI (Z) for all elementary set& of IT such that
Z C Y, thenX satisfies Lig(Y).

Proposition 3 suggests that condition (c) of Theorem 1
can be further enhanced by taking only loop formulas of el-
ementary sets into account. This yields the following theo-
rem, which is a reformulation of Theorem 3 from (Gebser &
Schaub 2005) in terms of elementary sets.

Theorem 1(d) The following condition is equivalent to con-
ditions (a)—(c) of Theorem 1.

(d) X satisfies Lin(Y) for all elementary set¥” of I1.

According to Theorem 1(d), a model oF, is stable iff
it satisfies the first six formulas in (4); the loop formula of
non-elementary sdp, ¢, r} (the last one in (4)) can be dis-
regarded.

Maximal Elementary Sets and Elementarily
Unfounded Sets for Nondisjunctive Programs

If we modify condition (c) of Theorem 1 by replacing
“loops” in its statement with “maximal loops,” the conditio
becomes weaker, and the modified statement of Theorem 1
does not hold. For instance, prograhy has only two max-
imal loops, {p, ¢, r} and{s}, and their loop formulas are
satisfied by the non-stable modgl, ¢, 7}. In fact, maximal
loop {p, ¢, 7} is not even an elementary set fids.

This is also the case with maximal elementary sets: The-
orem 1(d) does not hold if “elementary sets” in its statement
is replaced with “maximal elementary sets” as the following
program shows:

p < ¢,notp
q < p,notp
p.

(5)

SNote that Proposition 2 remains correct even after repdacin
“all loops” in its statement with “all elementary sets.”



Program (5) has two model§p} and{p, ¢}, but the latter is
not stable. Yet, both models satisfy the loop formula of the
only maximal elementary sép, ¢} for (5) (p A g — T).
However, in the following we show that if we consider the
“relevant” part of the program w.r.t. a given interpretatid
is sufficient to restrict attention to maximal elementarngse
Given a nondisjunctive prograih and a sefX of atoms,
by IIx we denote the set of rules (2) df such that
X E B,F. The following proposition tells us that all
nonempty proper subset of an elementary sefffgrare ex-
ternally supported w.r.tx .

Proposition 4 For any nondisjunctive progranil, any
setX of atoms, and any elementary §éffor ITx, X satis-
fies ESi(Z) for all nonempty proper subsegsof Y.

From Proposition 4, it follows that every unfounded ele-
mentary sett” for IIx w.r.t. X is maximal among the ele-
mentary sets fofl x. One can show that i is a nonempty
unfounded set fall w.r.t. X that does not contain a maximal
elementary set foll x, thenY consists of atoms that do not
occur inIlx. From this, we obtain the following result.

Theorem 1(e) The following condition is equivalent to con-
ditions (a)—(c) of Theorem 1.

(e) X satisfies LI (Y) for every sel” of atoms such that

e Y is a maximal elementary set fbky, or
e Y is a singleton whose atom occurslin

According to Theorem 1(e), modé¢p} of II; is stable
because atorp occurs in(Il;);,; = {p < nots}, and
satisfies the external support formula On the other hand,
model{p, ¢, r} of II; is not stable because it does not satisfy
the external support formula fdi, r}, which is one of the
maximal elementary sets forl; ) 1, 4.1

Note that the analogy does not apply to loops: If we re-
place “maximal elementary sets” in the statement of Theo-
rem 1(e) with “maximal loops,” then the modified statement
does not hold. The non-stable model ¢, r} still satisfies
the loop formula of the maximal loofp, ¢, } of (I1;)
(the last one in (4)).

We say that a sét” of atoms occurring idl is elementar-
ily unfoundedby IT w.r.t. X if

e Y is an elementary set fdiix that is unfounded byl
w.r.t. X, or

e Y is a singleton that is unfounded Blyw.r.t. X .6

From Proposition 4, every non-singleton elementarily un-
founded set forll w.r.t. X is a maximal elementary set
for ITx.

It is clear from the definition that every elementarily un-
founded set fofl w.r.t. X is an elementary set faf and that
it is also an unfounded set forw.r.t. X. However, a set that
is both elementary fall and unfounded byl w.r.t. X is not
necessarily an elementarily unfounded set lfow.r.t. X.
For example, consider the following program:

{p,q,7}

p «— g, notr
q < p,notr .

(6)

SElementarily unfounded sets are closely related to “actiee
mentary loops” in (Gebser & Schaub 2005).

Set{p, ¢} is both elementary for (6), and unfounded by (6)
w.r.t. {p,q,r}, but it is not an elementarily unfounded set
w.rt. {p,q,r}.

The following corollary, which follows from Proposi-
tion 4, tells us that all nonempty proper subsets of an el-
ementarily unfounded set are externally supported. It is
essentially a reformulation of Theorem 5 from (Gebser &
Schaub 2005).

Corollary 1 LetII be a nondisjunctive progrank a set of
atoms, and” an elementarily unfounded set fArw.r.t. X.
Then

e X does not satisfy E8Y), and

e X satisfies E§(Z) for all nonempty proper subsets
of Y.

Corollary 1 tells us that elementarily unfounded sets form
an “anti-chain”: One of them cannot be a proper subset of
another. In combination with Proposition 4, this tells us that
elementarily unfounded sets are minimal among nonempty
unfounded sets. Interestingly, the converse also holds.

Proposition 5 For any nondisjunctive prograrfl and any
setsX, Y ofatomsy is an elementarily unfounded set figr
w.rt. X iff Y is minimal among the nonempty sets of atoms
occurring inII that are unfounded by w.r.t. X.

Theorem 1(e) can be stated in terms of elementarily un-
founded sets, thereby restricting attention to minimal un-
founded sets:

(¢) X contains no elementarily unfounded subsetsIior
W.rt. X.

The notion of an elementarily unfounded set may help
improve computation performed by SAT-based answer set
solvers. Since there are exponentially many loops in the
worst case, SAT-based answer set solvers do not add all loop
formulas at once. Instead, they check whether a model re-
turned by a SAT solver is an answer set. If not, a loop for-
mula that is not satisfied by the current model is added, and
the SAT solver is invoked agafh This process is repeated
until an answer set is found, or the search space is exhausted
In view of Theorem 1(8, when loop formulas need to be
added, it is sufficient to add loop formulas of elementarily
unfounded sets only. This guarantees that loop formulas
considered are only those of elementary sets. Since every
elementary set is a loop, but not vice versa, the process may
involve fewer loop formulas overall than the case when ar-
bitrary loops are considered. In view of Proposition 3 and
Corollary 1, this would yield reasonably the most economi-
cal way to eliminate non-stable models.

Deciding Elementary Sets: Nondisjunctive Case

The above definition of an elementary set involves all its
nonempty proper subsets (or at least all loops that are its
subsets). This seems to imply that deciding whether a set

"Recall that the anti-chain property does not hold for elemen
tary sets folll: An elementary set may contain another elementary
set as its proper subset.

8To be precisecMODELSadds “conflict clauses.”



YT and will often write (7) as

p r q
Figure 2: The elementary subgraph{ef ¢, r} for I, A< BF (8)
whereAdisay,...,ax, BiSagy1,-..,a;, andF' is
is elementary is a computationally hard problem. But in nota;yi,...,N0ta,,, NOt NOta,+1, ..., N0t Nota,, .

fact, (Gebser & Schaub 2005) showed that, for nondisjunc- . . . . . :

tive programs, deciding an elementary loop can be done We will sometimes identifyd and B with their correspond-
efficiently. They noted that positive dependency graphs N9 S€ts. L .
are not expressive enough to distinguish between elemen- LetII be adisjunctive program. The redd&t of IT with
tary and non-elementary loops, and instead introduced so- "€SPeCt to & seX’ of atoms is obtained frori by

called “body-head dependency graphs” to identify elemen- e deleting each rule (8) such that (= F, and

tary loops. In this section, we simplify this result by still . .

referring to positive dependency graphs. We show that re- * replacing each remaining rule (8) by B.
moving some “unnecessary” edges from the dependency Similarly as with a nondisjunctive program, a seof atoms
graphis just enough to distinguish elementary sets from non is ananswer set (stable modef 11 if X is minimal among

elementary sets. the models that satisfjf~ .
For any nondisjunctive prograrfl and any setY” of The definition of a dependency graph is extended to a dis-
atoms, junctive program in a straightforward way: The vertices of
ECY(Y) =0, the graph are the atoms occurring in the program, and its

edges go from the elements 4fto the elements aoB for all

rules (8) of the program. The definition of a loop in terms
of the dependency graph remains the same as in the case of
nondisjunctive programs.

EC(Y) = EC(Y) U{(a1,b) | thereis arule (2) il
such thab € B and the graplfY, EC;;(Y)) has a
strongly connected subgraph containing all atoms

inBAY}, For any selt” of atoms, theexternal support formulaf Y
ECu(Y) = U;50ECu(Y) for IT, denoted b{ES; (), is the disjunction of conjunctions
Note that this is a “bottom-up” construction. We call the
graph(Y,EC(Y)) the elementary subgrapsf Y for I1. It BANF A /\ —a
is clear that an elementary subgraph is a subgraph of a de- a€A\Y

pendency graph and that it is not necessarily the same as the]c
subgraph of the dependency graph induced’byFigure 2
shows the elementary subgraph{ef ¢, r} for IT;, which is e ANY # (), and
not strongly connected. e BNY = 0.

The following theorem is similar to Theorem 10 _ o ) _ o
from gebsch05a, but instead of referring to the notion of a WhenlII is nondisjunctive, this definition reduces to the def-

body-head dependency graph, it refers to an elementary sub-inition of ES; for nondisjunctive programs given earlier.
graph as defined above. The notion ofLF; and the term(conjunctive) loop for-

o ; lasimilarly apply to formulas (3) wheifl is a disjunc-
Theorem 2 For any nondisjunctive progranil and any mu : .
setY of atoms occurring idl, Y is an elementary set fdi tive program. As shown in (Lee 2005), Theorem 1 remains

iff the elementary subgraph &ffor T is strongly connected.  correctafter replacing "nondisjunctive program” in itatet
, ment with “disjunctive program.”
Clearly, constructing an elementary subgraph and check-

ing whether it is strongly connected can be done in poly- Elementary Sets for Disjunctive Programs
nomial time. Therefore, the problem of deciding whether a

or all rules (8) oflI such that

given set of atoms is elementary is tractable. In this s_e_ction,_ we generalize the definition of an elemegntar
set to disjunctive programs.
Elementary Sets for Disjunctive Programs . Note.that a Ioop_of a disjunctive program can be aIsp de-
. las: Disi . fined without referring to a dependency graph: Proposition 1
ReY'?W OT Loop. Formulas: I_D'SlunCt'Ve Case remains correct after replacing “nondisjunctive” in itatst
A disjunctive ruldés an expression of the form ment with “disjunctive,”“(2)” with “(8),” and “a; € Z" with
ap;...;0 < ak+17'"aalanOtal+17"'anOtam7 “AQZ#@." .. .
not Notay, .1, .., not nota,, (") Let IT be a disjunctive program. For any sétof atoms,
. we say that a subset of Y is outboundn Y for II if there
wheren > m > 1 > k > 0 anday,.. ., a, are propositional is a rule (8) inl such that
atoms. Adisjunctive progranis a finite set of disjunctive
rules. e ANZ#10,

We will identify a disjunctive rule (7) with the proposi- ¢ BN Y\ Z) #0,

tional formula
AN(Y\Z)=0,and
(@hs1 A Aar A=arer A A =amA ¢ Y\2)=90

—.ﬁaerl/\.../\ﬁ—.an)_>(al\/...\/ak)7 e BNZ =1.



Note that wherlI is nondisjunctive, this definition reduces
to the corresponding definition given before.

As with nondisjunctive programs, for any nonemptyset
of atoms that occur ifil, we say that” is elementaryor IT if
all nonempty proper subsets Bfare outbound irt” for I1.
Similarly, every set consisting of a single atom occurring
in II is an elementary set fdi, and every elementary set
for I is a loop ofIl. The definition of an elementary set for
a disjunctive program is stronger than the alternative defin
tion of a loop provided in Proposition 1 for the disjunctive
case: It requires that the rules satisfy two additional ¢cond
tions,AN(Y \ Z) =0andBn Z = 0.

With these extended definitions, Propositions 2 and 3 re-
main correct after replacing “nondisjunctive program” in
their statements with “disjunctive program.” Theorem 1(d)
holds even wheifl is disjunctive.

To illustrate the definition, consider the following pro-
gram:

p;q —Dp

p—4q

p <« notr.
Among the four loops of the program{p}, {q}, {r},
and {p, ¢}, the last one is not an elementary set because
{q} is not outbound in{p,q}: The first rule contains
g in the head andy in the body, but it also contains
{p,q} N ({p,q} \ {¢}) = {p} in the head. According to the
extension of Theorem 1(d) to disjunctive programs, the loop
formula of {p, ¢} can be disregarded.

Maximal Elementary Sets and Elementarily
Unfounded Sets for Disjunctive Programs

LetII be a disjunctive program. For any séfsY of atoms,
by IIx y we denote the set of all rules (8) of such that
X = B,FandX N (A\Y) = (. ProgramlIx y contains
all rules oflI that can provide supports fof w.r.t. X. When
IT is nondisjunctive, for every non-singleon $étof atoms,
Y is elementary fofl x y iff itis elementary fodlx. Or the
following holds.

Proposition 6 LetII be a nondisjunctive program, arnd a
set of atoms, anl” a set of atoms such that every element
in Y has a rule (2) inII such thatX = B, F. ThenY is
elementary follx y iff it is elementary fodlx.

It follows from the proposition that for any non-singleton
setY of atoms)Y is elementary fofl x y iff itis elementary
for ITx.

We extend the definition of an elementarily unfounded set
to disjunctive programs by replacingI’x” with “IIx y”
and by identifyingll as a disjunctive program. It is clear
from the definition that every elementarily unfounded set
for IT w.r.t. X is an elementary set fdi and that it is also
an unfounded set fdd w.r.t. X.

Propositions 4, 5, Corollary 1, and Theorems 1(e);)1(e
remain correct after replacing “nondisjunctive program” i
their statements with “disjunctive program” and x” with
“Ilx,y.” For preserving the intended meaning of Theo-
rem 1(e), Y is a maximal elementary set fdfx" can be
alternatively replaced withY" is maximal among all setg
of atoms that are elementary firx .”

Deciding Elementary Sets: Disjunctive Case

Although deciding an elementary set can be done efficiently
for nondisjunctive programs, it turns out that the corre-
sponding problem for (arbitrary) disjunctive programgis i
tractable.

Proposition 7 For any disjunctive prograrfl and any set”
of atoms, deciding wheth@f is elementary fokl is CONP-
complete.

This result can be explained by the close relationship to the
problem of deciding whether a set of atomauisfounded-
free (Leone, Rullo, & Scarcello 1997), which means that
the set contains no nonempty unfounded subsets. In fact,
the reduction from deciding unfounded-freeness to degidin
elementariness is straightforward.

However, for the class of disjunctive programs called
“head-cycle-free” (Ben-Eliyahu & Dechter 1994), deciding
an elementary set is tractable. A disjunctive progiars
calledhead-cycle-fred, for every rule (8) inIl, there is no
loop L of I such thatANL| > 1. Forinstance, the program

pPiq —
pP—q
is head-cycle-free, while the program

p:q<—

p—yq

q<—Pp
is not.

The definition of an elementary subgraph for a nondis-
junctive program can be extended to a head-cycle-free pro-
gram by replacing “(2)” with “(8)” and b € B” with
“a; € A, b € B”in the equation forEC;{!. With this
extended definition of an elementary subgraph, Theorem 2
remains correct after replacing “nondisjunctive program”
its statement with “head-cycle-free program.”

Comparison with the Gebser-Schaub
Definition
In this section, we compare our reformulation of elementary
loops with the original definition given in (Gebser & Schaub
2005) for nondisjunctive programs.

Let IT be a nondisjunctive program. A loop Hfis called
trivial if it consists of a single atom such that the dependency
graph oflI does not contain an edge from the atom to itself.
Non-trivial loops were called simply loops in (Lin & Zhao
2004; Gebser & Schaub 2005). For a non-trivial Idogf I,
let

Ry(L)={(2)ell | a1 € L, BNL =10},
RY(L)={(2)el | a; € L, BNL#0}.

Definition 1 (Gebser & Schaub 2005, Definition 1) Given
a nondisjunctive prograrfi and a non-trivial loopL ofII, L

is called aGS-elementary loofor 11 if, for each non-trivial
loop L' of Il such thatl’ C L, Ry (L) N R (L) # 0.°

%A GS-elementary loop was called an “elementary loop” in
(Gebser & Schaub 2005). Here we put “GS-" in the name, to dis-
tinguish it from a loop that is elementary under our defimitio



Proposition 8 For any nondisjunctive prograrfl and any
non-trivial loop L of II, L is a GS-elementary loop faf iff
L is an elementary set fdi.

There are a few differences between Definition 1 and our __Unlike elementary loops proposed in (Gebser & Schaub
definition of an elementary set. First, the definition of an el ~ 2005), elementary sets and the related results are extémded
ementary set does not assume a priori that the set is a |00p_Q|S]unct|ve programs in a straightforward way. For nondis-
Rather, the fact that an elementary set is a loop is a conse-Junctive and head-cycle-free programs, we have provided a
quence of our definition. Second, our definition is simpler 9raph-theoretic characterization of elementary setschwisi
because it does not refer to a dependency graph and a |00p_5|mpl_er_ than the one proposed in (Gebser & Schaub 2005).
Third, the two definitions do not agree on trivial loops: A For disjunctive programs, we have shown that deciding ele-
trivial loop is an elementary set, but not a GS-elementary Mentariness isoNP-complete, which can be explained by
loop. This originates from the difference between the defi- the close relationship to deciding unfounded-freeness of a
nition of a loop adopted in (Lin & Zhao 2004) and its refor-  9IVeN Interpretation. o
mulation given in (Lee 2005). As shown in the main theorem ~ Elementary sets allow us to identify relevant unfounded
of (Lee 2005), identifying a trivial loop as a loop provides a S€ts more precisly than what loops allow. An apparentappli-
simpler reformulation of the Lin-Zhao theorem by omitting ~ cation is to consider elementarily unfounded sets in pldce o
reference to completion. Furthermore, in the case of elemen arbitrary unfounded loops as considered in the current SAT-
tary sets, this reformulation also enables us to see a close based answer set solvers, at least for the tractable cases. F
relationship between maximal elementary sets (eleméntari nondisjunctive programs, an efficient algorithm for comput
unfounded sets) and minimal nonempty unfounded sets. It ING elementarily unfound_ed sets is described in (Anger-Geb
also allows us to extend the notion of an elementary set to S€l, & Schaub 2006), which can be extended to head-cycle-
disjunctive programs without producing unintuitive resyl free programs as well. Based on the theoretical foundations

uniike with GS-elementary loops. To see this, consider the Provided in this paper, we plan to integrate elementarily un
following program: founded set computation intoMODELS for an empirical

evaluation.

proposed the concept of elementarily unfounded sets, which
turn out to be precisely the minimal sets among nonempty
unfounded sets.

p;q—rT
p;1r<4q
q;T<p.
The non-trivial loops of this program arg, ¢}, {p,r},
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{p,q,r} is a GS-elementary loop for program (9) because all 412907.

its non-trivial proper subloops are “outbound” {m, ¢, }.
Note that{p,q,r} is unfounded w.r.t{p,q,r}. More-
over, every singleton is unfounded w.p,q,r} as well.
This is in contrast with our Proposition 4, according to
which all nonempty proper subsets of an elementary set
for program (9) w.r.t.{p,q,r} are externally supported
w.r.t. {p, ¢,r}. This anomaly does not arise with our defi-
nition of an elementary set sinég, ¢, 7} is not elementary
for (9). More generally, an elementary set is potentially el
ementarily unfounded w.r.t. some model, which is not the
case with GS-elementary loops extended to disjunctive pro-
grams.

Conclusion

We have proposed the notion of an elementary set and pro-
vided a further refinement of the Lin-Zhao theorem based on
it, which simplifies the Gebser-Schaub theorem and extends
it to disjunctive programs.

We have shown properties of elementary sets that allow
us to disregard redundant loop formulas. One property is
that, if all elementary subsets of a given set of atoms are ex-
ternally supported, the set is externally supported as. well
Another property is that, for a maximal set that is elemen-
tary for the relevant part of the program w.r.t. some inter-
pretation, all its nonempty proper subsets are externafly s
ported w.r.t. the same interpretation. Related to this, axeh
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