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Abstract

By introducing the concepts of a loop and a loop formula,
Lin and Zhao showed that the answer sets of a nondisjunctive
logic program are exactly the models of its Clark’s comple-
tion that satisfy the loop formulas of all loops. Recently, Geb-
ser and Schaub showed that the Lin-Zhao theorem remains
correct even if we restrict loop formulas to a special class of
loops called “elementary loops.” In this paper, we simplify
and generalize the notion of an elementary loop, and clarify
its role. We propose the notion of an elementary set, which
is almost equivalent to the notion of an elementary loop for
nondisjunctive programs, but is simpler, and, unlike elemen-
tary loops, can be extended to disjunctive programs without
producing unintuitive results. We show that the maximal un-
founded elementary sets for the “relevant” part of a program
are exactly the minimal sets among the nonempty unfounded
sets. We also present a graph-theoretic characterization of el-
ementary sets for nondisjunctive programs, which is simpler
than the one proposed in (Gebser & Schaub 2005). Unlike in
the case of nondisjunctive programs, we show that the prob-
lem of deciding an elementary set iscoNP-complete for dis-
junctive programs.

Introduction
By introducing the concepts of a loop and a loop formula,
Lin and Zhao (2004) showed that the answer sets (a.k.a. sta-
ble models) of a nondisjunctive logic program are exactly
the models of its Clark’s completion (Clark 1978) that sat-
isfy the loop formulasLF(L) of all loopsL for the program.
This important result has shed new light on the relationship
between answer sets and completion, and allowed us to com-
pute answer sets using SAT solvers, which led to the design
of answer set solversASSAT1 (Lin & Zhao 2004) andCMOD-
ELS2 (Giunchiglia, Lierler, & Maratea 2004).

The concepts of a loop and a loop formula were fur-
ther clarified in (Lee 2005). By slightly modifying the
definition of a loop, Lee observed that adding loop for-
mulas can be viewed as a generalization of completion,
which allows us to characterize the stability of a model
in terms of loop formulas: A model is stable iff it sat-
isfies the loop formulas of all loops. He also observed

1http://assat.cs.ust.hk/
2http://www.cs.utexas.edu/users/tag/cmodels/

that the mappingLF, which turns loops into loop formu-
las, can be applied to arbitrary sets of atoms, not only to
loops: AddingLF(Y ) for a non-loopY does not affect the
models of the theory becauseLF(Y ) is always entailed by
LF(L) for some loopL. Though this reformulation of the
Lin-Zhao theorem, in whichLF is not restricted to loops,
is less economical, it is interesting to note that it is es-
sentially a theorem on assumption sets (Saccá & Zaniolo
1990), or unfounded sets (Van Gelder, Ross, & Schlipf 1991;
Leone, Rullo, & Scarcello 1997), which has been known for
many years. In this sense, the most original contribution
of (Lin & Zhao 2004) was not the mapping that turns loops
into loop formulas, but the definition of a loop, which yields
a relatively small class of sets of atoms for the mappingLF.

However, for nondisjunctive programs, even the defini-
tion of a loop turned out still “too generous.” Gebser and
Schaub (2005) showed that restricting the mapping even
more to a special class of loops called “elementary loops,”
yields a valid modification of the Lin-Zhao theorem (or the
Saccá-Zaniolo theorem). That is, some loops are identified
as redundant, just as all non-loops are redundant. They noted
that the notion of a positive dependency graph, which is used
for defining a loop, is not expressive enough to distinguish
between elementary and non-elementary loops, and instead
proposed another graph-theoretic characterization, based on
the notion of a so-called “body-head dependency graph.”

Our work is motivated by the desire to understand the role
of an elementary loop further and to extend the results to
disjunctive programs. For nondisjunctive programs, we pro-
pose a simpler notion corresponding to an elementary loop,
which we call an “elementary set,” and provide a further en-
hancement of the Lin-Zhao theorem based on it. Unlike
elementary loops, elementary sets can be extended to dis-
junctive programs without producing unintuitive results.We
show that a special class of unfounded elementary sets co-
incides with the minimal sets among nonempty unfounded
sets. Instead of relying on the notion of a body-head de-
pendency graph, we present a simpler graph-theoretic char-
acterization of elementary sets, based on a subgraph of the
positive dependency graph.

Elementary Sets for Nondisjunctive Programs
Review of Loop Formulas: Nondisjunctive Case



A nondisjunctive ruleis an expression of the form

a1 ← a2, . . . , am, notam+1, . . . , notan (1)

wheren ≥ m ≥ 1 anda1, . . . , an are propositional atoms.
A nondisjunctive programis a finite set of nondisjunctive
rules.

We will identify a nondisjunctive rule (1) with the propo-
sitional formula

(a2 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an)→ a1,

and will often write (1) as

a1 ← B, F (2)

whereB is a2, . . . , am andF is not am+1, . . . , not an. We
will sometimes identifyB with its corresponding set.

Let Π be a nondisjunctive program. The reductΠX of Π
with respect to a setX of atoms is obtained fromΠ by

• deleting each rule (2) such thatX 6|= F , and

• replacing each remaining rule (2) bya1 ← B.

SetX is ananswer set (stable model)of Π if it is minimal
among the models that satisfyΠX .3

The (positive) dependency graphof Π is the directed
graph such that

• its vertices are the atoms occurring inΠ, and

• its edges go froma1 to a2, . . . am for all rules (1) ofΠ.

A nonempty setL of atoms is called aloop of Π if, for ev-
ery pairp, q of atoms inL, there exists a path (possibly of
length0) from p to q in the dependency graph ofΠ such that
all vertices in this path belong toL. In other words,L is a
loop ofΠ iff the subgraph of the dependency graph ofΠ in-
duced byL is strongly connected. Clearly, any set consisting
of a single atom is a loop.

For instance, Figure 1 shows the dependency graph of the
following programΠ1:

p← nots
p← r
q ← r
r← p, q .

ProgramΠ1 has seven loops:{p}, {q}, {r}, {s}, {p, r},
{q, r}, {p, q, r}.

For any setY of atoms, theexternal support formulaof Y
for Π, denoted byESΠ(Y ), is the disjunction of conjunctions

B ∧ F

for all rules (2) ofΠ such that

• a1 ∈ Y , and

• B ∩ Y = ∅.

3We identify an interpretation with the set of atoms that are
true in it. Recall that we identify a rule with the corresponding
propositional formula.
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Figure 1: The dependency graph of ProgramΠ1

The first condition expresses that the atom “supported”
by (2) is an element ofY . The second condition ensures
that this support is “external”: The atoms inB that it relies
on do not belong toY . ThusY is calledexternally supported
by Π w.r.t. a setX of atoms ifX satisfiesESΠ(Y ).

For any setY of atoms, byLFΠ(Y ) we denote the follow-
ing formula: ∧

a∈Y

a→ ESΠ(Y ) . (3)

Formula (3) is called the(conjunctive) loop formulaof Y
for Π.4 Note that we still call (3) a loop formula even when
Y is not a loop.

The following reformulation of the Lin-Zhao theorem,
which characterizes the stability of a model in terms of loop
formulas, is a part of the main theorem from (Lee 2005) for
the nondisjunctive case.

Theorem 1 (Lee 2005) LetΠ be a nondisjunctive program,
andX a set of atoms occurring inΠ. If X satisfiesΠ, then
the following conditions are equivalent:

(a) X is stable;

(b) X satisfies LFΠ(Y ) for all nonempty setsY of atoms
that occur inΠ;

(c) X satisfies LFΠ(Y ) for all loopsY of Π.

According to the equivalence between conditions (a)
and (b) in Theorem 1, a model ofΠ1 is stable iff it satis-
fies the loop formulas of all fifteen nonempty sets of atoms
occurring inΠ1. On the other hand, condition (c) tells us
that it is sufficient to restrict attention to the following seven
loop formulas:

p → ¬s ∨ r
q → r
r → p ∧ q
s → ⊥

p ∧ r → ¬s
q ∧ r → ⊥

p ∧ q ∧ r → ¬s .

(4)

ProgramΠ1 has six models: {p}, {s}, {p, s}, {q, s},
{p, q, r}, and{p, q, r, s}. Among them,{p} is the only sta-
ble model, which is also the only model that satisfies all loop
formulas (4). In the next section, we will see that in fact the
last loop formula can be disregarded as well, if we take ele-
mentary sets into account.

As noted in (Lee 2005), the equivalence between condi-
tions (a) and (c) is a reformulation of the Lin-Zhao theorem;

4If the conjunction in the antecedent is replaced with the dis-
junction, the formula is calleddisjunctive loop formula(Lin &
Zhao 2004). Our results stated in terms of conjunctive loop for-
mulas can be stated in terms of disjunctive loop formulas as well.



the equivalence between conditions (a) and (b) is a reformu-
lation of Corollary 2 of (Saccá & Zaniolo 1990), and Theo-
rem 4.6 of (Leone, Rullo, & Scarcello 1997) (for the nondis-
junctive case), which characterizes the stability of a model
in terms ofunfounded sets. For setsX , Y of atoms, we say
thatY is unfoundedby Π w.r.t.X if Y is not externally sup-
ported byΠ w.r.t.X . Condition (b) can be stated in terms of
unfounded sets as follows:

(b′) X contains no nonempty unfounded subsets forΠ
w.r.t. X .

Elementary Sets for Nondisjunctive Programs
As mentioned in the introduction, (Gebser & Schaub 2005)
showed thatLF in Theorem 1 can be further restricted to
“elementary loops.” In this section, we present a simpler re-
formulation of their results. We will compare our reformu-
lation with the original definition from (Gebser & Schaub
2005) later in this paper.

Let Π be a nondisjunctive program. The following propo-
sition tells us that a loop can be defined even without refer-
ring to a dependency graph.

Proposition 1 For any nondisjunctive programΠ and any
nonempty setY of atoms occurring inΠ, Y is a loop ofΠ iff,
for every nonempty proper subsetZ of Y , there is a rule (2)
in Π such that

• a1 ∈ Z, and
• B ∩ (Y \ Z) 6= ∅.

For any setY of atoms and any subsetZ of Y , we say that
Z is outboundin Y for Π if there is a rule (2) inΠ such that

• a1 ∈ Z,

• B ∩ (Y \ Z) 6= ∅, and

• B ∩ Z = ∅.

For any nonempty setY of atoms that occur inΠ, we say
that Y is elementaryfor Π if all nonempty proper subsets
of Y are outbound inY for Π.

As with loops, it is clear from the definition that every
set consisting of a single atom occurring inΠ is elementary
for Π. It is also clear that every elementary set forΠ is a
loop of Π, but a loop is not necessarily an elementary set:
The conditions for being an elementary set are stronger than
the conditions for being a loop as given in Proposition 1. For
instance, one can check that forΠ1, {p, q, r} is not elemen-
tary since{p, r} (or {q, r}) is not outbound in{p, q, r}. All
the other loops ofΠ1 are elementary. Note that an elemen-
tary set may be a proper subset of another elementary set
(both{p} and{p, r} are elementary sets forΠ1).

The following program replaces the last rule ofΠ1 by two
rules:

p← nots
p← r
q ← r
r← p
r← q .

This program has the same dependency graph as pro-
gramΠ1 and thus has the same set of loops. However, its
elementary sets are different: All its loops are elementary.

From the definition of an elementary set above, we get an
alternative, equivalent definition by requiring that only the
loops contained inY be outbound, instead of requiring that
all nonempty proper subsets ofY be outbound.

Proposition 2 For any nondisjunctive programΠ and any
nonempty setY of atoms that occur inΠ, Y is an elementary
set forΠ iff all loopsZ of Π such thatZ ⊂ Y are outbound
in Y for Π.5

Note that a subset of an elementary set, even if that subset
is a loop, is not necessarily elementary. For instance, for
program

p← p, q
q ← p, q
p← r
q ← r
r ← p
r ← q ,

set{p, q, r} is elementary, but{p, q} is not.
The following proposition describes a relationship be-

tween loop formulas of elementary sets and those of arbi-
trary sets.

Proposition 3 Let Π be a nondisjunctive program,X a set
of atoms, andY a nonempty set of atoms that occur inΠ. If
X satisfies LFΠ(Z) for all elementary setsZ of Π such that
Z ⊆ Y , thenX satisfies LFΠ(Y ).

Proposition 3 suggests that condition (c) of Theorem 1
can be further enhanced by taking only loop formulas of el-
ementary sets into account. This yields the following theo-
rem, which is a reformulation of Theorem 3 from (Gebser &
Schaub 2005) in terms of elementary sets.

Theorem 1(d) The following condition is equivalent to con-
ditions (a)–(c) of Theorem 1.

(d) X satisfies LFΠ(Y ) for all elementary setsY of Π.

According to Theorem 1(d), a model ofΠ1 is stable iff
it satisfies the first six formulas in (4); the loop formula of
non-elementary set{p, q, r} (the last one in (4)) can be dis-
regarded.

Maximal Elementary Sets and Elementarily
Unfounded Sets for Nondisjunctive Programs
If we modify condition (c) of Theorem 1 by replacing
“loops” in its statement with “maximal loops,” the condition
becomes weaker, and the modified statement of Theorem 1
does not hold. For instance, programΠ1 has only two max-
imal loops,{p, q, r} and{s}, and their loop formulas are
satisfied by the non-stable model{p, q, r}. In fact, maximal
loop{p, q, r} is not even an elementary set forΠ1.

This is also the case with maximal elementary sets: The-
orem 1(d) does not hold if “elementary sets” in its statement
is replaced with “maximal elementary sets” as the following
program shows:

p← q, notp
q ← p, notp
p .

(5)

5Note that Proposition 2 remains correct even after replacing
“all loops” in its statement with “all elementary sets.”



Program (5) has two models,{p} and{p, q}, but the latter is
not stable. Yet, both models satisfy the loop formula of the
only maximal elementary set{p, q} for (5) (p ∧ q → >).

However, in the following we show that if we consider the
“relevant” part of the program w.r.t. a given interpretation, it
is sufficient to restrict attention to maximal elementary sets.

Given a nondisjunctive programΠ and a setX of atoms,
by ΠX we denote the set of rules (2) ofΠ such that
X |= B, F . The following proposition tells us that all
nonempty proper subset of an elementary set forΠX are ex-
ternally supported w.r.t.X .

Proposition 4 For any nondisjunctive programΠ, any
setX of atoms, and any elementary setY for ΠX , X satis-
fies ESΠ(Z) for all nonempty proper subsetsZ of Y .

From Proposition 4, it follows that every unfounded ele-
mentary setY for ΠX w.r.t. X is maximal among the ele-
mentary sets forΠX . One can show that ifY is a nonempty
unfounded set forΠ w.r.t.X that does not contain a maximal
elementary set forΠX , thenY consists of atoms that do not
occur inΠX . From this, we obtain the following result.

Theorem 1(e) The following condition is equivalent to con-
ditions (a)–(c) of Theorem 1.

(e) X satisfies LFΠ(Y ) for every setY of atoms such that

• Y is a maximal elementary set forΠX , or
• Y is a singleton whose atom occurs inΠ.

According to Theorem 1(e), model{p} of Π1 is stable
because atomp occurs in(Π1){p} = {p ← not s}, and
satisfies the external support formula¬s. On the other hand,
model{p, q, r} of Π1 is not stable because it does not satisfy
the external support formula for{q, r}, which is one of the
maximal elementary sets for(Π1){p,q,r}.

Note that the analogy does not apply to loops: If we re-
place “maximal elementary sets” in the statement of Theo-
rem 1(e) with “maximal loops,” then the modified statement
does not hold. The non-stable model{p, q, r} still satisfies
the loop formula of the maximal loop{p, q, r} of (Π1){p,q,r}

(the last one in (4)).
We say that a setY of atoms occurring inΠ is elementar-

ily unfoundedby Π w.r.t. X if

• Y is an elementary set forΠX that is unfounded byΠ
w.r.t. X , or

• Y is a singleton that is unfounded byΠ w.r.t. X .6

From Proposition 4, every non-singleton elementarily un-
founded set forΠ w.r.t. X is a maximal elementary set
for ΠX .

It is clear from the definition that every elementarily un-
founded set forΠ w.r.t.X is an elementary set forΠ and that
it is also an unfounded set forΠ w.r.t.X . However, a set that
is both elementary forΠ and unfounded byΠ w.r.t.X is not
necessarily an elementarily unfounded set forΠ w.r.t. X .
For example, consider the following program:

p← q, not r
q ← p, not r .

(6)

6Elementarily unfounded sets are closely related to “activeele-
mentary loops” in (Gebser & Schaub 2005).

Set{p, q} is both elementary for (6), and unfounded by (6)
w.r.t. {p, q, r}, but it is not an elementarily unfounded set
w.r.t.{p, q, r}.

The following corollary, which follows from Proposi-
tion 4, tells us that all nonempty proper subsets of an el-
ementarily unfounded set are externally supported. It is
essentially a reformulation of Theorem 5 from (Gebser &
Schaub 2005).

Corollary 1 LetΠ be a nondisjunctive program,X a set of
atoms, andY an elementarily unfounded set forΠ w.r.t. X .
Then

• X does not satisfy ESΠ(Y ), and
• X satisfies ESΠ(Z) for all nonempty proper subsetsZ

of Y .

Corollary 1 tells us that elementarily unfounded sets form
an “anti-chain”: One of them cannot be a proper subset of
another.7 In combination with Proposition 4, this tells us that
elementarily unfounded sets are minimal among nonempty
unfounded sets. Interestingly, the converse also holds.

Proposition 5 For any nondisjunctive programΠ and any
setsX , Y of atoms,Y is an elementarily unfounded set forΠ
w.r.t. X iff Y is minimal among the nonempty sets of atoms
occurring inΠ that are unfounded byΠ w.r.t. X .

Theorem 1(e) can be stated in terms of elementarily un-
founded sets, thereby restricting attention to minimal un-
founded sets:

(e′) X contains no elementarily unfounded subsets forΠ
w.r.t. X .

The notion of an elementarily unfounded set may help
improve computation performed by SAT-based answer set
solvers. Since there are exponentially many loops in the
worst case, SAT-based answer set solvers do not add all loop
formulas at once. Instead, they check whether a model re-
turned by a SAT solver is an answer set. If not, a loop for-
mula that is not satisfied by the current model is added, and
the SAT solver is invoked again.8 This process is repeated
until an answer set is found, or the search space is exhausted.
In view of Theorem 1(e′), when loop formulas need to be
added, it is sufficient to add loop formulas of elementarily
unfounded sets only. This guarantees that loop formulas
considered are only those of elementary sets. Since every
elementary set is a loop, but not vice versa, the process may
involve fewer loop formulas overall than the case when ar-
bitrary loops are considered. In view of Proposition 3 and
Corollary 1, this would yield reasonably the most economi-
cal way to eliminate non-stable models.

Deciding Elementary Sets: Nondisjunctive Case
The above definition of an elementary set involves all its
nonempty proper subsets (or at least all loops that are its
subsets). This seems to imply that deciding whether a set

7Recall that the anti-chain property does not hold for elemen-
tary sets forΠ: An elementary set may contain another elementary
set as its proper subset.

8To be precise,CMODELSadds “conflict clauses.”
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Figure 2: The elementary subgraph of{p, q, r} for Π1

is elementary is a computationally hard problem. But in
fact, (Gebser & Schaub 2005) showed that, for nondisjunc-
tive programs, deciding an elementary loop can be done
efficiently. They noted that positive dependency graphs
are not expressive enough to distinguish between elemen-
tary and non-elementary loops, and instead introduced so-
called “body-head dependency graphs” to identify elemen-
tary loops. In this section, we simplify this result by still
referring to positive dependency graphs. We show that re-
moving some “unnecessary” edges from the dependency
graph is just enough to distinguish elementary sets from non-
elementary sets.

For any nondisjunctive programΠ and any setY of
atoms,

EC0
Π(Y ) = ∅ ,

ECi+1

Π
(Y ) = ECi

Π(Y ) ∪ {(a1, b) | there is a rule (2) inΠ
such thatb ∈ B and the graph(Y, ECi

Π(Y )) has a
strongly connected subgraph containing all atoms
in B ∩ Y } ,

ECΠ(Y ) =
⋃

i≥0
ECi

Π(Y ) .

Note that this is a “bottom-up” construction. We call the
graph(Y, ECΠ(Y )) theelementary subgraphof Y for Π. It
is clear that an elementary subgraph is a subgraph of a de-
pendency graph and that it is not necessarily the same as the
subgraph of the dependency graph induced byY . Figure 2
shows the elementary subgraph of{p, q, r} for Π1, which is
not strongly connected.

The following theorem is similar to Theorem 10
from gebsch05a, but instead of referring to the notion of a
body-head dependency graph, it refers to an elementary sub-
graph as defined above.

Theorem 2 For any nondisjunctive programΠ and any
setY of atoms occurring inΠ, Y is an elementary set forΠ
iff the elementary subgraph ofY for Π is strongly connected.

Clearly, constructing an elementary subgraph and check-
ing whether it is strongly connected can be done in poly-
nomial time. Therefore, the problem of deciding whether a
given set of atoms is elementary is tractable.

Elementary Sets for Disjunctive Programs
Review of Loop Formulas: Disjunctive Case
A disjunctive ruleis an expression of the form

a1; . . . ; ak ← ak+1, . . . , al, notal+1, . . . , notam,
not notam+1, . . . , not notan

(7)

wheren ≥ m ≥ l ≥ k ≥ 0 anda1, . . . , an are propositional
atoms. Adisjunctive programis a finite set of disjunctive
rules.

We will identify a disjunctive rule (7) with the proposi-
tional formula
(ak+1 ∧ · · · ∧ al ∧ ¬al+1 ∧ · · · ∧ ¬am∧

¬¬am+1 ∧ · · · ∧ ¬¬an)→ (a1 ∨ · · · ∨ ak) ,

and will often write (7) as

A← B, F (8)

whereA is a1, . . . , ak, B is ak+1, . . . , al, andF is

notal+1, . . . , notam, not notam+1, . . . , not notan .

We will sometimes identifyA andB with their correspond-
ing sets.

Let Π be a disjunctive program. The reductΠX of Π with
respect to a setX of atoms is obtained fromΠ by

• deleting each rule (8) such thatX 6|= F , and

• replacing each remaining rule (8) byA← B.

Similarly as with a nondisjunctive program, a setX of atoms
is ananswer set (stable model)of Π if X is minimal among
the models that satisfyΠX .

The definition of a dependency graph is extended to a dis-
junctive program in a straightforward way: The vertices of
the graph are the atoms occurring in the program, and its
edges go from the elements ofA to the elements ofB for all
rules (8) of the program. The definition of a loop in terms
of the dependency graph remains the same as in the case of
nondisjunctive programs.

For any setY of atoms, theexternal support formulaof Y
for Π, denoted byESΠ(Y ), is the disjunction of conjunctions

B ∧ F ∧
∧

a∈A\Y

¬a

for all rules (8) ofΠ such that

• A ∩ Y 6= ∅, and

• B ∩ Y = ∅.

WhenΠ is nondisjunctive, this definition reduces to the def-
inition of ESΠ for nondisjunctive programs given earlier.

The notion ofLFΠ and the term(conjunctive) loop for-
mula similarly apply to formulas (3) whenΠ is a disjunc-
tive program. As shown in (Lee 2005), Theorem 1 remains
correct after replacing “nondisjunctive program” in its state-
ment with “disjunctive program.”

Elementary Sets for Disjunctive Programs
In this section, we generalize the definition of an elementary
set to disjunctive programs.

Note that a loop of a disjunctive program can be also de-
fined without referring to a dependency graph: Proposition 1
remains correct after replacing “nondisjunctive” in its state-
ment with “disjunctive,” “(2)” with “(8),” and “a1 ∈ Z” with
“A ∩ Z 6= ∅.”

Let Π be a disjunctive program. For any setY of atoms,
we say that a subsetZ of Y is outboundin Y for Π if there
is a rule (8) inΠ such that

• A ∩ Z 6= ∅,

• B ∩ (Y \ Z) 6= ∅,

• A ∩ (Y \ Z) = ∅, and

• B ∩ Z = ∅.



Note that whenΠ is nondisjunctive, this definition reduces
to the corresponding definition given before.

As with nondisjunctive programs, for any nonempty setY
of atoms that occur inΠ, we say thatY is elementaryfor Π if
all nonempty proper subsets ofY are outbound inY for Π.
Similarly, every set consisting of a single atom occurring
in Π is an elementary set forΠ, and every elementary set
for Π is a loop ofΠ. The definition of an elementary set for
a disjunctive program is stronger than the alternative defini-
tion of a loop provided in Proposition 1 for the disjunctive
case: It requires that the rules satisfy two additional condi-
tions,A ∩ (Y \ Z) = ∅ andB ∩ Z = ∅.

With these extended definitions, Propositions 2 and 3 re-
main correct after replacing “nondisjunctive program” in
their statements with “disjunctive program.” Theorem 1(d)
holds even whenΠ is disjunctive.

To illustrate the definition, consider the following pro-
gram:

p ; q ← p
p ← q
p ← not r .

Among the four loops of the program,{p}, {q}, {r},
and {p, q}, the last one is not an elementary set because
{q} is not outbound in{p, q}: The first rule contains
q in the head andp in the body, but it also contains
{p, q} ∩ ({p, q} \ {q}) = {p} in the head. According to the
extension of Theorem 1(d) to disjunctive programs, the loop
formula of{p, q} can be disregarded.

Maximal Elementary Sets and Elementarily
Unfounded Sets for Disjunctive Programs
Let Π be a disjunctive program. For any setsX , Y of atoms,
by ΠX,Y we denote the set of all rules (8) ofΠ such that
X |= B, F andX ∩ (A \ Y ) = ∅. ProgramΠX,Y contains
all rules ofΠ that can provide supports forY w.r.t.X . When
Π is nondisjunctive, for every non-singleon setY of atoms,
Y is elementary forΠX,Y iff it is elementary forΠX . Or the
following holds.

Proposition 6 LetΠ be a nondisjunctive program, andX a
set of atoms, andY a set of atoms such that every elementa1

in Y has a rule (2) inΠ such thatX |= B, F . ThenY is
elementary forΠX,Y iff it is elementary forΠX .

It follows from the proposition that for any non-singleton
setY of atoms,Y is elementary forΠX,Y iff it is elementary
for ΠX .

We extend the definition of an elementarily unfounded set
to disjunctive programs by replacing “ΠX ” with “ ΠX,Y ”
and by identifyingΠ as a disjunctive program. It is clear
from the definition that every elementarily unfounded set
for Π w.r.t. X is an elementary set forΠ and that it is also
an unfounded set forΠ w.r.t.X .

Propositions 4, 5, Corollary 1, and Theorems 1(e), 1(e′)
remain correct after replacing “nondisjunctive program” in
their statements with “disjunctive program” and “ΠX ” with
“ΠX,Y .” For preserving the intended meaning of Theo-
rem 1(e), “Y is a maximal elementary set forΠX ” can be
alternatively replaced with “Y is maximal among all setsZ
of atoms that are elementary forΠX,Z .”

Deciding Elementary Sets: Disjunctive Case
Although deciding an elementary set can be done efficiently
for nondisjunctive programs, it turns out that the corre-
sponding problem for (arbitrary) disjunctive programs is in-
tractable.

Proposition 7 For any disjunctive programΠ and any setY
of atoms, deciding whetherY is elementary forΠ is coNP-
complete.

This result can be explained by the close relationship to the
problem of deciding whether a set of atoms isunfounded-
free (Leone, Rullo, & Scarcello 1997), which means that
the set contains no nonempty unfounded subsets. In fact,
the reduction from deciding unfounded-freeness to deciding
elementariness is straightforward.

However, for the class of disjunctive programs called
“head-cycle-free” (Ben-Eliyahu & Dechter 1994), deciding
an elementary set is tractable. A disjunctive programΠ is
calledhead-cycle-freeif, for every rule (8) inΠ, there is no
loopL of Π such that|A∩L| > 1. For instance, the program

p ; q ←
p← q

is head-cycle-free, while the program

p ; q ←
p← q
q ← p

is not.
The definition of an elementary subgraph for a nondis-

junctive program can be extended to a head-cycle-free pro-
gram by replacing “(2)” with “(8)” and “b ∈ B” with
“a1 ∈ A, b ∈ B” in the equation forECi+1

Π
. With this

extended definition of an elementary subgraph, Theorem 2
remains correct after replacing “nondisjunctive program”in
its statement with “head-cycle-free program.”

Comparison with the Gebser-Schaub
Definition

In this section, we compare our reformulation of elementary
loops with the original definition given in (Gebser & Schaub
2005) for nondisjunctive programs.

Let Π be a nondisjunctive program. A loop ofΠ is called
trivial if it consists of a single atom such that the dependency
graph ofΠ does not contain an edge from the atom to itself.
Non-trivial loops were called simply loops in (Lin & Zhao
2004; Gebser & Schaub 2005). For a non-trivial loopL of Π,
let

R−
Π

(L) = {(2) ∈ Π | a1 ∈ L, B ∩ L = ∅},

R+

Π
(L) = {(2) ∈ Π | a1 ∈ L, B ∩ L 6= ∅}.

Definition 1 (Gebser & Schaub 2005, Definition 1) Given
a nondisjunctive programΠ and a non-trivial loopL ofΠ, L
is called aGS-elementary loopfor Π if, for each non-trivial
loopL′ of Π such thatL′ ⊂ L, R−

Π
(L′) ∩R+

Π
(L) 6= ∅.9

9A GS-elementary loop was called an “elementary loop” in
(Gebser & Schaub 2005). Here we put “GS-” in the name, to dis-
tinguish it from a loop that is elementary under our definition.



Proposition 8 For any nondisjunctive programΠ and any
non-trivial loopL of Π, L is a GS-elementary loop forΠ iff
L is an elementary set forΠ.

There are a few differences between Definition 1 and our
definition of an elementary set. First, the definition of an el-
ementary set does not assume a priori that the set is a loop.
Rather, the fact that an elementary set is a loop is a conse-
quence of our definition. Second, our definition is simpler
because it does not refer to a dependency graph and a loop.
Third, the two definitions do not agree on trivial loops: A
trivial loop is an elementary set, but not a GS-elementary
loop. This originates from the difference between the defi-
nition of a loop adopted in (Lin & Zhao 2004) and its refor-
mulation given in (Lee 2005). As shown in the main theorem
of (Lee 2005), identifying a trivial loop as a loop provides a
simpler reformulation of the Lin-Zhao theorem by omitting
reference to completion. Furthermore, in the case of elemen-
tary sets, this reformulation also enables us to see a close
relationship between maximal elementary sets (elementarily
unfounded sets) and minimal nonempty unfounded sets. It
also allows us to extend the notion of an elementary set to
disjunctive programs without producing unintuitive results,
unlike with GS-elementary loops. To see this, consider the
following program:

p ; q ← r
p ; r ← q
q ; r ← p .

(9)

The non-trivial loops of this program are{p, q}, {p, r},
{q, r}, and {p, q, r}, but not singletons{p}, {q}, and
{r}. If we were to extend GS-elementary loops to dis-
junctive programs, a reasonable extension would say that
{p, q, r} is a GS-elementary loop for program (9) because all
its non-trivial proper subloops are “outbound” in{p, q, r}.
Note that {p, q, r} is unfounded w.r.t.{p, q, r}. More-
over, every singleton is unfounded w.r.t{p, q, r} as well.
This is in contrast with our Proposition 4, according to
which all nonempty proper subsets of an elementary set
for program (9) w.r.t.{p, q, r} are externally supported
w.r.t. {p, q, r}. This anomaly does not arise with our defi-
nition of an elementary set since{p, q, r} is not elementary
for (9). More generally, an elementary set is potentially el-
ementarily unfounded w.r.t. some model, which is not the
case with GS-elementary loops extended to disjunctive pro-
grams.

Conclusion
We have proposed the notion of an elementary set and pro-
vided a further refinement of the Lin-Zhao theorem based on
it, which simplifies the Gebser-Schaub theorem and extends
it to disjunctive programs.

We have shown properties of elementary sets that allow
us to disregard redundant loop formulas. One property is
that, if all elementary subsets of a given set of atoms are ex-
ternally supported, the set is externally supported as well.
Another property is that, for a maximal set that is elemen-
tary for the relevant part of the program w.r.t. some inter-
pretation, all its nonempty proper subsets are externally sup-
ported w.r.t. the same interpretation. Related to this, we have

proposed the concept of elementarily unfounded sets, which
turn out to be precisely the minimal sets among nonempty
unfounded sets.

Unlike elementary loops proposed in (Gebser & Schaub
2005), elementary sets and the related results are extendedto
disjunctive programs in a straightforward way. For nondis-
junctive and head-cycle-free programs, we have provided a
graph-theoretic characterization of elementary sets, which is
simpler than the one proposed in (Gebser & Schaub 2005).
For disjunctive programs, we have shown that deciding ele-
mentariness iscoNP-complete, which can be explained by
the close relationship to deciding unfounded-freeness of a
given interpretation.

Elementary sets allow us to identify relevant unfounded
sets more precisly than what loops allow. An apparent appli-
cation is to consider elementarily unfounded sets in place of
arbitrary unfounded loops as considered in the current SAT-
based answer set solvers, at least for the tractable cases. For
nondisjunctive programs, an efficient algorithm for comput-
ing elementarily unfounded sets is described in (Anger, Geb-
ser, & Schaub 2006), which can be extended to head-cycle-
free programs as well. Based on the theoretical foundations
provided in this paper, we plan to integrate elementarily un-
founded set computation intoCMODELS for an empirical
evaluation.
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