
System f2lp – Computing Answer Sets of
First-Order Formulas

Joohyung Lee and Ravi Palla

Computer Science and Engineering
Arizona State University, Tempe, AZ, USA

{joolee,ravi.palla}@asu.edu

Abstract. We present an implementation of the general language of
stable models proposed by Ferraris, Lee and Lifschitz. Under certain con-
ditions, system f2lp turns a first-order theory under the stable model
semantics into an answer set program, so that existing answer set solvers
can be used for computing the general language. Quantifiers are first
eliminated and then the resulting quantifier-free formulas are turned into
rules. Based on the relationship between stable models and circumscrip-
tion, f2lp can also serve as a reasoning engine for general circumscriptive
theories. We illustrate how to use f2lp to compute the circumscriptive
event calculus.

1 Introduction

One advantage of classical logic over logic programs is that the former allows us
to encode knowledge in a complex formula, which is often more convenient than
encoding in conjunctive normal form only. While the input languages of answer
set solvers have evolved to allow various constructs for facilitating encoding
efforts, such as choice rules, cardinality constraints and aggregates, the syntax is
still limited to rule forms and does not allow quantifiers and connectives nested
arbitrarily as in classical logic.

Recently, there have been some efforts in lifting the syntactic restriction by
extending the stable model semantics to arbitrary first-order formulas, under
which an answer set program is viewed as the conjunction of the implications
corresponding to the rules [1, 2]. The generality of the language allows to view
choice rules and cardinality constraints as abbreviations of first-order formulas
without involving grounding [3].

System f2lp 1 is a step towards implementing this general language. It trans-
lates an arbitrary first-order formula under the stable model semantics into an
answer set program. By calling existing answer set solvers on the resulting pro-
gram, we can compute Herbrand stable models of a first-order formula. The
system extends the previous version described in [4], which computes stable
models of an arbitrary propositional formula. The translation implemented in
f2lp is based on the following recent theoretical results.

1 http://reasoning.eas.asu.edu/f2lp .



2 Joohyung Lee and Ravi Palla

– Every first-order formula is strongly equivalent to its prenex form [4, Theo-
rem 2] and can be also rewritten as a universal formula under certain condi-
tions at the price of introducing new predicate constants [5, Proposition 3].

– Every quantifier-free formula (including propositional formula) is strongly
equivalent to a logic program [6, 7, 4].

We expect that f2lp will facilitate encoding efforts. It can also serve as a
tool for computing general circumscriptive theories, in view of the relationship
between the stable models and circumscription described in [5]. We illustrate
how f2lp can be used for computing circumscriptive event calculus [8, 9], whose
syntax is not necessarily in the rule form. System circ2dlp [10] is another im-
plementation of circumscription using answer set solvers, which can even handle
prioritized circumscription and allows varied constants. On the other hand, f2lp
allows more general syntax.

2 Review: Stable Models for First-Order Formulas

We follow the definition of a stable model from [2], a journal version of [1]. The
definition is also reproduced in [11]. There stable models are defined using “stable
model operator SM” with “intensional predicates,” similar to circumscription.

Let p be a list of distinct predicate constants p1, . . . , pn other than equality.
For any first-order sentence F , by SM[F ; p] we denote the second-order sentence

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where u is a list of n distinct predicate variables u1, . . . , un. Expression u < p
stands for a formula expressing that u is “stronger than” p, defined same as in
circumscription. Formula F ∗(u) is defined recursively.
– pi(t)∗ = ui(t) for any tuple t of terms;
– F ∗ = F for any atomic F that does not contain members of p;
– (F �G)∗ = (F ∗ �G∗), � ∈ {∧,∨};
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
– (QxF )∗ = QxF ∗, Q ∈ {∀,∃}.

A model of F (in the sense of first-order logic) is stable (relative to the set p of
intensional predicates) if it satisfies SM[F ; p]. Let σ(F ) be the signature consist-
ing of the object, function and predicate constants occurring in F . If F contains
at least one object constant, an Herbrand interpretation of σ(F ) that satisfies
SM[F ; p] where p is the list of all predicate constants occurring in F , is called
an answer set of F . The answer sets of a logic program Π are defined as the
answer sets of the FOL-representation of Π (i.e., the conjunction of the universal
closure of implications corresponding to the rules). It turns out that this defi-
nition, applied to the syntax of logic programs, is equivalent to the traditional
definition of answer sets based on grounding and fixpoint construction [1].

3 Quantifier Elimination

Given a set of formulas, f2lp first eliminates all quantifiers and then applies the
transformation defined in [7] that turns the resulting quantifier-free formulas



System f2lp – Computing Answer Sets of First-Order Formulas 3

into logic program rules. In this section we describe how quantifier elimination
is done in f2lp.

Obviously, if the domain is known and finite, quantifiers can be replaced with
multiple disjunctions and conjunctions. For instance, consider the formula

r ∧ ¬∃x(p(x) ∧ q(x))→ s (1)

occurring in a program that contains n object constants {a1, . . . , an}. Replacing
∃x(p(x)∧q(x)) with multiple disjunctions and then turning the result into a logic
program yields 2n rules. Also this translation is not modular as it depends on the
underlying domain, so that the multiple disjunctions need to be updated when
the domain changes. Alternatively, we can introduce a new predicate constant p′,
and turn (1) into

s← r,not p′

p′ ← p(x), q(x)

which does not involve grounding so that the translation is not dependent on
the domain.

Under the general stable model semantics, maximal negative occurrences of ∃
and maximal positive occurrences of ∀ in the formula can be dropped in view
of the fact that the standard prenex normal form conversion turns such occur-
rences into outermost ∀ while preserving strong equivalence [4]. As shown in the
example above, positive occurrences of ∃ can be eliminated using new predicate
constants if the quantified formula is in the scope of negation. This condition
is further generalized in the proposition below. We say that an occurrence of a
predicate constant in a formula F is strictly positive if that occurrence is not
in the antecedent of any implication. (For instance, in (p→ q)→ r, only r has
a strictly positive occurrence.) About a formula F , we say that it is negative
on a tuple p of predicate constants if members of p have no strictly positive
occurrences in F [11]. The following proposition is a slight generalization of [5,
Proposition 3] in view of Theorem on Double Negations from [11].

Proposition 1. Let F be a sentence, let p be a list of distinct predicate constants
and let q be a predicate constant that does not belong to the signature of F . For
any positive occurrence of a subformula ∃xG(x,y) of F where y is the list of all
free variables in ∃xG(x,y), let F ′ be the formula obtained from F by replacing
that occurrence with ¬¬q(y). If the occurrence of G(x,y) is in a subformula of F
that is negative on p, then the models of

SM[F ′ ∧ ∀xy(G(x,y)→ q(y)); p, q]

restricted to the signature of F are precisely the models of SM[F ; p].

Negative occurrences of ∀ can also be eliminated using the proposition by first
rewriting ∀xG as ¬∃x¬G.

For example, ∃x(p(x) ∧ q(x)) in formula (1) is contained in a negative for-
mula (relative to any set of intensional predicates). According to Proposition 1
SM[(1); p, q, r, s] has the same models as

SM[(r ∧ ¬¬¬p′ → s) ∧ ∀x(p(x) ∧ q(x)→ p′); p, q, r, s, p′]



4 Joohyung Lee and Ravi Palla

if we disregard p′.
These ideas lead to the following procedure for quantifier elimination, which

is implemented in f2lp.

Definition 1. Given a formula F , repeat the following until there are no occur-
rences of quantifiers remaining:

Select a maximal occurrence of QxG(x,y) in F where Q is ∀ or ∃ and y is the
list of all free variables in QxG(x,y).

(a) If Q is ∃ and the occurrence of QxG(x,y) in F is negative, or if Q is ∀ and
the occurrence of QxG(x,y) in F is positive, then set F to be the formula
obtained from F by replacing the occurrence of QxG(x,y) with G(z,y) where
z is a new variable.

(b) If Q is ∃ and the occurrence of QxG(x,y) in F is positive, then set F to be

F ′ ∧ (G(x,y)→ pG(y))

where F ′ is the formula obtained from F by replacing the occurrence of
QxG(x,y) with ¬¬pG(y) where pG is a new predicate constant.

(c) If Q is ∀ and the occurrence of QxG(x,y) in F is negative, then set F to be
the formula obtained from F by replacing the occurrence of QxG(x,y) with
¬∃x¬G(x,y).

4 f2lp Implementation

Formulas can be encoded in the language of f2lp using the following ASCII
characters.

Symbol ¬ ∧ ∨ → ⊥ > ∀xyz ∃xyz
ASCII - & | -> false true ![X,Y,Z]: ?[X,Y,Z]:

f2lp turns a formula into the corresponding lparse program.2 The usual lparse
encoding is also allowed in f2lp: it is simply copied to the output. The lparse
program returned by f2lp can be passed to ASP grounders and solvers that ac-
cept lparse language. While function symbols are allowed in the input language
of f2lp, it is left to the grounder to handle them.

The current version of f2lp does not check if the condition to apply quantifier
elimination (Proposition 1) is satisfied, which is left to the users. Also f2lp does
not check if the given formula is safe (according to [3]), and may turn a safe
formula into an unsafe program. For instance, f2lp turns the safe formula

p(X) -> ((q(Y)->r(Y)) | s(X)).

into an unsafe program

r(Y)|s(X) :- q(Y),p(X).
s(X) :- {not q(Y)}0,not r(Y),p(X).

However, this may not be a serious limitation since we usually declare vari-
ables using the #domain directive in lparse language, which is the same as
appending domain predicates to the body of each rule.
2 http://www.tcs.hut.fi/Software/smodels .



System f2lp – Computing Answer Sets of First-Order Formulas 5

5 Computing Circumscriptive Theories

Kim et al. [5] show that for a certain class of formulas called “canonical,” cir-
cumscription and the general stable model semantics coincide. This allows f2lp
to be used for computing circumscription of canonical formulas. For example,
consider the formula

F = ∃x(p(x) ∧ r(x))→ q(b)

and the intensional predicates {p, q}. According to [5], the formula is “canonical”
relative to {p, q} so that CIRC[F ; p, q] is equivalent to SM[F ; p, q], and further-
more to SM[F ∧ ∀x(r(x) ∨ ¬r(x)); p, q, r]. Formula F ∧ ∀x(r(x) ∨ ¬r(x)) can be
encoded in the language of f2lp (In addition, let us assume that the domain is
{a, b, c}):

objects(a;b;c).
#domain objects(X).
?[X]:(p(X)&r(X)) -> q(b).
{r(X)}.

Canonical theories cover a wide range of action formalisms based on circum-
scription, such as circumscriptive event calculus. Here we illustrate how to use
f2lp to compute an event calculus description.

A circumscriptive event calculus domain description is defined as

CIRC[Σ ; Initiates,Terminates,Releases] ∧ CIRC[∆ ; Happens] ∧Ξ. (2)

where Σ, ∆, Ξ are first-order sentences such that all positive occurrences of ∃xG
in these formulas are contained in subformulas that are negative on {Initiates,
Terminates,Releases,Happens}. Theorem 1 from [5] shows that this theory can
be turned into

SM[Σ ∧∆∧Ξ ∧Choice(p \ {Initiates,Terminates,Releases,Happens}); p] (3)

where p is the set of all predicates occurring in the description. (By Choice(p) we
denote the conjunction of “choice formulas” ∀x(p(x) ∨ ¬p(x)) for all predicate
constants p in p where x is a list of distinct object variables whose length is the
same as the arity of p.) Note that the condition on Σ, ∆, Ξ above satisfies the
condition for eliminating existential quantifiers in Proposition 1.

In view of Theorem 1 from [5], f2lp can be used for computing the models
of (2). To compute the models, a user can encode

Σ ∧∆ ∧Ξ ∧ Choice(p \ {Initiates,Terminates,Releases,Happens})
in (3) in the language of f2lp, and run f2lp to turn it into an answer set
program. For instance, an action precondition axiom (in Ξ) for the Blocks World
can be encoded in f2lp as

T < maxstep & happens(pickUp(X),T)
-> holdsAt(clear(X),T) & X != table & -?[Y]:holdsAt(holding(Y),T).



6 Joohyung Lee and Ravi Palla

(“picking up X is possible only if X is clear, the agent is not already holding
another object and the object being picked up is not the table.”)

f2lp turns the axiom into the following rules.

holdsAt(clear(X),T) :- T<maxstep,happens(pickUp(X),T).
:- {not holdsAt(holding(NV1),T)}0,T<maxstep,happens(pickUp(X),T).
:- X=table,T<maxstep,happens(pickUp(X),T).

A full encoding of the Blocks World in the language of f2lp is available on
the f2lp webpage (Footnote 1).

Acknowledgements

We are grateful to Yuliya Lierler, Vladimir Lifschitz, and anonymous referees for
their useful comments on this paper. This work was partially supported by the
National Science Foundation under Grant IIS-0839821.

References

1. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Pro-
ceedings of International Joint Conference on Artificial Intelligence (IJCAI). (2007)
372–379

2. Ferraris, P., Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial
Intelligence (2010) To appear.

3. Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice in
answer set programming. In: Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI). (2008) 472–479

4. Lee, J., Palla, R.: Yet another proof of the strong equivalence between propositional
theories and logic programs. In: Working Notes of the Workshop on Correspon-
dence and Equivalence for Nonmonotonic Theories. (2007)

5. Kim, T.W., Lee, J., Palla, R.: Circumscriptive event calculus as answer set pro-
gramming. In: Proceedings of International Joint Conference on Artificial Intelli-
gence (IJCAI). (2009) To appear.

6. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic
programs. TPLP 7(6) (2007) 745–759

7. Cabalar, P., Pearce, D., Valverde, A.: Reducing propositional theories in equilib-
rium logic to logic programs. In: Proceedings of Portuguese Conference on Artificial
Intelligence (EPIA). (2005) 4–17

8. Shanahan, M.: A circumscriptive calculus of events. Artif. Intell. 77(2) (1995)
249–284

9. Mueller, E.: Commonsense reasoning. Morgan Kaufmann (2006)
10. Oikarinen, E., Janhunen, T.: circ2dlp - translating circumscription into disjunctive

logic programming. In: Proceedings of the Eighth International Conference on
Logic Programming and Nonmonotonic Reasoning (LPNMR). (2005) 405–409

11. Ferraris, P., Lee, J., Lifschitz, V., Palla, R.: Symmetric splitting in the general
theory of stable models. In: Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI). (2009) To appear.


