Yet Another Proof of the Strong Equivalence Between
Propositional Theories and Logic Programs

Joohyung Lee and Ravi Palla

School of Computing and Informatics
Arizona State University, Tempe, AZ, USA
{j ool ee, Ravi.Palla}@su. edu

Abstract. Recently, the stable model semantics was extended to a ranezaj
syntax beyond the rule form. Cabalar and Ferraris, as wé€lbdslar, Pearce, and
Valverde, showed that any propositional theory under thklstmodel semantics
can be turned into a logic program. In this note, we presenagether proof
of this result. Unlike the other approaches that are basetth@togic of here-
and-there, our proof uses familiar properties of clasdiogic, and provides a
different explanation of the reduction in terms of clasklogic. Based on this
idea, we present a prototype implementation of proposititimeories under the
stable model semantics by calling the answer set saer. Using the same
reduction idea, we also note that every first-order formuldeu the stable model
semantics is strongly equivalent to a prenex normal formsghmatrix has the
form of a logic program.

1 Introduction

Recently, the stable model semantics was extended to a neoera syntax, which
is beyond the rule form [1, 2]. Ferraris [2] showed that nonotone aggregates can
be naturally expressed in the extended syntax. On the otatt,lCabalar and Fer-
raris [3] showed that every propositional theory under ttable model semantics is
strongly equivalent [4] to a logic program. They provide@dtmroofs based on the logic
of here-and-there, one by syntactic transformation, aeadther by constructing a logic
program using countermodels of the theory. An approacHhaina the first proof was
taken in [5], where the authors presented a set of rules feritieg a propositional
theory into a disjunctive logic program. These rules arexarsion of the rules for
turning a program with nested expressions into a logic pnogi6], which led to an im-
plementatiornLP [7]. The system is essentially a preprocessor to the ansvaps/er
pLv ! for handling programs with nested expressions.

In this note, we present yet another proof of the theorem mmgtequivalence
between propositional theories and logic programs. Unlikeother approaches that are
based on the logic of here-and-there, our proof is based opamtor that characterizes
strong equivalence in terms of classical logic, using amrmked signature with two
groups of atoms, the original one corresponding to the &hetorld, and a group of
newly introduced atoms referring to the “here” world. Thegfruses familiar properties

Yhttp://ww. dbai .t uwi en. ac. at/ proj /dl v/

of classical logic, and provides a different explanatiortte# reduction in terms of
classical logic. This not only shows that the reduction issilale, but also tells us how
to generatestrongly equivalent logic programs based on equivalenc&ssical logic.

The reduction idea has led us to develop a prototype impléatien, which we call
F2LP,2 that computes the stable models of an arbitrary proposititweory. Similar to
NLP, the system turns a propositional theory into a disjundtigéc program and calls
DLV to compute the stable models.

We also apply the reduction idea to first-order formulas utitke new definition of
stable model semantics, recently proposed in [8]. We shaivahy first-order theory
under the stable model semantics can be turned into a premeahform whose matrix
has the form of a logic program. Thus the syntactic diffeeent arbitrarily nested
connectives and quantifiers is not essential between tlggidaye proposed in [8] and
logic programs. On the other hand, since the prenex normalifitay contain existential
quantifiers, it is different from a logic program, where akriables are assumed to be
universally quantified.

In the next section we review the definition of stable modelsafbitrary propo-
sitional formulas as well as the definition of strong equeéwale for propositional for-
mulas, and present how to find a logic program that is equivatea given formula.
In Section 3 we present a simpler transformation, and ini@edt we extend the re-
duction idea to arbitrary first-order formulas and note #aary first-order theory is
strongly equivalent to a prenex normal form. In Section 5 wesent a prototype im-
plementation of computing the stable models of proposititimeories.

2 Reducing propositional formulas to logic programs

We first review the definition of a stable model proposed in] restricting attention
to the propositional case. This definition is closely raddtethe encoding of formulas
in equilibrium logic by quantified Boolean formulas given[8], and is equivalent to
the fixpoint definition of a stable model proposed in [2].

Let F' be a (propositional) formula antla signature consisting of all atoms, . . ., p,,
occurring inF'. By SM[F'] we denote the second-order propositional sentence

F AVu((u < p) — =F*(u)),

wherep stands for the tuple, . .., p,, uis a list ofn distinct propositional variables
ui,. .., u,, andF™*(u) is defined recursively, as follows:

- Pi = Ui

- 1*=1;

- (F®G)* = F* © G*, where® € {A,V};
- (F—>G)*=(F*—=G*)N(F — Q).

We regard-F' as shorthand foF" — . Note that— corresponds tmot in the logic
program syntax. For instance, the rule

p < Notq

2http://peace. eas. asu. edu/f2l p .

is identified with the formula
-q—p.

The operatof’ — F*(u) replaces each atom with the corresponding propositional
variable, and commutes with all propositional connectigrsept implication. If, in
the definition of this operator, we drop the second conjuedirm in the clause for
implication, thenF™* (u) will turn into the formulaF'(u) referred to in the definition of
circumscription [10, 11]. A model of" is stableif it satisfies SMF].

According to [12, Section 2.6], a (propositional) formulais said to be strongly
equivalent to a formul&- if any formulaF” that contains an occurrence Bfhas the
same stable models as the form@aobtained fromF’ by replacing that occurrence
with G. This condition is more general than the original definitfoom [4] not only
because it is applicable to arbitrary formulas, but als@mhbseef" is allowed here to be
any subformula o, not necessarily a “subconjunction.”

Our reduction idea is based on the following propositiomfr[8], which gener-
alizes the main theorem from [13], telling us that the strengivalence between the
two formulas coincides with the equivalence (in classiogiid) between their trans-
formations of an extended signature. kéte a signature consisting of distinct atoms
{p},...,p,} that are disjoint fronw, and letp’ stand for the tuple’, . .., p/,. Formula
F*(p') is obtained fromF™ (u) by substituting the atomg’ for the tuple of proposi-
tional variablesa1r. ThusF*(p’) is a transformation of’ whose signature is U o’.

Proposition 1 [8, Proposition 5] Formulast’ andG of signatures are strongly equiv-
alent iff

p' <p— (F(p') <« G*(p)) 1)

is a tautology.

As usual, a formuld’ is in negation normal forrif, for every subformulaz — H
of F', formulaG is an atom, and/ is .. An occurrence of a formul& in a formulaF’
is positiveif the number of implications in¥’ containing the occurrence @f in the
antecedent is even, anegativeotherwise.

Definition 1. An implicationF — G of signatures U ¢’ is called acanonical impli-
cationif F' andG are formulas in negation normal form such that every ocauceeof
atoms fromy”’ is positive, and every occurrence of atoms fiens negative.

For example,
pAqg—T
is not canonical, while
'V (=g A1) = (8" A=) ()
is canonical.
Given a formulaF of signatures U ¢/, by R(F') we denote the formula of signa-

ture o that is obtained fron¥ by dropping all occurrences 6in F. Note thatR(F),
whereF is a canonical implication, can be identified with a logic gnam with nested

expressions [6], by identifying=" with not, ‘A’ with * ’, and v’ with * ;". For instance,
in logic programming notation, whefi is (2), R(F') can be written as

s, notp «— p; (notgq, r) .

The following theorem tells us how to obtain a logic prograguigalent to a for-
mula.

Theorem 1 Given a formulaF’, if G is a conjunction of canonical implications that is
equivalent toF'*, thenF’ and R(G) are strongly equivalent.

The proof of Theorem 1 uses the observation that
P <p— (F" < (RG)) (©)

is a tautology. In view of Proposition 1, it follows th&tand R(G) are strongly equiv-
alent. The fact that every propositional theory is stroregjyivalent to a logic program
follows from the fact that every formul&* can be equivalently rewritten as a conjunc-
tion of canonical implications. One way to do this is by fongia conjunctive normal
form (CNF) of F*(p’), and then converting each of its clauses into a canonicdidaip
tion as follows. Given a clausg of signaturerUo’, by Tr(C') we denote an implication
whose antecedent is the conjunction of

— all p’ where—p’ € C, and
— all =p wherep € C,

and whose consequent is the disjunction of

— all p’ wherep’ € C, and
— all -p where—p € C.

For instance, it” is (p' V¢’ VrV —s), thenTr(C) is (¢ A—r — p’ vV —s). We can take
G in the statement of Theorem 1 to be the conjunctior¢€) for all clause<” in a
conjunctive normal form of™*. In view of Proposition 1, it follows that every formula
is strongly equivalent to a logic program of the form

at;...;ag;Notagyq;...;N0ta; < aj+1,...,am, N0 A, +1,...,N0tay,

(0 <k <1< m < n)where alla; are atoms.
Examplel F = (p —q) — r.

(=) =) =0 —=)NP—q)—=1)A((p—q) —T)
= (' VpVI)N (= Vp V) APV gV) A(=g' Vg Vi)
ANpVr)A(-qgVrT).

3 For convenience, we will often drogp’)” from F*(p’) when there is no confusion.

Under the assumption thét’, ¢’, ') < (p, ¢, r), the formula can be simplified as
(pVIYAND' NV -gVT)YN(=g VTN (g V).
Applying Tr to each clause yields the following formuta
(p =) A"V =g V) A —1") A (= =). (4)
ThusR(G) is
(op =) A(pV—=qVr)Alg—r1)A(-r — —q). ()
In logic programming notation, (5) can be written as follows
r < notp
p; notg; r

T — ¢
notqg «— notr .

(6)

Theorem 1 tells us that logic program (6) is strongly eqemato(p — q) — r.
Example2 F=p — ((¢—r) Vs).

p—=((g—=r)Vvs) =@ — (((d =r")A(g=7)V))A(p—(g—71)Vs)
= (' V(=g V')A (=g VT) V) A(=pV (g V) Vs)
S (P Vg VI VS)A (P VgV rVSYA(mpV gV TV s).

Applying Tr to each clause yields the following formuta

P'ANg =1 VSYANP AN —=qVs)A(=rA=s— —pV—q). (7
ThusR(G) is
(pAg—=1rVs)A(PA-T——gVs)A(-rA-s— —pV-g). (8)

In logic programming notation, (8) can be written as follows
rys =D g
notq; s <« p, notr 9)
notp; notq < notr, nots .

Theorem 1 tells us that logic program (9) is strongly eqeméto formulap — ((¢ — 7) V s).

3 Simpler Transformation

The following observation shows how to disregard some rddunnies with the transla-
tion introduced in the previous section.

Proposition 2 Let F' be a propositional formula of signature Under the assumption
p’ < p,if F*is equivalenttd? A H whereG is a conjunction of canonical implications
and H is a formula of signature that is entailed byR(G), then F* is equivalent to
(R(G))".

Example I'. F = (p — ¢q) — r as in Example 1. Note that in (4), the last implication
(—r — —q) is entailed by

R((=p = 1) AN@' V=gV)A(d — 1))
Therefore, by Proposition Z* is equivalent to

(p=r)A(pV—=gVr)A(g—T))"

In other words, in view of Proposition F is strongly equivalent to the first three rules
of (6).

Example 2. F = p — ((¢ —) V s) as in Example 2. Note that in (7), the last
implication is entailed by

R(p'ANg =7 VSYNP' N1 ——qVs)).
Therefore in view of Proposition Z'* is equivalent to
(PAg—=rVs)A(pA-r— g Vs)).

In other words, in view of Proposition F; is strongly equivalent to the first two rules
of (9).

Based on Proposition 2, we consider the following definitibat will lead to a
smaller translation than relying dfi*.

Definition 2. For any formulaF' of signatures, F°(u) is defined as follows:

—pfzui;

- 1°=1;

- (FVG)° =F*VvG*

- (FAG)*=F°ANG®;

- (F - G) =(F*— G").

Note thatF is different fromF™* when we identifyF’ with a conjunctionF; A --- A F,, (n > 1),
Feis
FPN---NFS
where

G*— H* if FjisG — H,
Er otherwise.

The following proposition tells us that, in Theorem#l, can be considered in place
of F™*.

Proposition 3 Given a formulaF', if G is a conjunction of canonical implications that
is equivalent taF°, thenF and R(G) are strongly equivalent.

Example I F = (p — gq) — r as in Example 1. Under the assumption that
@, d,r") < (. q,7),

P d)= (' = d)N(p—q) — 7

< (pVr)AE V=gV) A (=g Vi)

= (p—=r)AN@ VgV A (g =)
ThusF is strongly equivalent to

(7p =) APV —ogVr)Alg—r),

which is the same as in Examplé 1
Example 2’ F = p — ((¢ — r) V s) as in Example 2. Under the assumption that
®.q,r",s") < (p.q,r9),

Fop'.d 1" s)=p = (((d =) A(g—=1) V)
= (p'V-g Vvr'Vs)YAN(=p'VqgVrVvs)
(PN =1 VSYNP N1 ——qVs).

ThusF is strongly equivalent to
(PAg—=rVs)A(pA-T—=qVs),
which is the same as in Examplé 2

Due to lack of space, we do not provide a detailed comparistmden our transla-
tion method and the others. However, we note that Theorent &y shows that the
reduction is possible, but also tells us how to generataglyocequivalent logic pro-
grams of preferably smaller size, based on the notion ofvatgnce in classical logic.
This is in contrast with the others based on syntactic r@vgritules under the logic of
here-and-there. For instance, given a formula

(p—=aq)—r)—r
our translation yields the following program:

q; T;notr«—p
notp <« notgq .

On the other hand, the following program is obtained accwyth Section 3 of [5].

notp; r < notq
T
q;r;notr«—p

notp; r; notr < notgq .

However, clearly, any translation according to Proposit®o(or Theorem 1) in-
volves an exponential blowup in size in the worst case. lddiéés shown in [5] that
there is no polynomial translation from propositional tfies to logic programs if we
do not introduce new atoms, and that there is one if we all@mth

4 Prenex Normal Form of First-Order Formulas

The translation from an arbitrary propositional theoryiatlogic program shows that
their syntactic difference is not essential, which allowistng answer set solvers to
compute the stable models of arbitrary propositional fdasuCan the result be ex-
tended to first-order formulas, of which the stable modela®ruos is presented in [8]?
We begin with a review of the stable model semantics preddntg8], which ex-
tends the definition of a stable model reviewed in Section firsb-order sentences.
Given a first-order sentendg, by SM F] we denote the second-order sentence

F AYu((u < p) — —F*(u)),

wherep stands for the list of all predicate constapts. .., p, occurring inF’, u is a
list of n distinct predicate variables, , . .., u,, and F*(u) is defined recursively, as
follows:

- pi(th Ce ,tm)* = ui(tl, Ce ,tm),

= (ti=t2)" = (ti=t2);

- 1*=1;

- (F®G)* = F* © G*, where® € {A,V};
- (F->G)*=(F*—=G*)N(F — Q)

— (QxF)* = QxzF*, whereQ € {V,3}.

A model of F' is stableif it satisfies SMF]. For the definition of strong equivalence
extended to first-order formulas, we refer the reader toi@edtof [8].

Proposition 1 can be extended to the case wheaedG are first-order formulas [8,
Proposition 5], and”™ can be turned into a prenex normal form. Also, Theorem 1 can
be straightforwardly extended to quantifier-free firsterfbrmulas, as follows.

Afirst-order formulaF’ is in negation normal forrif, for every subformulaz — H
of F,

— formulaG is an atomic formula, and
— formulaH is L.

Similarly, signatures’ is obtained fromo by replacing all predicate constanis
with p’.

Definition 3. An implicationF — G of signatures U ¢’ is called acanonical impli-
cationif F' and G are formulas in negation normal form such that every ocawee

of predicate constants from? is positive, and every occurrence of predicate constants
from o is negative.

For any clause&” in a CNF of a quantifier-free first order formul&;(C') can be
extended in a straightforward way. The equality can be pl@ither in the consequent
or the antecedent (properly negated).

Theorem 2 Any first-order formula under the stable model semanticsangly equiv-
alent to a prenex normal form whose matrix is a conjunctiomydlicationsF’ — G
whereF andG are formulas in negation normal form.

The matrix of a prenex normal form indicated in Theorem 2 ihanform of a logic
program. Thus, similar to the propositional case, the syittaifference of arbitrarily
nested connectives and quantifiers is not essential betilvearew language proposed
in [8] and logic programs. On the other hand, since the prewemal form may con-
tain existential quantifiers, it is different from a logicogiram, where all variables are
assumed to be universally quantified. For instance, acogtdi [8], the stable models
of formula

Jz p(z) . (10)

represent thap is a singleton, as in circumscription. This has no countgiipdogic
programs, since their stable models are limited to Herbirsedpretations. For a related
discussion, see [14].

5 Implementation

Our implementation, which we caPLP, turns an arbitrary propositional theory into a
logic program and callsLv to compute its stable models. When the input is already in
the syntax obLv input language, its operation is just as wbhav does. The system is
available at

http://peace. eas. asu. edu/f2lp .

The ASCII representations of propositional connectivesiua the syntax of2Lp
are summarized in the following chart:

Symbol - A v |- L |T
ASCllrepresentation [not [& || |-> [false [true

Example 1 is written in the syntax 62LP as follows:

(p->q)->r.

F2LP turns this formula into the followingLv input:

r :- not p.

pl r | g.bar :-.
r:- g.

g_bar :- not q.
- g, g_bar.

Note that this program is slightly different from the logimgram shown in Exampl€ 1
(the first three rules of (6)). This is becausev, like most other answer set solvers,
does not allow negation as failure in the head of a rule. Hewedt/can be simulated
by introducing new atoms (Section 4 of [15]). The methodaepé the occurrence of
notp in the head of a rule with a new atgmand adds ruleg < notp and« p,p. The
stable models of the program correspond to the stable mofitsls original program by
disregarding the presence of the new atoms. In the exampleahbar is a new atom
that is introduced, and the last two rules are added. A2ep callsDLv to compute
the stable models, it removes all occurrences of the newsatatmar ") from the stable
models returned bpLv.

Example 2 is written in our syntax as follows:

p->((g->r) | s).

This is turned into the followin@Lv input by F2LP:

rl s:-p @

g_bar | s :- p, not r.
g_bar :- not q.
‘- g, g_bar.

6 Conclusion

Our contributions in this note are as follows. First, we prasd a new proof of the the-
orem on strong equivalence between propositional theariddogic programs. Unlike
the other approaches that are based on the logic of her¢hengl-our proof relies on
familiar properties of classical logic. Due to this factyquoof indicates how corre-
sponding logic programs can be generated using equivatargformations in classical
logic. Second, using the same reduction idea, we showedthgtary first-order for-
mulas under the stable model semantics, recently propad& ican be turned into a
prenex normal form whose matrix has the form of a logic prograhird, we presented
a prototype implementation for computing the stable modetrbitrary propositional
formulas based on the reduction method.

For future work, we plan to investigate how the methods ofithg minimally
equivalent theories in classical logic can be applied toifigdninimally equivalent
logic programs. Recently, Cabalat al.[16] proposed two notions of minimal logic
programs. It would be interesting to see how these ideashated.

Acknowledgements

We are grateful to Paolo Ferraris, Vladimir Lifschitz ané tinonymous referees for
useful comments on this paper. The authors were partigtigated by DTO AQUAINT.

10

A Appendix: Proof of Theorem 1

Due to lack of space, we present the proof of Theorem 1 onligiwiollows immedi-
ately from Proposition 1 and the following proposition.

Proposition 4 Let F' be a formula of signature and G' a conjunction of canonical
implications that is equivalent t6. Then

p' <p— (F" < (R(G)))
is a tautology.
The proof of Proposition 4 uses the following lemmas.
Lemma 1. For any formulaF’ of signatures, the formula
p'<p— (F'(p)) = F)
is logically valid.

Proof. By induction. §

Lemma 2. Every formulaF' is equivalent taR(F™).

Proof. By induction.

Lemma 3. For any two formulag’ and G of signatures U ¢”,
(F < G) — (R(F) < R(G))

is a tautology.

Proof. Assume thatF" < G holds for all interpretations of U ¢’. In particular,
they contain interpretations such thap! = (p’)! for all p € p. It is clear that for
such interpretations, F! = R(F)! andG! = R(G)!, from whichR(F)! = R(G)!

follows. Since sucH range over all interpretations of it follows thatR(F) — R(G).

|

Lemma 4. Let F' be a formula in negation normal form of signatureJ o’ such that
every occurrence of atoms fras is positive, and every occurrence of atoms froris
negative. Then

P <p— (F< (R(F)))

is a tautology.

Proof. By induction using Proposition 2 from [8]. I

Lemma 5. For any canonical implicatior’ of signatures U o,
(p' <p) = (FAR(F)) < (R(F))")

is a tautology.

11

Proof. By induction using Lemma 4 and the definition®f 1

Proof of Proposition 4. Assumep’ < p andF* «— G. By Lemma 1,F’* — F holds,
so it holds that™ is equivalent ta= A F'. SinceF is equivalent taR(F*) according to
Lemma 2,G A F is equivalent taz A R(F™*), which, in turn, is equivalent t&! A R(G)
according to Lemma 3. by Lemma 5, it follows ti@n R(G) is equivalent tq R(G))*.

References

1.

10.

11.

12.

13.

14.

15.

16.

Pearce, D.: A new logical characterization of stable n®dad answer sets. In Dix, J.,
Pereira, L., Przymusinski, T., eds.: Non-Monotonic Extens of Logic Programming (Lec-
ture Notes in Artificial Intelligence 1216), Springer-\agl (1997) 57-70

. Ferraris, P.: Answer sets for propositional theoriesPhoceedings of International Confer-

ence on Logic Programming and Nonmonotonic Reasoning (LRN2005) 119-131

. Cabalar, P., Ferraris, P.: Propositional theories amngly equivalent to logic programs.

Submitted for publication (2005)

. Lifschitz, V., Pearce, D., Valverde, A.n.: Strongly elént logic programs. ACM Trans-

actions on Computational Logiz(2001) 526-541

. Cabalar, P., Pearce, D., Valverde, A.n.: Reducing piitippnal theoreis in equilibrium logic

to logic programs. In: Proceedings of 12th Portuguese @enée on Artificial Intelligence
(EPIA 2005). (2005) 4-17

. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressian logic programs. Annals of

Mathematics and Atrtificial Intelligenc2s (1999) 369-389

. Sarsakov, V., Schaub, T., Tompits, H., Woltran, S.: nlgofnpiler for nested logic program-

ming. In Lifschitz, V., Niemelg, ., eds.: Proceedingslué tSeventh International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR'®8lume 2923 of Lec-
ture Notes in Computer Science., Springer-Verlag Heidgl(2003) 361 — 364

. Ferraris, P., Lee, J., Lifschitz, V.: A new perspectivesteible models. In: Proceedings of

International Joint Conference on Artificial Intelligen@@CAl). (2007)

. Pearce, D., Tompits, H., Woltran, S.: Encodings for égtitim logic and logic programs

with nested expressions. In: Proceedings of Portuguestefamee on Artificial Intelligence
(EPIA). (2001) 306—-320

MccCarthy, J.: Circumscription—a form of non-monotoreasoning. Artificial Intelligence
13(1980) 27-39,171-172

Lifschitz, V.: Circumscription. In Gabbay, D., Hogg€r, Robinson, J., eds.: The Handbook
of Logic in Al and Logic Programming. Volume 3. Oxford Unigdly Press (1994) 298-352
Ferraris, P., Lifschitz, V.: Mathematical foundatiasfsanswer set programming. In: We
Will Show Them! Essays in Honour of Dov Gabbay. King's Co#idgublications (2005)
615-664

Lin, F.: Reducing strong equivalence of logic programsrtailment in classical proposi-
tional logic. In: Proceedings of International ConferencePrinciples of Knowledge Rep-
resentation and Reasoning (KR). (2002) 170-176

Texas Action Group: Technical discussions: Do we neéstaxial quantifiers in logic
programming? (2007)

http://ww. cs. ut exas. edu/ users/ vl /tag/ di scussi ons. ht m

Janhunen, T.: On the effect of default negation on theessjpveness of disjunctive rules. In:
Proc. LPNMR 2001. (2001) 93-106

Cabalar, P., Pearce, D., Valverde, A.n.: Minimal logiagpams. Unpublished draft (2007)

12

