
Yet Another Proof of the Strong Equivalence Between
Propositional Theories and Logic Programs

Joohyung Lee and Ravi Palla

School of Computing and Informatics
Arizona State University, Tempe, AZ, USA
{joolee, Ravi.Palla}@asu.edu

Abstract. Recently, the stable model semantics was extended to a more general
syntax beyond the rule form. Cabalar and Ferraris, as well asCabalar, Pearce, and
Valverde, showed that any propositional theory under the stable model semantics
can be turned into a logic program. In this note, we present yet another proof
of this result. Unlike the other approaches that are based onthe logic of here-
and-there, our proof uses familiar properties of classicallogic, and provides a
different explanation of the reduction in terms of classical logic. Based on this
idea, we present a prototype implementation of propositional theories under the
stable model semantics by calling the answer set solverDLV . Using the same
reduction idea, we also note that every first-order formula under the stable model
semantics is strongly equivalent to a prenex normal form whose matrix has the
form of a logic program.

1 Introduction

Recently, the stable model semantics was extended to a more general syntax, which
is beyond the rule form [1, 2]. Ferraris [2] showed that nonmonotone aggregates can
be naturally expressed in the extended syntax. On the other hand, Cabalar and Fer-
raris [3] showed that every propositional theory under the stable model semantics is
strongly equivalent [4] to a logic program. They provided two proofs based on the logic
of here-and-there, one by syntactic transformation, and the other by constructing a logic
program using countermodels of the theory. An approach similar to the first proof was
taken in [5], where the authors presented a set of rules for rewriting a propositional
theory into a disjunctive logic program. These rules are an extension of the rules for
turning a program with nested expressions into a logic program [6], which led to an im-
plementationNLP [7]. The system is essentially a preprocessor to the answer set solver
DLV 1 for handling programs with nested expressions.

In this note, we present yet another proof of the theorem on strong equivalence
between propositional theories and logic programs. Unlikethe other approaches that are
based on the logic of here-and-there, our proof is based on anoperator that characterizes
strong equivalence in terms of classical logic, using an extended signature with two
groups of atoms, the original one corresponding to the “there” world, and a group of
newly introduced atoms referring to the “here” world. The proof uses familiar properties

1 http://www.dbai.tuwien.ac.at/proj/dlv/ .

of classical logic, and provides a different explanation ofthe reduction in terms of
classical logic. This not only shows that the reduction is possible, but also tells us how
to generatestrongly equivalent logic programs based on equivalence inclassical logic.

The reduction idea has led us to develop a prototype implementation, which we call
F2LP,2 that computes the stable models of an arbitrary propositional theory. Similar to
NLP, the system turns a propositional theory into a disjunctivelogic program and calls
DLV to compute the stable models.

We also apply the reduction idea to first-order formulas under the new definition of
stable model semantics, recently proposed in [8]. We show that any first-order theory
under the stable model semantics can be turned into a prenex normal form whose matrix
has the form of a logic program. Thus the syntactic difference of arbitrarily nested
connectives and quantifiers is not essential between the language proposed in [8] and
logic programs. On the other hand, since the prenex normal form may contain existential
quantifiers, it is different from a logic program, where all variables are assumed to be
universally quantified.

In the next section we review the definition of stable models for arbitrary propo-
sitional formulas as well as the definition of strong equivalence for propositional for-
mulas, and present how to find a logic program that is equivalent to a given formula.
In Section 3 we present a simpler transformation, and in Section 4 we extend the re-
duction idea to arbitrary first-order formulas and note thatevery first-order theory is
strongly equivalent to a prenex normal form. In Section 5 we present a prototype im-
plementation of computing the stable models of propositional theories.

2 Reducing propositional formulas to logic programs

We first review the definition of a stable model proposed in [8], by restricting attention
to the propositional case. This definition is closely related to the encoding of formulas
in equilibrium logic by quantified Boolean formulas given in[9], and is equivalent to
the fixpoint definition of a stable model proposed in [2].

LetF be a (propositional) formula andσ a signature consisting of all atomsp1, . . . , pn

occurring inF . By SM[F] we denote the second-order propositional sentence

F ∧ ∀u((u < p)→ ¬F ∗(u)),

wherep stands for the tuplep1, . . . , pn, u is a list ofn distinct propositional variables
u1, . . . , un, andF ∗(u) is defined recursively, as follows:

– p∗
i

= ui;
– ⊥∗ = ⊥;
– (F �G)∗ = F ∗ �G∗, where� ∈ {∧,∨};
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G).

We regard¬F as shorthand forF → ⊥. Note that¬ corresponds tonot in the logic
program syntax. For instance, the rule

p← not q

2 http://peace.eas.asu.edu/f2lp .

2

is identified with the formula
¬q → p .

The operatorF 7→ F ∗(u) replaces each atom with the corresponding propositional
variable, and commutes with all propositional connectivesexcept implication. If, in
the definition of this operator, we drop the second conjunctive term in the clause for
implication, thenF ∗(u) will turn into the formulaF (u) referred to in the definition of
circumscription [10, 11]. A model ofF is stableif it satisfies SM[F].

According to [12, Section 2.6], a (propositional) formulaF is said to be strongly
equivalent to a formulaG if any formulaF ′ that contains an occurrence ofF has the
same stable models as the formulaG′ obtained fromF ′ by replacing that occurrence
with G. This condition is more general than the original definitionfrom [4] not only
because it is applicable to arbitrary formulas, but also becauseF is allowed here to be
any subformula ofF ′, not necessarily a “subconjunction.”

Our reduction idea is based on the following proposition from [8], which gener-
alizes the main theorem from [13], telling us that the strongequivalence between the
two formulas coincides with the equivalence (in classical logic) between their trans-
formations of an extended signature. Letσ′ be a signature consisting of distinct atoms
{p′1, . . . , p

′

n
} that are disjoint fromσ, and letp′ stand for the tuplep′1, . . . , p

′

n
. Formula

F ∗(p′) is obtained fromF ∗(u) by substituting the atomsp′ for the tuple of proposi-
tional variablesu. ThusF ∗(p′) is a transformation ofF whose signature isσ ∪ σ′.

Proposition 1 [8, Proposition 5] FormulasF andG of signatureσ are strongly equiv-
alent iff

p
′ ≤ p→ (F ∗(p′)↔ G∗(p′)) (1)

is a tautology.

As usual, a formulaF is in negation normal formif, for every subformulaG→ H

of F , formulaG is an atom, andH is⊥. An occurrence of a formulaG in a formulaF

is positive if the number of implications inF containing the occurrence ofG in the
antecedent is even, andnegativeotherwise.

Definition 1. An implicationF → G of signatureσ ∪ σ′ is called acanonical impli-
cationif F andG are formulas in negation normal form such that every occurrence of
atoms fromσ′ is positive, and every occurrence of atoms fromσ is negative.

For example,
p′ ∧ q → r

is not canonical, while
(p′ ∨ (¬q ∧ r′))→ (s′ ∧ ¬p) (2)

is canonical.
Given a formulaF of signatureσ ∪ σ′, by R(F) we denote the formula of signa-

tureσ that is obtained fromF by dropping all occurrences of′ in F . Note thatR(F),
whereF is a canonical implication, can be identified with a logic program with nested

3

expressions [6], by identifying ‘¬’ with not, ‘∧’ with ‘ ,’, and ‘∨’ with ‘ ;’. For instance,
in logic programming notation, whenF is (2),R(F) can be written as

s, notp ← p ; (not q, r) .

The following theorem tells us how to obtain a logic program equivalent to a for-
mula.

Theorem 1 Given a formulaF , if G is a conjunction of canonical implications that is
equivalent toF ∗, thenF andR(G) are strongly equivalent.3

The proof of Theorem 1 uses the observation that

p
′ ≤ p→ (F ∗ ↔ (R(G))∗) (3)

is a tautology. In view of Proposition 1, it follows thatF andR(G) are strongly equiv-
alent. The fact that every propositional theory is stronglyequivalent to a logic program
follows from the fact that every formulaF ∗ can be equivalently rewritten as a conjunc-
tion of canonical implications. One way to do this is by forming a conjunctive normal
form (CNF) ofF ∗(p′), and then converting each of its clauses into a canonical implica-
tion as follows. Given a clauseC of signatureσ∪σ′, byTr(C) we denote an implication
whose antecedent is the conjunction of

– all p′ where¬p′ ∈ C, and
– all ¬p wherep ∈ C,

and whose consequent is the disjunction of

– all p′ wherep′ ∈ C, and
– all ¬p where¬p ∈ C.

For instance, ifC is (p′∨¬q′∨r∨¬s), thenTr(C) is (q′∧¬r → p′∨¬s). We can take
G in the statement of Theorem 1 to be the conjunction ofTr(C) for all clausesC in a
conjunctive normal form ofF ∗. In view of Proposition 1, it follows that every formula
is strongly equivalent to a logic program of the form

a1; . . . ; ak; notak+1; . . . ; notal ← al+1, . . . , am, notam+1, . . . , notan

(0 ≤ k ≤ l ≤ m ≤ n) where allai are atoms.

Example 1 F = (p→ q)→ r.

((p→ q)→ r)∗ = (((p′ → q′) ∧ (p→ q))→ r′) ∧ ((p→ q)→ r)

↔ (p′ ∨ p ∨ r′) ∧ (¬q′ ∨ p ∨ r′) ∧ (p′ ∨ ¬q ∨ r′) ∧ (¬q′ ∨ ¬q ∨ r′)

∧ (p ∨ r) ∧ (¬q ∨ r) .

3 For convenience, we will often drop “(p′)” from F
∗(p′) when there is no confusion.

4

Under the assumption that(p′, q′, r′) ≤ (p, q, r), the formula can be simplified as

(p ∨ r′) ∧ (p′ ∨ ¬q ∨ r′) ∧ (¬q′ ∨ r′) ∧ (¬q ∨ r) .

Applying Tr to each clause yields the following formulaG:

(¬p→ r′) ∧ (p′ ∨ ¬q ∨ r′) ∧ (q′ → r′) ∧ (¬r → ¬q). (4)

ThusR(G) is

(¬p→ r) ∧ (p ∨ ¬q ∨ r) ∧ (q → r) ∧ (¬r → ¬q) . (5)

In logic programming notation, (5) can be written as follows:

r ← notp
p ; not q ; r

r ← q

not q ← not r .

(6)

Theorem 1 tells us that logic program (6) is strongly equivalent to(p→ q)→ r.

Example 2 F = p→ ((q → r) ∨ s).

(p→ ((q → r) ∨ s))∗ = (p′ → (((q′ → r′) ∧ (q → r)) ∨ s′)) ∧ (p→ (q → r) ∨ s)

↔ (¬p′ ∨ (((¬q′ ∨ r′) ∧ (¬q ∨ r)) ∨ s′)) ∧ (¬p ∨ (¬q ∨ r) ∨ s)

↔ (¬p′ ∨ ¬q′ ∨ r′ ∨ s′) ∧ (¬p′ ∨ ¬q ∨ r ∨ s′) ∧ (¬p ∨ ¬q ∨ r ∨ s) .

Applying Tr to each clause yields the following formulaG:

(p′ ∧ q′ → r′ ∨ s′) ∧ (p′ ∧ ¬r → ¬q ∨ s′) ∧ (¬r ∧ ¬s→ ¬p ∨ ¬q) . (7)

ThusR(G) is

(p ∧ q → r ∨ s) ∧ (p ∧ ¬r → ¬q ∨ s) ∧ (¬r ∧ ¬s→ ¬p ∨ ¬q) . (8)

In logic programming notation, (8) can be written as follows:

r ; s ← p, q

not q ; s ← p, not r
notp ; not q ← not r, nots .

(9)

Theorem 1 tells us that logic program (9) is strongly equivalent to formulap→ ((q → r) ∨ s).

3 Simpler Transformation

The following observation shows how to disregard some redundancies with the transla-
tion introduced in the previous section.

5

Proposition 2 LetF be a propositional formula of signatureσ. Under the assumption
p
′ ≤ p, if F ∗ is equivalent toG∧H whereG is a conjunction of canonical implications

andH is a formula of signatureσ that is entailed byR(G), thenF ∗ is equivalent to
(R(G))∗.

Example 1′. F = (p → q) → r as in Example 1. Note that in (4), the last implication
(¬r → ¬q) is entailed by

R((¬p→ r′) ∧ (p′ ∨ ¬q ∨ r′) ∧ (q′ → r′)).

Therefore, by Proposition 2,F ∗ is equivalent to

((¬p→ r) ∧ (p ∨ ¬q ∨ r) ∧ (q → r))∗.

In other words, in view of Proposition 1,F is strongly equivalent to the first three rules
of (6).

Example 2′. F = p → ((q → r) ∨ s) as in Example 2. Note that in (7), the last
implication is entailed by

R((p′ ∧ q′ → r′ ∨ s′) ∧ (p′ ∧ ¬r → ¬q ∨ s′)) .

Therefore in view of Proposition 2,F ∗ is equivalent to

((p ∧ q → r ∨ s) ∧ (p ∧ ¬r → ¬q ∨ s))∗.

In other words, in view of Proposition 1,F is strongly equivalent to the first two rules
of (9).

Based on Proposition 2, we consider the following definitionthat will lead to a
smaller translation than relying onF ∗.

Definition 2. For any formulaF of signatureσ, F �(u) is defined as follows:

– p�
i

= ui;
– ⊥� = ⊥;
– (F ∨G)� = F ∗ ∨G∗;
– (F ∧G)� = F � ∧G�;
– (F → G)� = (F ∗ → G∗).

Note thatF � is different fromF ∗ when we identifyF with a conjunctionF1 ∧ · · · ∧ Fn (n ≥ 1),
F � is

F �

1 ∧ · · · ∧ F �

n

where

F �

i
=

{

G∗ → H∗ if Fi is G→ H,

F ∗

i
otherwise.

The following proposition tells us that, in Theorem 1,F � can be considered in place
of F ∗.

6

Proposition 3 Given a formulaF , if G is a conjunction of canonical implications that
is equivalent toF �, thenF andR(G) are strongly equivalent.

Example 1′′ F = (p → q) → r as in Example 1. Under the assumption that
(p′, q′, r′) ≤ (p, q, r),

F �(p′, q′, r′) = ((p′ → q′) ∧ (p→ q))→ r′

↔ (p ∨ r′) ∧ (p′ ∨ ¬q ∨ r′) ∧ (¬q′ ∨ r′)

↔ (¬p→ r′) ∧ (p′ ∨ ¬q ∨ r′) ∧ (q′ → r′) .

ThusF is strongly equivalent to

(¬p→ r) ∧ (p ∨ ¬q ∨ r) ∧ (q → r) ,

which is the same as in Example 1′.

Example 2′′ F = p → ((q → r) ∨ s) as in Example 2. Under the assumption that
(p′, q′, r′, s′) ≤ (p, q, r, s),

F �(p′, q′, r′, s) = p′ → (((q′ → r′) ∧ (q → r)) ∨ s′)

↔ (¬p′ ∨ ¬q′ ∨ r′ ∨ s′) ∧ (¬p′ ∨ ¬q ∨ r ∨ s′)

↔ (p′ ∧ q′ → r′ ∨ s′) ∧ (p′ ∧ ¬r → ¬q ∨ s′) .

ThusF is strongly equivalent to

(p ∧ q → r ∨ s) ∧ (p ∧ ¬r → ¬q ∨ s) ,

which is the same as in Example 2′.

Due to lack of space, we do not provide a detailed comparison between our transla-
tion method and the others. However, we note that Theorem 1 not only shows that the
reduction is possible, but also tells us how to generate strongly equivalent logic pro-
grams of preferably smaller size, based on the notion of equivalence in classical logic.
This is in contrast with the others based on syntactic rewriting rules under the logic of
here-and-there. For instance, given a formula

((p→ q)→ r)→ r

our translation yields the following program:

q ; r ; not r ← p

not p← not q .

On the other hand, the following program is obtained according to Section 3 of [5].

not p ; r ← not q
r ← r

q ; r ; not r ← p

notp ; r ; not r ← not q .

7

However, clearly, any translation according to Proposition 3 (or Theorem 1) in-
volves an exponential blowup in size in the worst case. Indeed, it is shown in [5] that
there is no polynomial translation from propositional theories to logic programs if we
do not introduce new atoms, and that there is one if we allow them.

4 Prenex Normal Form of First-Order Formulas

The translation from an arbitrary propositional theory into a logic program shows that
their syntactic difference is not essential, which allows existing answer set solvers to
compute the stable models of arbitrary propositional formulas. Can the result be ex-
tended to first-order formulas, of which the stable model semantics is presented in [8]?

We begin with a review of the stable model semantics presented in [8], which ex-
tends the definition of a stable model reviewed in Section 2 tofirst-order sentences.
Given a first-order sentenceF , by SM[F] we denote the second-order sentence

F ∧ ∀u((u < p)→ ¬F ∗(u)),

wherep stands for the list of all predicate constantsp1, . . . , pn occurring inF , u is a
list of n distinct predicate variablesu1, . . . , un, andF ∗(u) is defined recursively, as
follows:

– pi(t1, . . . , tm)∗ = ui(t1, . . . , tm);
– (t1 = t2)

∗ = (t1 = t2);
– ⊥∗ = ⊥;
– (F �G)∗ = F ∗ �G∗, where� ∈ {∧,∨};
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G);
– (QxF)∗ = QxF ∗, whereQ ∈ {∀, ∃}.

A model of F is stableif it satisfies SM[F]. For the definition of strong equivalence
extended to first-order formulas, we refer the reader to Section 4 of [8].

Proposition 1 can be extended to the case whereF andG are first-order formulas [8,
Proposition 5], andF ∗ can be turned into a prenex normal form. Also, Theorem 1 can
be straightforwardly extended to quantifier-free first-order formulas, as follows.

A first-order formulaF is in negation normal formif, for every subformulaG→ H

of F ,

– formulaG is an atomic formula, and
– formulaH is⊥.

Similarly, signatureσ′ is obtained fromσ by replacing all predicate constantsp

with p′.

Definition 3. An implicationF → G of signatureσ ∪ σ′ is called acanonical impli-
cation if F and G are formulas in negation normal form such that every occurrence
of predicate constants fromσ′ is positive, and every occurrence of predicate constants
fromσ is negative.

8

For any clauseC in a CNF of a quantifier-free first order formula,Tr(C) can be
extended in a straightforward way. The equality can be placed either in the consequent
or the antecedent (properly negated).

Theorem 2 Any first-order formula under the stable model semantics is strongly equiv-
alent to a prenex normal form whose matrix is a conjunction ofimplicationsF → G

whereF andG are formulas in negation normal form.

The matrix of a prenex normal form indicated in Theorem 2 is inthe form of a logic
program. Thus, similar to the propositional case, the syntactic difference of arbitrarily
nested connectives and quantifiers is not essential betweenthe new language proposed
in [8] and logic programs. On the other hand, since the prenexnormal form may con-
tain existential quantifiers, it is different from a logic program, where all variables are
assumed to be universally quantified. For instance, according to [8], the stable models
of formula

∃x p(x) . (10)

represent thatp is a singleton, as in circumscription. This has no counterpart in logic
programs, since their stable models are limited to Herbrandinterpretations. For a related
discussion, see [14].

5 Implementation

Our implementation, which we callF2LP, turns an arbitrary propositional theory into a
logic program and callsDLV to compute its stable models. When the input is already in
the syntax ofDLV input language, its operation is just as whatDLV does. The system is
available at

http://peace.eas.asu.edu/f2lp .

The ASCII representations of propositional connectives used in the syntax ofF2LP

are summarized in the following chart:

Symbol ¬ ∧ ∨ → ⊥ >
ASCII representation not & | -> false true

Example 1 is written in the syntax ofF2LP as follows:

(p->q)->r.

F2LP turns this formula into the followingDLV input:

r :- not p.
p | r | q_bar :-.
r :- q.
q_bar :- not q.
:- q, q_bar.

9

Note that this program is slightly different from the logic program shown in Example 1′

(the first three rules of (6)). This is becauseDLV , like most other answer set solvers,
does not allow negation as failure in the head of a rule. However, it can be simulated
by introducing new atoms (Section 4 of [15]). The method replaces the occurrence of
notp in the head of a rule with a new atomp, and adds rulesp← notp and← p, p. The
stable models of the program correspond to the stable modelsof the original program by
disregarding the presence of the new atoms. In the example above,q bar is a new atom
that is introduced, and the last two rules are added. AfterF2LP calls DLV to compute
the stable models, it removes all occurrences of the new atoms (“ bar”) from the stable
models returned byDLV .

Example 2 is written in our syntax as follows:

p -> ((q->r) | s).

This is turned into the followingDLV input byF2LP:

r | s :- p, q.
q_bar | s :- p, not r.
q_bar :- not q.
:- q, q_bar.

6 Conclusion

Our contributions in this note are as follows. First, we presented a new proof of the the-
orem on strong equivalence between propositional theoriesand logic programs. Unlike
the other approaches that are based on the logic of here-and-there, our proof relies on
familiar properties of classical logic. Due to this fact, our proof indicates how corre-
sponding logic programs can be generated using equivalent transformations in classical
logic. Second, using the same reduction idea, we showed thatarbitrary first-order for-
mulas under the stable model semantics, recently proposed in [8], can be turned into a
prenex normal form whose matrix has the form of a logic program. Third, we presented
a prototype implementation for computing the stable modelsof arbitrary propositional
formulas based on the reduction method.

For future work, we plan to investigate how the methods of obtaining minimally
equivalent theories in classical logic can be applied to finding minimally equivalent
logic programs. Recently, Cabalaret al. [16] proposed two notions of minimal logic
programs. It would be interesting to see how these ideas are related.

Acknowledgements

We are grateful to Paolo Ferraris, Vladimir Lifschitz and the anonymous referees for
useful comments on this paper. The authors were partially supported by DTO AQUAINT.

10

A Appendix: Proof of Theorem 1

Due to lack of space, we present the proof of Theorem 1 only, which follows immedi-
ately from Proposition 1 and the following proposition.

Proposition 4 Let F be a formula of signatureσ and G a conjunction of canonical
implications that is equivalent toF ∗. Then

p
′ ≤ p→ (F ∗ ↔ (R(G))∗)

is a tautology.

The proof of Proposition 4 uses the following lemmas.

Lemma 1. For any formulaF of signatureσ, the formula

p
′ ≤ p→ (F ∗(p′)→ F)

is logically valid.

Proof. By induction.

Lemma 2. Every formulaF is equivalent toR(F ∗).

Proof. By induction.

Lemma 3. For any two formulasF andG of signatureσ ∪ σ′,

(F ↔ G)→ (R(F)↔ R(G))

is a tautology.

Proof. Assume thatF ↔ G holds for all interpretations ofσ ∪ σ′. In particular,
they contain interpretationsI such thatpI = (p′)I for all p ∈ p. It is clear that for
such interpretationsI, F I = R(F)I andGI = R(G)I , from whichR(F)I = R(G)I

follows. Since suchI range over all interpretations ofσ, it follows thatR(F)↔ R(G).

Lemma 4. Let F be a formula in negation normal form of signatureσ ∪ σ′ such that
every occurrence of atoms fromσ′ is positive, and every occurrence of atoms fromσ is
negative. Then

p
′ ≤ p→ (F ↔ (R(F))∗)

is a tautology.

Proof. By induction using Proposition 2 from [8].

Lemma 5. For any canonical implicationF of signatureσ ∪ σ′,

(p′ ≤ p)→ ((F ∧R(F))↔ (R(F))∗)

is a tautology.

11

Proof. By induction using Lemma 4 and the definition ofR.

Proof of Proposition 4. Assumep′ ≤ p andF ∗ ↔ G. By Lemma 1,F ∗ → F holds,
so it holds thatF ∗ is equivalent toG ∧F . SinceF is equivalent toR(F ∗) according to
Lemma 2,G∧F is equivalent toG∧R(F ∗), which, in turn, is equivalent toG∧R(G)
according to Lemma 3. by Lemma 5, it follows thatG∧R(G) is equivalent to(R(G))∗.

References

1. Pearce, D.: A new logical characterization of stable models and answer sets. In Dix, J.,
Pereira, L., Przymusinski, T., eds.: Non-Monotonic Extensions of Logic Programming (Lec-
ture Notes in Artificial Intelligence 1216), Springer-Verlag (1997) 57–70

2. Ferraris, P.: Answer sets for propositional theories. In: Proceedings of International Confer-
ence on Logic Programming and Nonmonotonic Reasoning (LPNMR). (2005) 119–131

3. Cabalar, P., Ferraris, P.: Propositional theories are strongly equivalent to logic programs.
Submitted for publication (2005)

4. Lifschitz, V., Pearce, D., Valverde, A.n.: Strongly equivalent logic programs. ACM Trans-
actions on Computational Logic2 (2001) 526–541

5. Cabalar, P., Pearce, D., Valverde, A.n.: Reducing propositional theoreis in equilibrium logic
to logic programs. In: Proceedings of 12th Portuguese Conference on Artificial Intelligence
(EPIA 2005). (2005) 4–17

6. Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals of
Mathematics and Artificial Intelligence25 (1999) 369–389

7. Sarsakov, V., Schaub, T., Tompits, H., Woltran, S.: nlp: Acompiler for nested logic program-
ming. In Lifschitz, V., Niemelä, I., eds.: Proceedings of the Seventh International Conference
on Logic Programming and Nonmonotonic Reasoning (LPNMR’04). Volume 2923 of Lec-
ture Notes in Computer Science., Springer-Verlag Heidelberg (2003) 361 – 364

8. Ferraris, P., Lee, J., Lifschitz, V.: A new perspective onstable models. In: Proceedings of
International Joint Conference on Artificial Intelligence(IJCAI). (2007)

9. Pearce, D., Tompits, H., Woltran, S.: Encodings for equilibrium logic and logic programs
with nested expressions. In: Proceedings of Portuguese Conference on Artificial Intelligence
(EPIA). (2001) 306–320

10. McCarthy, J.: Circumscription—a form of non-monotonicreasoning. Artificial Intelligence
13 (1980) 27–39,171–172

11. Lifschitz, V.: Circumscription. In Gabbay, D., Hogger,C., Robinson, J., eds.: The Handbook
of Logic in AI and Logic Programming. Volume 3. Oxford University Press (1994) 298–352

12. Ferraris, P., Lifschitz, V.: Mathematical foundationsof answer set programming. In: We
Will Show Them! Essays in Honour of Dov Gabbay. King’s College Publications (2005)
615–664

13. Lin, F.: Reducing strong equivalence of logic programs to entailment in classical proposi-
tional logic. In: Proceedings of International Conferenceon Principles of Knowledge Rep-
resentation and Reasoning (KR). (2002) 170–176

14. Texas Action Group: Technical discussions: Do we need existential quantifiers in logic
programming? (2007)
http://www.cs.utexas.edu/users/vl/tag/discussions.html .

15. Janhunen, T.: On the effect of default negation on the expressiveness of disjunctive rules. In:
Proc. LPNMR 2001. (2001) 93–106

16. Cabalar, P., Pearce, D., Valverde, A.n.: Minimal logic programs. Unpublished draft (2007)

12

