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Abstract

We provide reformulations and generalizations of
both the semantics of logic programs by Faber,
Leone and Pfeifer and its extension to arbitrary
propositional formulas by Truszczyński. Unlike the
previous definitions, our generalizations refer nei-
ther to grounding nor to fixpoints, and apply to first-
order formulas containing aggregate expressions.
In the same spirit as the first-order stable model
semantics proposed by Ferraris, Lee and Lifschitz,
the semantics proposed here are based on syntactic
transformations that are similar to circumscription.
The reformulations provide useful insights into the
FLP semantics and its relationship to circumscrip-
tion and the first-order stable model semantics.

1 Introduction
The stable model semantics is the mathematical basis of an-
swer set programming, and is one of the most well-studied
knowledge representation formalisms. Lifschitz [2010] sur-
veys thirteen different definitions of a stable model presented
in the literature. These definitions are equivalent to each other
when they are applied to normal logic programs, but are not
necessarily so for more general classes of programs. How-
ever, each of them deserves its own attention, as it provides
useful insights into the stable model semantics and answer set
programming.

The semantics defined by Faber, Leone and Pfeifer [2004;
2011] (called the FLP semantics) deserves special attention
as it provides a simple satisfactory solution to the seman-
tics of aggregates, and is implemented in the system DLV
(http://www.dlvsystem.com). It is also a basis of
HEX programs, which are an extension of answer set pro-
grams towards integration of external sources of informa-
tion that have possibly heterogeneous semantics [Eiter et al.,
2005]. Also, Dao-Tran et al. [2009] remark that the FLP se-
mantics provides a more natural basis for their Modular Logic
Programs (MLP) than the traditional Gelfond-Lifschitz se-
mantics [Gelfond and Lifschitz, 1988].

The idea of the FLP semantics is based on an interesting
modification to the traditional definition of a reduct by Gel-
fond and Lifschitz [1988]. The FLP-reduct of a program Π

relative to a set X of atoms is obtained from Π by simply re-
moving all rules whose bodies are not satisfied by X . After
then the same minimality condition as in the original defi-
nition of an answer set applies. For example, consider the
following program Π1:

p← not q r ← p
q ← not p r ← q .

(1)

The FLP-reduct of Π1 relative to X = {p, r} is

p← not q r ← p, (2)

andX is minimal among the sets of atoms that satisfy (2), and
hence is an answer set of Π1. Theorem 3.6 from [Faber et al.,
2011] asserts that this definition of an answer set is equivalent
to the traditional definition when it is applied to the syntax
of usual disjunctive programs. Indeed, the GL-reduct of Π1

relative to X [Gelfond and Lifschitz, 1988] is

p← r ← p
r ← q

(3)

and, again, {p, r} is minimal among the sets of atoms that
satisfy (3).

The FLP semantics was recently extended to arbitrary
propositional formulas by Truszczyński [2010], based on the
definition of a reduct that is similar to the one proposed
by Ferraris [2005]. However, his extension is still limited as
it allows neither variables nor aggregates.

In this paper, we extend the FLP semantics and its ex-
tension by Truszczyński, both syntactically and semanti-
cally. We consider the syntax of arbitrary first-order for-
mulas allowing aggregates. Instead of referring to ground-
ing and fixpoints, our generalized semantics are given in
terms of modifications to circumscription [McCarthy, 1980],
in the same spirit as the first-order stable model seman-
tics by Ferraris, Lee and Lifschitz [Ferraris et al., 2007;
2011]. Such uniform characterizations in the form of mod-
ified circumscription tell us how the FLP semantics and its
extension by Truszczyński are related to circumscription and
to the first-order stable model semantics.

In Section 2 we review the original FLP semantics, and
present our generalization. Likewise, in Section 3 we re-
view and generalize the extension of the FLP semantics by
Truszczyński. In Section 4 we compare these generalizations
with the first-order stable model semantics.



2 FLP Semantics
2.1 Review: Original FLP Semantics
A disjunctive rule is an expression of the form

A1 ; . . . ; Al ← Al+1, . . . , Am, not Am+1, . . . , not An (4)

(n ≥ m ≥ l ≥ 0) where each Ai is an atomic formula (pos-
sibly containing equality and 0-place connectives > and ⊥).
A disjunctive program is a set of disjunctive rules. The FLP
semantics for a disjunctive program in [Faber et al., 2011] is
given in terms of grounding and fixpoints. By σ(Π) we de-
note the signature consisting of the object, function and pred-
icate constants occurring in Π. We denote by Ground(Π) the
ground instance of Π, that is, the program obtained from Π
by replacing every occurrence of object variables with every
ground term that can be constructed from σ(Π), and then re-
placing equality t = t′ with > or ⊥ depending on whether
term t is the same symbol as term t′. Given a setX of ground
atoms of σ(Π), the reduct of Π relative toX , denoted by ΠX ,
is obtained from Ground(Π) by removing every rule whose
body is not satisfied by X . Set X is called an FLP-answer set
of Π if X is minimal among the sets of atoms that satisfy ΠX

(viewed as a formula in propositional logic). For example,
for Π1 and X = {p, r} in the introduction, Π

X
1 is (2) and X

is an FLP-answer set of Π1.

2.2 Extension: First-Order FLP Semantics
We present a reformulation of the FLP semantics in the first-
order case. First, we consider a program that does not contain
aggregates, but allows rules of a more general form than (4).
We assume the following set of primitive propositional con-
nectives and quantifiers in forming formulas:

⊥, ∧, ∨, →, ∀, ∃ .
¬F is an abbreviation for F → ⊥, symbol > stands for
⊥ → ⊥, and F ↔ G stands for (F → G) ∧ (G→ F ).

A (general) rule is of the form

H ← B (5)

where H and B are arbitrary formulas in first-order logic.
Rule (4) is a special case of rule (5) when we identify not
with ¬, the head H with the disjunction of atomic formulas
and the bodyB with the conjunction of atomic formulas, pos-
sibly preceded by negation. A (general) program is a set of
(general) rules.

Let p be a list of distinct predicate constants p1, . . . , pn,
and let u be a list of distinct predicate variables u1, . . . , un.
By u ≤ p we denote the conjunction of the formulas
∀x(ui(x)→ pi(x)) for all i = 1, . . . , n where x is a list of
distinct object variables of the same length as the arity of pi,
and by u < p we denote (u ≤ p) ∧ ¬(p ≤ u). For instance,
if p and q are unary predicate constants then (u, v) < (p, q)
is

∀x(u(x)→ p(x)) ∧ ∀x(v(x)→ q(x))
∧¬(∀x(p(x)→ u(x)) ∧ ∀x(q(x)→ v(x))).

For any formula G and any list p of predicate constants,
formula G(u) is obtained from G by replacing all occur-
rences of predicates from p with the corresponding predicate
variables from u.

Let Π be a finite program whose rules have the form (5).
The FOL-representation ΠFOL of Π is the conjunction of the
universal closures of B → H for all rules (5) in Π. By
FLP[Π;p] we denote the second-order formula

ΠFOL ∧ ¬∃u(u < p ∧Π4(u)) (6)

where Π4(u) is defined as the conjunction of

∀x(B ∧B(u)→H(u)) (7)

for all rules (5) in Π, where x is the list of all (free) variables
in (5).

We will often simply write FLP[Π] instead of FLP[Π;p]
when p is the list of all predicate constants occurring in Π,
and call a model of FLP[Π] an FLP-stable model of Π.
Example 1 Consider the program Π1 in the introduction. Its
FOL-representation ΠFOL

1 is

(¬q → p) ∧ (¬p→ q) ∧ (p→ r) ∧ (q → r)

and Π41 (u, v, w) is

(¬q∧¬v → u)∧(¬p∧¬u→ v)∧(p∧u→ w)∧(q∧v → w).

Formula

ΠFOL
1 ∧ ¬∃uvw((u, v, w) < (p, q, r) ∧Π41 (u, v, w))

can be equivalently rewritten without second-order variables
as ¬(p↔ q) ∧ (r ↔ p ∨ q).

Though rule arrows (←) are treated like usual implications
in the FOL-representation of Π, they are distinguished in the
definition of Π4(u) because of the presence of ’B∧’ in (7).
If we modify Π4(u) by dropping ’B∧’ from (7), then (6)
becomes exactly CIRC[ΠFOL;p] [McCarthy, 1980]. Inter-
estingly, this small change accounts for the differences in the
two semantics, one leading to stable models and the other
leading to minimal models. For instance, classically equiva-
lent transformations preserve minimal models, but not FLP-
stable models. Each of the one-rule programs {p ← ¬q},
{q ← ¬p}, and {p ∨ q ← >} are classically equiva-
lent to each other (when we identify them with their FOL-
representations), but their FLP-stable models are different.
Formula FLP[p ← ¬q; p, q] is equivalent to p ∧ ¬q; for-
mula FLP[q ← ¬p; p, q] is equivalent to q ∧ ¬p; formula
FLP[p ∨ q ← >; p, q] is equivalent to (p ∨ q) ∨ ¬(p ∧ q),
which is also equivalent to CIRC[p ∨ q; p, q].

The following theorem states that our semantics is a proper
generalization of the semantics from [Faber et al., 2011].
Theorem 1 Let Π be a finite disjunctive program (consisting
of rules of the form (4)) containing at least one object con-
stant. The FLP-answer sets of Π are precisely the Herbrand
models of FLP[Π] whose signature is σ(Π).

It is known that the FLP semantics from [Faber et al., 2011]
has the anti-chain property: no FLP-answer set is a proper
subset of another FLP-answer set. This property is still pre-
served in our generalized semantics.
Proposition 1 For any finite general program Π, if I is an
Herbrand interpretation of σ(Π) that satisfies FLP[Π], then I
is a subset-minimal model of Π.1

1We identify an Herbrand interpretation I with the set of ground
atoms that are satisfied by I .



Clearly, circumscription can be viewed as a special case of
the FLP semantics as in the following.
Proposition 2 For any first-order sentence F and any
list p of predicate constants, CIRC[F ;p] is equivalent to
FLP[F ← >; p].

The FLP semantics can be represented by circumscription
in the following way.

Proposition 3 For any finite general program Π, formula
FLP[Π;p] is equivalent to ∃u(CIRC[Π4(u);u] ∧ (u = p)).

2.3 Extension: First-Order FLP Semantics for
Programs with Aggregates

The semantics presented in the previous section can be ex-
tended to allow aggregates by simply extending the notion of
satisfaction to cover aggregate expressions. Below we adopt
the definitions of an aggregate formula and satisfaction as
given in [Lee and Meng, 2009; Ferraris and Lifschitz, 2010].

Following [Ferraris and Lifschitz, 2010], by a number we
understand an element of some fixed set Num. For exam-
ple, Num is Z ∪ {+∞,−∞}, where Z is the set of integers.
An aggregate function is a partial function from the class of
multisets to Num. The domain of an aggregate function is de-
fined as usual. For instance, COUNT is defined for any multi-
sets; SUM, TIMES, MIN and MAX are defined for multisets of
numbers; SUM is undefined for multisets containing infinitely
many positive integers and infinitely many negative integers.

We assume that the signature σ contains symbols for all
numbers, and some collection of comparison operators that
stands for binary relations over numbers, such as≤,≥, <, >,
= and 6=. We assume that symbols for aggregate functions
are not part of the signature.

An aggregate expression of signature σ is of the form 2

OP〈x : F (x)〉 � b (8)

where
• OP is an aggregate function;
• x is a nonempty list of distinct object variables;
• F (x) is a first-order formula;
• � is a comparison operator;
• b is a term (as in first-order logic).
We define an aggregate formula as an extension of a first-

order formula by including aggregate expressions as a base
case like (standard) atomic formulas (including equality and
⊥). In other words, aggregate formulas are constructed from
atomic formulas and aggregate expressions using connectives
and quantifiers as in first-order logic. For instance,

(SUM〈x : p(x)〉 ≥ 1 ∨ ∃y q(y))→ r(x)

is an aggregate formula.
We say that an occurrence of a variable v in an aggregate

formula H is bound if the occurrence is in a part of H of the
form 〈x : F (x)〉 where v is in x, or in a part of H of the form

2The syntax of an aggregate expression considered in Ferraris
and Lifschitz [2010] is more general. The results in this paper can
be extended to the general syntax, which we omit for simplicity.

QvG. Otherwise it is free. We say that v is free in H if H
contains a free occurrence of v. An aggregate sentence is an
aggregate formula with no free variables.

The definition of an interpretation is the same as in first-
order logic. We consider only the interpretations such that
each number and each comparison operator is interpreted as
itself. Consider an interpretation I of a first-order signature σ
that may contain any function constants of positive arity. By
σ|I| we mean the signature obtained from σ by adding distinct
new object constants ξ∗, called names, for all ξ in the universe
of I . We identify an interpretation I of σ with its extension
to σ|I| defined by I(ξ∗) = ξ.

The definition of satisfaction in first-order logic is extended
to aggregate sentences as follows. Let I be an interpretation
of signature σ. Consider any aggregate expression (8) that
has no free variables. Let SI be the multiset consisting of all
ξ∗[1] (i.e. the first element of ξ∗), in the universe of I where

• ξ∗ is a list of object names of σ|I| whose length is the
same as the length of x, and
• I satisfies F (ξ∗).
An interpretation I satisfies the aggregate expression if SI

is in the domain of OP, and OP(SI) � bI . With this exten-
sion, the recursive definition of satisfaction for an aggregate
sentence is given in the same way as in first-order logic. We
say that an aggregate sentence F is logically valid if every
interpretation satisfies it. For instance, an Herbrand inter-
pretation {p(a)} satisfies COUNT〈x : p(x)〉 > 0 but does not
satisfy SUM〈x : p(x)〉 > 0 because multiset {{a}} is not in the
domain of SUM. Consider the aggregate expression

SUM〈x : p(x)〉 ≥ 0

and an Herbrand interpretation I = {p(−1), p(1)}. SI

is {{−1, 1}} and SUM(SI) = 0 ≥ 0, so I satisfies
SUM〈x : p(x)〉 ≥ 0.

Once we extend the definition of satisfaction to aggregate
sentences, we can simply extend the FLP semantics in Sec-
tion 2.2 to a general program with aggregates, whose rules
have the form

H ← B (9)
where H and B are aggregate formulas. The AF-
representation (“Aggregate Formula representation”) of a fi-
nite general program Π with aggregates is the conjunction of
the universal closures of the aggregate formulas B → H for
all rules (9) in Π. Formula FLP[Π;p] is defined the same as
(6) except that Π is now understood as a general program with
aggregates.

Example 2 Consider the following general program Π with
aggregates:

p(2) ← ¬ SUM〈x : p(x)〉 < 2
p(−1) ← SUM〈x : p(x)〉 ≥ 0
p(1) ← p(−1) .

(10)

The AF-representation of Π, denoted by ΠAF , is the follow-
ing:

(¬(SUM〈x :p(x)〉<2)→ p(2))
∧ (SUM〈x :p(x)〉≥0→ p(−1))
∧ (p(−1)→ p(1)) .

(11)



The FLP-stable models of (10) are the models of

ΠAF ∧ ¬∃u(u < p ∧Π4(u)) (12)

where Π4(u) is

(¬(SUM〈x :p(x)〉<2) ∧ ¬(SUM〈x :u(x)〉<2)→ u(2))
∧ (SUM〈x :p(x)〉≥0 ∧ SUM〈x :u(x)〉≥0→ u(−1))
∧ (p(−1) ∧ u(−1)→ u(1)) .

(13)

Below we show how this semantics is related to the orig-
inal semantics by Faber et al. [2011]. Their semantics is
defined for a special class called disjunctive programs with
aggregates, whose rules have the form

A1; . . . ;Al ← E1, . . . , Em, not Em+1, . . . , not En (14)

(l ≥ 0; n ≥ m ≥ 0), where each Ai is an atomic formula and
each Ei is an atomic formula or an aggregate expression.

As before, the original FLP semantics is defined in terms
of grounding and fixpoints. Let us assume that b in every
aggregate expression (8) is a constant. We extend the notion
Ground(Π) to a disjunctive program Π with aggregates by re-
placing every free occurrence of a variable with every ground
term that can be constructed from σ(Π) in all possible ways.

For any disjunctive program Π with aggregates and any
Herbrand interpretationX whose signature is σ(Π), the FLP-
reduct of Π relative to X is obtained from Ground(Π) by
removing every rule whose body is not satisfied by X . Set X
is an FLP-answer set of Π if it is minimal among the sets of
atoms that satisfy the FLP-reduct of Π relative to X [Faber
et al., 2011]. For example, in program (10) above, the FLP-
reduct of (10) relative to {p(−1), p(1)} contains the last two
rules only. Set {p(−1), p(1)} is minimal among the sets of
atoms that satisfy the reduct, and thus is an FLP-answer set
of (10). In fact, this is the only FLP-answer set. Also one can
check that {p(−1), p(1)} is the only Herbrand model of σ(Π)
that satisfies (12) in Example 2.

Theorem 2 Let Π be a finite disjunctive program with ag-
gregates that contains at least one object constant. The
FLP-answer sets of Π are precisely the Herbrand models of
FLP[Π] whose signature is σ(Π).

3 Truszczyński Semantics
3.1 Review: Original Truszczyński Semantics
Truszczyński [2010] defined an extension of the FLP seman-
tics to arbitrary propositional formulas, similar to the exten-
sion of the stable model semantics to arbitrary propositional
formulas by Ferraris [2005], whose idea is also related to
[Pearce, 1997; Osorio et al., 2004].

For any propositional formula F , the FLPT-reduct FX rel-
ative to a set X of atoms is defined recursively:

• AX =

{
A if X |= A,

⊥ otherwise;

• ⊥X = ⊥;

• (G�H)X =

{
GX�HX if X |= G�H (� ∈ {∧,∨}),
⊥ otherwise;

• (G→ H)X =


G→ HX if X |= G, and X |= H,

> if X 6|= G,

⊥ otherwise.

SetX is an FLPT-answer set of F ifX is minimal among the
sets of atoms that satisfy FX .

3.2 Extension: FLPT Semantics for First-Order
Formulas with Aggregates

We extend the FLPT semantics to arbitrary first-order formu-
las that allow aggregates.

For any first-order formula F with aggregates and any fi-
nite list of predicate constants p = (p1, . . . , pn), formula
FLPT[F ;p] is defined as

F ∧ ¬∃u(u < p ∧ F�(u)) (15)

where F�(u) is defined recursively, as follows:

• pi(t)� = ui(t) for any tuple t of terms;

• F� = F for any atomic formula F that does not contain
members of p;
• (G�H)� = G� �H�, where � ∈ {∧,∨};
• (G→ H)� = (G ∧G(u)→ H�) ∧ (G→ H);

• (QxG)� = QxG�, where Q ∈ {∀,∃};
• (OP〈x : G)〉 � t)� =

(OP〈x : G〉 � t) ∧ (OP〈x : G(u)〉 � t).
Similar to FLP[Π], we will often simply write FLPT[F ]

instead of FLPT[F ;p] when p is the list of all predicate con-
stants occurring in F , and call a model of FLPT[F ] an FLPT-
stable model of F .

The following theorem states that our semantics is a proper
extension of the Truszczyński semantics to first-order formu-
las with aggregates. For any formula F , by σ(F ) we denote
the signature consisting of object, function and predicate con-
stants occurring in F .

Theorem 3 For any propositional formula F , the FLPT-
answer sets of F are precisely the interpretations of σ(F )
that satisfy FLPT[F ].

Also the semantics above coincides with our extension of
the FLP semantics in Section 2.3 when it is applied to disjunc-
tive programs with aggregates (having rules of the form (14)).

Proposition 4 For any finite disjunctive program Π with ag-
gregates and the AF-representation F of Π, FLP[Π;p] is
equivalent to FLPT[F ;p].

However, the statement of the proposition does not apply
to general programs.

Example 3 For general program Π = {p∨¬p← >} and its
FOL-representation F , formula FLP[Π] has only one model,
∅, and FLPT[F ] has two models, ∅ and {p}.

In comparison with Proposition 1, this example illustrates
that, unlike the FLP semantics, the FLPT semantics does not
keep the anti-chain property. This has to do with the fact
the FLP semantics distinguishes between rule arrows and the
other implications, while the FLPT semantics does not. The



first-order stable model semantics from [Ferraris et al., 2011]
also lacks the anti-chain property. In fact, the FLPT seman-
tics has similar properties with that semantics. For instance,
the following theorem is similar to Theorem 2 from [Ferraris
et al., 2011]. By Choice(p) where p is a list of predicate
constants, we denote the conjunction of “choice formulas”
∀x(p(x) ∨ ¬p(x)) for all predicate constants p in p where x
is a list of distinct object variables whose length is the same
as the arity of p.
Theorem 4 For any first-order formula F with aggregates
and any disjoint lists p, q of distinct predicate constants, the
following formulas are logically valid:

FLPT[F ;pq]→ FLPT[F ;p],
FLPT[F ∧ Choice(q);pq]↔ FLPT[F ;p].

For example, FLPT[∀x(q(x)→ p(x)∨¬p(x)); p] is equiva-
lent to

FLPT[∀x(q(x)→ p(x) ∨ ¬p(x)) ∧ ∀x(q(x) ∨ ¬q(x)); p, q].

The following theorem is similar to Theorem 3 from [Fer-
raris et al., 2011].
Theorem 5 For any first-order formulas F and G
with aggregates and any list of predicate constants p,
FLPT[F ∧ ¬G; p] is equivalent to FLPT[F ; p] ∧ ¬G.
It follows that the FLPT-stable models of F ∧ ¬G can be
characterized as the FLPT-stable models of F that satisfy¬G.

The notion of strong equivalence has turned out to be im-
portant in the theory of stable models. Similar to the charac-
terization of strong equivalence in terms of HT-models [Lifs-
chitz et al., 2001; Ferraris et al., 2011], Truszczyński [2010]
defined “FLP-models,” a counterpart of HT-models in the
FLPT semantics, and used them to characterize strong equiv-
alence between propositional formulas under the FLPT se-
mantics. In the following, we extend the result to arbitrary
first-order formulas with aggregates.3

Following the definition of strong equivalence in the first-
order stable model semantics in [Ferraris et al., 2011], about
first-order formulas with aggregates F and G, we say that F
is FLPT-strongly equivalent to G if, for any formula H
with aggregates, any occurrence of F in H , and any list p
of distinct predicate constants, FLPT[H;p] is equivalent to
FLPT[H ′;p], where H ′ is obtained from H by replacing the
occurrence of F by G. The following theorem, which is sim-
ilar to Theorem 9 from [Ferraris et al., 2011], is a proper ex-
tension of Theorem 7 from [Truszczyński, 2010].
Theorem 6 Let F and G be first-order formulas with aggre-
gates, let pFG be the list of all predicate constants occurring
in F or G and let u be a list of distinct predicate variables.
The following conditions are equivalent to each other.
• F and G are FLPT-strongly equivalent to each other;
• Formula

u ≤ pFG → (F�(u)↔ G�(u))

is logically valid.
3Due to lack of space, we do not present the extension of FLP

models, but instead present an alternative characterization in terms
of F�.

As a special case, Theorem 6 can be applied to checking
strong equivalence under the FLP semantics between the pro-
grams whose rules have the form (14).

4 Comparing FLP, FLPT and the First-Order
Stable Model Semantics

In [Ferraris et al., 2011] the stable models are defined in
terms of the SM operator with intensional predicates: for any
first-order sentence F and any list of intensional predicates
p = (p1, . . . , pn), formula SM[F ;p] is defined as

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

where F ∗(u) is defined recursively:

• pi(t)∗ = ui(t) for any list t of terms;

• F ∗ = F for any atomic formula F that does not contain
members of p;

• (G�H)∗ = G∗ �H∗, where � ∈ {∧,∨};
• (G→ H)∗ = (G∗ → H∗) ∧ (G→ H);

• (QxG)∗ = QxG∗, where Q ∈ {∀,∃};
• (OP〈x : G〉 � b)∗ =

(OP〈x : G∗〉 � b) ∧ (OP〈x : G)〉 � b).

We often simply write SM[F ] in place of SM[F ;p] when
p is the list of all predicate constants occurring in F , and call
a model of SM[F ] simply a stable model of F .

Disregarding aggregate expressions, the main difference
among the FLP, the FLPT, and the first-order stable model
semantics has to do with the treatment of an implication. It is
known that they coincide for programs whose rules have the
form (4) [Faber et al., 2011, Theorem 3.6], [Truszczyński,
2010, Theorem 3]. However, this is not the case for more
general classes of programs (having rules of the form (5)), or
for arbitrary formulas. In fact, no one is stronger than another,
as the following example shows.

Example 4 For propositional signature {p} and pro-
gram Π1 = {p← p ∨ ¬p}, whose FOL-representation is
F1 = p ∨ ¬p→ p, each of FLP[Π1] and FLPT[F1] has {p}
as the only model, and SM[F1] has no models.

Formula F1 is strongly equivalent (in the sense of [Fer-
raris et al., 2011]), but not FLPT-strongly equivalent to
F2 = (p→ p) ∧ (¬p→ p). Again, SM[F2] has no models.
Neither does FLP[Π2] nor FLPT[F2], where Π2 is the pro-
gram corresponding to F2.

For program Π3 = {p ∨ ¬p← >}, whose FOL-
representation is F3 = > → p ∨ ¬p, both SM[F3] and
FLPT[F3] have two models, ∅ and {p}, while FLP[Π3] has
only one model, ∅.

Formula F3 is strongly equivalent, but not FLPT-strongly
equivalent to F4 = ¬¬p → p. Both FLP[Π4] (Π4 is the
program corresponding to F4) and FLPT[F4] have only one
model, ∅, while SM[F4] has the same two models as SM[F3].

For program Π5 = {¬¬p ← >, p ∨ ¬p ← ¬¬p}, and its
FOL-representation F5, both FLP[Π5] and SM[F5] have only
one model {p}, while FLPT[F5] has no models.



We note that FLPT-strong equivalence involves some unin-
tuitive cases. Formulas F ∧G and F ∧ (F → G) are strongly
equivalent under the first-order stable model semantics, but
this is not the case under the FLPT semantics. The two for-
mulas may not even have the same FLPT-stable models.
Example 5 Similar to program Π5 in the previous exam-
ple, for propositional signature {p} and F = ¬¬p and
G = p ∨ ¬p, formulas SM[F ∧ G] and FLPT[F ∧ G] are
equivalent to each other, having only one model, {p}. For-
mula SM[F ∧ (F → G)] has the same model as SM[F ∧G],
but FLPT[F ∧ (F → G)] has no models.

We now show the relationships among the three seman-
tics. Roughly speaking, the FLPT semantics is in between the
two others in the sense that it treats a “non-strictly positive”
occurrence of a subformula same as in the FLP semantics,
and treats a “strictly positive” occurrence of a subformula the
same way as in the first-order stable model semantics. The
definition of a strictly positive occurrence is given below.

First we present a class of programs for which the FLP
semantics and the FLPT semantics coincide. Following [Fer-
raris and Lifschitz, 2010], we say that an aggregate function
OP is monotone w.r.t. � if for any multisets α, β such that
α ⊆ β,
• if OP(α) is defined then so is OP(β), and
• for any n ∈ Num, if OP(α) � n then OP(β) � n.
For an occurrence of a predicate constant or any other

subexpression in a formula F with aggregates, we consider
two numbers, k and m.
• k: the number of implications in F that contain that oc-

currence in the antecedent;
• m: the number of aggregate expressions (8) containing

that occurrence such that OP is not monotone w.r.t. �.
We call an occurrence of a subexpression in F strictly pos-

itive if k + m for that occurrence in F is 0. For example, in
formula (p → q) → p, the second occurrence of p is strictly
positive. In ¬(SUM〈x : p(x)〉 < 2), the occurrence of p is not
strictly positive (for that occurrence, k = m = 1).

The following theorem presents a class of programs for
which the FLP semantics and the FLPT semantics coincide.
Theorem 7 Let Π be a finite general program with aggre-
gates, and let F be the AF-representation of Π. For every
rule (9) in Π, if every occurrence of p from p in H is strictly
positive in H , then FLP[Π;p] is equivalent to FLPT[F ;p].

The theorem is a generalization of Proposition 4. For ex-
ample, the FLP and the FLPT semantics coincide on the pro-
grams whose heads have the form of a disjunction of atoms,
regardless of the form of the formulas in the body. In Ex-
ample 4, programs Π1, Π2 and Π4 satisfy the condition of
Theorem 7, and so does program (10).

Next we show the class of programs for which the FLP se-
mantics and the stable model semantics coincide. We first de-
fine two notions. We call an aggregate formula semi-positive
relative to p if, for every aggregate expression OP〈x : G〉 � b
in it, every occurrence of every predicate p from p is strictly
positive in G. We say that an aggregate formula F is canoni-
cal relative to a list p of predicate constants if

• F is semi-positive relative to p;
• for every occurrence of every predicate constant p

from p in F , we have that k +m ≤ 1;
• if a predicate constant p from p occurs in the scope of

a strictly positive occurrence of ∃ or ∨ in F , then the
occurrence of p is strictly positive in F .

For any canonical aggregate formula, the following result
holds.
Proposition 5 For any aggregate formula F , if F is canoni-
cal relative to p, then formula

(u ≤ p) ∧ F → (F ∗(u)↔ F (u))

is logically valid.
From Proposition 5, when F is a first-order formula, it

is easy to see that CIRC[F ;p] and SM[F ;p] are equiva-
lent to each other. This fact is used in [Kim et al., 2009;
Lee and Palla, 2010] to compute circumscriptive action for-
malisms using ASP solvers. Here we generalize the result to
formulas containing aggregates and use it to relate the FLP
and the FLPT operators to the SM operator.

Theorem 8 Let Π be a finite general program with aggre-
gates and let F be the AF-representation of Π. For every
rule (9) in Π, if B is canonical relative to p and every oc-
currence of p from p in H is strictly positive in H , then
FLP[Π;p] is equivalent to SM[F ;p].

Among the programs in Example 4, only Π2 satisfies the
condition of Theorem 8. Program (10) does not satisfy the
condition because ¬(SUM〈x : p(x)〉 < 2) is not canoni-
cal relative to {p}. In fact, {p(−1), p(1), p(2)} is an Her-
brand interpretation that satisfies SM[(11)], but does not sat-
isfy FLP[(10)].

Next we show the class of formulas F for which
FLPT[F ;p] coincides with SM[F ;p].

Theorem 9 Let F be a semi-positive aggregate formula rel-
ative to p such that every subformula that has a non-strictly
positive occurrence in F is canonical relative to p. Then
FLPT[F ;p] is equivalent to SM[F ;p].

In Example 4, relative to {p}, formulas F2 and F3 satisfy
the condition of Theorem 9. In Example 5, relative to {p},
formula F ∧G satisfy the condition, but F ∧ (F → G) does
not. Also formula (11) does not satisfy the condition. Again,
{p(−1), p(1), p(2)} is an Herbrand interpretation that satis-
fies SM[(11)], but it does not satisfy FLPT[(11)].

5 Conclusion
Our work lifts up the mathematical foundations of the FLP
and the FLPT semantics to the first-order level; our seman-
tics are applicable to non-Herbrand models allowing arith-
metic and arbitrary functions. The fact that these semantics
are uniformly characterized in terms of modifications to cir-
cumscription provides us useful insights into the relationships
among the FLP semantics, the FLPT semantics, circumscrip-
tion and the first-order stable model semantics. We present
the classes of formulas under which the semantics are inter-
changeable, which would have interesting ramifications. For



instance, the FLP semantics is simpler than the first-order sta-
ble model semantics, but involves unintuitive cases if arbi-
trary formulas are used in the head and in the body. Such
cases do not arise if the FLP semantics is applied to the class
of programs that satisfy the condition of Theorem 8. For the
same class of programs, system F2LP [Lee and Palla, 2009],
an implementation of the first-order stable model semantics,
can be viewed also as an implementation of the general FLP
semantics.
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