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Abstract

In classical logic, nonBoolean fluents, such as the location of an object, can be naturally
described by functions. However, this is not the case in answer set programs, where the
values of functions are pre-defined, and nonmonotonicity of the semantics is related to
minimizing the extents of predicates but has nothing to do with functions. We extend the
first-order stable model semantics by Ferraris, Lee, and Lifschitz to allow intensional func-
tions – functions that are specified by a logic program just like predicates are specified. We
show that many known properties of the stable model semantics are naturally extended to
this formalism and compare it with other related approaches to incorporating intensional
functions. Furthermore, we use this extension as a basis for defining Answer Set Program-
ming Modulo Theories (ASPMT), analogous to the way that Satisfiability Modulo Theories
(SMT) is defined, allowing for SMT-like effective first-order reasoning in the context of
ASP. Using SMT solving techniques involving functions, ASPMT can be applied to do-
mains containing real numbers and alleviates the grounding problem. We show that other
approaches to integrating ASP and CSP/SMT can be related to special cases of ASPMT in
which functions are limited to non-intensional ones.

Key words: Answer Set Programming, Intensional functions, Satisfiability Modulo
Theories

1 Introduction

Answer set programming (ASP) is a widely used declarative computing paradigm
oriented towards solving knowledge-intensive and combinatorial search problems [Lif-
schitz, 2008; Brewka et al., 2011]. Its success is mainly due to the expressivity of
its modeling language based on the concept of a stable model [Gelfond and Lifs-
chitz, 1988] as well as the efficiency of ASP solvers thanks to intelligent grounding
(the process that replaces schematic variables with variable-free terms) and efficient
search methods that originated from propositional satisfiability (SAT) solvers.
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The grounding and solving approach makes ASP highly effective for Boolean deci-
sion problems but becomes problematic when the domain contains a large number
of numerical values or a set of real numbers. This is in part related to the limited
role of functions in the stable model semantics [Lifschitz, 1988] in comparison with
what is allowed in classical logic: either functions are eliminated in the process of
grounding, or they are associated with fixed, pre-defined interpretations forming
an Herbrand universe. Such a limitation forces us to represent functional fluents
by predicates, but not by functions. For example, the following (non-ground) ASP
rule represents that the water level does not change by default, where t is a variable
for time stamps, l is a variable for integers, not stands for default negation, and ∼
stands for strong negation:

WaterLevel(t+1, l) ← WaterLevel(t, l), not ∼WaterLevel(t+1, l),

Time(t),Level(l).
(1)

An attempt to replace the predicate WaterLevel(t, l) by equality using a function,
e.g. “WaterLevel(t) = l,” does not work under the standard stable model semantics:
“not ∼(WaterLevel(t+1) = l)” is not even syntactically valid because strong nega-
tion precedes equality, rather than an ordinary ASP atom. Besides, WaterLevel(t) = l
is false under any Herbrand interpretation unless l is the term WaterLevel(t) itself,
implying that WaterLevel(t) = WaterLevel(t+ 1) is always false.

While semantically correct, a computational drawback of using a rule like (1) is that
a large set of ground rules needs to be generated when the water level ranges over
a large integer domain. Moreover, real numbers are not supported at all because
grounding cannot even be applied.

To alleviate the “grounding problem,” there have been recent efforts in integrating
ASP with constraint solving, where functional fluents can be represented by con-
straint variables and computed without fully grounding their value variables, e.g.,
[Mellarkod et al., 2008; Gebser et al., 2009; Balduccini, 2009; Janhunen et al.,
2011]. Constraint ASP solvers have demonstrated significantly better performance
over traditional ASP solvers on many domains involving a large set of numbers, but
they do not provide a fully satisfactory solution to the problem above because the
concept of a function is not sufficiently general. For example, one may be tempted
to rewrite rule (1) in the language of a constraint ASP solver, such as CLING-
CON 1 —a combination of ASP solver CLINGO and constraint solver GECODE, as

WaterLevel(t+1)=$ l ← WaterLevel(t)=$ l, not ¬(WaterLevel(t+1)=$ l) (2)

where =$ indicates that the atom containing it is a constraint to be processed by
constraint solver GECODE and not to be processed by ASP solver CLINGO. The

1 http://potassco.sourceforge.net/
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constraint variable WaterLevel(t) is essentially a function that is mapped to a nu-
meric value. However, this idea does not work either. 2 While it is possible to say
that WaterLevel(t) = 10 and WaterLevel(t + 1) = WaterLevel(t) are true in the
language of CLINGCON, negation as failure (not) in front of constraints does not
work in the same way as it does when it is in front of standard ASP atoms. Indeed,
rule (2) has no effect on characterizing the default value of WaterLevel(t) and can
be dropped without affecting answer sets. This is because nonmonotonicity of the
stable model semantics (as well as almost all extensions, including those of Con-
straint ASP) is related to the minimality condition on predicates but has nothing to
do with functions. Thus, unlike with predicates, they do not allow for directly as-
serting that functions have default values. Such an asymmetric treatment between
functions and predicates in Constraint ASP makes the language of Constraint ASP
less general than one might desire.

It is apparent that one of the main obstacles encountered in the above work is due
to an insufficient level of generality regarding functions. Recently, the problem has
been addressed in another, independent line of research to allow general first-order
functions in ASP, although it was not motivated by efficient computation. Lifschitz
[2012] called such functions “intensional functions”— functions whose values can
be described by logic programs, rather than being pre-defined, thus allowing for
defeasible reasoning involving functions in accordance with the stable model se-
mantics. In [Cabalar, 2011], based on the notions of partial functions and partial
satisfaction, functional stable models were defined by imposing minimality on the
values of partial functions. The semantics presented in [Balduccini, 2012] is a spe-
cial case of the semantics from [Cabalar, 2011] as shown in [Bartholomew and
Lee, 2013c]. On the other hand, intensional functions defined in [Lifschitz, 2012]
do not require the rather complex notions of partial functions and partial satisfac-
tion but instead impose the uniqueness of values on total functions similar to the
way nonmonotonic causal theories [Giunchiglia et al., 2004] are defined. This led
to a simpler semantics, but as we show later in this paper, the semantics is not a
proper generalization of the first-order stable model semantics from [Ferraris et al.,
2011], and moreover, it exhibits some unintuitive behavior.

We present an alternative approach to incorporating intensional functions into the
stable model semantics by a simple modification to the first-order stable model se-
mantics from [Ferraris et al., 2011]. It turns out that unlike the semantics from [Lif-
schitz, 2012], this formalism, which we call “Functional Stable Model Semantics
(FSM),” is a proper generalization of the language from [Ferraris et al., 2011], and
avoids the unintuitive cases that the language from [Lifschitz, 2012] encounters.

2 However, there is rather an indirect way to represent the assertion in the language of
CLINGCON using Ab predicates:

WaterLevel(t+ 1)=$ l← WaterLevel(t)=$ l, not Ab(t).
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Furthermore, unlike the one from [Cabalar, 2011], it does not require the extended
notion of partial interpretations that deviates from the notion of classical interpreta-
tions. Nevertheless, the semantics from [Cabalar, 2011] can be embedded into FSM
by simulating partial interpretations by total interpretations with auxiliary constants
[Bartholomew and Lee, 2013c].

Unlike the semantics from [Cabalar, 2011], as FSM properly extends the notion
of functions in classical logic, its restriction to background theories provides a
straightforward, seamless integration of ASP and Satisfiability Modulo Theories
(SMT), which we call “Answer Set Programming Modulo Theories (ASPMT),”
analogous to the known relationship between first-order logic and SMT. SMT is a
generalization of SAT and, at the same time, a special case of first-order logic in
which certain predicate and function symbols in background theories have fixed in-
terpretations. Such background theories include difference logic, linear arithmetic,
arrays, and non-linear real-valued functions.

Monotonic Nonmonotonic

FOL FSM

SMT ASP Modulo Theories

SAT Traditional ASP

Fig. 1. Analogy between SMT and ASPMT

Likewise, ASPMT can be viewed
as a generalization of the traditional
ASP and, at the same time, a spe-
cial case of FSM in which certain
background theories are assumed as
in SMT. On the other hand, unlike
SMT, ASPMT is not only motivated
by computational efficiency, but also
by expressive knowledge represen-

tation. This is due to the fact that ASPMT is a natural extension of both ASP and
SMT. Using SMT solving techniques involving functions, ASPMT can be applied
to domains containing real numbers and alleviates the grounding problem. It turns
out that constraint ASP can be viewed as a special case of ASPMT in which func-
tions are limited to non-intensional ones.

The paper is organized as follows. Section 2 reviews the stable model semantics
from [Ferraris et al., 2011], which Section 3 extends to allow intensional functions.
Section 4 shows that many known properties of the stable model semantics are nat-
urally established for this extension. Section 5 shows how to eliminate intensional
predicates in favor of intensional functions, and Section 6 shows the opposite elim-
ination under a specific condition. Section 7 compares FSM to other approaches
to defining intensional functions. Section 8 extends FSM to be many-sorted, and,
based on it, Section 9 defines the concept of ASPMT as a special case of many-
sorted FSM, and presents its reduction to SMT under certain conditions. Section 10
compares ASPMT to other approaches to combining ASP with CSP and SMT.

This article is an extended version of the conference papers [Bartholomew and Lee,
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2012; Bartholomew and Lee, 2013a]. 3

2 Review: First-Order Stable Model Semantics with Intensional Predicates

The proposed definition of a stable model in this paper is a direct generalization of
the one from [Ferraris et al., 2011], which we review in this section. Stable models
are defined as classical models that satisfy a certain “stability” condition, which is
expressed by ensuring a minimality condition on predicates.

The syntax of formulas is defined the same as in the standard first-order logic. A
signature consists of function constants and predicate constants. Function constants
of arity 0 are called object constants, and predicate constants of arity 0 are called
propositional constants. A term of a signature σ is formed from object constants
of σ and object variables using function constants of σ. An atom of σ is an n-ary
predicate constant followed by a list of n terms; atomic formulas of σ are atoms of
σ, equalities between terms of σ, and the 0-place connective⊥ (falsity). First-order
formulas of σ are built from atomic formulas of σ using the primitive propositional
connectives ⊥, ∧, ∨, →, as well as quantifiers ∀, ∃. We understand ¬F as an
abbreviation of F → ⊥; symbol > stands for ⊥ → ⊥, and F ↔ G stands for
(F → G) ∧ (G→ F ), and t1 6= t2 stands for ¬(t1 = t2).

In [Ferraris et al., 2011], stable models are defined in terms of the SM opera-
tor, whose definition is similar to the CIRC operator used for defining circum-
scription [McCarthy, 1980; Lifschitz, 1994]. As in circumscription, for predicate
symbols (constants or variables) u and p, expression u ≤ p is defined as short-
hand for ∀x(u(x)→ p(x)); expression u = p is defined as ∀x(u(x)↔ p(x)).
For lists of predicate symbols u = (u1, . . . , un) and p = (p1, . . . , pn), expression
u ≤ p is defined as (u1 ≤ p1) ∧ · · · ∧ (un ≤ pn), expression u = p is defined as
(u1 = p1) ∧ · · · ∧ (un = pn), and expression u < p is defined as u ≤ p ∧ ¬(u = p).

For any first-order formulaF and any finite list of predicate constants p = (p1, . . . , pn),
formula SM[F ;p] is defined as

F ∧ ¬∃p̂(p̂ < p ∧ F ∗(p̂)),

where p̂ is a list of distinct predicate variables p̂1, . . . , p̂n, and F ∗(p̂) is defined
recursively as follows:

3 Besides the complete proofs, this article contains some new results, such as the non-
existence of translation from non-c-plain formulas to c-plain formulas, the usefulness of
non-c-plain formulas, reducibility of many-sorted FSM to unsorted FSM, and more com-
plete formal comparison with related works.
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• When F is an atomic formula, F ∗(p̂) is a formula obtained from F by replacing
all predicate constants p in it with the corresponding predicate variables from p̂;
• (G ∧H)∗(p̂) = G∗(p̂) ∧H∗(p̂);
• (G ∨H)∗(p̂) = G∗(p̂) ∨H∗(p̂);
• (G→ H)∗(p̂) = (G∗(p̂)→ H∗(p̂)) ∧ (G→ H);
• (∀xG)∗(p̂) = ∀xG∗(p̂);
• (∃xG)∗(p̂) = ∃xG∗(p̂).

The predicate constants in p are called intensional: these are the predicates that we
“intend to characterize” by F . 4 When F is a sentence (i.e., formula without free
variables), the models of the second-order sentence SM[F ;p] are called the stable
models of F relative to p: they are the models of F that are “stable” on p.

Answer sets are defined as a special class of first-order stable models as follows. By
σ(F ) we denote the signature consisting of the function and predicate constants oc-
curring in F . If F contains at least one object constant, an Herbrand interpretation
of σ(F ) that satisfies SM[F ;p] is called an answer set of F , where p is the list of
all predicate constants in σ(F ). The answer sets of a logic program Π are defined
as the answer sets of the FOL-representation of Π, which is obtained from Π by

• replacing every comma by conjunction and every not by ¬ 5

• turning every rule Head ← Body into a formula rewriting it as the implication
Body→ Head, and
• forming the conjunction of the universal closures of these formulas.

For example, the FOL-representation of the program

p(a)

q(b)

r(x)← p(x), not q(x)

is

p(a) ∧ q(b) ∧ ∀x((p(x) ∧ ¬q(x))→ r(x)) (3)

4 Intensional predicates are analogous to output predicates in Datalog, and non-intensional
predicates are analogous to input predicates in Datalog [Lifschitz, 2011].
5 Strong negation can be incorporated by introducing “negative” predicates as in [Ferraris
et al., 2011, Section 8], or can be represented by a Boolean function with the value FALSE
[Bartholomew and Lee, 2013b]. For example, ∼ p can be represented by p= FALSE.
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and SM[F ; p, q, r] is

p(a) ∧ q(b) ∧ ∀x((p(x) ∧ ¬q(x))→ r(x))

∧¬∃uvw
((

(u, v, w) < (p, q, r)
)
∧ u(a) ∧ v(b)

∧∀x
((

(u(x) ∧ (¬v(x) ∧ ¬q(x)))→ w(x)
)
∧
(
(p(x) ∧ ¬q(x))→ r(x)

)))
,

which is equivalent to the first-order sentence

∀x(p(x)↔ x = a) ∧ ∀x(q(x)↔ x = b) ∧ ∀x(r(x)↔ (p(x) ∧ ¬q(x))) (4)

[Ferraris et al., 2007, Example 3]. The stable models of F are any first-order models
of (4). The only answer set of F is the Herbrand model {p(a), q(b), r(a)}.

Remark 1 According to [Ferraris et al., 2011], this definition of an answer set,
when applied to the syntax of logic programs, is equivalent to the traditional defi-
nition of an answer set that is based on grounding and fixpoints as in [Gelfond and
Lifschitz, 1988].

It is also noted in [Ferraris et al., 2011] that if we replace F ∗(p̂) with a simpler
expression F (p̂) (which substitutes p̂ for p), then the definition of SM[F ;p] reduces
to the definition of CIRC[F ;p].

The definition of a stable model above is not limited to Herbrand models, so it
allows general functions as in classical first-order logic. Indeed, in Section 10, we
show that the previous approaches to combining answer set programs and constraint
processing can be viewed as special cases of first-order formulas under the stable
model semantics. However, these functions are “extensional,” and cannot cover
examples like (2).

3 Extending First-Order Stable Model Semantics to Allow Intensional Func-
tions

In this section, we generalize the first-order stable model semantics to allow inten-
sional functions in addition to intensional predicates.

3.1 Second-Order Logic Characterization of the Stable Model Semantics

We extend expression u = c as ∀x(u(x) = c(x)) if u and c are function symbols.
For lists of predicate and function symbols u = (u1, . . . , un) and c = (c1, . . . , cn),
expression u = c is defined as (u1 = c1) ∧ · · · ∧ (un = cn).
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Let c be a list of distinct predicate and function constants, and let ĉ be a list of
distinct predicate and function variables corresponding to c. By cpred (cfunc , re-
spectively) we mean the list of all predicate constants (function constants, respec-
tively) in c, and by ĉpred (ĉfunc , respectively) the list of the corresponding predi-
cate variables (function variables, respectively) in ĉ. For any formula F , expression
SM[F ; c] is defined as

F ∧ ¬∃ĉ(ĉ < c ∧ F ∗(ĉ)), (5)

where ĉ < c is shorthand for (ĉpred ≤ cpred) ∧ ¬(ĉ = c), and F ∗(ĉ) is defined
recursively in the same way as F ∗(p̂) except for the base case, which is defined as
follows.

• When F is an atomic formula, F ∗(ĉ) is F ′ ∧ F where F ′ is obtained from F
by replacing all (predicate and function) constants c in it with the corresponding
variables from ĉ.

As before, we say that an interpretation I that satisfies SM[F ; c] a stable model of
F relative to c. Clearly, every stable model of F is a model of F but not vice versa.

Remark 2 It is easy to see that the definition of a stable model above is a proper
generalization of the one from [Ferraris et al., 2011], also reviewed in the previous
section: the definition of SM[F ; c] in this section reduces to the one in the previous
section when all intensional constants in c are predicate constants only.

When all intensional constants are function constants only, the definition of SM[F ; c]
is similar to the first-order nonmonotonic causal theories defined in [Lifschitz,
1997]. The only difference is that, instead of F ∗(ĉ), a different expression is used
there. A more detailed comparison is given in Section 7.1.

We will often write F → G as G← F and identify a finite set of formulas with the
conjunction of the universal closures of each formula in that set.

For any formula F , expression {F}ch denotes the “choice” formula (F ∨ ¬F ).

The following two lemmas are often useful in simplifying F ∗(ĉ), as we demonstrate
in Example 1 below. They are natural extensions of Lemmas 5 and 6 from [Ferraris
et al., 2011].

Lemma 1 Formula
(ĉ < c) ∧ F ∗(ĉ)→ F

is logically valid.

Proof. By induction on the structure of F .

Lemma 2 Formula
ĉ < c→ ((¬F )∗(ĉ)↔ ¬F )
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is logically valid.

Proof. Immediate from Lemma 1.

Example 1 The following program F1 describes the level of an unlimited water
tank that is filled up unless it is flushed.

{Amt1 =x+1}ch ← Amt0 =x,

Amt1 =0 ← Flush .
(6)

Here Amt1 is an intensional function constant, and x is a variable ranging over
nonnegative integers. Intuitively, the first rule asserts that the amount increases by
one by default. 6 However, if Flush action is executed (e.g., if we add the fact Flush
to (6)), this behavior is overridden, and the amount is set to 0.

Using Lemmas 1 and 2, under the assumption Âmt1 < Amt1, one can check that
formula F ∗1 (Âmt1) is equivalent to the conjunction consisting of (6) and

(Âmt1 = x+1 ∧ Amt1 = x+1) ∨ ¬(Amt1 = x+1) ← Amt0 =x,

Âmt1 = 0 ∧ Amt1 = 0 ← Flush,
(7)

so that

SM[F1; Amt1] = F1 ∧ ¬∃Âmt1(Âmt1 6= Amt1 ∧ F ∗1 (Âmt1))

⇔ F1 ∧ ¬∃Âmt1(Âmt1 6= Amt1∧
∀x(Amt0 =x→ ¬(Amt1 = x+1)) ∧ (Flush→ ⊥)).

Consider the first-order interpretations that have the set of nonnegative integers as
the universe, interprets integers, arithmetic functions, and comparison operators in
the standard way, and maps the other constants in the following way.

Amt0 Flush Amt1

I1 5 FALSE 6

I2 5 FALSE 8

I3 5 TRUE 0

• Interpretation I1 is in accordance with the intuitive reading of the rules above,
and it is indeed a model of SM[F1; Amt1].

6 Section 4.2 explains why choice formulas are read as specifying default values.
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• Interpretation I2 is not intuitive (the amount suddenly jumps up with no reason).
It is not a model of SM[F1; Amt1] though it is a model of F1.
• Interpretation I3 is in accordance with the intuitive reading of the rules above. It

is a model of SM[F1; Amt1].

3.2 Reduct-Based Characterization of the Stable Model Semantics

The second-order logic based definition of a stable model in the previous section is
succinct, and is a natural extension of the first-order stable model semantics that is
defined in [Ferraris et al., 2011], but it may look distant from the usual definition
of a stable model in the literature that is given in terms of grounding and fixpoints.

In [Bartholomew and Lee, 2013c], an equivalent definition of the functional sta-
ble model semantics in terms of infinitary ground formulas and reduct is given.
Appendix A of this article contains a review of the definition.

4 Properties of Functional Stable Models

Many properties known for the stable model semantics can be naturally extended to
the functional stable model semantics, which is a desirable feature of the proposed
formalism.

4.1 Constraints

Following Ferraris et al. [2009], we say that an occurrence of a constant or any
other subexpression in a formula F is positive if the number of implications con-
taining that occurrence in the antecedent is even, and negative otherwise. We say
that the occurrence is strictly positive if the number of implications in F containing
that occurrence in the antecedent is 0. For example, in ¬(f = 1) → g = 1, the
occurrences of f and g are both positive, but only the occurrence of g is strictly
positive. 7

About a formula F we say that it is negative on a list c of predicate and function
constants if F has no strictly positive occurrence of a constant from c. Since any
formula of the form ¬H is shorthand for H → ⊥, such a formula is negative
on any list of constants. The formulas of the form ¬H are called constraints in
the literature of ASP: adding a constraint to a program affects the set of its stable

7 Recall that we understand ¬F as shorthand for F → ⊥.
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models in a particularly simple way by eliminating the stable models that “violate”
the constraint. 8

The following theorem is a generalization of Theorem 3 from [Ferraris et al., 2011]
for the functional stable model semantics.

Theorem 1 For any first-order formulas F and G, if G is negative on c, then
SM[F ∧G; c] is equivalent to SM[F ; c] ∧G.

Example 2 Consider SM[F2∧¬(f=1); fg] whereF2 is (f=1 ∨ g=1) ∧ (f=2 ∨ g=2).
Since¬(f=1) is negative on {f, g}, according to Theorem 1, SM[F2 ∧ ¬(f=1); fg]
is equivalent to SM[F2; fg] ∧ ¬(f=1), which is equivalent to f=2 ∧ g=1.

4.2 Choice and Defaults

Similar to Theorem 2 from [Ferraris et al., 2011], Theorem 2 below shows that
making the set of intensional constants smaller can only make the result of applying
SM weaker, and that this can be compensated by adding choice formulas. For any
predicate constant p, by Choice(p) we denote the formula ∀x{p(x)}ch (recall that
{F}ch is shorthand for F ∨ ¬F ), where x is a list of distinct object variables. For
any function constant f , by Choice(f) we denote the formula ∀xy{f(x) = y}ch,
where y is an object variable that is distinct from x. For any finite list of predicate
and function constants c, the expression Choice(c) stands for the conjunction of
the formulas Choice(c) for all members c of c. We sometimes identify a list with
the corresponding set when there is no confusion.

The following theorem is a generalization of Theorem 7 from [Ferraris et al., 2011]
for the functional stable model semantics.

Theorem 2 For any first-order formula F and any disjoint lists c, d of distinct
constants, the following formulas are logically valid:

SM[F ; cd]→ SM[F ; c],

SM[F ∧ Choice(d); cd]↔ SM[F ; c].

For example,

SM[(g=1→ f=1) ∧ ∀y(g=y ∨ ¬(g=y)); fg]

is equivalent to
SM[g=1→ f=1; f ].

8 Note that the term “constraint” here is different from the one used in CSP.
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A formula {f(t) = t′}ch, where f is an intensional function constant and t, t′

contain no intensional function constants, intuitively represents that f(t) takes the
value t′ by default. For example, the stable models of {g= 1}ch relative to g map
g to 1. On the other hand, the default behavior is overridden when we conjoin the
formula with g=2: the stable models of

{g=1}ch ∧ g=2

relative to g map g to 2, and no longer to 1.

The treatment of {g = 1}ch as (g = 1)∨¬(g = 1) is similar to the choice rule {p}ch
in ASP for propositional constant p, which stands for p∨¬p, with an exception that
g has to satisfy a functional requirement, i.e., it is mapped to a unique value. Under
that requirement, an interpretation that maps g to 1 is a stable model but another
assignment to g is not a stable model because the choice rule itself does not force
one to believe that g is mapped to that other value. This makes the choice rule for
the function work as assigning a default value to the function.

With this understanding, the commonsense law of inertia can be succinctly repre-
sented using choice formulas for functions. For instance, the formula

Loc(b, t)= l → {Loc(b, t+1)= l}ch, (8)

where Loc is an intensional function constant, represents that the location of a
block b at next step retains its value by default. The default behavior can be overrid-
den if some action moves the block. In contrast, the standard ASP representation of
the commonsense law of inertia, such as (1), uses both default negation and strong
negation, and requires the user to be aware of the subtle difference between them.

4.3 Strong Equivalence

Strong equivalence [Lifschitz et al., 2001] is an important notion that allows us to
replace a subformula with another subformula without affecting the stable models.
The theorem on strong equivalence can be extended to formulas with intensional
functions as follows.

For first-order formulas F and G, we say that F is strongly equivalent to G if,
for any formula H , any occurrence of F in H , and any list c of distinct predicate
and function constants, SM[H; c] is equivalent to SM[H ′; c], where H ′ is obtained
from H by replacing the occurrence of F by G.

The following theorem tells us that strong equivalence can be characterized in terms
of equivalence in classical logic.

Theorem 3 Let F and G be first-order formulas, let c be the list of all predicate
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and function constants occurring in F or G, and let ĉ be a list of distinct predicate
and function variables corresponding to c. The following conditions are equivalent
to each other.

• F and G are strongly equivalent to each other;
• Formula

(F ↔ G) ∧ (ĉ < c→ (F ∗(ĉ)↔ G∗(ĉ))) (9)

is logically valid.

For instance, choice formula {F}ch is strongly equivalent to ¬¬F → F . This can
be shown, in accordance with Theorem 3, by checking that not only they are clas-
sically equivalent but also

(F ∨ ¬F )∗(ĉ)

and
(¬¬F → F )∗(ĉ)

are classically equivalent under ĉ < c. Indeed, in view of Lemma 2, (F ∨¬F )∗(ĉ)
is equivalent to (F ∗(ĉ) ∨ ¬F ) and (¬¬F → F )∗(ĉ) is equivalent to F → F ∗(ĉ).
This fact allows us to rewrite formula (8) as an implication in which the consequent
is an atomic formula:

Loc(b, t)= l ∧ ¬¬(Loc(b, t+ 1)= l) → Loc(b, t+1)= l.

For another example, (G→ F )∧(H → F ) is strongly equivalent to (G∨H)→ F .
This is useful for rewriting a theory into “Clark normal form,” to which we can
apply completion as presented in the next section.

4.4 Completion

Completion [Clark, 1978] is a process that turns formulas under the stable model
semantics to formulas under the standard first-order logic.

We say that a formula F is in Clark normal form (relative to a list c of intensional
constants) if it is a conjunction of sentences of the form

∀x(G→ p(x)) (10)

and
∀xy(G→ f(x)=y) (11)

one for each intensional predicate constant p in c and each intensional function
constant f in c, where x is a list of distinct object variables, y is another object
variable, and G is a formula that has no free variables other than those in x and y.
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The completion of a formula F in Clark normal form relative to c, denoted by
COMP[F ; c], is obtained from F by replacing each conjunctive term (10) with

∀x(p(x)↔ G) (12)

and each conjunctive term (11) with

∀xy(f(x)=y ↔ G). (13)

The dependency graph of F (relative to c), denoted by DGc[F ], is the directed
graph that

• has all members of c as its vertices, and
• has an edge from c to d if, for some strictly positive occurrence of G→ H in F ,
· c has a strictly positive occurrence in H , and
· d has a strictly positive occurrence in G.

We say that F is tight (on c) if the dependency graph of F (relative to c) is acyclic.
The following theorem, which generalizes Theorem 11 from [Ferraris et al., 2011]
for the functional stable model semantics, tells us that, for a tight formula, comple-
tion is a process that allows us to reclassify intensional constants as non-intensional
ones. It is similar to the main theorem of [Lifschitz and Yang, 2013], which de-
scribes functional completion in the context of nonmonotonic causal logic.

Theorem 4 For any formula F in Clark normal form relative to c that is tight on c,
an interpretation I that satisfies ∃xy(x 6= y) is a model of SM[F ; c] iff I is a model
of COMP[F ; c].

Example 1 Continued Formula F1 is not in Clark normal Form relative to Amt1,
but it is strongly equivalent to

Amt1 =y ← y=x+1 ∧ Amt0 =x ∧ ¬¬(Amt1 = y),

Amt1 =y ← y=0 ∧ Flush .

and further to

Amt1 =y ←
(
y=x+1 ∧ Amt0 =x ∧ ¬¬(Amt1 =y)

)
∨
(
y=0 ∧ Flush

)
,

which is in Clark normal form relative to Amt1 and is tight on Amt1. In accordance
with Theorem 4, the stable models of F1 relative to Amt1 coincide with the classical
models of

Amt1 =y ↔
(
y=x+1 ∧ Amt0 =x ∧ ¬¬(Amt1 =y)

)
∨
(
y=0 ∧ Flush

)
.
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The assumption ∃xy(x 6= y) in the statement of Theorem 4 is essential to avoid
the mismatch between “trivial” stable models and models of completion when the
universe is a singleton. Recall that in order to dispute the stability of a model I in
the presence of intensional function constants, one needs another interpretation that
is different from I on intensional function constants. If the universe contains only
one element, the stability of a model is trivial. For example, take F to be > and c
to be an intensional function constant f . If the universe |I| of an interpretation I is
a singleton, then I satisfies SM[F ] because there is only one way to interpret c, but
I does not satisfy the completion formula ∀xy(f(x) = y ↔ ⊥).

5 Eliminating Intensional Predicates in Favor of Intensional Functions

In first-order logic, it is known that predicate constants can be replaced by function
constants and vice versa. This section and the next section show similar transfor-
mations under the functional stable model semantics.

5.1 Eliminating Intensional Predicates

Intensional predicate constants can be eliminated in favor of intensional function
constants as follows.

Given a formula F and an intensional predicate constant p, formula F p
f is obtained

from F as follows:

• in the signature of F , replace p with a new intensional function constant f of ar-
ity n, where n is the arity of p, and add two new non-intensional object constants
0 and 1 (rename if necessary);
• replace each subformula p(t) in F with f(t) = 1.

By FCf (“Functional Constraint on f”) we denote the conjunction of the following
formulas, which enforces f to be two-valued:

0 6= 1, (14)

¬¬∀x(f(x) = 0 ∨ f(x) = 1), (15)

where x is a list of distinct object variables. By DFf (“Default False on f”) we
denote the formula

∀x{f(x) = 0}ch. (16)

Example 3 Let F be the conjunction of the universal closures of the following
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formulas:

Loc(b, t)= l→ {Loc(b, t+ 1)= l}ch,

Move(b, l, t)→ Loc(b, t+ 1) = l

(lower case symbols are variables). We eliminate the intensional predicate con-
stant Move in favor of an intensional function constant Movef to obtain FMove

Movef ∧
FCMovef ∧DFMovef , which is the conjunction of the universal closures of the follow-
ing formulas:

Loc(b, t)= l→ {Loc(b, t+1)= l}ch,

Movef (b, l, t) = 1→ Loc(b, t+1) = l,

0 6= 1,

¬¬(Movef (b, l, t) = 0 ∨Movef (b, l, t) = 1),

{Movef (b, l, t) = 0}ch.

The following theorem asserts the correctness of the elimination method.

Theorem 5 The set of formulas

{∀x(f(x) = 1↔ p(x)), FCf}

entails
SM[F ; pc]↔ SM[F p

f ∧ DFf ; fc].

The following corollary to Theorem 5 tells us that there is a 1–1 correspondence
between the stable models of F and the stable models of its “functional image”
F p
f ∧ DFf ∧ FCf . For any interpretation I of the signature of F , by Ipf we denote

the interpretation of the signature of F p
f obtained from I by replacing the set pI

with the function f I
p
f such that, for all ξ1, . . . , ξn in the universe of I ,

f I
p
f (ξ1, . . . , ξn) = 1I if pI(ξ1, . . . , ξn) = TRUE

f I
p
f (ξ1, . . . , ξn) = 0I otherwise .

Furthermore, we assume that Ipf satisfies (14). Consequently, Ipf satisfies FCf .

Corollary 6 Let F be a first-order sentence.

(a) An interpretation I of the signature of F is a model of SM[F ; pc] iff Ipf is a model
of SM[F p

f ∧ DFf ∧ FCf ; fc].
(b) An interpretation J of the signature of F p

f is a model of SM[F p
f ∧DFf ∧FCf ; fc]

iff J = Ipf for some model I of SM[F ; pc].
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In Corollary 6 (b), it is clear by the construction of Ipf that, for each J , there is
exactly one I that satisfies the statement.

Repeated applications of Corollary 6 allow us to completely eliminate intensional
predicate constants in favor of intensional function constants, thereby turning for-
mulas under the stable model semantics from [Ferraris et al., 2011] into formulas
under FSM whose intensional constants are function constants only.

Note that¬¬ in (15) cannot be dropped in general. The formula¬¬F is not strongly
equivalent to F . The former is a weaker assertion than the latter under the stable
model semantics. Indeed, if it is dropped, in Corollary 6, when F is >, the empty
set is the only model of SM[F ; p] whereas SM[F p

f ∧DFf ∧FCf ; f ] has two models
where f is mapped to 0 or 1.

6 Eliminating Intensional Functions in favor of Intensional Predicates

We show how to eliminate intensional function constants in favor of intensional
predicate constants. Unlike in the previous section, the result is established for “f -
plain” formulas only. It turns out that there is no elimination method for arbitrary
formulas that is both modular and signature-preserving.

6.1 Eliminating Intensional Functions from c-Plain Formulas in favor of Inten-
sional Predicates

Let f be a function constant. A first-order formula is called f -plain [Lifschitz and
Yang, 2011] if each atomic formula in it

• does not contain f , or
• is of the form f(t) = t1 where t is a tuple of terms not containing f , and t1 is a

term not containing f .

For example, f=1 is f -plain, but each of p(f), g(f) = 1, and 1=f is not f -plain.

For any list c of predicate and function constants, we say that F is c-plain if F is
f -plain for each function constant f in c.

Let F be an f -plain formula, where f is an intensional function constant. Formula
F f
p is obtained from F as follows:

• in the signature of F , replace f with a new intensional predicate constant p of
arity n+ 1, where n is the arity of f ;
• replace each subformula f(t) = t1 in F with p(t, t1).
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The following theorem asserts the correctness of the elimination.

Theorem 7 For any f -plain formula F , the set of formulas

{∀xy(p(x, y)↔ f(x) = y), ∃xy(x 6= y)}

entails
SM[F ; fc]↔ SM[F f

p ; pc].

The theorem tells us how to eliminate an intensional function constant f from an
f -plain formula in favor of an intensional predicate constant. By UECp we denote
the following formulas that enforce the “functional image” on the predicate p,

∀xyz(p(x, y) ∧ p(x, z) ∧ y 6= z → ⊥),

¬¬∀x∃y p(x, y),
(17)

where x is an n-tuple of variables, and all variables in x, y, and z are pairwise
distinct. Note that each formula is negative on any list of constants, so they work as
constraints (Section 4.1) to eliminate the stable models that violate them.

Example 4 Consider the same formula F in Example 3. We eliminate the func-
tion constant Loc in favor of the intensional predicate constant Locp to obtain
F Loc

Locp ∧UECLocp , which is the conjunction of the universal closures of the following
formulas:

Locp(b, t, l)→ {Locp(b, t+1, l)}ch,

Move(b, l, t)→ Locp(b, t+1, l),

Locp(b, t, l) ∧ Locp(b, t, l′) ∧ l 6= l′ → ⊥,

¬¬∀b t∃l(Locp(b, t, l)).

(18)

The following corollary shows that there is a simple 1–1 correspondence between
the stable models of F and the stable models of F f

p ∧ UECp. Recall that the sig-
nature of F f

p is obtained from the signature of F by replacing f with p. For any
interpretation I of the signature of F , by Ifp we denote the interpretation of the
signature of F f

p obtained from I by replacing the function f I with the predicate pI

that consists of the tuples

〈ξ1, . . . , ξn, f I(ξ1, . . . , ξn)〉

for all ξ1, . . . , ξn from the universe of I .

Corollary 8 Let F be an f -plain sentence.

(a) An interpretation I of the signature of F that satisfies ∃xy(x 6= y) is a model of
SM[F ; fc] iff Ifp is a model of SM[F f

p ∧ UECp; pc].
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(b) An interpretation J of the signature of F f
p that satisfies ∃xy(x 6= y) is a model

of SM[F f
p ∧ UECp; pc] iff J = Ifp for some model I of SM[F ; fc].

In Corollary 8 (b), it is clear by the construction of Ifp that, for each J , there is
exactly one I that satisfies the statement.

Theorem 7 and Corollary 8 are similar to Theorem 3 and Corollary 5 from [Lif-
schitz and Yang, 2011], which are about eliminating “explainable” functions in
nonmonotonic causal logic in favor of “explainable” predicates.

Similar to Theorem 4, the condition ∃xy(x 6= y) is necessary in Theorem 7 and
Corollary 8 because in order to dispute the stability of a model I in the presence
of intensional function constants, one needs another interpretation that is different
from I on intensional function constants. Such an interpretation simply does not
exist if the condition is missing, so I becomes trivially stable. For example, consider
the formula > with signature σ = {f} and the universe {1}. There is only one
interpretation, which maps f to 1. This is a stable model of >. On the other hand,
the formula > ∧ UECp, which is > ∧ ¬¬∃y p(y), has no stable models.

The method above eliminates only one intensional function constant at a time, but
repeated applications can eliminate all intensional function constants from a given
c-plain formula in favor of intensional predicate constants. In other words, it tells
us that the stable model semantics for c-plain formulas can be reduced to the stable
model semantics from [Ferraris et al., 2011] by adding uniqueness and existence of
value constraints.

The elimination method described in Corollary 8 has shown to be useful in a special
class of FSM, known as multi-valued propositional formulas [Giunchiglia et al.,
2004]. 9 In [Lee et al., 2013], the method allows us to relate the two different trans-
lations of action language BC into multi-valued propositional formulas and into the
usual ASP programs. Also, it led to the design of MVSM, 10 which computes stable
models of multi-valued propositional formulas using F2LP and CLINGO, and the
design of CPLUS2ASP [Babb and Lee, 2013], 11 which computes action languages
using ASP solvers.

Interestingly, the elimination method results in a new way of formalizing the com-
monsense law of inertia using choice rules instead of using strong negation, e.g.,
(1). The formulas (18) can be more succinctly represented in the language of ASP

9 We discuss the relationship in Section 8.2.
10 http://reasoning.eas.asu.edu/mvsm/
11 http://reasoning.eas.asu.edu/cplus2asp/
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as follows.

{Locp(b, t+1, l)}ch ← Locp(b, t, l)

Locp(b, t+1, l)← Move(b, l, t)

← not 1{Locp(b, t, l) : Location(l)}1,Block(b),Time(t)

where Location, Block, and Time are domain predicates. The first rule says that if
the location of b at time t is l, then decide arbitrarily whether to assert Locp(b, t+1, l)
at time t+1. In the absence of additional information about the location of b at time
t+ 1, asserting Locp(b, t+1, l) will be the only option, as the third rule requires one
of the location l to be associated with the block b at time t+ 1. But if we are given
conflicting information about the location at time t+1 due to the Move action, then
not asserting Locp(b, t+1, l) will be the only option, and the second rule will tell us
the new location of b at time t+ 1.

6.2 Non-c-plain formulas vs. c-plain formulas

One may wonder if the method of eliminating intensional function constants in the
previous section can be extended to non-c-plain formulas, possibly by first rewrit-
ing the formulas into c-plain formulas. In classical logic, this is easily done by
“unfolding” nested functions by introducing existential quantifiers, but this is not
the case under the stable model semantics because nested functions in general ex-
press weaker assertions than unfolded ones.

Example 5 Consider F to be a + b = 5, where a and b are object constants. The
formula F is equivalent to ∃xy(a=x ∧ b=y ∧ x+ y=5) under classical logic,
but this is not the case under FSM. The former has no stable models, and the latter
has many stable models, including I such that aI = 1, bI = 4.

Gelfond and Kahl [2014] describe the intuitive meaning of stable models in terms of
rationality principle: “believe nothing you are not forced to believe.” In the example
above, it is natural to understand that a+ b = 5 does not force one to believe a = 1
and b = 4.

The weaker assertion expressed by function nesting is useful for specifying the
range of a function using a domain predicate, or expressing the concept of syn-
onymity between the two functions without forcing the functions to have specific
values.

Example 6 Consider F to be Dom(a) where Dom is a predicate constant and a
is an object constant. The formula F can be viewed as applying the sort predicate
(i.e., domain predicate) Dom to specify the value range of a, but it does not force
one to believe that a has a particular value. In classical logic, F is equivalent
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to ∃x(Dom(x) ∧ x = a), but their stable models are different. The former has no
stable models, and the latter has many stable models, including I such that DomI =
{1, 2, 3} and aI = 1.

Example 7 A “synonymity” rule [Lifschitz and Yang, 2011] has the form

B → f1(t1) = f2(t2), (19)

where f1, f2 are intensional function constants in f , and t1, t2 are tuples of terms
not containing members of f . This rule expresses that we believe f1(t1) to be
“synonymous” to f2(t2) under condition B, but it does not force one to assign
particular values to f1(t1) and f2(t2). As a special case, consider f1 = f2 vs.
∃x(f1 = x∧ f2 = x). The latter forces one to assign some values to f1 and f2, and
does not express the intended weaker assertion that they are synonymous.

To sum up, in Examples 5, 6, and 7, the classically equivalent transformations do
not preserve strong equivalence. They affect the beliefs, forcing one to believe more
than what the original formulas assert.

On the other hand, there is some special class of formulas for which the process of
“unfolding” preserves stable models. We first define precisely the process.

Definition 1 The process of unfolding F w.r.t. a list c of constants, denoted by
UFc(F ), is recursively defined as follows.

• If F is an atomic formula that is c-plain, UFc(F ) is F ;
• If F is an atomic formula of the form p(t1, . . . , tn) (n ≥ 0) such that tk1 , . . . , tkj

are all the terms in t1, . . . , tn that contain some members of c, then UFc(p(t1, . . . , tn))
is

∃x1 . . . xj
(
p(t1, . . . , tn)′′ ∧

∧
1≤i≤j

UFc(tki = xi)
)
,

where p(t1, . . . , tn)′′ is obtained from p(t1, . . . , tn) by replacing each tki with a
new variable xi.
• If F is an atomic formula of the form f(t1, . . . , tn) = t0 (n ≥ 0) such that
tk1 , . . . , tkj are all the terms in t0, . . . , tn that contain some members of c, then
UFc(f(t1, . . . , tn) = t0) is

∃x1 . . . xj
(

(f(t1, . . . , tn) = t0)
′′ ∧

∧
1≤i≤j

UFc(tki = xi)
)
,

where (f(t1, . . . , tn) = t0)
′′ is obtained from f(t1, . . . , tn) = t0 by replacing

each tki with a new variable xi.
• UFc(F �G) is UFc(F )� UFc(G), where � ∈ {∧,∨,→}.
• UFc(QxF ) is Qx UFc(F (x)), where Q ∈ {∀,∃}.

In Example 6, UFDom(F ) is ∃x(Dom(x) ∧ a = x), and in Example 5, UF(a,b)(F )
is ∃xy(a = x ∧ b = y ∧ x + y = 5). In Example 7, UF(f1,f2)(f1 = f2) is ∃x(f1 =
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x ∧ f2 = x). We already observed that the process of unfolding does not preserve
the stable models of the formulas.

Theorem 9 below presents a special class of formulas, for which the process of
unfolding does preserve stable models, or in other words, unfolding does not affect
the beliefs.

Definition 2 We say that a formula is head-c-plain if every strictly positively oc-
currence of an atomic formula in it is c-plain.

For instance, f(g) = 1 → h = 1 is head-(f, g, h)-plain, though it is not (f, g, h)-
plain.

Theorem 9 For any head-c-plain sentence F that is tight on c and any interpreta-
tion I satisfying ∃xy(x 6= y), we have I |= SM[F ; c] iff I |= SM[UFc(F ); c].

One may wonder if there is any other translation that would work to unfold nested
functions. However, it turns out that there is no modular, signature-preserving trans-
lation from arbitrary formulas to c-plain formulas while preserving stable models.

Theorem 10 For any set c of constants, there is no strongly equivalent transfor-
mation that turns an arbitrary formula into a c-plain formula.

The proof follows from the following lemma.

Lemma 3 There is no f -plain formula that is strongly equivalent to p(f) ∧ p(1) ∧
p(2) ∧ ¬p(3).

Theorem 10 tells us that the set of arbitrary formulas is strictly more expressive than
the set of c-plain formulas of the same signature. One application of this greater
expressivity is in reducing many-sorted FSM to unsorted FSM in Section 8.1 later.

7 Comparing FSM with Other Approaches to Intensional Functions

7.1 Relation to Nonmonotonic Causal Logic

A (nonmonotonic) causal theory is a finite list of rules of the form

F ⇐ G

where F and G are formulas as in first-order logic. We identify a rule with the
universal closure of the implication G → F . A causal model of a causal theory T
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is defined as the models of the second-order sentence

CM[T ; f ] = T ∧ ¬∃f̂(f̂ 6= f ∧ T †(f̂))

where f is a list of explainable function constants, and T †(f̂) denotes the conjunc-
tion of the formulas 12

∀̃(G→ F (f̂)) (20)
for all rules F ⇐ G of T . By a definite causal theory, we mean the causal theory
whose rules have the form either

f(t) = t1 ⇐ B (21)

or
⊥⇐ B, (22)

where f is an explainable function constant, t is a list of terms that does not contain
explainable function constants, and t1 is a term that does not contain explainable
function constants. By Tr(T ) we denote the theory consisting of the following for-
mulas:

∀̃(¬¬B → f(t) = t1)

for each rule (21) in T , and
∀̃¬B

for each rule (22) in T . The causal models of such T coincide with the stable models
of Tr(T ).

Theorem 11 For any definite causal theory T , I |= CM[T ; f ] iff I |= SM[Tr(T ); f ].

For non-definite theories, they do not coincide as shown by the following example.

Example 8 Consider the following non-definite causal theory T :

¬(f = 1) ⇐ >

¬(f = 2) ⇐ >

An interpretation I where |I| = {1, 2, 3}, and f I = 3 is a causal model of T .
However, the corresponding formula Tr(T ) is equivalent to

¬(f = 1) ∧ ¬(f = 2),

which has no stable models.

The following example, a variant of Lin’s suitcase example [Lin, 1995], demon-
strates some unintuitive behavior of definite causal theories in representing indirect
effects of actions, which is not present in the functional stable model semantics.

12 ∀̃F represents the universal closure of F .
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Example 9 Consider the two switches which can be flipped but cannot be both up
or down at the same time. If one of them is down and the other is up, the direct
effect of flipping only one switch is changing the status of that switch, and the
indirect effect is changing the status of the other switch. Let Up(s, t), where s is
switch A or B, and t is a time stamp 0 or 1, be object constants whose values are
Boolean, let Flip(s), where s is switch A or B, be function constants whose values
are Boolean, and let x, y be variables ranging over Boolean values. The domain
can be formalized in a causal theory as

Up(s, 1)=x ⇐ Up(s, 0)=y ∧ Flip(s)= TRUE (x 6= y)

Up(s, 1)=x ⇐ Up(s′, 1)=y (s 6= s′, x 6= y)

Up(s, 1)=x ⇐ Up(s, 1)=x ∧ Up(s, 0)=x

Flip(s)=x ⇐ Flip(s)=x

Up(A, 0)= FALSE ⇐ >

Up(B, 0)= TRUE ⇐ >

There are five causal models as shown in the following table.

Up(A,0) Up(B,0) Flip(A) Flip(B) Up(A,1) Up(B,1)

I1 FALSE TRUE FALSE FALSE FALSE TRUE

I2 FALSE TRUE FALSE TRUE TRUE FALSE

I3 FALSE TRUE TRUE FALSE TRUE FALSE

I4 FALSE TRUE TRUE TRUE TRUE FALSE

I5 FALSE TRUE FALSE FALSE TRUE FALSE

I2 and I3 exhibit the indirect effect of the action Flip. Only I5 is not intuitive because
the fluent Up changes its value for no reason.

In the functional stable model semantics, the domain can be represented as

Up(s, 1)=x ← Up(s, 0)=y ∧ Flip(s)= TRUE (x 6= y)

Up(s, 1)=x ← Up(s′, 1)=y (s 6= s′, x 6= y)

{Up(s, 1)=x}ch ← Up(s, 0)=x

{Flip(s)=x}ch ← >

Up(A, 0)= FALSE ← >

Up(B, 0)= TRUE ← >
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The program has four stable models I1, I2, I3, I4; The unintuitive causal model I5
is not its stable model.

7.2 Relation to Cabalar Semantics

As mentioned earlier, the stable model semantics by Cabalar [2011] is defined in
terms of partial satisfaction, which deviates from classical satisfaction. Bartholomew
and Lee [2013c] show its relationship to FSM. There, it is shown that when we con-
sider stable models to be total interpretations only, both semantics coincide on c-
plain formulas. Also, F and UFc(F ) have the same stable models under the Cabalar
semantics, so any complex formula under the Cabalar semantics can be reduced to
a c-plain formula by preserving stable models. Furthermore, partial stable models
under the Cabalar semantics can be embedded into FSM by introducing an auxil-
iary object constant NONE to denote that the function is undefined. Consequently,
the Cabalar semantics can be fully embedded into FSM by unfolding using an aux-
iliary constant. We refer the reader to [Bartholomew and Lee, 2013c, Section 4] for
the details.

On the other hand, Theorem 10 of this paper shows that the reverse direction is not
possible because the class of c-plain formulas is a restricted subset in the functional
stable model semantics, which is not the case with the Cabalar semantics. In other
words, non-c-plain formulas are weaker than c-plain formulas under FSM whereas
the Cabalar semantics does not distinguish them. For instance, under the Cabalar
semantics, the formula a + b = 5 in Example 5 has many stable models I as long
as aI + bI = 5; in Example 6, Dom(a) has many stable models rather than simply
restricting the value of a to the extent of Dom; in Example 7, f1 = f2 has stable
models as long as the functions are assigned the same values instead of merely
stating that the functions are synonymous.

We observe that the weaker assertions by non-c-plain formulas are often useful
but they are not allowed in the Cabalar semantics. In particular, the use of “sort
predicates” as in Example 6 is important in specifying the range of an intensional
function, rather than a particular value. 13 The synonymity rule like Example 7 is
useful for the design of modular action languages as described in [Lifschitz and
Yang, 2011].

13 In Section 8.1 below, we formally show how to reduce many-sorted FSM into unsorted
FSM and notes that the axioms used there is not expressible in the Cabalar semantics.
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7.3 Relation to IF-Programs

The functional stable model semantics presented here is inspired by IF-programs
from [Lifschitz, 2012], where intensional functions were defined without requir-
ing the complex notion of partial functions and partial satisfaction but instead by
imposing the uniqueness of values on total functions. It turns out that neither se-
mantics is stronger than the other while they coincide on a certain syntactically
restricted class of programs. However, the semantics of IF-programs exhibits an
unintuitive behavior.

7.3.1 Review of IF-Programs

We consider rules of the form
H ← B, (23)

where H and B are formulas that do not contain→. As before, we identify a rule
with the universal closure of the implication B → H . An IF-program is a finite
conjunction of those rules.

An occurrence of a symbol in a formula is negated if it belongs to a subformula that
begins with negation, and is non-negated otherwise. Let F be a formula, let f be
a list of distinct function constants, and let f̂ be a list of distinct function variables
similar to f . By F �(f̂) we denote the formula obtained from F by replacing each
non-negated occurrence of a member of f with the corresponding function variable
in f̂ . By IF[F ; f ] we denote the second-order sentence

F ∧ ¬∃f̂(f̂ 6= f ∧ F �(f̂)).

According to [Lifschitz, 2012], the f -stable models of an IF-program Π are defined
as the models of IF[F ; f ], where F is the FOL-representation of Π.

7.3.2 Comparison

The definition of the IF operator above looks close to our definition of the SM
operator. However, they often behave quite differently.

Example 10 Let F be the following program

d = 2← c = 1,

d = 1

and let I be an interpretation such that |I| = {1, 2}, cI = 2 and dI = 1. I is a
model of IF[F ; cd], but not a model of SM[F ; cd]. The former is not intuitive from
the rationality principle because c does not even appear in the head of a rule.
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Example 11 Let F be the following program

(c = 1 ∨ d = 1) ∧ (c = 2 ∨ d = 2)

and let I1 and I2 be interpretations such that |I1| = |I2| = {1, 2, 3} and I1(c) = 1,
I1(d) = 2, I2(c) = 2, I2(d) = 1. The interpretations I1 and I2 are models of
SM[F ; cd]. On the other hand, IF[F ; cd] has no models.

Example 12 Let F1 be ¬(c = 1) ← > and let F2 be ⊥ ← c = 1. Under the
functional stable model semantics, they are strongly equivalent to each other, and
neither of them has a stable model. However, this is not the case with IF-programs.
For instance, let I be an interpretation such that |I| = {1, 2} and I(c) = 2. I
satisfies IF[F2; c] but not IF[F1; c].

While ⊥ ← F is a constraint in our formalism, in view of Theorem 1, the last
example illustrates that ⊥ ← F is not considered a constraint in the semantics
of IF-programs. This behavior deviates from the standard stable model semantics.
Unlike the functional stable model semantics, in general, it is not obvious how
various mathematical results established for the first-order stable model semantics,
such as the theorem on strong equivalence [Lifschitz et al., 2001], the theorem on
completion [Ferraris et al., 2011], and the splitting theorem [Ferraris et al., 2009],
can be extended to the above formalisms on intensional functions.

The following theorem gives a specific form of formulas on which the two seman-
tics agree.

Theorem 12 Let T be an IF-program whose rules have the form

f(t) = t1 ← ¬¬B (24)

where f is an intensional function constant, t and t1 do not contain intensional
function constants, and B is an arbitrary formula. We identify T with the corre-
sponding first-order formula. Then we have I |= SM[T ; f ] iff I |= IF[T ; f ].

8 Many-Sorted FSM

The following is the standard definition of many-sorted first-order logic. A sig-
nature σ is comprised of a set of function and predicate constants and a set of
sorts. To every function and predicate constant of arity n, we assign argument sorts
s1, . . . , sn and to every function constant of arity n, we assign also its value sort
sn+1. We assume that there are infinitely many variables for each sort. Atomic for-
mulas are built similar to the standard unsorted logic with the restriction that in
a term f(t1, . . . , tn) (an atom p(t1, . . . , tn), respectively), the sort of ti must be a
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subsort of the i-th argument of f (p, respectively). In addition t1 = t2 is an atomic
formula if the sorts and t1 and t2 have a common supersort.

A many-sorted interpretation I has a non-empty universe |I|s for each sort s. When
s1 is a subsort of s2, an interpretation must satisfy |I|s1 ⊆ |I|s2 . The notion of
satisfaction is similar to the unsorted case with the restriction that an interpretation
maps a term to an element in its associated sort.

The definition of many-sorted FSM is a straightforward extension of unsorted FSM.
For any list c of constants in σ, an interpretation I is a stable model of F relative
to c if I satisfies SM[F ; c], where SM[F ; c] is syntactically the same as in Section 3
but formulas are understood as in many-sorted logic.

8.1 Reducing Many-sorted FSM to unsorted FSM

We can turn many-sorted FSM into unsorted FSM as follows. Given a many-sorted
signature σ, we define the signature σns to contain every function and predicate
constant from σ. In addition, for each sort s ∈ σ, we add a unary predicate s to σns.

Given a formula F of many-sorted signature σ, we obtain the formula F ns of the
unsorted signature σns as follows.

We replace every formula ∃xF (x), where x is a variable of sort s, with the formula

∃y(s(y) ∧ F (y))

where y is an unsorted variable and s is a predicate constant in σns corresponding
to s in σ. Similarly, we replace every ∀x F (x), where x is a variable of sort s, with
the formula

∀y(s(y)→ F (y)).

By SFσ we denote the conjunction of

• the formulas ∀y(si(y)→ sj(y)) for every two sorts si and sj in σ such that si is
a subsort of sj (si 6= sj),
• the formulas ∃y s(y) for every sort s in σ
• the formulas

∀y1 . . . yk(args1(y1) ∧ · · · ∧ argsk(yk)→ vals(f(y1, . . . , yk)))

for each function constant f in σ, where the arity of f is k, and the i-th argument
sort of f is argsi and the value sort of f is vals.
• the formulas

∀y1 . . . yk+1(¬args1(y1) ∨ · · · ∨ ¬argsk(yk)→ {f(y1, . . . , yk) = yk+1}ch)
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for each function constant f in σ, where the arity of f is k and the i-th argument
sort of f is argsi.
• the formulas

∀y1 . . . yk(¬args1(y1) ∨ · · · ∨ ¬argsk(yk)→ {p(y1, . . . , yk)}ch)

for each predicate constant p in σ, where the arity of p is k, and the i-th argument
sort of p is argsi.

Note that only the first three items are necessary for classical logic but we need to
add the fourth and fifth items for the FSM semantics so that the witness J to dispute
the stability of I can only disagree with I on the atomic formulas that actually
correspond to atomic formulas in the many-sorted setting (which has arguments
adhering to the argument sorts). Also note that the formulas in item 3 are not c-
plain, which illustrates the usefulness of non-c-plain formulas.

We map an interpretation I of a many-sorted signature σ to an interpretation Ins of
an unsorted signature σns as follows. First, the universe |Ins| of σns is

⋃
s is a sort in σ

|I|s.
We specify that the sort predicates and sorts correspond by defining the extent of
sort predicate s for every sort s ∈ σ as

sI
ns

= |I|s.

For every function constant f in σ and every tuple ξ comprised of elements from
|Ins|, we take

f I
ns

(ξ) =

 f
I(ξ) if each ξi ∈ |I|argsi where argsi is the i-th argument sort of f

|Ins|0 otherwise

where |Ins|0 is an arbitrarily chosen element in the universe |Ins| (we use the same
element for every situation this case holds).

For every predicate constant p in σ and every ξ, we take

pI
ns

(ξ) =

 p
I(ξ) if each ξi ∈ |I|argsi where argsi is the i-th argument sort of p

FALSE otherwise.

Note that FALSE was arbitrarily chosen.

The choice of Ins mapping a function whose arguments are not of the intended
sort to the value |Ins|0 is arbitrary and so there are many unsorted interpretations
that correspond to the many-sorted interpretation. To characterize this one-to-many
relationship, we say two unsorted interpretations I and J are related with rela-
tion R, denoted R(I, J), if for every predicate or function constant c, we have
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cI(ξ1, . . . , ξk) = cJ(ξ1, . . . , ξk) whenever each ξi ∈ argsi where argsi is the i-th
argument sort of c.

Theorem 13 Let F be a formula of a many-sorted signature σ, and let c be a set
of function and predicate constants.

(a) If an interpretation I of signature σ is a model of SM[F ; c], then Ins is a model
of SM[F ns ∧ SFσ; c].

(b) If an interpretation L of signature σns is a model of SM[F ns∧SFσ; c] then there
is some interpretation I of signature σ such that I is a model of SM[F ; c] and
R(L, Ins).

Example 13 Consider σ = {s1, s2, f/1, 1, 2} where both the argument and the
value sort of function constant f are s1. Take F to be f(1) = 1 ∧ f(2) = 2. The
many-sorted interpretation I such that |I|s1 = {1, 2}, |I|s2 = {3, 4}, nI = f I(n) =
n for n ∈ {1, 2} is clearly a stable model of F . However, if we drop the last two
items of SFσ, formula F ns ∧ SFσ is

f(1) = 1 ∧ f(2) = 2 ∧

∃y s1(y) ∧ ∃y s2(y) ∧

∀y1(s1(y1)→ s1(f(y1)))

and K is an unsorted interpretation such that |K| = {1, 2, 3, 4}, (s1)
K = {1, 2},

(s2)
K = {3, 4}, nK = n for n ∈ {1, 2, 3, 4}, fK(n) = n for n ∈ {1, 2, 3, 4}, which

is not a stable model of F ns since we can take J that is different from K only on
f(4), i.e., fJ(4) = 3, to dispute the stability of K.

8.2 Relation to Multi-Valued Propositional Formulas Under the Stable Model Se-
mantics

Multi-valued propositional formulas [Giunchiglia et al., 2004] are an extension of
the standard propositional formulas where atomic parts of a formula are equalities
of the kind found in constraint satisfaction problems. Action languages such as C+
[Giunchiglia et al., 2004] and BC [Lee et al., 2013] are defined based on multi-
valued propositional formulas. In particular, the latter two languages are defined as
shorthand for multi-valued propositional formulas under the stable model seman-
tics, which is a special case of the functional stable model semantics as we show in
this section.

A multi-valued propositional signature is a set σ of symbols called multi-valued
propositional constants (mvp-constants), along with a nonempty finite set Dom(c)
of symbols, disjoint from σ, assigned to each mvp-constant c. We call Dom(c) the
domain of c. A multi-valued propositional atom (mvp-atom) of a signature σ is an
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expression of the form c=v (“the value of c is v”) where c ∈ σ and v ∈ Dom(c).
A multi-valued propositional formula (mvp-formula) of σ is a propositional com-
bination of mvp-atoms.

A multi-valued propositional interpretation (mvp-interpretation) of σ is a function
that maps every element of σ to an element of its domain. An mvp-interpretation I
satisfies an mvp-atom c=v (symbolically, I |= c=v) if I(c) = v. The satisfaction
relation is extended from mvp-atoms to arbitrary mvp-formulas according to the
usual truth tables for the propositional connectives.

The reduct F I of an mvp-formula F relative to an mvp-interpretation I is the mvp-
formula obtained from F by replacing each maximal subformula that is not satisfied
by I with ⊥. I is called a stable model of F if I is the only mvp-interpretation
satisfying F I .

Multi-valued propositional formulas can be viewed as a special class of ground
first-order formulas of many-sorted signatures. We identify a multi-valued propo-
sitional signature with a many-sorted signature that consists of mvp-constants and
their values understood as object constants. Each mvp-constant c is identified with
an intensional object constant whose sort is Dom(c). Each value in Dom(c) is iden-
tified with a non-intensional object constant of the same sort Dom(c), except that
if the same value v belongs to multiple domains, the sort of v is the union of the
domains. 14 For instance, if Dom(c1) = {1, 2} and Dom(c2) = {2, 3}, then the
sort of 2 is Dom(c1) ∪ Dom(c2), while the sort of 1 is Dom(c1) and the sort of 3 is
Dom(c2). An mvp-atom c=v is identified with an equality between an intensional
object constant c and a non-intensional object constant v.

We identify an mvp-interpretation with the many-sorted interpretation in which
each non-intensional object constant is mapped to itself, and is identified with an
element in Dom(c) for some intensional object constant c.

It is easy to check that an mvp-interpretation I is a stable model of F in the sense of
multi-valued propositional formulas iff I is a stable model of F in the sense of the
functional stable model semantics. Under this view, every mvp-formula is identified
with a c-plain formula, where c is the set of all mvp-constants. The elimination of
intensional functions in favor of intensional predicates in Section 6.1 essentially
turns mvp-formulas into the usual propositional formulas.

14 This is because in many-sorted logic with ordered sorts, the equality is defined when
both terms have the same common supersort.
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9 Answer Set Programming Modulo Theories

Sections 5 and 6 show that intensional predicate constants and intensional function
constants are interchangeable in many cases. On the other hand, this section shows
that considering intensional functions has the computational advantage of making
use of efficient computation methods available in the work on satisfiability modulo
theories.

We define ASPMT as a special case of many-sorted FSM by restricting attention to
interpretations that conform to the background theory.

9.1 ASPMT as a Special Case of the Functional Stable Model Semantics

Formally, an SMT instance is a formula in many-sorted first-order logic, where
some designated function and predicate constants are constrained by some fixed
background interpretation. SMT is the problem of determining whether such a for-
mula has a model that expands the background interpretation [Barrett et al., 2009].

Let σT be the many-sorted signature of the background theory T . An interpretation
of σT is called the background interpretation if it satisfies the background theory.
For instance, in the theory of reals, we assume that σT contains the setR of symbols
for all real numbers, the set of arithmetic functions over real numbers, and the set
{<,>,≤,≥} of binary predicates over real numbers. A background interpretation
interprets these symbols in the standard way.

Let σ be a signature that contains σT . An interpretation of σ is called a T -interpretation
if it agrees with the fixed background interpretation of σT on the symbols in σT .

A T -interpretation is a T -model of F if it satisfies F .

For any list c of constants in σ \ σT , a T -interpretation I is a T -stable model of F
relative to c if I satisfies SM[F ; c].

9.2 Describing Actions in ASPMT

The following example demonstrates how ASPMT can be applied to solve an in-
stance of planning problem with the continuous time that requires real number
computation. The encoding extends the standard ASP representation for transition
systems [Lifschitz and Turner, 1999].

Example 14 Consider the following running example from a Texas Action Group
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discussion posted by Vladimir Lifschitz. 15

A car is on a road of lengthL. If the accelerator is activated, the car will speed up
with constant acceleration A until the accelerator is released or the car reaches
its maximum speed MS, whichever comes first. If the brake is activated, the car
will slow down with acceleration−A until the brake is released or the car stops,
whichever comes first. Otherwise, the speed of the car remains constant. Give a
formal representation of this domain, and write a program that uses your repre-
sentation to generate a plan satisfying the following conditions: at duration 0,
the car is at rest at one end of the road; at duration T , it should be at rest at the
other end.

This example can be represented in ASPMT as follows. Below s ranges over time
steps, b is a Boolean variable, x, y, a, c, d are variables over nonnegative reals, and
A and MS are some specific real numbers.

We represent that the actions Accel and Decel are exogenous and the duration of
each time step is to be arbitrarily selected as

{Accel(s) = b}ch,

{Decel(s) = b}ch,

{Duration(s) = x}ch.

Both Accel and Decel cannot be performed at the same time:

⊥ ← Accel(s) = TRUE ∧ Decel(s) = TRUE.

The effects of Accel and Decel on Speed are described as

Speed(s+ 1) = y ← Accel(s)= TRUE ∧ Speed(s)=x ∧ Duration(s)=d

∧ (y = x+ A× d),

Speed(s+ 1) = y ← Decel(s)= TRUE ∧ Speed(s)=x ∧ Duration(s)=d

∧ (y = x− A× d).

The preconditions of Accel and Decel are described as

⊥ ← Accel(s)= TRUE ∧ Speed(s)=x ∧ Duration(s)=d

∧ (y = x+ A× d) ∧ (y > MS),

⊥ ← Decel(s)= TRUE ∧ Speed(s)=x ∧ Duration(s)=d

∧ (y = x− A× d) ∧ (y < 0).

15 http://www.cs.utexas.edu/users/vl/tag/continuous problem
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Speed is inertial:

{Speed(s+ 1) = x}ch ← Speed(s) = x.

Speed at any moment does not exceed the maximum speed MS:

⊥ ← Speed(s) > MS.

Location is defined in terms of Speed and Duration as

Location(s+ 1) = y ← Location(s) = x ∧ Speed(s) = a ∧ Speed(s+ 1) = c

∧ Duration(s)=d ∧ y = x+ ((a+ c)/2)× d.

Theorem 4 tells us that a tight ASPMT theory in Clark normal form can be turned
into an SMT instance.

Example 14 Continued Since the formalization above can be written in Clark
Normal Form that is tight, its stable models coincide with the models of the com-
pletion formulas. For instance, to form the completion of Speed(1), consider the
rules that have Speed(1) in the head:

Speed(1)=y ← Accel(0)= TRUE ∧ Speed(0)=x ∧ Duration(0)=d

∧ (y = x+ A× d) ∧ (y ≤ MS),

Speed(1)=y ← Decel(0)= TRUE ∧ Speed(0)=x ∧ Duration(0)=d

∧ (y = x− A× d) ∧ (y ≥ 0),

Speed(1)=y ← Speed(0)=y ∧ ¬¬(Speed(1)=y)

({c=v}ch ← G is strongly equivalent to c=v ← G∧¬¬(c=v)). The completion
turns them into the following equivalence:

Speed(1) = y ↔

∃xd( (Accel(0)= TRUE ∧ Speed(0)=x ∧ Duration(0)=d

∧ (y = x+ A× d) ∧ (y ≤ MS))

∨ (Decel(0)= TRUE ∧ Speed(0)=x ∧ Duration(0)=d

∧ (y = x− A× d) ∧ (y ≥ 0))

∨ Speed(0) = y ).

(25)

It is worth noting that most action descriptions can be represented by tight ASPMT
theories due to the associated time stamps. In [Lee and Meng, 2013], ASPMT was
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used as the basis of extending action language C+ [Giunchiglia et al., 2004] to
represent the durative action model of PDDL 2.1 [Fox and Long, 2003] and the
start-process-stop model of representing continuous changes in PDDL+ [Fox and
Long, 2006]. In [Lee et al., 2017], language C+ was further extended to allow ordi-
nary differential equations (ODE), the concept borrowed from SAT modulo ODE.
As our action language is based on ASPMT, which in turn is founded on the basis
of ASP and SMT, it enjoys the development in SMT solving techniques as well as
the expressivity of ASP language.

9.3 Implementations of ASPMT

A few implementations of ASPMT emerged based on the idea that reduces tight
ASPMT theories to the input language of SMT solvers. System ASPMT2SMT
[Bartholomew and Lee, 2014] is a proof-of-concept implementation of ASPMT
by reducing ASPMT programs into the input language of SMT solver Z3, and is
shown to effectively handle real number computation for reasoning about continu-
ous changes. The system allows a fragment of ASPMT in the input language, whose
syntax resembles ASP rules and which can be effectively translated into the input
language of SMT solvers. In particular, the language imposes a syntactic condition
that quantified variables can be eliminated by equivalent rewriting.

Wałega et al. [2015] extended the system ASPMT2SMT to handle nonmonotonic
spatial reasoning that uses both qualitative and quantitative information, where spa-
tial relations are encoded in theory of nonlinear real arithmetic.

In [Lee et al., 2017], based on the recent development in SMT called “Satisfia-
bility Modulo Ordinary Differential Equations (ODE)” [Gao et al., 2013a] and its
implementation DREAL [Gao et al., 2013b], the system CPLUS2ASPMT was built
on top of ASPMT2SMT. The paper showed that a general class of hybrid automata
with non-linear flow conditions and non-convex invariants can be turned into first-
order action language C+, and CPLUS2ASPMT can be used to compute the action
language modulo ODE by translating C+ into ASPMT. For example, the effect of
Accel in Example 14 can be represented using ODE as

Speed(s+1) = x+ y ← Accel(s)= TRUE ∧ Speed(s)=x ∧ Duration(s)=δ ∧

y=
∫ δ

0
A dt ∧ y≤MS.

The theory of reals is decidable as shown by Tarski, and some SMT solvers do not
always approximate reals with floating point numbers. Even for undecidable theo-
ries, such as formulas with trigonometric functions and differential equations, SMT
solving techniques ensure certain error-bounds: A δ-complete decision procedure
[Gao et al., 2013a] for such an SMT formula F returns false if F is unsatisfiable,
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and returns true if its syntactic “numerical perturbation” of F by bound δ is satis-
fiable, where δ > 0 is number provided by the user to bound on numerical errors.
This is practically useful since it is not possible to sample exact values of physical
parameters in reality. ASPMT is able to take the advantage of the SMT solving
techniques whereas it is shown that the ASPMT description of action domains is
much more compact than the SMT counterpart.

In [Asuncion et al., 2015], the authors presented the “ordered completion,” that
compiles logic programs with convex aggregates into the input language of SMT
solvers. The focus there was to compute the standard ASP language using SMT
solvers. So unlike the other systems mentioned above, neither intensional functions
nor various background theories in SMT were considered there. On the other hand,
the input programs are not restricted to tight programs.

10 Comparing ASPMT with Other Approaches to Combining ASP with CSP/SMT

We compare ASPMT with other approaches to combining ASP with CSP/SMT.
These approaches can be related to a special case of ASPMT in which all functions
are non-intensional.

10.1 Relation to Clingcon Programs

A constraint satisfaction problem (CSP) is a tuple (V,D,C), where V is a set of
constraint variables with their respective domains in D, and C is a set of con-
straints that specify some legal assignments of values in the domains to the con-
straint variables.

A clingcon program Π [Gebser et al., 2009] with a constraint satisfaction problem
(V,D,C) is a set of rules of the form

a← B,N,Cn, (26)

where a is a propositional atom or ⊥, B is a set of positive propositional literals,
N is a set of negative propositional literals, and Cn is a set of constraints from C,
possibly preceded by not.

Clingcon programs can be viewed as ASPMT instances. Below is a reformulation
of the semantics using the terminologies in ASPMT. We assume that constraints
are expressed by ASPMT sentences of signature V ∪σT , where V is a set of object
constants, which is identified with the set of constraint variables V in (V,D,C),
whose value sorts are identified with the domains in D; we assume that σT is dis-
joint from V and contains all values in D as object constants, and other symbols to
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represent constraints, such as +,×, and≥. In other words, we represent a constraint
as a formula F (v1, . . . , vn) over V ∪ σT where F (x1, . . . , xn) is a formula of the
signature σT and F (v1, . . . , vn) is obtained from F (x1, . . . , xn) by substituting the
object constants (v1, . . . , vn) in V for (x1, . . . , xn). We say this background theory
T conforms to (V,D,C).

For any signature σ that consists of object constants and propositional constants,
we identify an interpretation I of σ as the tuple 〈If , X〉, where If is the restriction
of I onto the object constants in σ, and X is a set of propositional constants in σ
that are true under I .

Given a clingcon program Π with (V,D,C), and a T -interpretation I = 〈If , X〉,
we define the constraint reduct of Π relative to X and If (denoted by ΠX

If ) as the
set of rules a← B for each rule (26) in Π such that If |= Cn, and X |= N . We say
that a set X of propositional atoms is a constraint answer set of Π relative to If if
X is a minimal model of ΠX

If .

Example 1 continued The rules

Amt1 =$ Amt0+1← not Flush,

Amt1 =$ 0← Flush

are identified with

⊥ ← not Flush, not(Amt1 =$ Amt0+1)

⊥ ← Flush, not(Amt1 =$ 0)

under the semantics of clingcon programs with the theory of integers as the back-
ground theory; Amt0, Amt1 are object constants and Flush is a propositional con-
stant. Consider I1 in Example 1, which can be represented as 〈(I1)f , X〉 where
(I1)

f maps Amt0 to 5, and Amt1 to 6, and X = ∅. The set X is the constraint an-
swer set relative to (I1)

f because X is the minimal model of the constraint reduct
relative to X and (I1)

f , which is the empty set.

Similar to the way that rules are identified as a special case of formulas [Ferraris et
al., 2011], we identify a clingcon program Π with the conjunction of implications
B∧N∧Cn→ a for all rules (26) in Π. The following theorem tells us that clingcon
programs are a special case of ASPMT in which the background theory T conforms
to (V,D,C), and intensional constants are limited to propositional constants only,
and do not allow function constants, so the language cannot express the default
assignment of values to a function.

Theorem 14 Let Π be a clingcon program with CSP (V,D,C), let p be the set of
all propositional constants occurring in Π, let T be the background theory con-
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forming to (V,D,C), and let 〈If , X〉 be a T -interpretation. Set X is a constraint
answer set of Π relative to If iff 〈If , X〉 is a T -stable model of Π relative to p.

Note that a clingcon program does not allow an atom that consists of elements from
both V and p. Thus the truth value of an atom is determined by either If or X , but
not by involving both of them.

In [Lierler and Susman, 2016], the authors compared Constraint ASP and SMT
by relating the different terminologies and concepts used in each of them. This
is related to the relationship shown in Theorem 14 since T -stable models of an
ASPMT program Π relative to ∅ are precisely SMT models of Π with background
theory T . One main difference between the two comparisons is that an answer set in
[Lierler and Susman, 2016] is a set containing ordinary atoms and theory/constraint
atoms, while a stable model in this paper is a classical model.

10.2 Relation to ASP(LC) Programs

Liu et al. [2012] consider logic programs with linear constraints, or ASP(LC) pro-
grams, comprised of rules of the form

a← B,N,LC (27)

where a is a propositional atom or ⊥, B is a set of positive propositional literals,
and N is a set of negative propositional literals, and LC is a set of theory atoms—

linear constraints of the form
n∑
i=1

(ci×xi) ./ k where ./∈ {≤,≥,=}, each xi is an

object constant whose value sort is integers (or reals), and each ci, k is an integer
(or real).

An ASP(LC) program Π can be viewed as an ASPMT formula whose background
theory T is the theory of integers or the theory of reals. We identify an ASP(LC)
program Π with the conjunction of ASPMT formulas B ∧ N ∧ LC → a for all
rules (27) in Π.

An LJN-intepretation is a pair (X,T ) whereX is a set of propositional atoms and T
is a subset of theory atoms occurring in Π such that there is some T -interpretation I
that satisfies T ∪ T , where T is the set of negations of each theory atom occurring
in Π but not in T . An LJN-interpretation (X,T ) satisfies an atom b if b ∈ X , the
negation of an atom not c if c /∈ X , and a theory atom t if t ∈ T . The notion of
satisfaction is extended to other propositional connectives as usual.

The LJN-reduct of a program Π with respect to an LJN-interpretation (X,T ), de-
noted by Π(X,T ), consists of rules a← B for each rule (27) such that (X,T ) satis-
fies N ∧ LC. (X,T ) is an LJN-answer set of Π if (X,T ) satisfies Π, and X is the
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smallest set of atoms satisfying Π(X,T ).

The following theorem tells us that there is a one-to-many relationship between
LJN-answer sets and the stable models in the sense of ASPMT. Essentially, the set
of theory atoms in an LJN-answer set encodes all valid mappings for functions in
the stable model semantics.

Theorem 15 Let Π be an ASP(LC) program of signature 〈σp, σf〉 where σp is a set
of propositional constants, and let σf be a set of object constants, and let If be an
interpretation of σf .

(a) If (X,T ) is an LJN-answer set of Π, then for any T -interpretation I such that
If |= T ∪ T , we have 〈If , X〉 |= SM[Π;σp].

(b) For any T -interpretation I = 〈If , X〉, if 〈If , X〉 |= SM[Π;σp], then an LJN-
interpretation (X,T ) where

T = {t | t is a theory atom in Π such that If |= t}

is an LJN-answer set of Π.

Example 15 Let F be

a← x−z>0. b← x−y≤0.

c← b, y−z≤0. ← not a.

b← c.

The LJN-interpretation L = 〈{a}, {x−z>0}〉 is an answer set of F since {(x−z>
0,¬(x−y ≤ 0),¬(y−z ≤ 0)} is satisfiable (e.g., take xI = 2, yI = 1, zI = 0) and
the set {a} is the minimal model satisfying the reduct FL, which is equivalent to
(> → a)∧ (c→ b). In accordance with Theorem 15, the interpretation I such that
xI =2, yI =1, zI =0, aI = TRUE, bI = FALSE, cI = FALSE satisfies I |= SM[F ; abc].

As with clingcon programs, ASP(LC) programs do not allow intensional functions.

10.3 Relation to Lin-Wang Programs

Lin and Wang (2008) extended answer set semantics with functions by extend-
ing the definition of a reduct, and also provided loop formulas for such programs.
We can provide an alternative account of their results by considering the notions
there as special cases of the definitions presented in this paper. Essentially, they
restricted attention to a special case of non-Herbrand interpretations such that ob-
ject constants form the universe, and ground terms other than object constants are
mapped to the object constants. More precisely, according to [Lin and Wang, 2008],
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an LW-program P consists of type definitions and a set of rules of the form

A← B1, . . . , Bm, not C1, . . . , not Cn (28)

where A is ⊥ or an atom, and Bi (1 ≤ i ≤ m) and Cj (1 ≤ j ≤ n) are atomic for-
mulas possibly containing equality. Type definitions are essentially a special case
of many-sorted signature declarations, where each sort is a set of object constants.
For such many-sorted signature, we say that a many-sorted interpretation I is a P -
interpretation if it evaluates each object constant to itself, and each ground term
other than object constants to an object constant conforming to the type definitions
of P . The functional reduct of P under I is a normal logic program without func-
tions obtained from P by

(1) replacing each functional term f(t1, . . . , tn) with c where f I(t1, . . . , tn) = c;
(2) removing any rule containing c 6= c or c = d where c, d are distinct constants;
(3) removing any remaining equalities from the remaining rules;
(4) removing any rule containing not A in the body of the rule whereAI = TRUE;
(5) removing any remaining not A from the bodies of the remaining rules.

A P -interpretation is an answer set of P in the sense of [Lin and Wang, 2008] if I
is the minimal model of P I .

The following theorem tells us that LW programs are a special case of FSM for-
mulas whose function constants are non-intensional.

Theorem 16 Let P be an LW-program and let F be the FOL-representation of the
set of rules in P . The following conditions are equivalent to each other:

(a) I is an answer set of P in the sense of [Lin and Wang, 2008];
(b) I is a P -interpretation that satisfies SM[F ;p] where p is the list of all predicate

constants occurring in F .

In other words, like clingcon programs, Lin-Wang programs can be identified with
a special case of the first-order stable model semantics from [Ferraris et al., 2011],
which do not allow intensional functions.

11 Conclusion

In this paper, we presented the functional stable model semantics, which properly
extends the first-order stable model semantics to distinguish between intensional
and non-intensional functions. We observe that many properties known for the
first-order stable model semantics naturally extend to the functional stable model
semantics.
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The presented semantics turns out to be useful for overcoming the limitations of the
stable model semantics originating from the propositional setting, and enables us to
combine with other related formalisms where general functions play a central role
in efficient computation. ASPMT benefits from the expressiveness of ASP mod-
eling language while leveraging efficient constraint/theory solving methods orig-
inating from SMT. For instance, it provides a viable approach to nonmonotonic
reasoning about hybrid transitions where discrete and continuous changes co-exist.

The relationship between ASPMT and SMT is similar to the relationship between
ASP and SAT. We expect that, in addition to completion and the results shown in
this paper, many other results known between ASP and SAT can be carried over to
the relationship between ASPMT and SMT, thereby contributing to efficient first-
order reasoning in answer set programming. A future work is to lift the limitation
of the current ASPMT implementation limited to tight programs by designing and
implementing a native computation algorithm which borrows the techniques from
SMT, similar to the way that ASP solvers adapted SAT solving computation.
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A Review of Reduct-Based Definition of Stable Models

Some of the proofs below use the definition of functional stable models based on
the notions of an infinitary ground formula and a reduct from [Bartholomew and
Lee, 2013c]. We review the semantics below.

A.1 Infinitary Ground Formulas

We assume that a signature and an interpretation are defined the same as in the
standard first-order logic. For each element ξ in the universe |I| of I , we introduce
a new symbol ξ�, called an object name. By σI we denote the signature obtained
from σ by adding all object names ξ� as additional object constants. We will iden-
tify an interpretation I of signature σ with its extension to σI defined by I(ξ�) = ξ.

We assume the primary connectives of infinitary ground formulas to be ⊥, {}∧,
{}∨, and→. The usual propositional connectives∧,∨ are considered as shorthands:
F ∧G as {F,G}∧, and F ∨G as {F,G}∨.

Let A be the set of all ground atomic formulas of signature σI . The sets F0,F1, . . .
are defined recursively as follows:

• F0 = A ∪ {⊥};
• Fi+1(i ≥ 0) consists of expressionsH∨ andH∧, for all subsetsH ofF0∪. . .∪Fi,

and of the expressions F → G, where F and G belong to F0 ∪ · · · ∪ Fi.

We define LinfA =
⋃∞
i=0Fi, and call elements of LinfA infinitary ground formulas

of σ w.r.t. I .

For any interpretation I of σ and any infinitary ground formula F w.r.t. I , the defi-
nition of satisfaction, I |= F , is as follows:

• For atomic formulas, the definition of satisfaction is the same as in the standard
first-order logic;
• I |= H∨ if there is a formula G ∈ H such that I |= G;
• I |= H∧ if, for every formula G ∈ H, I |= G;
• I |= G→ H if I 6|= G or I |= H .

Given an interpretation, we identify any first-order sentence with an infinitary ground
formula via the process of grounding relative to that interpretation. Let F be any
first-order sentence of a signature σ, and let I be an interpretation of σ. By grI [F ]
we denote the infinitary ground formula w.r.t. I that is obtained from F by the
following process:
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• If F is an atomic formula, grI [F ] is F ;
• grI [G�H] = grI [G]� grI [H] (� ∈ {∧,∨,→});
• grI [∃xG(x)] = {grI [G(ξ�)] | ξ ∈ |I|}∨;
• grI [∀xG(x)] = {grI [G(ξ�)] | ξ ∈ |I|}∧.

A.2 Stable Models in terms of Grounding and Reduct

For any two interpretations I , J of the same signature and any list c of distinct
predicate and function constants, we write J <c I if

• J and I have the same universe and agree on all constants not in c,
• pJ ⊆ pI for all predicate constants p in c, 16 and
• J and I do not agree on c.

The reduct F I of an infinitary ground formula F relative to an interpretation I is
defined as follows:

• For any atomic formula F , F I =

⊥ if I 6|= F

F otherwise.
• (H∧)I = {GI | G ∈ H}∧
• (H∨)I = {GI | G ∈ H}∨

• (G→ H)I =

⊥ if I 6|= G→ H

GI → HI otherwise.

The following theorem presents an alternative definition of a stable model that is
equivalent to the one in the previous section.

Theorem 17 (Theorem 1 from [Bartholomew and Lee, 2013c]) Let F be a sen-
tence and let c be a list of intensional constants. An interpretation I satisfies
SM[F ; c] iff

• I satisfies F , and
• no interpretation J such that J <c I satisfies (grI [F ])I .

16 For any symbol c in a signature, cI denotes the evaluation of I on c.
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B Proofs

B.1 Proof of Theorem 1

Theorem 1 For any first-order formulasF andG, ifG is negative on c, SM[F ∧G; c]
is equivalent to SM[F ; c] ∧G.

Proof. By Lemma 2,

SM[F ∧ ¬G; c] = F ∧ ¬G ∧ ¬∃ĉ((ĉ < c) ∧ (F ∧ ¬G)∗(ĉ))

⇔ F ∧ ¬G ∧ ¬∃ĉ((ĉ < c) ∧ F ∗(ĉ) ∧ ¬G)

⇔ F ∧ ¬∃ĉ((ĉ < c) ∧ F ∗(ĉ)) ∧ ¬G
= SM[F ; c] ∧ ¬G.

B.2 Proof of Theorem 2

Lemma 4 Choice(c)∗(ĉ) is equivalent to

(cpred ≤ ĉpred) ∧ (cfunc = ĉfunc).

Proof. Choice(c) is the conjunction for each predicate p in cpred of ∀x(p(x) ∨ ¬p(x))
and for each function f in cfunc of ∀xy(f(x) = y ∨ ¬f(x) = y).

First,
[∀x(p(x) ∨ ¬p(x))]∗(ĉ)

is equivalent to
∀x(p̂(x) ∨ (¬p̂(x) ∧ ¬p(x))),

which is further equivalent to

∀x(p(x)→ p̂(x)),

or simply p ≤ p̂.

Next,
[∀xy(f(x) = y ∨ ¬(f(x) = y))]∗(ĉ)

is equivalent to

∀xy((f̂(x) = y ∧ f(x) = y) ∨ (¬(f̂(x) = y) ∧ ¬(f(x) = y))),
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which is further equivalent to

∀xy(f(x) = y ↔ f̂(x) = y),

or simply f = f̂ .

Thus, Choice(c)∗(ĉ) is the conjunction for each predicate p in cpred of p ≤ p̂ and
for each function f in cfunc of f = f̂ , or simply Choice(c)∗(ĉ) is

(cpred ≤ ĉpred) ∧ (cfunc = ĉfunc).

Theorem 2 For any first-order formula F and any disjoint lists c, d of distinct
constants, the following formulas are logically valid:

(i) SM[F ; cd]→ SM[F ; c]

(ii) SM[F ∧ Choice(d); cd]↔ SM[F ; c].

Proof. The proof is not long, but there is a notational difficulty that we need to
overcome before we can present it. The notation F ∗(ĉ) does not take into account
the fact that the construction of this formula depends on the choice of the list c
of intensional constants. Since the dependence on c is essential in the proof of
Theorem 2, we use here the more elaborate notation F ∗[c](ĉ). For instance, if F
is p(x) ∧ q(x) then

F ∗[p](p̂) is p̂(x) ∧ q(x),

F ∗[pq](p̂, q̂) is p̂(x) ∧ q̂(x).

It is easy to verify by induction on F that for any disjoint lists c, d of distinct
predicate constants,

F ∗[c](ĉ) = F ∗[cd](ĉ,d). (B.1)

(i) In the notation introduced above, SM[F ; c] is

F ∧ ¬∃ĉ((ĉ < c) ∧ F ∗[c](ĉ)).

By (B.1), this formula can be written also as

F ∧ ¬∃ĉ((ĉ < c) ∧ F ∗[cd](ĉ,d)),

which is equivalent to

F ∧ ¬∃ĉ(((ĉ,d) < (c,d)) ∧ F ∗[cd](ĉ,d)). (B.2)
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On the other hand, SM[F ; cd] is

F ∧ ¬∃ĉd̂(((ĉ, d̂) < (c,d)) ∧ F ∗[cd](ĉ, d̂)). (B.3)

It is clear that (B.3) entails (B.2).

(ii) Note that, by (B.1) and Lemma 4, the formula

∃ĉd̂(((ĉ, d̂) < (c,d)) ∧ F ∗[cd](ĉ, d̂) ∧ Choice(d)∗[cd](ĉ, d̂))

is equivalent to

∃ĉd̂(((ĉ, d̂) < (c,d)) ∧ F ∗[cd](ĉ, d̂) ∧ (d = d̂)).

It follows that it can be also equivalently rewritten as

∃ĉ((ĉ < c) ∧ F ∗[cd](ĉ,d)).

By (B.1), the last formula can be represented as

∃ĉ((ĉ < c) ∧ F ∗[c](ĉ)).

B.3 Proof of Theorem 3

Recall that about first-order formulas F and G we say that F is strongly equivalent
to G if, for any formula H , any occurrence of F in H , and any list c of distinct
predicate and function constants, SM[H; c] is equivalent to SM[H ′; c], where H ′ is
obtained from H by replacing the occurrence of F by G.

Lemma 5 Formula

(F ↔ G) ∧ ((F ∗(ĉ)↔ G∗(ĉ))→ (H∗(ĉ)↔ (H ′)∗(ĉ)))

is logically valid.

Proof. By induction on the structure of H .

The following lemma is equivalent to the “only if” part of Theorem 3.

Lemma 6 If the formula (9) is logically valid, then F is strongly equivalent to G.

Proof. Assume that (9) is logically valid. We need to show that

H ∧ ¬∃ĉ((ĉ < c) ∧H∗(ĉ)) (B.4)
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is equivalent to
H ′ ∧ ¬∃ĉ((ĉ < c) ∧ (H ′)∗(ĉ)). (B.5)

Since (9) is logically valid, the first conjunctive term of (B.4) is equivalent to the
first conjunctive term of (B.5). By Lemma 5, it also follows that the same relation-
ship holds between the two second conjunctive terms of the same formulas.

The following lemma is equivalent to the “if” part of Theorem 3.

Lemma 7 If F is strongly equivalent to G, then (9) is logically valid.

Proof. Let C be the formula Choice(c). Let E stand for F ↔ G, and E ′ be
F ↔ F . Since F is strongly equivalent toG, the formula SM[E ↔ C] is equivalent
to SM[E ′ ↔ C].

Recall that by Lemma 4, Choice(c)∗(ĉ), which we abbreviate as C∗, is equivalent
to

(cpred ≤ ĉpred) ∧ (cfunc = ĉfunc).

On the other hand, ĉ < c can be equivalently rewritten as

(ĉpred < cpred) ∨ ((ĉpred = cpred) ∧ (ĉfunc 6= cfunc)).

It follows that
ĉ < c→ (C∗ ↔ ⊥)

is logically valid.

It is easy to see that (E ↔ C)∗ can be rewritten as

E ∧ (E∗(ĉ)↔ C∗),

and that E∗(ĉ) is equivalent to

E ∧ (F ∗(ĉ)↔ G∗(ĉ)).

Using these two facts and Lemma 1, we can simplify SM[E ↔ C] as follows:

SM[E ↔ C] ⇔ (E ↔ C) ∧ ¬∃ĉ((ĉ < c) ∧ E ∧ (E∗(ĉ)↔ C∗))

⇔ E ∧ ¬∃ĉ((ĉ < c) ∧ (E∗(ĉ)↔ ⊥))

⇔ E ∧ ¬∃ĉ((ĉ < c) ∧ ¬E∗(ĉ))

⇔ E ∧ ¬∃ĉ((ĉ < c) ∧ ¬(F ∗(ĉ)↔ G∗(ĉ)))

= (F ↔ G) ∧ ∀ĉ((ĉ < c)→ (F ∗(ĉ)↔ G∗(ĉ))).

Similarly, SM[E ′ ↔ C] is equivalent to

(F ↔ F ) ∧ ∀ĉ((ĉ < c)→ (F ∗(ĉ)↔ F ∗(ĉ))),
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which is logically valid. Consequently, (9) is logically valid also.

Theorem 3 Let F and G be first-order formulas, let c be the list of all constants
occurring in F or G, and let ĉ be a list of distinct predicate and function variables
corresponding to c. The following conditions are equivalent to each other.

• F and G are strongly equivalent to each other;
• Formula

(F ↔ G) ∧ (ĉ < c→ (F ∗(ĉ)↔ G∗(ĉ)))

is logically valid.

Proof. Immediate from Lemma 6 and Lemma 7.

B.4 Proof of Theorem 4

Lemma 8 For any first-order sentence F , any list c of constants, and any interpre-
tations I and J such that J <c I , if I |= grI(F )I and J 6|= grI(F )I , then there is
some constant d occurring strictly positively in F such that dI 6= dJ .

Proof. By induction on the structure of F .

Lemma 9 If a ground formula F is negative on a list c of predicate and function
constants, then for every J <c I ,

J |= F I iff I |= F.

Proof. By induction on the structure of F .

Theorem 4 For any formula F in Clark normal form relative to c that is tight on c,
an interpretation I that satisfies ∃xy(x 6= y) is a model of SM[F ; c] iff I is a model
of COMP[F ; c].

Proof. In this proof, we use Theorem 17 and refer to the reduct-based characteri-
zation of a stable model.

(⇐) Take an interpretation I that is a model of COMP[F ; c]. I is clearly a model
of F . We wish to show that, for any interpretation J such that J <c I , we have
J 6|= grI [F ]I . Let S be a subset of c consisting of constants c on which I and J
disagree, that is, cI 6= cJ . Let s0 be a constant from S such that there is no edge
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in the dependency graph from s0 to any constant in S. Such an s0 is guaranteed to
exist since F is tight on c.

If s0 is a predicate, then for some ξ, we have s0(ξ)I = TRUE and s0(ξ)J = FALSE

by definition of J <c I . If s0 is a function, then for some ξ, we have s0(ξ)I = v
and s0(ξ)J 6= v.

Since F is in Clark normal form, there must be a rule in grI [F ] of the form B →
s0(ξ

�) if s0 is a predicate (B → s0(ξ
�) = v if s0 is a function) where B may be >.

Further it must be that I |= B since if not, I would not be a model of COMP[F ; c].
Thus, the corresponding rule in grI [F ]I is BI → s0(ξ

�) (BI → s0(ξ
�) = v if s0 is

a function).

Now there are two cases to consider:

• Case 1: J |= BI . In this case, J 6|= BI → s0(ξ
�) (or J 6|= BI → s0(ξ

�) = v if s0
is a function) and so J 6|= grI [F ]I .
• Case 2: J 6|= BI . By Lemma 8, there is a constant d occurring strictly positively

in B that I and J disagree on. However, this means there is an edge from s0 to
d and since I and J disagree on d, d belongs to S which contradicts the fact that
s0 was chosen so that it had no edge to any element in S. Thus this case cannot
arise.

(⇒) Assume I |= SM[F ; c]. F can be viewed as the conjunction of ∀x(H(x) ←
G(x)), where each H is an atomic formula containing each intensional constant
ci. It is sufficient to prove that I |= ∀x(H(x) → G(x)) for each such formula.
Assume for the sake of contradiction that for some formula ∀x(H(x) → G(x))
whose H contains an intensional constant c, I |= H(ξ) and I 6|= G(ξ) for some list
ξ of object names.

Consider an interpretation J that differs from I only in that J 6|= H(ξ). (I |=
∃xy(x 6= y) means there are at least two elements in the universe so this is possible
when c is a function constant.)

• Clearly, J |= (H(ξ)← G(ξ))I because G(ξ)I = ⊥.
• For other rules H(ξ′) ← G(ξ′) where ξ′ is a list of object names different from
ξ, clearly, J |= H(ξ′) iff I |= H(ξ′). Since G is negative on c and J <c I , by
Lemma 9 we have I |= G(ξ′) iff J |= G(ξ′)I . Since I |= H(ξ′) ← G(ξ′), it
follows that J |= (H(ξ′)← G(ξ′))I .
• For all other rulesH ′(ξ)← G′(ξ) whoseH ′ has an intensional constant different

from c, we have I |= H ′(ξ)← G′(ξ). Since H ′(ξ)← G′(ξ) is negative on c and
J <c I , by Lemma 9, we have J |= (H ′(ξ)← G′(ξ))I .

The presence of J contradicts that I |= SM[F ; c].
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B.5 Proof of Theorem 5

Theorem 5 The set of formulas consisting of

∀x(f(x) = 1↔ p(x)), (B.6)

and FCf entails
SM[F ; pc]↔ SM[F p

f ∧ DFf ; fc].

Proof. For any interpretation I of signature σ ⊇ {f, p, c} satisfying (B.6), it is
clear that I |= F iff I |= F p

f ∧ DFf since DFf is a tautology and F p
f is equivalent

to F under (B.6). Thus it only remains to be shown that

I |= ∃p̂ĉ((p̂ĉ < pc) ∧ F ∗(p̂ĉ))

iff
I |= ∃f̂ ĉ((f̂ ĉ < fc) ∧ (F p

f )∗(f̂ ĉ) ∧ DF∗f (f̂ ĉ)).

Let σ′ = σ∪{g, q,d} be an extended signature such that g, q,d are similar to f, p, c
respectively, and do not belong to σ.

(⇒) Assume I |= ∃p̂ĉ((p̂ĉ < pc)∧F ∗(p̂ĉ)). This is equivalent to saying that there
is an interpretation J of σ that agrees with I on all constants other than p and c
such that I = Jpcqd ∪ I of signature σ′ satisfies (qd < pc ∧ F ∗(qd)).

It is sufficient to show that there is an interpretation K of σ that agrees with J
on all constants other than f such that I ′ = Kfc

gd ∪ I of signature σ′ satisfies
(gd < fc ∧ (F p

f )∗(gd) ∧ DF∗f (gd)). We define the interpretation of K on f as
follows:

fK(~ξ) =

 1 if pJ(~ξ) = TRUE

0 otherwise.

We now show I ′ |= gd < fc:

• Case 1: I |= (q = p). Since I |= qd < pc, by definition I |= dpred ≤ cpred

and I |= ¬(qd = pc) and since in this case, I |= (q = p), it must be that
I |= ¬(d = c). From this, we conclude I ′ |= ¬(gd = fc). Further, since
I ′ |= dpred ≤ cpred, we conclude I ′ |= gd < fc.
• Case 2: I |= ¬(q = p). Since I |= qd < pc, by definition, I |= dpred ≤ cpred

and I |= (q ≤ p). Thus, since in this case I |= ¬(q = p), it must be that I |=
∃x(p(x) ∧ ¬q(x)). From the definition of fK and from (B.6), this is equivalent
to I ′ |= ∃x(f(x) = 1∧ g(x) = 0). Thus, we conclude I ′ |= ¬(f = g) and since
I ′ |= dpred ≤ cpred, we further conclude that I ′ |= gd < fc.
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We now show I ′ |= DF∗f (gd):
Since I |= qd < pc, by definition, I |= (q ≤ p), or equivalently I |= ∀x(q(x) →
p(x)) and by contraposition, I |= ∀x(¬p(x)→ ¬q(x)). Finally, by (B.6),FCf , and
the definition of fK , I ′ |= ∀x(f(x) = 0→ g(x) = 0) or simply I ′ |= DF∗f (gd).

We now show I ′ |= (F p
f )∗(gd) by proving the following:

Claim: I |= F ∗(qd) iff I ′ |= (F p
f )∗(gd).

The proof of the claim is by induction on the structure of F .

• Case 1: F is an atomic formula not containing p. F p
f is exactly F thus F ∗(qd) is

exactly (F p
f )∗(gd) so certainly the claim holds.

• Case 2: F is p(t) where t contains an intensional function constant from c.
F ∗(qd) is p(t) ∧ q(t′) where t′ is the result of replacing all intensional func-
tions from c occurring in t with the corresponding function from d. Since F p

f is
f(t) = 1, formula (F p

f )∗(gd) is f(t) = 1 ∧ g(t′) = 1. The claim follows from
(B.6) and the definition of fK .
• Case 3: F is p(t) where t does not contain any intensional function constant

from c. F ∗(qd) is q(t). Since F p
f is f(t) = 1, formula (F p

f )∗(gd) is f(t) =
1∧ g(t) = 1. Since I |= (q ≤ p), if I |= q(t), then I |= p(t). The claim follows
from (B.6) and the definition of fK .
• The other cases are straightforward from I.H.

(⇐) Assume I |= ∃f̂ ĉ((f̂ ĉ < fc) ∧ (F p
f )∗(f̂ ĉ) ∧ DF∗f (f̂ ĉ)). This is equivalent

to saying that there is an interpretation J of σ that agrees with I on all constants
other than f and c such that I = Jfcgd ∪ I of signature σ′ satisfies (gd < fc) ∧
(F p

f )∗(fc) ∧ DF∗f (fc).

It is sufficient to show that there is an interpretation K of σ that agrees with J on
all constants other than p such that I ′ = Kpc

qd ∪ I of signature σ′ satisfies (qd <
pc ∧ F ∗(qd). We define the interpretation of K on p as follows:

pK(~ξ) =

 TRUE if fJ(~ξ) = 1

FALSE otherwise.

We now show I ′ |= qd < pc:

• Case 1: I |= (g = f). By definition of pK and by (B.6), in this case, I |= q = p
and in particular, I |= q ≤ p. Since I |= gd < fc, by definition I |= dpred ≤
cpred and I |= ¬(gd = fc) and since in this case, I |= (g = f), it must be
that I |= ¬(d = c). From this, we conclude I ′ |= ¬(qd = pc). Further, since
I ′ |= dpred ≤ cpred, we conclude I ′ |= qd < pc.
• Case 2: I |= ¬(g = f). Since I |= DF∗f (gd), it must be that I |= ∀x(f(x) =

0 → g(x) = 0). From this, we conclude by definition of pK , FCf (note that
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0 6= 1 is essential here) and (B.6) that I ′ |= ∀x(¬p(x) → ¬q(x)). Equivalently,
this is I ′ |= ∀x(q(x)→ p(x)) or simply I ′ |= q ≤ p.

Now, since I |= FCf , then I |= ∀x(f(x) = 0 ∨ f(x) = 1). Thus, for
the assumption in this case that I |= ¬(g = f) to hold, it must be that I |=
∃x(f(x) = 1 ∧ ¬(g(x) = 1)). By defintion of pK and (B.6), it follows that
I ′ |= ∃x(p(x) ∧ ¬q(x)). Thus, since I ′ |= ¬(q = p), then I ′ |= ¬(qd = pc).
Also, since I |= gd < fc, by definition I ′ |= dpred ≤ cpred, and thus we
conclude that I ′ |= qd < pc.

The proof of I ′ |= F ∗(qd) is by induction similar to the proof of the claim above.

B.6 Proof of Corollary 6

For two interpretations I of signature σ1 and J of signature σ2, by I ∪ J we denote
the interpretation of signature σ1 ∪ σ2 and universe |I| ∪ |J | that interprets all
symbols occurring only in σ1 in the same way I does and similarly for σ2 and J .
For symbols appearing in both σ1 and σ2, I must interpret these the same as J does,
in which case I ∪ J also interprets the symbol in this way.

Corollary 6

(a) An interpretation I of the signature of F is a model of SM[F ; pc] iff Ipf is a model
of SM[F p

f ∧ DFf ∧ FCf ; fc].
(b) An interpretation J of the signature of F p

f is a model of SM[F p
f ∧DFf ∧FCf ; fc]

iff J = Ipf for some model I of SM[F ; pc].

Proof.

(a⇒) Assume I of the signature of F is a model of SM[F ; pc]. By definition of Ipf ,
I ∪ Ipf |= ∀x(f(x) = 1 ↔ p(x)) ∧ FCf . Since I |= SM[F ; pc], it must be that
I ∪ Ipf |= SM[F ; pc] and further by Theorem 5, I ∪ Ipf |= SM[F p

f ∧ DFf ; fc]. By
Theorem 1, we have I∪Ipf |= SM[F p

f ∧DFf ∧FCf ; fc]. Finally, since the signature
of I does not contain f , we conclude Ipf |= SM[F p

f ∧ DFf ∧ FCf ; fc].

(a⇐) Assume Ipf is a model of SM[F p
f ∧ DFf ∧ FCf ; fc]. By Theorem 1, Ipf is a

model of SM[F p
f ∧DFf ; fc]. By definition of Ipf , I∪Ipf |= ∀x(f(x) = 1↔ p(x))∧

FCf . Since Ipf |= SM[F p
f ∧ DFf ; fc], it must be that I ∪ Ipf |= SM[F p

f ∧ DFf ; fc]
and further by Theorem 5, I ∪ Ipf |= SM[F ; pc]. Finally, since the signature of Ipf
does not contain p, we conclude I |= SM[F ; pc].

(b⇒) Assume an interpretation J of the signature of F p
f is a model of SM[F p

f ∧
DFf ∧ FCf ; fc]. Let I = Jfp , where Jfp denotes the interpretation of the signa-
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ture F obtained from J by replacing fJ with the set pI that consists of the tuples
〈ξ1, . . . , ξn〉 for all ξ1, . . . , ξn from the universe of J such that fJ(ξ1, . . . , ξn) = 1.
By definition of I , I ∪ J |= ∀x(f(x) = 1 ↔ p(x)). Since J |= SM[F p

f ∧ FCf ∧
DFf ; fc], it must be that I ∪ J |= SM[F p

f ∧ DFf ∧ FCf ; fc]. Since FCf is com-
prised of constraints, by Theorem 1, I∪J |= SM[F p

f ∧DFf ; fc]∧FCf . In particular,
I ∪J |= SM[F p

f ∧DFf ; fc] and further by Theorem 5, I ∪J |= SM[F ; pc]. Finally,
since the signature of J does not contain p, we conclude I |= SM[F ; pc].

(b⇐) Take any I such that J = Ipf and I |= SM[F ; pc]. By definition of Ipf , I ∪
J |= ∀x(f(x) = 1 ↔ p(x)) ∧ FCf . Since I |= SM[F ; pc], it must be that I ∪
J |= SM[F ; pc] and further by Theorem 5, I ∪ J |= SM[F p

f ∧ DFf ; fc]. Since the
signature of I does not contain f , we conclude J |= SM[F p

f ∧ DFf ; fc]. Finally,
since by definition of Ipf , J |= FCf , and since FCf is comprised of constraints, by
Theorem 1 we conclude J |= SM[F p

f ∧ DFf ∧ FCf ; fc].

B.7 Proof of Theorem 7

Theorem 7 For any f -plain formula F , the set of formulas consisting of

∀xy(p(x, y)↔ f(x) = y) (B.7)

and ∃xy(x 6= y) entails

SM[F ; fc]↔ SM[F f
p ; pc].

Proof. For any interpretation I of signature σ ⊇ {f, p, c} satisfying (B.7), it is
clear that I |= F iff I |= F f

p since F f
p is simply the result of replacing all f(x) = y

with p(x, y). Thus it only remains to be shown that

I |= ∃f̂ ĉ((f̂ ĉ < fc) ∧ F ∗(f̂ ĉ))

iff
I |= ∃p̂ĉ((p̂ĉ < pc) ∧ (F f

p )∗(p̂ĉ)).

Let σ′ = σ∪{g, q,d} be an extended signature such that g, q,d are similar to f, p, c
respectively, and do not belong to σ.

(⇒) Assume I |= ∃f̂ ĉ((f̂ ĉ < fc) ∧ F ∗(f̂ , ĉ)). This is equivalent to saying that
there is an interpretation J of σ that agrees with I on all constants other than f and
c such that I = Jfcgd ∪ I of signature σ′ satisfies (gd < fc) ∧ F ∗(gd).

It is sufficient to show that there is an interpretation K of σ that agrees with J on
all constants other than p such that I ′ = Kpc

qd ∪ I of signature σ′ satisfies (qd <
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pc) ∧ (F f
p )∗(qd). We define the interpretation of K on p as follows:

pK(~ξ, ξ′) =

 TRUE if I |= f(~ξ) = ξ′ ∧ g(~ξ) = ξ′

FALSE otherwise.

We first show that if I |= (gd < fc) then I ′ |= (qd < pc):
Observe that from the definition of pK , it follows that I |= ∀xy(q(x, y)→ f(x) =
y) and from (B.7), this is equivalent to ∀xy(q(x, y) → p(x, y)) or simply q ≤ p.
Thus, since I ′ |= dpred ≤ cpred, we have I ′ |= qdpred ≤ pcpred.

• Case 1: I |= ∀xy(f(x) = y ↔ g(x) = y).
In this case it then must be the case that I |= d 6= c. Thus it follows that
I ′ |= qd 6= pc. Consequently, we conclude that

I ′ |= (qdpred ≤ pcpred) ∧ qd 6= pc

or simply, I ′ |= (qd < pc).
• Case 2: I |= ¬∀xy(f(x) = y ↔ g(x) = y).

In this case it then must be the case that for some t and c that I |= f(t) =
c ∧ g(t) 6= c. By the definition of pK , this means that q(t, c)I′ = FALSE but
by (B.7), p(t, c)I′ = TRUE. Therefore, I ′ |= p 6= q and thus I ′ |= qd 6= pc.
Consequently, we conclude

I ′ |= (qdpred ≤ pcpred) ∧ qd 6= pc

or simply, I ′ |= (qd < pc).

We now show that I |= (F f
p )∗(qd) by proving the following:

Claim: I |= F ∗(gd) iff I ′ |= (F f
p )∗(qd)

The proof of the claim is by induction on the structure of F .

• Case 1: F is an atomic formula not containing f . F f
p is exactly F thus F ∗(gd) is

exactly (F f
p )∗(qd) so certainly the claim holds.

• Case 2: F is f(t) = t1. F ∗(gd) is f(t) = t1 ∧ g(t) = t1. F f
p is p(t, t1) and

(F f
p )∗(qd) is q(t, t1). By the definition of pK , it is clear that I |= f(t) = t1 ∧

g(t) = t1 iff I ′ |= q(t, t1), so certainly the claim holds.
• The other cases are straightforward from I.H.

(⇐) Assume I |= ∃p̂ĉ((p̂ĉ < pc) ∧ (F f
p )∗(p̂ĉ)). This is equivalent to saying that

there is an interpretation J of σ that agrees with I on all constants other than p and
c such that I = Jpcqd ∪ I of signature σ′ satisfies (qd < pc) ∧ (F f

p )∗(qd).

It is sufficient to show that there is an interpretation K of σ that agrees with J
on all constants other than f such that I ′ = Kfc

gd ∪ I of signature σ′ satisfies
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(gd < fc) ∧ F ∗(gd). We define the interpretation of K on f as follows:

fK(~ξ) =

 ξ
′ if I |= p(~ξ, ξ′) ∧ q(~ξ, ξ′)

ξ′′ if I |= p(~ξ, ξ′) ∧ ¬q(~ξ, ξ′) where ξ′ 6= ξ′′.

Note that the assumption that there are at least two elements in the universe is essen-
tial to this definition. This definition is sound due to (B.7) entailing ∀~ξ∃ξ′(p(~ξ, ξ′)).

We first show if I |= (qd < pc) then I ′ |= (gd < fc):
Observe that I |= (qd < pc) by definition entails I |= (qdpred ≤ pcpred) and
further by definition, I |= (dpred ≤ cpred) and then since f and g are not predicates,
I ′ |= ((gd)pred ≤ (fc)pred).

• Case 1: I |= ∀xy(p(x, y) ↔ q(x, y)). In this case, I |= (p = q) so for it
to be the case that I |= (qd < pc), it must be that I |= ¬(c = d). It then
follows that I ′ |= ¬(fc = gd). Consequently, in this case, I ′ |= ((gd)pred ≤
(fc)pred) ∧ ¬(fc = gd) or simply I ′ |= (gd < fc).

• Case 2: I |= ¬∀xy(p(x, y) ↔ q(x, y)). In this case, since I |= (q ≤ p), then
it follows that ∃xy(p(x, y) ∧ ¬q(x, y)). It follows from the definition of pK that
I ′ |= ∃xyz((p(x, y) ↔ g(x) = z) ∧ y 6= z) and then from (B.7), it follows that
I ′ |= ∃xyz((f(x) = y ↔ g(x) = z) ∧ y 6= z) or simply I ′ |= f 6= g. It then
follows that I ′ |= ¬(fc = gd). Consequently, in this case I ′ |= ((gd)pred ≤
(fc)pred) ∧ ¬(fc = gd) or simply I ′ |= (gd < fc).

Next, the proof of I ′ |= F ∗(gd) is by induction similar to the proof of the claim
above.

B.8 Proof of Corollary 8

Corollary 8 Let F be an f -plain sentence.

(a) An interpretation I of the signature of F that satisfies ∃xy(x 6= y) is a model of
SM[F ; fc] iff Ifp is a model of SM[F f

p ∧ UECp; pc].
(b) An interpretation J of the signature of F f

p that satisfies ∃xy(x 6= y) is a model
of SM[F f

p ∧ UECp; pc] iff J = Ifp for some model I of SM[F ; fc].

Proof.

(a⇒) Assume I |= SM[F ; fc] ∧ ∃xy(x 6= y). Since I |= ∃xy(x 6= y), I ∪ Ifp |=
∃xy(x 6= y) since by definition of Ifp , I and Ifp share the same universe.

By definition of Ifp , I ∪ Ifp |= (B.7). Since I |= SM[F ; fc], we have I ∪ Ifp |=
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SM[F ; fc] and by Theorem 7, we have I ∪ Ifp |= SM[F f
p ; pc]. It’s clear that I |=

UECp, so by Theorem 1, we have I∪Ifp |= SM[F f
p ∧UECp; pc]. Since the signature

of I does not contain f , we conclude Ifp |= SM[F f
p ∧ UECp; pc].

(a⇐) Assume I |= ∃xy(x 6= y) and Ifp |= SM[F f
p ∧ UECp; pc]. By Theorem 1,

Ifp |= SM[F f
p ; pc]. Since I |= ∃xy(x 6= y), we have I ∪ Ifp |= ∃xy(x 6= y) since by

definition of Ifp , I and Ifp share the same universe.

By definition of Ifp , I ∪ Ifp |= (B.7). Since Ifp |= SM[F f
p ; pc], we have I ∪ Ifp |=

SM[F f
p ; pc] and by Theorem 7, we have I ∪ Ifp |= SM[F ; fc]. Since the signature

of Ifp does contain f , we conclude I |= SM[F ; fc].

(b⇒) Assume J |= ∃xy(x 6= y) and J |= SM[F f
p ∧ UECp; pc]. Let I = Jpf

where Jpf denotes the interpretation of the signature of F obtained from J by re-
placing the set pJ with the function f I such that f I(ξ1, . . . , ξk) = ξk+1 for all
tuples 〈ξ1, . . . , ξk, ξk+1〉 in pJ . This is a valid definition of a function since we
assume J |= SM[F f

p ∧ UECp; pc], from which we obtain by Theorem 1 that
J |= SM[F f

p ; pc] ∧ UECp and specifically, J |= UECp. Clearly, J = Ifp so it
only remains to be shown that I |= SM[F ; fc].

Since I and J have the same universe and J |= ∃xy(x 6= y), it follows that I ∪J |=
∃xy(x 6= y). Also by the definition of Jpf , we have I ∪ J |= (B.7). Thus by
Theorem 7, I ∪ J |= SM[F ; fc]↔ SM[F f

p ; pc].

Since we assume J |= SM[F f
p ; pc], it is the case that I ∪ J |= SM[F f

p ; pc] and thus
it must be the case that I ∪ J |= SM[F ; fc]. Now since the signature of J does not
contain f , we conclude I |= SM[F ; fc].

(b⇐)Take any I such that J = Ifp and I |= SM[F ; fc]. Since J |= ∃xy(x 6= y) and
I and J share the same universe, I ∪ J |= ∃xy(x 6= y). By definition of J = Ifp ,
I ∪ J |= (B.7). Thus by Theorem 7, I ∪ J |= SM[F ; fc]↔ SM[F f

p ; pc].

Since we assume I |= SM[F ; fc], it is the case that I ∪ J |= SM[F ; fc] and thus it
must be the case that I ∪ J |= SM[F f

p ; pc]. Further, due to the nature of functions,
(B.7) entails UECp so I ∪ J |= UECp. However since the signature of I does not
contain p, we conclude J |= SM[F f

p ; pc] ∧ UECp and since UECp is comprised of
constraints only, by Theorem 1 J |= SM[F f

p ∧ UECp; pc].

B.9 Proof of Theorem 9

Theorem 9 For any head-c-plain sentence F that is tight on c and any interpreta-
tion I satisfying ∃xy(x 6= y), we have I |= SM[F ; c] iff I |= SM[UFc(F ); c].
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Proof. It is easy to check that the completion of UFc(F ) relative to c is equivalent
to the completion ofF relative to c. By Theorem 4, we conclude that SM[UFc(F ); c]
is equivalent to SM[F ; c].

B.10 Proof of Theorem 10

For any formulaF containing object constants f and g, we call it fg-indistinguishable
if every occurrence of f and g in F is in a subformula of the form (f = t)∧ (g = t)
that is fg-plain. For any interpretations I and J of F , we say I and J satisfy the
relation R(I, J) if

• |I| = |J |,
• I(f) 6= I(g),
• J(f) 6= J(g), and
• for all symbols c other than f and g, I(c) = J(c).

Lemma 10 If a formula F is fg-indistinguishable, then for any interpretations I
and J such that R(I, J), F I = F J .

Proof. Notice that any fg-indistinguishable formula is built on atomic formulas
not containing f and g, and formula of the form (f = t) ∧ (g = t), using proposi-
tional connectives and quantifiers. The proof is by induction on such formulas.

Theorem 10 For any set c of constants, there is no strongly equivalent transforma-
tion that turns an arbitrary sentence into a c-plain sentence.

Proof. The proof follows from the claim.

Claim: There is no f -plain formula that is strongly equivalent to p(f) ∧ p(1) ∧
p(2) ∧ ¬p(3).

Let F be p(f)∧p(1)∧p(2)∧¬p(3). Then F ∗(g) is p(f)∧p(g)∧p(1)∧p(2)∧¬p(3).
Let I = {p(1), p(2), f = 1, g= 2} and J = {p(1), p(2), f = 1, g= 3} (numbers are
interpreted as themselves). It is easy to check that I |= F ∗(g) and J 6|= F ∗(g).

Assume for the sake of contradiction that there is a f -plain formula G that is
strongly equivalent to F . Since G is f -plain, G∗(g) is fg-indistinguishable. Since
R(I, J) holds, by Lemma 10, I |= G∗(g) iff J |= G∗(g), but this contradicts Theo-
rem 3.
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B.11 Proof of Theorem 11

Theorem 11 For any definite causal theory T , I |= CM[T ; f ] iff I |= SM[Tr(T ); f ].

Proof. Assume that, without loss of generality, the rules (21)–(22) have no free
variables. It is sufficient to prove that under the assumption that I satisfies T , for
every rule (21), J f

g ∪ I satisfies

B → g(t)= t1

iff J f
g ∪ I satisfies

(¬¬B)∗(g) → g(t)= t1 ∧ f(t)= t1.

Indeed, this is true since B is equivalent to (¬¬B)∗(g) (Lemma 2), and I satis-
fies T .

B.12 Proof of Theorem 12

Theorem 12 I |= SM[T ; f ] iff I |= IF[T ; f ].

Proof. We wish to show that I |= T ∧ ¬∃f̂(f̂ < f ∧ F ∗(f̂)) iff I |= T ∧ ¬∃f̂(f̂ 6=
f ∧ F �(f̂)). The first conjunctive terms are identical and if I 6|= T then the claim
holds.

Let us assume then, that I |= T . By definition, f̂ < f is equivalent to f̂ 6= f . What
remains to be shown is the correspondence between F ∗(f̂) and F �(f̂).

Consider any list of functions g of the same length as f . Let I = J f
g ∪ I be an

interpretation of an extended signature σ′ = σ ∪ g where J is an interpretation of
σ and J and I agree on functions not belonging to f .

Consider any rule f(t) = t1 ← ¬¬B from T . The corresponding rule in F ∗(g) is
equivalent to

f(t) = t1 ∧ g(t) = t1 ← B.

The corresponding rule in F �(g) is equivalent to

g(t) = t1 ← B.

Now we consider cases

• I 6|= B. Clearly, both versions of the rule are vacuously satisfied by I.
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• I |= B. Then, since I |= T it must be that I |= f(t) = t1 and so the correspond-
ing rule in F ∗(g) is further equivalent to

g(t) = t1 ← B

which is equivalent to the corresponding rule in F �(g) and so certainly I satisfies
both corresponding rules or neither.

Thus, I |= F ∗(g) iff I |= F �(g) and so the claim holds.

B.13 Proof of Theorem 13

Lemma 11 Given a formula F of many-sorted signature σ and an interpretation I
of σ, I |= grI [F ] iff Ins |= grIns [F ns].

Proof. By induction on the structure of F .

Lemma 12 Given a formula F of many-sorted signature σ, interpretations I and
J of σ and an interpretation K of σns such that

• for every sort s in σ, |I|s = |J |s = sK ,
• for every predicate and function constant c and for every tuple ξ composed of

elements from |Ins| such that ξi ∈ |I|argsi for every ξi ∈ ξ , where argsi is the
i-th argument sort of c, we have c(ξ)K = c(ξ)J ,
• for every predicate and function constant c and for every tuple ξ composed of

elements from |Ins| such that ξi /∈ |I|argsi for some ξi ∈ |I|argsi , where argsi is
the i-th argument sort of c, we have c(ξ)K = c(ξ)I

ns
,

J is a model of grI [F ]I iff K is a model of grIns [F ns]I
ns

.

Proof. By induction on the structure of F .

Lemma 13 Given a formula F of many-sorted signature σ and two interpretations
L and L1 of σns such that R(L,L1), if L |= F ns ∧ SFσ, then L1 |= F ns ∧ SFσ.

Proof. Assume that L |= F ns ∧ SFσ. We first show that L1 |= SFσ. Since
R(L,L1), L and L1 agree on all sort predicates s corresponding to sorts s ∈ σ.
Thus, L1 clearly satisfies the first two items of SFσ. We now consider the third
item of SFσ. For tuples ξ1, . . . , ξk such that each ξi ∈ argsi where argsi is the i-th
argument sort of f , since R(L,L1), L and L1 agree on f(ξ1, . . . , ξk) so L1 satisfies
the implication. For all other tuples, the implication is vacuously satisfied. Finally,
the fourth and fifth items of SFσ are tautologies in classical logic so we conclude
that L1 |= SFσ.
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Next, L1 |= F ns can be shown by induction on the structure of F ns.

Lemma 14 Given a formula F of many-sorted signature σ, a set of function and
predicate constants c from σ and two interpretations L and L1 of σns such that
R(L,L1), if L is a stable model of F ns ∧ SFσ w.r.t. c, then L1 is a stable model of
F ns ∧ SFσ w.r.t. c.

Proof. Omitted. The proof is long but not complicated.

Theorem 13 Let F be a formula of a many-sorted signature σ, and let c be a set
of function and predicate constants.

(a) If an interpretation I of signature σ is a model of SM[F ; c], then Ins is a model
of SM[F ns ∧ SFσ; c].

(b) If an interpretation L of signature σns is a model of SM[F ns ∧SFσ; c] then there
is some interpretation I of signature σ such that I is a model of SM[F ; c] and
R(L, Ins).

Proof.

(a) Consider an interpretation I (of many-sorted signature σ) that is a stable model
of F w.r.t. c. This means that I |= F and there is no interpretation J such that
J <c I and J |= grI [F ]I . We wish to show that Ins |= F ns ∧ SFσ and there is
no (unsorted) interpretation K such that K <c Ins and K |= grIns [F ns ∧ SFσ]I

ns
.

From Lemma 11, I |= F iff Ins |= F ns. It follows from the definition of Ins that
Ins |= SFσ so we conclude that I |= F iff Ins |= F ns ∧ SFσ. For the second
item, we will prove the contrapositive: if there is an (unsorted) interpretation K
such that K <c Ins and K |= grIns [F ns ∧ SFσ]I

ns
, then there is a (many-sorted)

interpretation J such that J <c I and J |= grI [F ]I .

Assume there is an interpretation K such that K <c Ins and K |= grIns [F ns ∧
SFσ]I

ns
. We obtain the interpretation J as follows. For every sort s in σ, |J |s = |I|s.

For every predicate and function constant c in σ and every tuple ξ such that each
element ξi ∈ |I|si where si is the sort of the i-th argument of c, we let cJ(ξ) =
cK(ξ). For predicate constants, it is not hard to see that this is a valid assignment
as atoms are either true or false regardless of considering many-sorted or unsorted
logic.

We argue that this assignment is also valid for function constants. That is, K does
not map a function f to a value outside of |I|s where s is the value sort of f . This
follows from the fact that Ins |= SFσ and in particular, the third item of SFσ. Thus,
since K |= grIns [F ns ∧ SFσ]I

ns
, it follows that K too maps functions to elements

of the appropriate sort.

We now show that J <c I . Since K |= grIns [SFσ]I
ns

, the fourth and fifth rules
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in SFσ are choice formulas that force K to agree with Ins on every predicate and
function constant c for every tuple that has at least one element outside of the cor-
responding sort. For every predicate and function constant c and all tuples that have
all elements in the appropriate sort, K and J agree. Further, since I and Ins agree
on these as well, it follows immediately since K <c Ins, that J <c I .

To apply Lemma 12, we verify the conditions of the lemma. It is clear that the
second condition is true. The first condition follows from the definition of K <c

Ins: since the sort predicates are not in c, K and Ins agree on these predicates. The
third condition follows from the fact that since K |= grIns [F ns∧SFσ]I

ns
it follows

that K |= grIns [SFσ]I
ns

; the fourth and fifth rules in SFσ are choice formulas that
force K to agree with Ins for every tuple that has at least one element outside of
the corresponding sort. Thus, by Lemma 12, since K |= grIns [F ns ∧ SFσ]I

ns
and

thus, K |= grIns [F ns]I
ns

, it follows that J |= grI [F ]I .

(b) Given an interpretation L that is a stable model of F ns ∧ SFσ w.r.t. c, we first
obtain the interpretation L1 of σns as follows.

• |L1| = |L|;
• sL1 = sL for every s corresponding to a sort s from σ;
• c(ξ1, . . . , ξk)L1 = c(ξ1, . . . , ξk)

L for every tuple ξ1, . . . , ξk such that ξi ∈ si
where si is the i-th argument sort of c;
• c(ξ1, . . . , ξk)L1 = |L1|0 for every tuple ξ1, . . . , ξk such that ξi /∈ si for some i

where si is the i-th argument sort of c.

It is easy to see that R(L,L1). By Lemma 14, L1 is a stable model of F ns ∧ SFσ
w.r.t. c. We then obtain the interpretation I of signature σ as follows.

For every sort s in σ, |I|s = sL1 . For every predicate and function constant c in
σ and every tuple ξ such that ξi ∈ |L|si where si is the sort of the i-th argument
of c, we have c(ξ)I = c(ξ)L1 . For predicate constants, it is not hard to see that
this is a valid assignment as atoms are either true or false regardless of considering
many-sorted or unsorted logic.

We argue that this assignment is also valid for function constants. That is, I does
not map a function f to a value outside of |I|s where s is the value sort of f . This
follows from the fact thatL1 |= SFσ (by Lemma 13) and in particular, the third item
of SFσ. Thus, it follows that I too maps functions to elements of the appropriate
sort.

Now it is clear that L1 = Ins and so we have R(L, Ins). We now show that I is a
stable model of F .

We have an interpretation I (of many-sorted signature σ) such that Ins is a stable
model of F ns ∧ SFσ w.r.t. c. This means that Ins |= F ns ∧ SFσ and there is no
interpretation K such that K <c Ins and K |= grIns [F ns ∧ SFσ]I

ns
. We wish to
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show that I |= F and there is no interpretation J such that J <c I and J |= grI [F ]I .
From Lemma 11, I |= F iff Ins |= F ns so we conclude that I |= F . For the second
item, we will prove the contrapositive; if there is a (many-sorted) interpretation J
such that J <c I and J |= grI [F ]I , then there is an (unsorted) interpretation K
such that K <c Ins and K |= grIns [F ns ∧ SFσ]I

ns
.

Assume there is an interpretation J such that J <c I and J |= grI [F ]I . We obtain
the interpretation K be Jns.

We now show that K <c Ins. For every predicate and function constant c for every
tuple that has at least one element outside of the corresponding sort, by definition
of K = Jns, cK = cI

ns
= |Ins|0 if c is a function constant and cK = cI

ns
= FALSE

if c is a predicate constant. That is, for every predicate and function constant c for
every tuple that has at least one element outside of the corresponding sort, K and
Ins agree. For every predicate and function constant c and all tuples of elements in
the appropriate sort, K and J agree. Further, since I and Ins agree on these as well,
K <c Ins follows immediately from J <c I .

To apply Lemma 12, we must verify the conditions of the lemma. It is clear that the
second condition is true. The first condition follows from the definition ofK = Jns.
The third condition follows from the observation above: by definition of K = Jns,
cK = cI

ns
= |Ins|0 if c is a function constant and cK = cI

ns
= FALSE if c is a

predicate constant. Thus, by Lemma 12, since J |= grI [F ]I , it follows that K |=
grIns [F ns]I

ns
.

Then, it is easy to see that by definition of Ins, Ins |= SFσ. Then, by definition of
K = Jns, it is clear that K |= SFσ. We will show that K |= (SFσ)I

ns
.

Since K and Ins agree on all sort predicates, it is clear that K satisfies the formulas
in the first two items of (SFσ)I

ns
.

Since K and Ins agree on all function constants f for tuples ξi, . . . , ξk such that
each ξi is in |I|si where si is the i-th argument sort of f , it is clear that K satisfies
the third item of (SFσ)I

ns
.

The last two items of (SFσ)I
ns

are only satisfied if K agrees with Ins on all pred-
icate (function) constants c and all tuples ξ1, . . . , ξk such that some ξi is not in
|I|si where si is the i-th argument sort of c. However, by definition of K = Jns

and Ins, both K and Ins map this to |Ins|0 if c is a function constant or FALSE

if c is a predicate constant so K satisfies these items. So we conclude that K |=
grIns [F ns ∧ SFσ]I

ns
.
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B.14 Proof of Theorem 14

Lemma 15 Let Π be a clingcon program with CSP (V,D,C), let T be the back-
ground theory conforming to (V,D,C), let p be the set of all propositional con-
stants occurring in Π, let I be a T -interpretation 〈If , X〉 and let J be an interpre-
tation 〈If , Y 〉 such that Y ⊂ X . If I |= Π, then Y |= ΠX

If iff J |= ΠI .

Proof. Assume I |= Π.

(⇒) Assume Y |= ΠX
If . This means that Y satisfies every rule in the reduct ΠX

If
.

For each rule r of the form (26) in Π, there are two cases:

• Case 1: X |= B and If |= Cn. In this case, rXIf is

a← B, (B.8)

and rI is equivalent to
aI ← BI (B.9)

under the assumption I |= Π.
· Subcase 1: I |= B. Since I |= Π, it must be that I |= a. Consequently, (B.9) is

the same as (B.8), so it follows that J |= rI .
· Subcase 2: I 6|= B. Since BI = ⊥, clearly, J |= rI .
• Case 2: X 6|= B or If 6|= Cn. Clearly, rI is equivalent to >, so J |= rI .

(⇐) Assume J |= ΠI . For each rule r of the form (26) in Π, there are two cases:

• Case 1: I 6|= N ∧ Cn. In this case, the reduct rXIf is empty. Clearly, Y |= rXIf .
• Case 2: I |= N ∧ Cn. The reduct rXIf is a← B.
· Subcase 1: I |= B. rI is equivalent to aI ← (B ∧N ∧ Cn)I . Since J |= rI , it

must be that aI = a and J |= a. Consequently, Y |= a, so Y |= rXIf .
· Subcase 2: I 6|= B (i.e., X 6|= B). Since Y ⊂ X , we have Y 6|= B so Y |= rXIf .

Theorem 14 Let Π be a clingcon program with CSP (V,D,C), let p be the
set of all propositional constants occurring in Π, let T be the background theory
conforming to (V,D,C), and let 〈If , X〉 be a T -interpretation. SetX is a constraint
answer set of Π relative to If iff 〈If , X〉 is a T -stable model of Π relative to p.

Proof.
X is a constraint answer set of Π relative to If

iff
X satisfies ΠX

If
, and no proper subset Y of X satisfies ΠX

If
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iff (by Lemma 15)

〈If , X〉 is a T -model of Π, and no interpretation J such that J <p 〈If , X〉 satisfies ΠI

iff
〈If , X〉 is a T -stable model of Π relative to p.

B.15 Proof of Theorem 15

Lemma 16 For any ASP(LC) program Π, any LJN interpretation (X,T ), and any
T -interpretation I = 〈If , Y 〉, the following conditions are equivalent:

• I |= T ∪ T ;
• For every theory atom t occurring in Π, it holds that (X,T ) |= t iff I |= t.

Proof.

(i) Assume I |= T ∪ T . Take any theory atom t occurring in Π.
(⇒) Assume (X,T ) |= t. It is immediate that t ∈ T and so by the assumption
on I , we have I |= t.
(⇐) Assume I |= t. Since I |= T , it follows that t ∈ T and so (X,T ) |= t.

(ii) Assume that, for every theory atom t occurring in Π, it holds that (X,T ) |= t iff
I |= t. By definition of (X,T ) |= t, for every t occurring in Π, it follows that
t ∈ T iff I |= t. Thus I |= T and I |= T so I |= T ∪ T .

Lemma 17 Given an ASP(LC) program Π, two LJN-interpretations (X,T ) and
(Y, T ) such that (X,T ) |= Π and Y ⊆ X , and two T -interpretations I = 〈If , X〉
and J = 〈If , Y 〉 such that I |= Π, and If |= T ∪ T , It holds that Y |= Π(X,T ) iff
J |= ΠI .

Proof. (⇒) Assume Y |= Π(X,T ). This means that Y satisfies every rule in the
reduct Π(X,T ). For each rule r of the form (27) in Π, there are two cases:

• Case 1: (X,T ) |= N ∧ LC.
In this case, the corresponding rule in the reduct Π(X,T ) is

a← B.

On the other hand, rI has two cases:
· Subcase 1: I |= B.

Since we assume I |= Π, it must be that I |= a. By Lemma 16, since (X,T ) |=
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t for all t in LC, so too does I and so I |= LC. In this case, rI is

a← B,>, . . . ,>, LCI .

Since I and J interpret object constants in the same way and I |= LCI , we
have J |= LCI . Thus by definition of J , it follows that J |= B iff Y |= B and
J |= a iff Y |= a, so the claim holds.
· Subcase 2: I 6|= B. The reduct rI is either a ← ⊥ or ⊥ ← ⊥ and in either

case, J |= rI .
• Case 2: (X,T ) 6|= N ∧ LC.

By the condition of I and by Lemma 16, I 6|= N ∧LC so rI is a← ⊥ or⊥ ← ⊥
depending on whether I |= a. Thus, J trivially satisfies rI .

(⇐) Assume J |= ΠI . This means that J satisfies every rule in ΠI . For any rule r
of the form (27) in Π, there are two cases.

• Case 1: I 6|= N ∧ LC.
By the condition of I and by Lemma 16, (X,T ) 6|= N ∧ LC. Thus the reduct
Π(X,T ) does not contain a corresponding rule so there is nothing for Y to satisfy.
• Case 2: I |= N ∧ LC.

By the condition of I and by Lemma 16, (X,T ) |= N ∧ LC so the reduct r(X,T )

is a← B.
· Subcase 1: I 6|= B.

By the condition of I , X 6|= B and since Y ⊆ X , Y 6|= B. Thus, Y |= r(X,T ).
· Subcase 2: I |= B.

Since I |= Π, it must be that I |= a so the reduct rI is a ← B ∧ LCI . Now
since J and I agree on every object constant and since I |= LCI , we have
J |= LCI . Thus, J |= rI iff J |= a ← B. Since we assume J |= ΠI , we
conclude J |= a← B. Now by definition of J , it follows that Y |= r(X,T ).

Theorem 15 Let Π be an ASP(LC) program of signature 〈σp, σf〉 where σp is a
set of propositional constants, and let σf be a set of object constants, and let If be
an interpretation of σf .

(a) If (X,T ) is an LJN-answer set of Π, then for any T -interpretation I such that
If |= T ∪ T , we have 〈If , X〉 |= SM[Π;σp].

(b) For any T -interpretation I = 〈If , X〉, if 〈If , X〉 |= SM[Π;σp], then an LJN-
interpretation (X,T ) where

T = {t | t is a theory atom in Π such that If |= t}

is an LJN-answer set of Π.
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Proof. In this proof, we refer to the reduct-based characterization of a stable model
from [Bartholomew and Lee, 2013c].

(a) Assume (X,T ) is an LJN-answer set of Π. Take any T -interpretation I =
〈If , X〉 such that If |=bg T ∪ T .

Now for any atom p, by the condition of I , we have I |= p iff (X,T ) |= p. Similarly,
for any theory atom t occurring in Π, by the condition of I and by Lemma 16, I |= t
iff (X,T ) |= t. Thus, since (X,T ) |= Π, I |= Π.

We must now show that there is no interpretation J such that J <σp I and J |= ΠI .
Take any J <σp I . That is, J = 〈If , Y 〉 such that Y ⊂ X . By Lemma 17, J |= ΠI

iff Y |= Π(X,T ) but since (X,T ) is an LJN-answer set of Π, Y 6|= Π(X,T ) and thus
J 6|= ΠI so I is a stable model of Π.

(b) Assume I = 〈If , X〉 is a stable model of Π.

Now for any atom p, by definition of (X,T ), (X,T ) |= p iff I |= p. Similarly, for
any theory atom t occurring in Π, by the condition of I and Lemma 16, (X,T ) |= t
iff I |= t. Thus, since I |= Π, (X,T ) |= Π.

We must now show that there is no set of atoms Y such that Y ⊂ X and Y |=
Π(X,T ). Take any Y ⊂ X . By Lemma 17, Y |= Π(X,T ) iff J |= ΠI where J =
〈If , Y 〉. Since J <σp

I and I is a stable model of Π, J 6|= ΠI . Thus Y 6|= Π(X,T )

and so (X,T ) is an LJN-answer set of Π.

B.16 Proof of Theorem 16

The proof of the theorem is rather obvious once we view the type declarations of
LW-program as a special case of the many-sorted signature declarations. So we
omit the proof here.

69


