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Abstract

Recently there has been an increasing interest in
incorporating “intensional” functions in answer
set programming. Intensional functions are those
whose values can be described by other func-
tions and predicates, rather than being pre-defined
as in the standard answer set programming. We
demonstrate that the functional stable model se-
mantics plays an important role in the framework
of “Answer Set Programming Modulo Theories
(ASPMT)” —a tight integration of answer set pro-
gramming and satisfiability modulo theories, un-
der which existing integration approaches can be
viewed as special cases where the role of functions
is limited. We show that “tight” ASPMT programs
can be translated into SMT instances, which is sim-
ilar to the known relationship between ASP and
SAT.

1 Introduction
In answer set programming (ASP), variables are understood
in terms of grounding, and this limits answer sets to Her-
brand models, under which interpretations of functions are
pre-defined: every ground term represents itself, and is dis-
tinct from each other. Nonmonotonicity of the stable model
semantics is related to minimizing the extents of predicates,
but has nothing to do with functions, which forces us to rep-
resent the concept of nonBoolean fluents indirectly in terms
of predicates, and not by functions. A drawback of such rep-
resentation is that grounding often becomes a bottleneck in
computation as the value domain of a nonBoolean fluent gets
large.

There are two recent groups of work to extend the stable
model semantics, each of which focuses only on one aspect
of the issues above. One group is interested in enriching
the modeling language by incorporating “intensional” func-
tions [Cabalar, 2011; Lifschitz, 2012; Bartholomew and Lee,
2012; Balduccini, 2012]. Intensional functions are functions
whose values can be described by other functions and pred-
icates, rather than being pre-defined. Such semantics allow
us to represent nonBoolean fluents by intensional functions
without having to rely on predicates.

The other group of work focuses on improving the compu-
tational efficiency by integrating ASP with other declarative
computing paradigms, such as constraint processing, satisfia-
bility modulo theories, or mixed integer programming [Geb-
ser et al., 2009; Balduccini, 2009; Janhunen et al., 2011;
Liu et al., 2012], and exploiting the efficient constraint pro-
cessing techniques on functions (or called “variables” in
CSP/SMT) without having to generate a large set of ground
instances. Constraint variables are functions that are mapped
to values in their domains. In SMT with difference logic or
linear constraints, arithmetic variables are functions that are
mapped to numbers. However, these functions are not as ex-
pressive as intensional functions.

This paper combines the advantages of the two groups of
work resulting in the framework of Answer Set Programming
Modulo Theories (ASPMT)—a tight integration of answer
set programming and satisfiability modulo theories, where
functions are as expressive as predicates in answer set pro-
gramming, and can be computed efficiently without having
to ground w.r.t. their value domains. The existing languages
in the second group can be viewed as special cases of this
language. A fragment of ASPMT can be translated into the
language of SMT, allowing SMT solvers to be used for com-
putation.

Section 2 reviews the functional stable model semantics by
Bartholomew and Lee [2012]. Section 3 presents a reformu-
lation of this semantics in terms of grounding and reduct for
infinitary ground formulas. In Section 4 we define the concept
of ASPMT as a special case of the functional stable model se-
mantics, and presents a syntactic class of ASPMT instances
that can be translated into SMT instances, which in turn al-
lows us to use SMT solvers to compute ASPMT. In Section 5
we compare ASPMT with other similar approaches, clingcon
programs and ASP(LC) programs.

2 Functional Stable Model Semantics
2.1 Review of the Bartholomew-Lee Semantics
We review the stable model semantics of intensional func-
tions from [Bartholomew and Lee, 2012]. Formulas are built
the same as in first-order logic. A signature consists of func-
tion constants and predicate constants. Function constants of
arity 0 are called object constants, and predicate constants of
arity 0 are called propositional constants.



Similar to circumscription, for predicate symbols (con-
stants or variables) u and c, expression u ≤ c is defined as
shorthand for ∀x(u(x)→ c(x)). Expression u = c is defined
as ∀x(u(x)↔ c(x)) if u and c are predicate symbols, and
∀x(u(x) = c(x)) if they are function symbols. For lists of
symbols u = (u1, . . . , un) and c = (c1, . . . , cn), expression
u ≤ c is defined as (u1 ≤ c1)∧· · ·∧(un ≤ cn), and similarly,
expression u = c is defined as (u1 = c1) ∧ · · · ∧ (un = cn).
Let c be a list of distinct predicate and function constants,
and let ĉ be a list of distinct predicate and function variables
corresponding to c. By cpred (cfunc , respectively) we mean
the list of all predicate constants (function constants, respec-
tively) in c, and by ĉpred (ĉfunc , respectively) the list of the
corresponding predicate variables (function variables, respec-
tively) in ĉ.

For any formula F , expression SM[F ; c] is defined as

F ∧ ¬∃ĉ(ĉ < c ∧ F ∗(ĉ)),

where ĉ < c is shorthand for (ĉpred ≤ cpred) ∧ ¬(ĉ = c),
and F ∗(ĉ) is defined recursively as follows.

• When F is an atomic formula, F ∗ is F ′ ∧ F where F ′
is obtained from F by replacing all intensional (function
and predicate) constants c in it with the corresponding
(function and predicate) variables from ĉ;

• (G ∧H)∗ = G∗ ∧H∗; (G ∨H)∗ = G∗ ∨H∗;
• (G→ H)∗ = (G∗ → H∗) ∧ (G→ H);

• (∀xG)∗ = ∀xG∗; (∃xF )∗ = ∃xF ∗.
(We understand ¬F as shorthand for F → ⊥; > as ¬⊥; and
F ↔ G as (F → G) ∧ (G → F ).) Members of c are called
intensional constants.

When F is a sentence, the models of SM[F ; c] are called
the stable models of F relative to c. They are the models of F
that are “stable” on c. The definition can be easily extended
to formulas of many-sorted signatures.

This definition of a stable model is a proper generalization
of the one from [Ferraris et al., 2011], which views logic pro-
grams as a special case of first-order formulas.

We will often write G← F , in a rule form as in logic pro-
grams, to denote the universal closure of F → G. A finite set
of formulas is identified with the conjunction of the formulas
in the set.

Example 1 The following set F of formulas describes the ca-
pacity of a container of water that has a leak but that can
be refilled to the maximum amount, say 10, with the action
FillUp.

{Amount1 =x} ← Amount0 =x+1
Amount1 =10 ← FillUp .

Here Amount1 is an intensional function constant, and x is a
variable ranging over nonnegative integers. According to the
semantics from [Bartholomew and Lee, 2012], the first rule
is a default rule (or choice rule) standing for

(Amount1 =x)∨¬(Amount1 =x) ← Amount0 =x+1, (1)

and expresses that the amount at next time decreases by de-
fault. However, if FillUp action is executed (if we add FillUp

as a fact), this behavior is overridden, and the amount is set
to the maximum value.

Consider an interpretation I that has the set of nonnega-
tive integers as the universe, interprets integers, arithmetic
functions and comparison operators in the standard way,
and has FillUpI = FALSE, AmountI0 = 6, AmountI1 = 5.
One can check that I is a model of SM[F ; Amount1].
Consider another interpretation I1 that agrees with I ex-
cept that AmountI11 = 8. This is a model of F but not
of SM[F ; Amount1]. Another interpretation I2 that agrees
with I except that FillUpI2 = TRUE, AmountI21 = 10 satisfies
SM[F ; Amount1].

This example demonstrates the ability to assign a default
value to an intensional function, which is different from the
previous value of the function.

3 FSM in terms of Grounding and Reduct
Instead of relying on a transformation into second-order
logic, the definition of a stable model in the previous sec-
tion can be characterized in terms of grounding and reduct.
While the definition in terms of second-order logic is suc-
cinct, the reduct-based definition is more familiar, and tells
us some other insights.

3.1 Review: Infinitary ground Formulas
Since the universe can be infinite, grounding a quantified sen-
tence introduces infinite conjunctions and disjunctions over
the elements in the universe. Here we rely on the concept
of grounding relative to an interpretation from [Truszczyn-
ski, 2012]. The following is the definition of an infinitary
ground formula, which is adapted from [Truszczynski, 2012].
The main difference between them is that we do not replace
ground terms with their corresponding object names, leaving
intensional functions in grounding. This is essential for defin-
ing a reduct for the functional stable model semantics.

For each element ξ of the universe |I| of I , we introduce
a new symbol ξ�, called an object name. By σI we denote
the signature obtained from σ by adding all object names ξ�
as additional object constants. We will identify an interpre-
tation I of signature σ with its extension to σI defined by
I(ξ�) = ξ.1

We assume the primary connectives to be ⊥, {}∧, {}∨,
and →. Propositional connectives ∧,∨,¬,> are considered
as shorthands: F ∧G as {F,G}∧; F ∨G as {F,G}∨.

Let A be the set of all ground atomic formulas of signa-
ture σ. The sets F0,F1, . . . are defined recursively as fol-
lows:
• F0 = A ∪ {⊥};
• Fi+1(i ≥ 0) consists of expressions H∧ and H∨, for

all subset H of F0 ∪ . . . ∪ Fi, and of the expressions
F → G, where F,G ∈ F0 ∪ · · · ∪ Fi.

We define Linf
A =

⋃∞
i=0 Fi. We call elements of Linf

A
infinitary ground formulas of σ.

For any interpretation I of σ and any infinitary ground for-
mula F , the definition of satisfaction, I |= F , is as follows:

1For details, see [Lifschitz et al., 2008].



• For atomic formulas, the definition is the same as in the
standard first-order logic;

• I |= H∧ if for every formula G ∈ H, I |= G;

• I |= H∨ if there is a formula G ∈ H such that I |= G;

• I |= G→ H if I 6|= G or I |= H .

Let F be any first-order sentence of a signature σ, and let
I be an interpretation of σ. By grI [F ] we denote the infini-
tary ground formula w.r.t. I , which is obtained from F by the
following process:

• If F is an atomic formula, grI [F ] is F ;

• grI [F �G] = grI [F ]� grI [G] (� ∈ {∧,∨,→});

• grI [∀xF (x)] = {grI [F (ξ�)] | ξ ∈ |I|}∧;

• grI [∃xF (x)] = {grI [F (ξ�)] | ξ ∈ |I|}∨.

Note that grI [F ] is an infinitary ground formula of σI .

Example 1 continued Consider again F in Example 1, and
the same interpretation I there. grI(F ) is the following set
of formulas:

{Amount1 =0} ← Amount0 =0+1
{Amount1 =1} ← Amount0 =1+1

. . .
Amount1 =10 ← FillUp .

(2)

3.2 Reduct-Based Definition of SM
For any two interpretations I , J of the same signature and any
list c of distinct predicate and function constants, we write
J <c I if

• J and I have the same universe and agree on all con-
stants not in c;

• pJ ⊆ pI for all predicate constants p in c; and

• J and I do not agree on c.

The reduct F I of an infinitary ground formula F relative
to an interpretation I is defined as follows:

• For each atomic formula F , F I = ⊥ if I 6|= F and
F I = F otherwise;

• (H∧)I = ⊥ if I 6|= H∧; otherwise
(H∧)I = {GI | G ∈ H}∧;

• (H∨)I = ⊥ if I 6|= H∨; otherwise
(H∨)I = {GI | G ∈ H}∨;

• (G → H)I = ⊥ if I 6|= G → H; otherwise
(G→ H)I = GI → HI .

The following theorem states the reformulation of FSM in
terms of grounding and reduct.

Theorem 1 Let F be a first-order sentence and c a list of
intensional constants. For any interpretation I of σ, I |=
SM[F ; c] iff

• I satisfies F , and

• every interpretation J such that J <c I does not satisfy
(grI [F ])I .

Example 1 continued Among the ground formulas in (2),
only the implication

{Amount1 =5} ← Amount0 =5+1

which stands for

(Amount1 =5) ∨ ¬(Amount1 =5) ← Amount0 =5+1

has its antecedent satisfied by I , so the reduct (grI [F ])I is
equivalent to

(Amount1 =5) ∨ ⊥ ← Amount0 =5+1

No interpretation that is different from I only on Amount1
satisfies the reduct. On the other hand, the reduct (grI1 [F ])I1

is equivalent to

⊥ ∨ ¬⊥ ← Amount0 =5+1,

and other interpretations that are different from I1 only on
Amount1 satisfy the reduct. (grI2 [F ])I2 is equivalent to

⊥ ∨ ¬⊥ ← Amount0 =5+1,
Amount1 = 10 ← FillUp

and I2 is the only interpretation that satisfies the reduct.
In accordance with Theorem 1, I and I2 are the stable mod-

els of F relative to Amount1, but I1 is not.

4 Answer Set Programming Modulo Theories
4.1 ASPMT as a Special Case of FSM
Formally, an SMT instance is a formula in many-sorted first-
order logic, where some designated function and predicate
constants are constrained by some fixed background interpre-
tation. SMT is the problem of determining whether such a
formula has a model that expands the background interpreta-
tion [Barrett et al., 2009].

The syntax of ASPMT is the same as that of SMT. Let σbg

be the (many-sorted) signature of the background theory bg.
An interpretation of σbg is called a background interpreta-
tion if it satisfies the background theory. For instance, in the
theory of reals, we assume that σbg contains the setR of sym-
bols for all real numbers, the set of arithmetic functions over
real numbers, and the set {<,>,≤,≥} of binary predicates
over real numbers. Background interpretations interpret these
symbols in the standard way.

Let σ be a signature that is disjoint from σbg . We say that
an interpretation I of σ satisfies F w.r.t. the background the-
ory bg, denoted by I |=bg F , if there is a background inter-
pretation J of σbg that has the same universe as I , and I ∪ J
satisfies F . For any ASPMT sentence F with background
theory σbg , interpretation I is a stable model of F relative
to c (w.r.t. background theory σbg) if I |=bg SM[F ; c].

Example 1 continued Formula F can be understood as an
ASPMT formula with the theory of integers as the back-
ground theory. Arithmetic functions and comparison oper-
ators belong to the background signature. If I ′ is an in-
terpretation of signature {Amount0,Amount1,FillUp} which
agrees with I on these constants, We say that I ′ |=bg

SM[F ; Amount1].



Instance CLINGO v3.0.5 Execution iSAT v1.0 Execution Z3 V4.3.0 Execution
Size Run Time (Grounding + Solving) Atoms Run Time (Last step) Variables Run time Memory
10 0s (0s + 0s) 210 0s(0s) 86 .05s 2.07
50 .02s (.02s + 0s) 2970 .05s(0s) 406 .18s 2.17
100 .12s (.12s + 0s) 10920 .15s(0s) 806 .33s 2.28
500 8.18s (8.17s + 0.01s) 254520 4.41s(.03s) 4006 1.68 3.38s

1000 55.17s (55.15s + 0.02s) 1009020 18.57s(.09s) 8006 3.35s 4.73
5000 Did not terminate in 2 hours 500.17s(.45s) 40006 17.42s 17.32

10000 Did not terminate in 2 hours 2008.97s(.93s) 80006 36.49s 31.42

Table 1: Leaking Bucket Experiment Results

4.2 Turning ASPMT into SMT for Tight Programs
We say that a formula F is in Clark normal form (relative
to the list c of intensional constants) if it is a conjunction of
sentences of the form

∀x(G→ p(x)) (3)

and
∀xy(G→ f(x)=y) (4)

one for each intensional predicate p and each intensional
function f , where x is a list of distinct object variables, y
is an object variable, and G is an arbitrary formula that has
no free variables other than those in x and y.

The completion of a formula F in Clark normal form (rel-
ative to c) is obtained from F by replacing each conjunctive
term (3) with

∀x(p(x)↔ G)

and each conjunctive term (4) with

∀xy(f(x)=y ↔ G).

An occurrence of a symbol or a subformula in a formula F
is called strictly positive in F if that occurrence is not in the
antecedent of any implication in F . The t-dependency graph
of F (relative to c) is the directed graph that

• has all members of c as its vertices, and

• has an edge from c to d if, for some strictly positive oc-
currence of G→ H in F ,

– c has a strictly positive occurrence in H , and
– d has a strictly positive occurrence in G.

We say that F is tight (on c) if the t-dependency graph of
F (relative to c) is acyclic. For example,

((p→ q)→ r)→ p

is tight on {p, q, r} because its t-dependency graph has only
one edge, which goes from p to r. On the other hand, the for-
mula is not tight according to [Ferraris et al., 2011] because,
according to the definition of a dependency graph in that pa-
per, there is an additional edge that goes from p to itself.

Theorem 12 from [Bartholomew and Lee, 2012] extended
the theorem on completion from [Ferraris et al., 2011] to
allow intensional functions, but it was restricted to a class
of formulas called c-plain formulas. The following theorem
generalizes that theorem by removing that restriction and by
referring to the weaker notion of tightness as described above.

Theorem 2 For any sentence F in Clark normal form that is
tight on c, an interpretation I that satisfies ∃xy(x 6= y) is
a model of SM[F ; c] iff I is a model of the completion of F
relative to c.

Example 1 continued Formula (1) is strongly equivalent to

Amount1 =x← ¬¬(Amount1 =x) ∧ Amount0 =x+1,

so that formula F in Example 1 can be turned into Clark nor-
mal form relative to Amount1:

Amount1 =x ← (¬¬(Amount1 =x) ∧ Amount0 =x+1)
∨ (x=10 ∧ FillUp).

and the completion turns it into

Amount1 =x ↔ (¬¬(Amount1 =x) ∧ Amount0 =x+1)
∨ (x=10 ∧ FillUp).

Using equality, the formula can be written without mention-
ing the variable x as

(Amount0 =Amount1 + 1) ∨ (Amount1 =10 ∧ FillUp)
FillUp→ Amount1 = 10 .

In the language of iSAT, this formula can be represented as
(Amt = Amt’+1) or (Amt’=10 and FillUp);
FillUp -> Amt’=10;

and in the language of Z3, it can be represented as
(assert (or (= Amt0 (+ Amt1 1))
(and (= Amt1 10) FillUp)))

(assert (=> FillUp0 (= Amt1 10))) .

Alternatively, according to the method in [Bartholomew
and Lee, 2012], formula F in Example 1 can be turned into
the input language of GRINGO by eliminating intensional
functions in favor of intensional predicates.

Our first experiment has the bucket initially at capacity 5
and the goal is to get the bucket to capacity 10 at a certain
fixed timepoint. The different instance sizes correspond to
the maximum capacity of the bucket and the certain timepoint
(they are both the same in each case). iSAT finds a model of
bounded length k, where k starts from 0 and increases by 1
until a model is found. The run time reported is the total
cumulative times for k = 0, 1, . . . ,m wherem is the instance
size. The last step time is for the run when k = m. For other
systems, we fixed the length k = m from the beginning. The
results shown in Table 1 demonstrate that even for a relatively
simple domain, ASP suffers a grounding bottleneck that is not
present when using SMT solvers. We see that the number of



Instance Size CLINGO v3.0.5 Execution iSAT v1.0 Execution Z3 V4.3.0 Execution
Run Time (Grounding + Solving) Atoms Run Time Variables Run time Memory

5 .02s (.02s + 0s) 3174 .03s 331 .03s 2.79
10 .3s (.3s + 0s) 10161 .19s 596 .09s 4.91
20 9.46s (4.02s + 5.11s) 36695 .79s 1126 .2s 8.65
30 42.56s (22.32s + 20.24s) 77627 2.05s 1656 .36s 12.22
50 923.74s (297.26 + 626.48s) 207706 14.35s 2716 1.09s 20.35
100 out of memory 494.77s 5366 5.52s 43.86

Table 2: Gears World Experiment Results

atoms for CLINGO increases quadratically to the instance size
while the number of variables for iSAT increases linearly.

Next, consider the Gears World domain in which we have
two gears, Gear1 with radius 7 and Gear2 with radius 17.
Each gear is connected to a motor that has integral running
speeds which can be incremented by 1 using the correspond-
ing action. The gears can also be moved close together so
that both gears spin at the speed of the higher value (between
M1Speed × Radius1 or M2Speed × Radius2). The goal is
to have Gear1 spinning at a multiple of Gear2’s radius. That
multiple is the instance size in Table 2, so for example, in-
stance size 3 means at the end, we want Gear1 spinning at
a speed of 51(= 3 × 17). This domain can be expressed in
the language of ASPMT with the theory of integers. Here is
a part of the program that governs the speed of a motor. The
speed does not change unless the increase action happens, in
which case it is incremented by 1 unit.

M1Speedt =x ← M1Speedt−1 =x−1 ∧ IncreaseM1t−1
M1Speedt =x ← ¬¬(M1Speedt =x) ∧M1Speedt−1 =x

(t is a step counter, which can be represented by an ASP vari-
able to be grounded).

The ASPMT description of the Gears World is tight and
can be turned into the input language of SMT solvers by com-
pletion. For example, the completion relative to M1Speedt is

M1Speeedt =x↔ (M1Speedt−1 =x− 1 ∧ IncreaseM1t−1)
∨(M1Speedt−1 =x ∧ ¬¬M1Speedt =x) .

The Gears World domain can also be computed by ASP
solvers by eliminating the intensional functions in favor of
intensional predicates as described in [Bartholomew and Lee,
2012]. Table 2 compares the two approaches and reveals that
the SMT solvers iSAT and Z3 were able to perform compar-
atively very well as the instance size increased.

The experiments were performed on an Intel Core 2 Duo
CPU 3.00 GHz with 4 GB RAM.

5 Comparison with Other Approaches to ASP
Modulo Theories

5.1 Clingcon programs as a special case of ASPMT
A constraint satisfaction problem (CSP) is a tuple (V,D,C),
where V is a set of constraint variables with the respective
domains D, and C is a set of constraints that specify legal
assignments of values in the domains to the constraint vari-
ables.

A clingcon program Π with a constraint satisfaction prob-
lem (V,D,C) is a set of rules of the form

a← B,N,Cn, (5)

where a is a propositional atom or ⊥, B is a set of positive
propositional literals, N is a set of negative propositional lit-
erals, and Cn is a set of constraints fromC, possibly preceded
by not.

Clingcon programs can be viewed as ASPMT instances.
Below is a reformulation of the semantics in terms of
ASPMT. We assume that constraints are expressed by
ASPMT sentences of signature V ∪ σbg , where V is a set
of object constants identified with constraint variables V in
(V,D,C), whose value sorts are identified with domains in
D; we assume that σbg is disjoint from V and contains all
values in D as object constants, and other symbols to repre-
sent constraints, such as +,×, and≥. In other words, we rep-
resent a constraint as a formula F (v1, . . . , vn) over V ∪ σbg

where F (x1, . . . , xn) is a formula of the signature σbg and
F (v1, . . . , vn) is obtained from F (x1, . . . , xn) by substitut-
ing the object constants (v1, . . . , vn) in V for (x1, . . . , xn).

For any signature σ that consists of object constants and
propositional constants, we identify an interpretation I of σ
as the tuple 〈If , X〉, where If is the restriction of I on the
object constants in σ, andX is a set of propositional constants
in σ that are true under I .

Given a clingcon program Π with (V,D,C), and an in-
terpretation I = 〈If , X〉, we define the constraint reduct of
Π relative to X and If (denoted by ΠX

If ) as the set of rules
a ← B for each rule (5) is in Π such that If |=bg Cn, and
X |= N . We say that a set X of propositional atoms is a con-
straint answer set of Π relative to If if X is a minimal model
of ΠX

If .

Example 1 continued The rules

Amount1+1 =$ Amount0 ← not FillUp,
Amount1 =$ 10← FillUp

are identified with

⊥ ← not FillUp, not(Amount1+1 =$ Amount0)
⊥ ← FillUp, not(Amount1 =$ 10)

under the semantics of clingcon programs. Consider I in Ex-
ample 1, which can be represented as 〈If , X〉 where If maps
Amount0 to 6, and Amount1 to 5, and X = ∅. X is the con-
straint answer set relative to If because X is the minimal
model of the constraint reduct relative to X and If , which is
the empty set.



Similar to the way that rules are identified as a special case
of formulas [Ferraris et al., 2011], we identify a clingcon pro-
gram Π with the conjunction of implicationsB∧N∧Cn→ a
for all rules (5) in Π. The following theorem tells us that
clingcon programs are a special case of ASPMT, in which the
background theory is specified by (V,D,C), and intensional
constants are limited to propositional constants only, and do
not allow function constants.

Theorem 3 Let Π be a clingcon program with CSP
(V,D,C), let p be the set of all propositional constants oc-
curring in Π, and let I be an interpretation 〈If , X〉 of sig-
nature V ∪ p. Set X is a constraint answer set of Π relative
to If iff I |=bg SM[Π;p].

Note that a clingcon program does not allow an atom that
consists of elements from both V and p. Thus the truth value
of any atom is determined by either If or X , but not by in-
volving both of them. This allows loose coupling of an ASP
solver and a constraint solver. On the other hand, [Gebser
et al., 2009] sketches a method to extend clingcon programs
to allow predicate constants of positive arity, possibly con-
taining constraint variables as arguments. This however leads
to some unintuitive cases under the semantics of CLINGCON
programs, as the following example shows.

$domain(100..199). % Office numbers
myoffice(a). % a is my office number,
:- myoffice(b). % and b is not.
:- not a $==b. % Nevertheless, a equals b.

System CLINGCON does not notice that this set of assump-
tions is inconsistent. This is because symbols a and b in ASP
atoms and the same symbols in the constraint are not related.
On the other hand, ASPMT, which allows first-order signa-
tures, does not have this anomaly; there is no stable model
under ASPMT.

5.2 Comparison with ASP(LC) Programs by Liu
et al.

[Liu et al., 2012] considers logic programs with linear con-
straints, or ASP(LC) programs, comprised of rules of the form

a← B,N,LC (6)

where a is a propositional atom or ⊥, B is a set of positive
propositional literals, and N is a set of negative propositional
literals, and LC is a set of theory atoms—linear constraints

of the form
n∑

i=1

(ci × xi) ./ k where ./∈ {≤,≥,=}, each

xi is an object constant whose value sort is integers (or reals),
and each ci, k is an integer (or real).

An ASP(LC) program Π can be viewed as an ASPMT for-
mula whose background theory bg is the theory of integers
or the theory of reals. Let σp denote the set of all propo-
sitional atoms occurring in Π and σf denote all object con-
stants occurring in Π that do not belong to the background
signature. Theory atoms are essentially ASPMT formulas of
signature σf ∪ σbg . We identify ASP(LC) program Π with
the conjunction of ASPMT formulas B ∧ N ∧ LC → a for
all rules (6) in Π.

An LJN-intepretation is a pair (X,T ) where X ⊆ σp and
T is a subset of theory atoms occurring in Π such that there is
some interpretation I of signature σf such that I |=bg T ∪ T ,
where T is the set of negations of each theory atom occurring
in Π but not in T . An LJN-interpretation (X,T ) satisfies an
atom b if b ∈ X , the negation of an atom not c if c /∈ X ,
and a theory atom t if t ∈ T . The notion of satisfaction is
extended to other propositional connectives as usual.

The LJN-reduct of a program Π with respect to an LJN-
interpretation (X,T ), denoted by Π(X,T ), consists of rules
a ← B for each rule (6) such that (X,T ) satisfies N ∧ LC.
(X,T ) is an LJN-answer set of Π if (X,T ) satisfies Π, and
X is the smallest set of atoms satisfying Π(X,T ).

The following theorem tells us that there is a one-to-many
relationship between LJN-answer sets and the stable models
in the sense of ASPMT.

Theorem 4 Let Π be an ASP(LC) program, and σp and σf

are defined as above.

(a) If (X,T ) is an LJN-answer set of Π, then for any in-
terpretation 〈If , X〉 of signature σp ∪ σf such that
If |=bg T ∪ T , we have 〈If , X〉 |=bg SM[Π;σp].

(b) For any interpretation I = 〈If , X〉 of signature σp∪σf ,
if 〈If , X〉 |=bg SM[Π;σp], then an LJN-interpretation
(X,T ) where

T = {t | t is a theory atom in Π such that If |=bg t}

is an LJN-answer set of Π.

Example 2 Let F be

a← x−z>0. b← x−y≤0.
c← b, y−z≤0. ← not a.
b← c.

The LJN-interpretation L = 〈{a}, {x−z > 0}〉 is an answer
set of F since {(x−z > 0,¬(x−y ≤ 0),¬(y−z ≤ 0)} is
satisfiable (e.g. take xI = 2, yI = 1, zI = 0) and the set
{a} is the minimal model satisfying the reduct FL = (> →
a) ∧ c → b. On the other hand the interpretation I such that
xI = 2, yI = 1, zI = 0, aI = TRUE, bI = FALSE, cI = FALSE
satisfies I |=bg SM[F ; abc].

As with clingcon programs, ASP(LC) programs are more
restrictive than ASPMT. ASP(LC) programs do not allow the-
ory atoms in the head of a rule, and like clingcon programs,
cannot express intensional functions.

6 Conclusion
In this paper, we related the two lines of research on func-
tions in answer set programming that originated from dif-
ferent motivations, leading to an expressive KR formalism
called ASPMT, which can be efficiently computed by SMT
solvers. The relationship between ASPMT and SMT is sim-
ilar to the relationship between ASP and SAT. We expect
that, in addition to completion, many results known between
ASP and SAT can be carried over to the relationship between
ASPMT and SMT.
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