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Abstract

In classical logic, nonBoolean fluents, such as the location of
an object and the color of a ball, can be naturally described
by functions, but this is not the case with the traditional sta-
ble model semantics, where the values of functions are pre-
defined, and nonmonotonicity of the semantics is related to
minimizing the extents of predicates but has nothing to do
with functions. We extend the first-order stable model se-
mantics by Ferraris, Lee and Lifschitz to allow intensional
functions. The new formalism is closely related to multi-
valued nonmonotonic causal logic, logic programs with in-
tensional functions, and other extensions of logic programs
with functions, while keeping similar properties as those of
the first-order stable model semantics. We show how to elim-
inate intensional functions in favor of intensional predicates
and vice versa, and use these results to encode fragments of
the language in the input language of ASP solvers and CSP
solvers.

Introduction

NonBoolean fluents, such as the location of an object and
the color of a ball, are important in describing the states of
the world. In classical logic, nonBoolean fluents can be nat-
urally represented by functions, but this is not the case with
the traditional stable model semantics (Gelfond & Lifschitz
1988) and various extensions thereafter, where the values
of functions are pre-defined, and the principle of “minimal
belief with negation as failure” is related to the minimality
condition for predicates in the definition of a stable model,
but has nothing to do with functions. Also, most extensions
of the stable model semantics are limited to Herbrand mod-
els,! in which the behavior of functions is governed by the
built-in unique name assumption. This is often too strong an
assumption for expressing nonBoolean fluents by functions.
For instance, loc(b) = loc(by) is always false for two differ-
ent blocks b and by, which prevents us from expressing that
the two blocks can be on the table.

On the other hand, in nonmonotonic causal logic and its
high level notation action language C+ (Giunchiglia et al.
2004), nonBoolean fluents are represented by “multi-valued
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"There are exceptions, such as those defined in (Ferraris, Lee,
& Lifschitz 2011; Lin & Zhou 2011).

atoms” that have the form ¢ = v. In view of (Lifschitz
1997), which provides a first-order semantics of nonmono-
tonic causal logic, c is essentially a function that is mapped
to a value v in the domain. Under the principle of the univer-
sal causation, every “causally explained” symbol should be
uniquely characterized by the reduct of a program. In other
words, nonmonotonicity of this semantics is related to the
uniqueness of function values.

Recently, Lifschitz (2011; 2012) introduced yet another
nonmonotonic formalism called “logic programs with inten-
sional functions (a.k.a. IF-programs)”, which is related to
both the stable model semantics and nonmonotonic causal
logic. This formalism takes into account the negation as fail-
ure as in logic programs, but also can express nonBoolean
fluents by functions as in nonmonotonic causal logic. How-
ever, the semantics diverges from the stable model semantics
in some essential aspects (as we discuss in this paper), and
as mentioned in (Lifschitz 2012), it is not obvious how vari-
ous mathematical results established for the first-order stable
model semantics, such as strong equivalence, the splitting
theorem and the theorem on completion, can be extended to
this formalism.

In this paper, we present an alternative approach to incor-
porate intensional functions in the stable model semantics by
a simple modification to the first-order stable model seman-
tics from (Ferraris, Lee, & Lifschitz 2011). It turns out that
in comparison with IF-programs, this formalism is closer to
the first-order stable model semantics than to nonmonotonic
causal logic. On the other hand, IF-programs are closer to
nonmonotonic causal logic.

The paper is organized as follows. In the next section, we
introduce the stable model semantics for formulas with in-
tensional functions, in terms of translation into second-order
logic formulas, and also in terms of a reduct. Next, we show
how to eliminate intensional predicates in favor of inten-
sional functions, and vice versa. We extend several theorems
established in the absence of intensional functions, such as
the theorem on constraints, the theorem on strong equiva-
lence, the splitting theorem and the completion theorem, to
allow intensional functions. We also extend the language
RASPL-1 (Lee, Lifschitz, & Palla 2008) to allow intensional
functions and how its fragments can be computed by ASP
solvers and CSP solvers. We also compare this formalism
with several other related nonmonotonic logics. Proofs are



omitted due to the space limit.

Definition and Examples

Stable Model Semantics of Formulas with
Intensional Functions

Formulas are built the same as in first-order logic. A signa-
ture consists of function constants and predicate constants.
Function constants of arity 0 are called object constants. We
assume the following set of primitive propositional connec-
tives and quantifiers:

1 (falsity), A, Vv, —, V, 3.

We understand —F' as an abbreviation of ' — 1 ; symbol T
stands for L — L, and F' +» G stands for (F - G)A (G —

For predicate symbols (constants or variables) u and c,
we define u < ¢ as Vx(u(x) — ¢(x)). We define u = ¢
as Vx(u(x) <> ¢(x)) if u and c are predicate symbols, and
Vx(u(x) = ¢(x)) if they are function symbols.

Let c be a list of distinct predicate and function constants
and let € be a list of distinct predicate and function variables
corresponding to c. We call members of ¢ intensional con-
stants. By cP"*? we mean the list of the predicate constants
in ¢, and by ¢P"*? the list of the corresponding predicate
variables in €. We define € < ¢ as

(@7ed < ¢Ped) A —(€ = c)
and SM[F; c] as

F A—=3c(ec < cAF*(Q)),
where F*(c) is defined as follows.

e When F is an atomic formula, F* is F’ A F, where F” is
obtained from F' by replacing all intensional (function and
predicate) constants in it with the corresponding (function
and predicate) variables;?

o (FAG)*=F*NG*;, (FVG)*=F*VG*
e (FoG)Y'=F*"—>G)N(F—=G);
o (VaF)* =VaF*;, (JaF)*=3JzF*.

When F is a sentence, the models of SM[F'; c] are called
the c-stable models of F'. They are the models of F' that are
“stable” on c.

If ¢ contains predicate constants only, this definition of a
stable model reduces to the one in (Ferraris, Lee, & Lifschitz
2011). The definition of F'* above is the same as in (Ferraris,

Lee, & Lifschitz 2011) except for the case when F' is an
atomic formula.

Example 1 Let Fy be [ =1V f = 2. SM[Fy; f] is
FA-Sf(F#£FA(F=1Af =)V (f=2AF=2)),
which is equivalent to F1.

2If an atomic formula F' contains no intensional function con-

stants, then F™* can be defined as F’, as in (Ferraris, Lee, & Lifs-
chitz 2011).

Example2 Let Fo be (f=1Vg=1)A(f=2Vg=2).
SM[Fy; fg] is

Fy AN=3fg((fg # fo)n
(f=1Af=1)V@=1Ag=1)A

(f=2Af=2)V(G=2Ag=2))),
which is equivalentto (f =1Ng=2)V (f=2Ag=1).
The following lemma is often useful.

Lemma 1 Formula© < ¢ — ((—=F)*(¢) + —F) is logi-
cally valid.

Example 3 (From (Lifschitz 2012)) Ler F5 be the formula

Va(-—(f(z) = a) = f(x) = a)
AVa(p(r) = f(x) =),

where f, a, b are function constants, and p is a predicate
constant. Using Lemma 1, SM[F3; f] is equivalent to

Fy A=3f((f # ) AVa(f(z)=a — f(z)=a)
AV (p(z) = flx)=b)),

which in turn is equivalent to the first-order formula
Va(p(z) = f(z)=b) AVa(-p(z) = f(z)=a). (1)

Constraints, Choice, Defaults and Strong
Equivalence
Constraints

Following Ferraris et al. (2009), we say that an occurrence
of a constant, or any other subexpression, in a formula F'
is positive if the number of implications containing that oc-
currence in the antecedent is even, and negative otherwise.
We say that the occurrence is strictly positive if the number
of implications in F' containing that occurrence in the an-
tecedent is 0. For example, in =(f = 1) — g = 1, the
occurrences of f and g are both positive, but only the occur-
rence of g is strictly positive.

We say that a formula F' is negative on a list ¢ of predi-
cate and function constants if members of ¢ have no strictly
positive occurrences in F'. We say that F' is a constraint if it
has no strictly positive occurrences of any constant. Clearly,
a constraint is negative on any list of constants. For instance,
a formula of the form —H (shorthand for H — 1) is a con-
straint.

Theorem 1 For any first-order formulas F and G, if G is
negative on ¢, SM[F A G; c] is equivalent to SM[F';c] A G.

Example 4 Consider SM[Fy A —(f = 1); fg] where Fy is
the formula in Example 2. Since —(f = 1) is negative on
{f, g}, according to Theorem 1, SM[Fy A =(f = 1); fg] is
equivalent to SM[Fy; fg| A —(f = 1), which is equivalent
tof=2Ng=1

Choice and Defaults

Similar to Theorem 2 from (Ferraris, Lee, & Lifschitz 2011),
the theorem below shows that making the set of inten-
sional constants smaller can only make the result of ap-
plying SM weaker, and that this can be compensated by



adding “choice formulas.” For any predicate constant p,
by Choice(p) we denote the formula Vx(p(x) V —p(x)),
where x is a list of distinct object variables. For any
function constant f, by Choice(f) we denote the formula
Vxy((f(x) =y) V —(f(x) = y)), where y is an object vari-
able that is distinct from x. For any finite list of predicate
and function constants ¢, Choice(c) stands for the conjunc-
tion of the formulas Choice(c) for all members ¢ of c. We
sometimes identify a list with the corresponding set when
there is no confusion.

Theorem 2 For any first-order formula F' and any disjoint
lists ¢, d of distinct constants, the following formulas are
logically valid:

SM[F; cd] — SM[F; c],
SM[F' A Choice(d); cd] <> SM[F; c].

For example, SM[g =1 — f = 1; f] is equivalent to
SM[(g=1 — f=1) AVy(g=yV ~(9=y)); fg], whichin
turn is equivalenttog = 1 A f = 1.

We abbreviate the formula F' V —F (“the law of ex-
cluded middle”) as { F'}. Then Choice(f) can be written as
Vxy{ f(x) = y}; Choice(p) can be written as Vx{p(x)}. A
formula {t = t’}, where t contains an intensional function
constant and t’ does not, represents that t takes the value t’
by default. For example, the f-stable models of

{f=1},

maps f to 1. On the other hand, the default behavior is over-
ridden when we conjoin the formula with (f = 2): the f-
stable models of

{f=13n00=2

maps f to 2, not to 1.
A default formula is useful to describe the commonsense
law of inertia:

Loc(b,t)=1 — {Loc(b,t+1)=1}, 2)

where Loc is an intensional function constant, represents
that the location of a block b at next step keeps its previous
value by default. The default behavior can be overridden if
some action moves the block.

Strong Equivalence

Strong equivalence (Lifschitz, Pearce, & Valverde 2001) is
an important notion that allows us to substitute one sub-
formula for another subformula without affecting the stable
models. The theorem on strong equivalence can be extended
to formulas with intensional functions as follows.

About first-order formulas F' and G we say that F' is
strongly equivalent to G if, for any formula H, any occur-
rence of F' in H, and any list ¢ of distinct predicate and
function constants, SM[H;c| is equivalent to SM[H’;c],
where H’ is obtained from H by replacing the occurrence
of F' by G. In this definition, H is allowed to contain func-
tion and predicate constants that do not occur in F', G; The-
orem 3 below shows, however, that this is not essential.

Theorem 3 Let F and G be first-order formulas, let c be the
list of all constants occurring in F or G and let € be a list
of distinct predicate and function variables corresponding
to c. The following conditions are equivalent to each other.

e F and G are strongly equivalent to each other;
e Formula

(F+ G)N(e<cec— (F*(c) « G*(Q))
is logically valid.

According to the theorem, formula {F'} (shorthand for
F'V —F) is strongly equivalent to =—F — F'. This allows
us to rewrite formula F3 in Example 3 as

Ve {f(z) = a} AV (p(z) = f(z) =),

which represents that by default f(z) is mapped to a, but
when 2 belongs to p, f(x) is mapped to b. This is in agree-
ment with (1). Also, the theorem allows us to rewrite for-
mula (2) as an implication in which the consequent is an
atomic formula:

Loc(b,t)=1 N == (Loc(b,t + 1)=1) — Loc(b,t+1)=1.

Reduct-Based Semantics for Ground Formulas

For a ground formula (i.e., a first-order formula with no vari-
ables), the stable models above can be alternatively defined
in terms of a reduct, which is similar to the one given in (Fer-
raris 2005) for propositional formulas.

For two interpretations I, J of the same signature and a
list ¢ of distinct predicate and function constants, we write
J < Iif
e J and [ have the same universe and agree on all constants

not in c,

e p’ C p! for all predicates p in c, and
e J and I do not agree on c.

The reduct F! of a formula F relative to an interpretation [
is the formula obtained from F' by replacing every maximal
subformula that is not satisfied by I with L.

Theorem 4 Let F be a ground formula of signature o and c
a list of intensional constants. For any interpretation I of o,
I = SM[F;c]iff

o [ satisfies F', and

e cvery interpretation J of o such that J <® I does not

satisfy F1.

Example 5 For Fy in Example 2, recall that an interpreta-
tion I that maps f to 1, g to 2, and maps numbers to them-
selves satisfies SM[Fy; fg]. In accordance with Theorem 4,
(F>)! = (f = 1 A g = 2), and there is no interpretation J
of the same signature such that J <79 I and satisfies (F»)!.

Stable Models of Multi-Valued Propositional
Formulas
Review of Multi-Valued Propositional Formulas

We first review the definition of a multi-valued propositional
formula from (Giunchiglia et al. 2004), where atomic parts



of a formula can be equalities of the kind found in constraint
satisfaction problems.

A (multi-valued propositional) signature is a set o of
symbols called constants, along with a nonempty finite
set Dom(c) of symbols, disjoint from o, assigned to each
constant ¢. We call Dom(c) the domain of c¢. A Boolean
constant is one whose domain is the set { TRUE, FALSE}. An
atom of a signature ¢ is an expression of the form c=v (“the
value of ¢ is v”) where ¢ € ¢ and v € Dom(c). A multi-
valued propositional formula of ¢ is a propositional combi-
nation of atoms.

A (multi-valued propositional) interpretation of o is a
function that maps every element of o to an element of its
domain. An interpretation [ satisfies an atom c=wv (symbol-
ically, I = c=w) if I(¢) = v. The satisfaction relation is
extended from atoms to arbitrary formulas according to the
usual truth tables for the propositional connectives.

Stable Models of a Multi-Valued Propositional
Formula

Multi-valued propositional formulas can be viewed as a spe-
cial class of ground first-order formulas of many-sorted sig-
natures. We identify a multi-valued propositional signature
with a signature in first-order logic by understanding each
multi-valued constant ¢ as an intensional object constant,
and Dom(c) as a set of non-intensional object constants. A
multi-valued propositional atom ¢ = v can be understood as
an equality between an intensional object constant ¢ and a
non-intensional object constant v.

We identify a multi-valued propositional interpretation
with the standard first-order logic interpretation of many-
sorted signature in which

o the sort of an intensional object constant c is represented
by Dom(c), and

e cach non-intensional object constant is mapped to itself,
and is identified with an element in Dom(c) for some in-
tensional object constant c.

Example 6 Consider a multi-valued propositional sig-
nature o = {ColorBlue, ColorRed, TapeColor}, where
Dom(ColorBlue) = Dom(ColorRed) = {TRUE, FALSE}
and Dom(TapeColor) = {Red, Blue, Green}. The follow-
ing is a multi-valued propositional formula F':

(ColorBlue = TRUE V ColorBlue = FALSE)
A (ColorRed = TRUE V ColorRed = FALSE)
A (ColorBlue = TRUE — TapeColor = Blue)
A (ColorRed = TRUE — TapeColor = Red)

An interpretation I such that I(ColorBlue) = FALSE,
I(ColorRed) = TRUE and I(TapeColor) = Red satisfies
F.

The reduct F of a multi-valued propositional formula '
relative to a multi-valued propositional interpretation [ is the
formula obtained from F' by replacing each maximal subfor-
mula that is not satisfied by I with L. The following theorem
provides an alternative definition of a stable model in terms
of a reduct.

Theorem 5 Let F' be a multi-valued propositional formula
of signature o, let I be a multi-valued propositional inter-
pretation of 0. I = SM[F’; o] iff

o [ satisfies F, and

e no multi-valued propositional interpretation J of o that
disagrees with I (on o) satisfies F'.

Example 6 continued The reduct F! is

(L V ColorBlue=FALSE) A (ColorRed =TRUE V )
A (L — L) A (ColorRed=TRUE — TapeColor=Red),

or equivalently

(ColorBlue=FALSE) A (ColorRed =TRUE)
A (ColorRed =TRUE — TapeColor=Red).

No interpretation J of the same signature as I that
differs from I on TapeColor,ColorBlue, ColorRed satis-
fies FI. In accordance with Theorem 5, I satisfies
SM[F’; TapeColor, ColorBlue, ColorRed).

The following proposition tells us that any stable model of
a multi-valued propositional formula maps a constant only
to values that occur in the formula.

Proposition 1 Let o be a multi-valued propositional signa-
ture such that, for each ¢ € o, Dom(c) has at least two
elements. For any multi-valued propositional formula F of
signature o,

SM[F;0] — A \V  e=v

cEo  visavaluein Dom(c)
that occurs in F'

is logically valid.
For example, for the formula F' in Example 6,

SM[F'; TapeColor, ColorBlue, ColorRed] —
(ColorBlue =TRUE V ColorBlue =FALSE)
A (ColorRed =TRUE V ColorRed =FALSE)
A (TapeColor=Red V TapeColor = Blue)

is logically valid. In view of Proposition 1, an interpretation
that maps TapeColor to Green cannot be a stable model.

Relation to the 1988 Definition of a Stable
Model

Let II be a finite set of rules of the form

Ag + Ay, ..., Ap,not Apya, ... 0ot Ay, 3)

(n > m > 0), where each A; is a propositional atom.
The stable models of II in the sense of (Gelfond & Lifs-
chitz 1988) can be characterized in terms of SM, in the same
way as is handled in IF programs (Lifschitz 2012). Lifs-
chitz (2012) defines the functional image of II as follows.
First, reclassify all propositional atoms as intensional object
constants, and add to the signature two non-intensional ob-
ject constants 0 and 1. Each rule (3) is rewritten as

Ap=14 Ay = 1A Adp = IAAps1 # 1A AA, £ 1



(A # 1 is shorthand for —=(A = 1)). For each atom A in the
signature of II we add the default rule

A=0+« ﬁﬁ(A = 0)
(by default, atoms get the value false). Finally, we add con-

straints 041
r=0Vz=1. @

The resulting program is called the functional image of II.
Clearly, the models of (4) can be viewed as sets of proposi-
tional atoms. The following theorem is similar to Proposi-
tion 5 from (Lifschitz 2012), but applies to the stable model
semantics presented in this paper.

Theorem 6 The functional image of 11 has the same stable
models as I1.

Eliminating Intensional Predicates

The process in the previous section can be extended to elim-
inate intensional predicates in favor of intensional functions.
Given a formula F' and an intensional predicate constant p,
formula F]’Z is obtained from F’ as follows:

e in the signature of F', replace p with a new intensional
function constant f of arity n, where n is the arity of p,
and add two non-intensional object constants 0 and 1;

e replace each subformula p(t) in F with f(t) = 1.

By FCy (“Functional Constraint on f”) we denote the
conjunction of the following formulas, which enforces f to
behave like predicates:

0#1, )

-=Vx(f(x) =0V f(x) =1). (6)
where x is a list of distinct object variables. By DFy (“De-
fault False on f”’) we denote the following formula:

Vx(==(f(x) = 0) = f(x) = 0). (M

Example 7 Let F' be the conjunction of the universal clo-
sures of the following formulas, which describes the effect
of a monkey moving:

Loc(Monkey,0) = L1,
Loc(Monkey, 1) = L2,
Move(Monkey, l,t) — Loc(Monkey,t + 1) =1

(lower case symbols are variables). We eliminate the in-
tensional predicate Move in favor of an intensional function

Movey to obtain I, A%’]}:f A FCurove; N DFpoye, which is the

conjunction of the universal closures of the following formu-
las:

Loc(Monkey,0) = L1,
Loc(Monkey, 1) = L2,

Move ;(Monkey,l,t) = 1 — Loc(Monkey,t + 1) =,
0+#1,
—~—Vzyz(Moves(x,y,z) = 0V Move;(z,y,z) = 1)
Vayz(——(Moves(z,y,z) = 0) = Moves(x,y,z) = 0).

Theorem 7 Formulas Vx(f(x) = 1 < p(x)), FCy entail
SM([F; pc] <> SM[F{ A DFy; fc].

The following corollary shows that there is a 1-1 corre-
spondence between the stable models of F' and the stable
models of its “functional image” F’ Jf ANDF; NFCy. For any

interpretation I of the signature of F', by [ J’c’ we denote the
interpretation of the signature of Ff obtained from I by re-
placing the set p! with the function f! such that

&, .. &) =1ifpl (&, ...
(&, ..., &) = 0 otherwise .

,&n) = TRUE

We also assume that I fj satisfies (5). Consequently, 1 ;’ satis-
fies FCy.

Corollary 1 (a) An interpretation I of the signature of F' is
amodel of SM[F'; pe] iff I} is a model of SM[F{ ADF y; fc.
(b) An interpretation J of the signature of F' J’Z is a model of
SM[F;Z NDF; NFCy; fel iff J = I]]ffor some model I of
SM[F; pc].

Eliminating Intensional Functions

We discuss how to eliminate intensional functions in favor
of intensional predicates. Unlike the previous section, the
result is first established for “f-plain” formulas,? and then
extended to allow “synonymity” rules.

Let f be a function constant. A first-order formula is
called f-plain if each atomic formula

e does not contain f, or

e is of the form f(t) = u where t is a tuple of terms not
containing f, and u is a term not containing f.

For a list f of function constants, we say that F' is f-plain
if F'is f-plain for each member f of f.

Let F' be an f-plain formula, where f is an intensional
function constant. Formula sz is obtained from F' as fol-
lows:

e in the signature of F', replace f with a new intensional
predicate constant p of arity n 4 1, where n is the arity
of f;

e replace each subformula f(t) = c¢in F with p(t, ¢).

By UEC,, we denote the following formulas that enforce
the functional image on the predicates:

Vxyz(y # z Ap(x,y) Ap(x,2z) = L), 8)
—=VxJy p(x,y),

where x is a n-tuple of variables, and all variables in x, y,
and z are pairwise distinct. Note that each formula is a con-
straint. Clearly, UEC,, is strongly equivalent to

—~vx3ly p(x, y) 9
and also classically equivalent to

vx3ly p(x,y) - (10)

3The notion of f-plain formulas are adapted from f-plain
causal theories from (Lifschitz & Yang 2011a).



Example 8 Consider the same formula F in Example 7. We
eliminate the function Loc in favor of an intensional predi-
cate Loc,, to obtain F, fogccp N UECyyc,, which is the conjunc-

tion of the universal closures of the following formulas:

Loc,(Monkey,0, L1),

Loc,(Monkey, 1, L2),
Move(Monkey,l,t) — Loc,(Monkey,t + 1,1),
Vwayz(y # z A Locy(w, z,y) A Locy(w, x, z) — L),
—~—VwaIy(Locy(w, z,y)).

Theorem 8 For any f-plain formula F, formulas
Vxy(p(x,y) < f(x) =vy), Jry(x # y) entail

SM(F; fc] +» SMIF/; pc].

The following corollary shows that there is a simple 1-1
correspondence between the stable models of ' and the sta-
ble models of F[{c AUEC,,. Recall that the signature of Flf is
obtained from the signature of F' by replacing f with p. For
any interpretation I of the signature of F', by I pf we denote

the interpretation of the signature of sz obtained from / by

replacing the function f7 with the set p! that consists of the
tuples

<§17 v 75”7.}0[(515 v 7§n)>

for all &1, ..., &, from the universe of I.

Corollary 2 Let F' be an f-plain sentence. (a) An inter-
pretation I of the signature of F that satisfies Jxy(x # y)
is a model of SM[F'; fc| iff IJ is a model of SM[F/; pc].
(b) An interpretation J of the signature of Fg that satisfies
Jzy(xz # y) is a model ofSM[FI{c N UECy; pel iff J = Ig
for some model I of SM[F; fc].

Theorem 8 and Corollary 2 are similar to Theorem 3 and
Corollary 5 from (Lifschitz & Yang 201 1a), which are about
eliminating explainable functions in nonmonotonic causal
logic in favor of explainable predicates.

The method above eliminates only one intensional func-
tion constant at a time, but repeated applications can elimi-
nate all intensional functions f from a given f-plain formula.
This allows us to represent the f-plain formula by a logic
program, which we illustrate in the next section.

We expect that many domains can be described by f-plain
formulas, but we know one place where f-plain formulas
are limited. This is when we want to express “synonymity”
rules (Lee et al. 2010; Lifschitz & Yang 2011a) that have
the form

B — fi(t1) = fa(t2), (1)

where f1, fo are intensional function constants in f, and t1,
to are tuples of terms not containing members of f. This
rule expresses that we believe f1(t1) to be “synonymous”
to f2(t2) under condition B. We can eliminate f; and fo in
favor of predicate constants p; and ps as follows.

We consider a more general case than an f-plain formula.
We define a new class of f-plain-syn formulas in which ev-
ery atomic formula

e does not contain any member of f, or

e is of the form f(t) = w where f is in f, symbol t is a
tuple of terms not containing any member of f, and u is a
term not containing any member of f, or

e is of the form f;(t1) = f2(t2) where f1, f> are in f,
symbols t; and t, are tuples of terms not containing any
member of f.

Let F be an f-plain-syn formula. The elimination is done
by extending the previous method by turning atomic formu-
las of the form f (t1) = f2(t2) into

Vy(p1(t1,y) < pa(ta,y)),

where pp, po are new intensional predicate constants corre-
sponding to fi, fa.

Ff, is defined similar to sz except that it applies to the list
of symbols.

Theorem 9 For any f-plain-syn formula F, the set of for-
mulas Vxy(p(x,y) < f(x) = y) for each f € f and the
corresponding p, and Jxy(x # y) entail

SM(F; fq] > SM[Fy; pa].

Unlike in Theorem 8, the elimination in Theorem 9 ap-
plies to the list of intensional functions simultaneously.

RASPL.-1 with Intensional Functions

In (Lee, Lifschitz, & Palla 2008), the language RASPL-1
is introduced, which defines the meaning of counting and
choice in answer set programming by reducing them to
first-order formulas. The restriction in RASPL-1 that does
not allow function constants of positive arity is removed
in (Bartholomew & Lee 2010), but such functions are re-
stricted to be non-intensional.

Here we extend RASPL-1 to allow intensional functions,
and note that this extension provides a convenient way to
describe nonBoolean fluents.

Asin (Lee, Lifschitz, & Palla 2008), an aggregate expres-
sion has the form

b{x: F(x)} (12)

(k > 1), where b is a positive integer (“the bound”), x is a
list of variables (possibly empty), and F'(x) is a first-order
formula. This expression reads: there are at least b values

of x such that F'(x).
A rule is an expression of the form
Ay Ay« Ev, ... B not By, ... not By (13)

(I > 0;n > m > 0), where each A; is an atom, and each E;
is an aggregate expression. A program is a list of rules.

The semantics of RASPL-1 is defined by a procedure
that turns every aggregate expression, every rule, and every
program into a formula of first-order logic, called its FOL-
representation. The FOL-representation of an aggregate ex-
pression b {x : F'(x)} is the formula

/\ —(x' = x7%) (14)



where x!, ... x? are lists of new variables of the same length
as x. An expression 1{: A}, where A is an atomic formula,
can be identified with A. A choice rule of the form

{A} « Ei,...,En,not Eypyq,... 00t By
where A is an atomic formula, stands for
A; not A < FEy,...,Epn,not Epiq, ... 0ot B,

which is strongly equivalent to

A+ Ei,....,E,,not B, y1,...,n0t B, not not A.

For instance, the Blocks World domain can be succinctly
described in RASPL-1 as follows. First, we say that no two
blocks can be on the same block at the same time.

1« 2{by : Loc(by,t)=b} (15)

(b, by are variables for blocks; ¢ is a variable for timepoints).
Next we describe the effect of moving a block b to a loca-
tion [:

Loc(b,t+1) =1+ Move(b,1,t). (16)
The preconditions of the action are described by the follow-
ing constraints:

L+ (g+1){bl: Move(b,1,t)},

L« Move(b,l,t) A Loc(by,t)=Db,
L < Move(b,by,t) A Move(by,1,1).

a7

The first rule of (17) describes that the concurrent move
actions are limited by the number of grippers (denoted by
the symbol g). The next rule describes that a block can be
moved only when it is clear, and the last rule describes that
a block cannot be moved onto a block that is being moved
also. We describe that the fluents are initially exogenous by

{Loc(b,0)=1}, (18)
and that actions are exogenous by
{Move(b,1,t)}. (19)
The commonsense law of inertia is expressed by
{Loc(b,t+1)=1} «+ Loc(b,t)=I. (20)

Corollary 2 allows us to represent the theory in the input
language of ASP grounder GRINGO as follows, by eliminat-
ing function constant Loc in favor of predicate constant On.
Lines 1-13 are sort and variable declarations. Lines 16, 19
are UEC o,,. The rest is the representation of (15)—(20).

Splitting Theorem and Completion

A rule of a first-order formula F' is a strictly positive occur-
rence of an implication in F'.

Let F be a c-plain formula. The dependency graph of F'
(relative to c), denoted by DG[F], is the directed graph that

e has all members of c as its vertices, and
e has an edge from c to d if, for some rule G — H of F,

— c has a strictly positive occurrence in H, and

— d has a positive occurrence in G that does not belong to
any subformula of G that is negative on c.
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step(0. .maxstep) .
astep(0. .maxstep-1) :— maxstep > 0.
#domain step(ST) .

#domain astep(T) .

#domain block (B;B1) .

#domain location(L;L1) .

% every block is a location
location(B) :— block(B) .

% the table is a location
location(table) .

% uniqueness constraint
:— 2{on(B,LL,ST) : location(LL)}.

o)

% existence constraint
:— {on(B,LL,ST) : location(LL) }0.

:— 2{on (BB, B, ST) : block(BB) }.
on(B,L,T+1) :— move(B,L,T).

% preconditions

:— (gtl) {move(BB,LL,T): block(BB): location(LL)}.
:— move(B,L,T), on(BL,B,T).

:— move(B,B1,T), move(Bl,L,T).

{on(B,L,0)}.

{move (BB, LL,T) : block(BB): location(LL)}.

{on(B,L,T+1)} :- on(B,L,T) .

Figure 1: Blocks World Encoding in ASP

A loop of F' (relative to a list ¢ of intensional constants) is
a nonempty subset 1 of ¢ such that the subgraph of DG, [F]
induced by 1 is strongly connected.

The following theorem extends the splitting lemma
from (Ferraris et al. 2009) to allow intensional functions.

Theorem 10 Let c be a list of constants, and let F' be a c-
plain formula. If1',... 1" are all the loops of F relative
to c then
SM[F;c] is equivalentto SM[F;1'] A --- A SM[F;1"].
The following theorem extends the splitting theorem
from (Ferraris et al. 2009) to allow intensional functions.
Theorem 11 Let ¢, d be finite disjoint lists of distinct con-
stants, and let F', G be (c U d)-plain sentences. If

(a) each strongly connected component of the dependency
graph of F' N\ G relative to c, d is either a subset of c
or a subset of d,

(b) F is negative on d, and
(c) G is negative on c
then
SM[F A G; cUd] + SM[F; c] A SM[G; d]
is logically valid.



It is clear that Theorem 1 is a special case of Theorem 11,
when d is empty.

As shown in (Lee, Lifschitz, & Palla 2008), the splitting
theorem is useful in reasoning about ASP programs. It is
also useful in proving other theorems, such as the theorem
on completion below. We say that a formula F' is in Clark
normal form (relative to the list ¢ of intensional constants) if
it is a conjunction of sentences of the form

Vx(G — p(x)) (21

and
¥xy(G — f(x)=y) (22)

one for each intensional predicate p and each intensional
function f, where x is a list of distinct object variables, y
is a variable, and G is a formula that has no free variables
other than those in x and .

The completion of a formula F' in Clark normal form (rel-
ative to c) is obtained from F' by replacing each conjunctive
term (21) with

Vx(p(x) <> G) (23)
and each conjunctive term (22) with
Vxy(f(x)=y < G). 24)

We say that F' is tight (on c) if the dependency graph of
F' (relative to c¢) is acyclic. The following theorem tells
us that, for a tight theory, completion is a process that al-
lows us to reclassify intensional constants as non-intensional
ones. It is similar to the main theorem of (Lifschitz & Yang
2011b), which describes functional completion in nonmono-
tonic causal logic.

Theorem 12 For any formula F in Clark normal form that
is tight on c, an interpretation I that satisfies Jxvy(x # y) is
a model of SM[F'; c] iff I is a model of the completion of F
relative to c.

For example, the conjunction of the universal closures of
(16), (18), (19), (20) can be turned into Clark normal form,
and is equivalent to the completion relative to {Loc, Move}:

Loc(b,t1)=1
< (Move(b,l,t) A (t1=t+ 1))
V (== (Loc(b,0)=1) At1=0)
V (==(Loc(b, t + 1) =1) A Loc(b,t) =1 A (t1 =t+1)),
Move(b,l,t) +» =—Move(b,l,t).

1

The assumption Jzy(x # y) in the statement of The-
orem 12 is essential. For instance, take I’ to be T and
c to be an intensional function constant f. If the uni-
verse |I| of an interpretation [ is a singleton, then I sat-
isfies SM[F, but does not satisfy the completion formula
Vxy(f(x) = y > L).

In view of Theorem 1, the RASPL-1 program consist-
ing of (15)-(20) is equivalent to the conjunction of the
completion above and the FOL-representation of the con-
straints (15) and (17). The resulting theory can be repre-
sented in the language of CSP solvers. Below we show an
encoding in the language of EZCSP (Balduccini 2009), a sys-
tem that allows us to use an ASP grounder to generate CSP
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instances. We take the advantage of EZCSP with grounding,
but do not rely on any nonmonotonic feature of the input
language. In fact, the completion can be expressed in the
input language of other CSP solvers.

step(0. .maxstep) .
astep(0. .maxstep-1) :— maxstep > 0.
#domain step(ST) .

#domain astep(T) .

#domain block (B;B1;B2) .

#domain location(L;L2;L2) .

% every block is a location
location(B) :— block(B) .

% the table (denoted by 0) is a location
location(0) .

% constraint variable declarations
cspvar (loc (B, ST), 0,blocks) .

cspvar (move (B, L, T),0,1) .

% no two blocks can be on a single block
required( (loc(B,T)=B2 /\ loc(B1l,T)=B2 /\ B!=BIl)
> 1=2).

% preconditions
required( (move (B, L, T)=1 /\ move(B1l,L1,T)=1 /\

move (B2,L2,T)=1 /\ (B!=B1l \/ L!=L1) /\

(B!=B2 \/ L!=L2) /\ (B1!=RB2 \/ L1!=L2)) —> 1=2).
required( (move (B,L,T)=1 /\ loc(B1l,T)=B) —> 1=2).
required( (move (B,B1,T)=1 /\ move(Bl,L,T)=1) —> 1=2).
% completion
required( ( (move(B,L,T)=1 /\ ST=T+1)

\/ (loc(B,ST)=L /\ ST=0)
\/ (loc(B,T)=L /\ loc(B,ST)=L /\ ST=T+1))
—> loc(B,ST)=L) .
required( (loc(B,ST)=L /\ ST=T+1)
> ((move (B, L, T)=1)
\/ (loc(B,T)=L /\ loc(B,ST)=L /\ ST=T+1))).

Figure 2: Blocks World Encoding in EZCSP

Our preliminary experiments indicates that for the blocks
world encoding in Figures 1 and 2, CLINGO runs signifi-
cantly faster than EZCSP using B-PROLOG, but a more sys-
tematic comparison has to be conducted.

Relation to Nonmonotonic Causal Logic
Review: Nonmonotonic Causal Logic

A (nonmonotonic) causal theory is a finite list of rules of the
form
F&<=G

where F' and G are formulas. We identify a rule with the
universal closure of the implication G — F. A causal model
of a causal theory T is defined as the models of the second-
order sentence

CMIT;f] =T A —-3E(f # £ ATH(E))



where f is a list of explainable function constants, and 7't (F)
denotes the conjunction of the formulas

~ ~

V(G — F(f)) (25)

for all rules F' <= G of T'.
By a definite casual theory, we mean the causal theory
whose rules have the form either

ft)=t1 <= B (26)

or
1 < B, Q27)

where f is an explainable function constant, t is a list of
terms that does not contain explainable function constants,
and ¢ is a term that does not contain explainable function
constants. By 7r(T') we denote the theory consisting of con-

junction of the following formulas: V(——B — f(t) = t;)

for each rule (26) in T, and V— B for each rule (27) in T". The
causal models of such T coincide with the stable models of
Tr(T).

Theorem 13 For any definite causal theory T, I =
CMI[T; f] iff I = SMITr(T); f].

Relation to IF-Programs
Review of IF-Programs
We consider rules of the form

H+« B, (28)

where H and B are formulas that do not contain —. As
before, we identify a rule with the universal closure of the
implication B — H. An IF-program is a finite list of those
rules.

An occurrence of a symbol in a formula is negated if it
belongs to a subformula of that begins with negation, and is
non-negated otherwise. Let F' be a formula, let f be a list

of distinct function constants, and let fbea liAst of distinct
function variables corresponding to f. By F°(f) we denote
the formula obtained from F' by replacing each non-negated
occurrence of a member of f with the corresponding func-
tion variable in f. By IF[F’; f] we denote the second-order
sentence o N

F A-3f(f £ AFO(f)).

According to (Lifschitz 2012), the f-stable models of an IF-
program IT are defined as the models of IF[F; f], where F is
the FOL-representation of II.

Reduct-based Semantics of IF-Programs

For any ground formula F', FLis a formula obtained from F
by replacing every negated formula that is not satisfied by I
with L.

Let II be a ground IF-program. The IF-reduct IIL of an
IF-program II relative to an interpretation / consists of rules

HL « B
for every rule H <— B in II.

Theorem 14 Let F' be the FOL-representation of a ground
IF-program of signature o and let £ be a list of inten-
sional function constants. For any interpretation I of o,

I = 1IF[F; f] iff
o [ satisfies 11, and

e no interpretation J of o that disagrees with I only on f
satisfies TIL.

Comparison

The definition of the IF operator above looks close to our
definition of the SM operator. However, they often be-
have quite differently. Neither semantics is stronger than
the other.

Example 9 Let F' be the following program

d=2<+c=1,
d=1

and let I be an interpretation such that |I| = {1,2}, I(c) =
2 and I(d) = 1. I is a model of IF|F’; cd), but not a model
of SM[F; cd).

Example 10 Let F be the following program
(c=1vd=1)A(c=2Vd=2)

and let I and Iy be interpretations such that |I;| = |Iz| =
(1,2,3Y and I;(¢) = 1, [1(d) = 2, Ly(c) = 2, Ix(d) =
1. I and I are models of SM[F'; c¢d]. On the other hand,
IF[F; cd] has no models.

Example 11 Let F bec # 1+ T and let F} be 1. + ¢ =
1. Under our semantics, they are strongly equivalent to each
other, and neither of them has a stable model. However,
this is not the case with IF-programs. For instance, let I be
an interpretation such that |I| = {1,2} and I(c) = 2. I
satisfies IF[F; c] but not IF[F'; c].

While L < F'is a constraint in our formalism, in view of
Theorem 1, the last example illustrates that 1 < F is not
considered as a constraint in the semantics of IF-programs.
Indeed, the definition of a constraint given in (Lifschitz
2012) is stronger than ours.

Also, the statement of Proposition 1 does not apply to
IF-programs. Example 11 illustrates that a model of an IF-
program may map a function to a value that does not even
occur in the program.

Let T be an IF-program whose rules have the form

f(t) =1t -—B (29)

where f is an intensional function constant, t and ¢; do not
contain intensional function constants, and B is an arbitrary
formula. We identify 7" with the corresponding first-order
formula.

Theorem 15 I = SM[T; f] iff I = IF[T; f].



Relation to Cabalar’s Functional Logic
Programs

Cabalar defines functional answer set programs based on an
extension of HT-models that allows “partial” functions. The
presence of partial functions is essential in Cabalar’s seman-
tics to enforce a strict order between the two worlds, H and
T. When all constants other than f are evaluated the same for
both worlds, H is “strictly smaller” than T when function f
is undefined in H and defined in T. In the absence of partial
functions, H and T evaluate the same for all functions.

If we require every function to be total, it is easy to check
that the semantics from (Cabalar 2011) is equivalent to the
first-order stable model semantics from (Ferraris, Lee, &
Lifschitz 2007), or, put in another way, results in the spe-
cial case of our semantics in which every function constant
is non-intensional.

As described by Lifschitz (2012), the essential difference
between IF-programs and Cabalar’s functional answer set
programs is that the latter relies on partial functions and min-
imization, instead of total functions and uniqueness as in the
former. This remark also applies to the relationship between
our formalism and Cabalar’s.

Relation to Lin and Wang’s Logic Programs
with Functions

Lin & Wang (2008) extended answer set semantics with
functions by extending the definition of a reduct, and also
provided loop formulas for such programs. We can provide
an alternative account of their results by considering the no-
tions there as special cases of the definitions presented in
this paper. For simplicity, we assume non-sorted languages.*
Essentially, they restricted attention to a special case of non-
Herbrand interpretations such that object constants form the
universe, and ground terms other than object constants are
mapped to object constants. According to (Lin & Wang
2008), an LW-program P consists of type definitions and
a set of rules. Type definitions introduce the domains for a
many-sorted signature consisting of some object constants,
and includes the evaluation of each function symbol of pos-
itive arity that maps a list of object constants to an object
constant. Since we assume here non-sorted languages, we
consider only a single domain (universe). We say that an in-
terpretation [ is a P-interpretation if the universe is the set
of object constants specified by P, object constants are eval-
uated to itself, and ground terms other than object constants
are evaluated conforming to the type definitions of P.

Theorem 16 Let P be an LW-program and let F' be the
FOL-representation of the set of rules in P. The following
conditions are equivalent to each other:
(a) Iisan answer set of P in the sense of (Lin & Wang 2008);
(b) I is a P-interpretation that satisfies SM[F'; p] where p is
the list of all predicate constants occurring in F.

Thus the definition does not allow functions to be inten-
sional.

*(Lin & Wang 2008) considers essentially many-sorted lan-
guages. The result of this section can be extended to that case by
considering many-sorted SM (Kim, Lee, & Palla 2009).

Conclusion

The absence of intensional functions in several extensions
of the stable model semantics prevents us from express-
ing the commonsense law of inertia involving nonBoolean
fluents, such as formula (2). IF-programs introduced by
Lifschitz is distinct in the sense that functions are allowed
to be intensional. Here we presented an alternative stable
model semantics that allows intensional functions. Unlike
IF-programs, where the syntax is limited and only function
constants are intensional, our semantics is applied to arbi-
trary first-order formulas and allows both function and predi-
cate constants to be intensional. A major difference between
[F-programs and our formalism is that the former is closer
to nonmonotonic causal logic, and the latter is closer to the
first-order stable model semantics. Indeed, we observed that
several properties established for first-order stable model se-
mantics can be easily extended to the formalism presented
here.

RASPL-1 with intensional functions is shorthand for for-
mulas with intensional functions, and allows succinct rep-
resentation of domains that involve nonBoolean constants.
The computation can be done by either turning it into an-
swer set programs or into CSP.
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