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Abstract. We introduce the stable model semantics for fuzzy propositional for-
mulas, which generalizes both fuzzy propositional logic and the stable model se-
mantics of Boolean propositional formulas. Combining the advantages of both for-
malisms, the introduced language allows highly configurable default reasoning in-
volving fuzzy truth values. We show that several properties of Boolean stable mod-
els are naturally extended to this formalism, and discuss how it is related to other
approaches to combining fuzzy logic and the stable model semantics.

1 Introduction

Answer set programming (ASP) [1] is a widely applied declarative programming paradigm
for the design and implementation of knowledge intensive applications. One of the attrac-
tive features of ASP is its capability to model the nonmonotonic aspect of knowledge.
However, as its mathematical basis, the stable model semantics, is restricted to Boolean
values, it is too rigid to represent imprecise and vague information. Fuzzy logic, as a
form of many-valued logic, can handle vague information by interpreting propositions
with a truth degree in the interval of real numbers [0, 1]. The availability of various fuzzy
operators gives the user great flexibility in combining truth degrees. However, the seman-
tics of fuzzy logic is monotonic and is not flexible enough to handle default reasoning as
allowed in answer set programming.

Both the stable model semantics and fuzzy logic are generalizations of classical
propositional logic in different ways. While they do not subsume each other, it is clear
that many real-world problems require both their strengths. This led to the body of work
on combining fuzzy logic and the stable model semantics, known as fuzzy answer set
programming (e.g., [2–9]). However, most work considers simple rule forms and do not
allow connectives nested arbitrarily as in fuzzy logic.

Unlike existing work on fuzzy answer set semantics, in this paper, we extend the
general stable model semantics from [10] to many-valued propositional formulas. The
syntax of this language is the same as the syntax of fuzzy propositional logic. The se-
mantics, on the other hand, distinguishes stable models from non-stable models. The
language is a proper generalization of both fuzzy propositional logic and Boolean propo-
sitional formulas under the stable model semantics. This generalization is not simply a
pure theoretical pursuit, but has practical use in conveniently modeling defaults involv-
ing fuzzy truth values in dynamic domains. For example, consider modeling dynamics
of trust in social network. People trust each other in different degrees under some nor-
mal assumptions. If person A trusts person B, then A tends to trust person C whom B
trusts to a degree which is positively correlated to the degree to which A trusts B and
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the degree to which B trusts C. By default, the trust degrees would not change, but may
decrease when a conflict arises between people. Modeling such a domain requires ex-
pressing defaults involving fuzzy truth values. We demonstrate that such examples can
be conveniently modelled in our proposed language by taking advantage of its generality
over the existing approaches to fuzzy ASP.

The paper is organized as follows. Section 2 reviews the syntax and the semantics
of fuzzy propositional logic we discuss in the paper, as well as the stable model seman-
tics of classical propositional formulas. Section 3 presents the stable model semantics of
fuzzy propositional formulas along with examples, including the above trust example in
the proposed language. Section 4 relates our fuzzy stable model semantics to the Boolean
stable model semantics, and Section 5 relates it to other approaches to fuzzy ASP. Sec-
tion 6 shows that several well-known properties of the Boolean stable model semantics
can be easily extended to our fuzzy stable model semantics. Section 7 discusses other
related work.

2 Preliminaries

2.1 Review: Stable Models of Classical Propositional Formulas

We review the definition of a stable model from [10] by limiting attention to the syntax
of propositional formulas. Instead of defining stable models in terms of second-order
logic as in [10] , we express the same concept using auxiliary atoms that do not belong
to the original signature. This slight reformulation will simplify our efforts in extending
the stable model semantics to fuzzy propositional formulas without resorting to “second-
order fuzzy logic.”

Let σ be a classical propositional signature, let p = (p1, . . . , pn) be a list of distinct
atoms belonging to σ, and let q = (q1, . . . , qn) be a list of new, distinct propositional
atoms not belonging to σ. For two interpretations I and J of σ that agree on all atoms in
σ \ p, I ∪ Jp

q denotes the interpretation of σ ∪ q that

– agrees with I on all atoms in σ, and
– for each atom qi ∈ q, (I ∪ Jp

q )(qi) = J(pi).1

For any classical propositional formula F of signature σ, F ∗(q) is a classical propo-
sitional formula of signature σ ∪ q that is defined recursively as follows:

– p∗i = qi for each pi ∈ p;
– F ∗ = F for any atom F 6∈ p;
– ⊥∗ = ⊥; >∗ = >;
– (¬F )∗ = ¬F ;
– (F ∧G)∗ = F ∗ ∧G∗; (F ∨G)∗ = F ∗ ∨G∗;
– (F → G)∗ = (F ∗ → G∗) ∧ (F → G).

Let I and J be two interpretations of σ, and let p be a subset of σ. We say J ≤p I if

– J and I agree on all atoms not in p, and
– for all p ∈ p, if J |= p, then I |= p.

1 I(p) denotes the truth value of p under I . We identify a list with a set if there is no confusion.
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We say J <p I if J ≤p I and J 6= I .

Definition 1. An interpretation I is a stable model of F relative to p (denoted I |=
SM[F ;p])

– if I |= F , and
– there is no interpretation J such that J <p I and I ∪ Jp

q |= F ∗(q).

Example 1. Consider a logic program

p← not q, q ← not p

which is understood as an alternative notation for propositional formula F1 = (¬q →
p) ∧ (¬p → q). F ∗1 (u, v) is (¬q → u) ∧ (¬q → p) ∧ (¬p→ v) ∧ (¬p→ q). We check
that I1 = {p} (that is, p is TRUE and q is FALSE) 2 is a stable model of F1 (relative to
{p, q}): I1 satisfies F1, and ∅ is the only interpretation J such that J <pq I1. However,
I1 ∪ Jpquv = {p} does not satisfy F ∗1 (u, v) because it does not satisfy the first conjunctive
term of F ∗1 (u, v). Similarly, we can check that {q} is another stable model of F1.

2.2 Review: Fuzzy Logic

Let σ be a fuzzy propositional signature, which is a set of symbols called fuzzy atoms.
In addition, we assume the presence of a set C of fuzzy conjunction symbols, a set D
of fuzzy disjunction symbols, a set N of fuzzy negation symbols, and a set I of fuzzy
implication symbols.

A fuzzy (propositional) formula of σ is defined recursively as follows.

– every fuzzy atom p ∈ σ is a fuzzy formula;
– every numeric constant c where c is a real number in [0, 1] is a fuzzy formula;
– if F is a fuzzy formula, then ¬F is a fuzzy formula, where ¬ ∈ N;
– if F and G are fuzzy formulas, then F ⊗G, F ⊕G and F → G are fuzzy formulas,

where ⊗ ∈ C, ⊕ ∈ D, and→∈ I.

The models of a fuzzy formula are defined as follows [11]. The fuzzy truth values are
the real numbers in the range [0, 1]. A fuzzy interpretation I of σ is a mapping from σ
into [0, 1].

The fuzzy operators are functions mapping one or a pair of truth values into a truth
value. Among the operators, ¬ denotes a function from [0, 1] into [0, 1]; ⊗, ⊕, and →
denote functions from [0, 1] × [0, 1] into [0, 1]. The actual mapping performed by each
operator can be defined in many different ways, but all of them satisfy the following con-
ditions, which imply that the operators are generalizations of the corresponding classical
propositional connectives:3

– a fuzzy negation ¬ is decreasing, and satisfies ¬(0) = 1 and ¬(1) = 0;

2 We identify a propositional interpretation with the set of atoms that are true in it.
3 We say that a function f of arity n is increasing in its i-th argument (1 ≤ i ≤ n) if
f(arg1, . . . , argi, . . . , argn) ≤ f(arg1, . . . , arg

′
i, . . . , argn) for all arguments such that

argi ≤ arg′i; f is said to be increasing if it is increasing in all its arguments. The definition of
decreasing is similar.
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– a fuzzy conjunction ⊗ is increasing, commutative, associative, and ⊗(1, x) = x for
all x ∈ [0, 1];

– a fuzzy disjunction ⊕ is increasing, commutative, associative, and ⊕(0, x) = x for
all x ∈ [0, 1];

– a fuzzy implication→ is decreasing in its first argument and increasing in its second
argument; and→ (1, x) = x and→ (0, 0) = 1 for all x ∈ [0, 1].

Figure 1 lists some specific fuzzy operators that we use in this paper.

Symbol Name Definition
⊗l Łukasiewicz t-norm ⊗l(x, y) = max (x+ y − 1, 0)
⊕l Łukasiewicz t-conorm ⊕l(x, y) = min (x+ y, 1)
⊗m minimum t-norm ⊗m(x, y) = min (x, y)
⊕m maximum t-conorm ⊕m(x, y) = max (x, y)
⊗p product t-norm ⊗p(x, y) = x · y
⊕p product t-conorm ⊕p(x, y) = x+ y − x · y
¬s standard negator ¬s(x) = 1− x

→r the residual implicator of ⊗m →r (x, y) =

{
1 if x ≤ y

y otherwise
→s the S-implicator induced by ¬s and ⊕m →s (x, y) = max (1− x, y)

Fig. 1. Some t-norms, t-conorms, negator, and implicators

The truth value of a fuzzy formula F under I , denoted F I , is defined recursively as
follows:

– for any atom p ∈ σ, pI = I(p);
– for any numeric constant c, cI = c;
– (¬F )I = ¬(F I);
– (F ⊗G)I = ⊗(F I , GI); (F ⊕G)I = ⊕(F I , GI); (F → G)I =→(F I , GI).

(For simplicity, we identify the symbols for the fuzzy operators with the truth value
functions represented by them.)

Definition 2. We say that a fuzzy interpretation I satisfies a fuzzy formula F w.r.t. a
threshold y ∈ [0, 1] if F I ≥ y, and denote it by I |=y F . We call I a fuzzy y-model of F .

We often omit the threshold y when it is 1.

3 Definition and Examples

We extend the notion of J <p I in Section 2.1 as follows. For any two fuzzy interpreta-
tions J and I of the same signature σ and any subset p of σ, we say J ≤p I if

– J and I agree on all fuzzy atoms not in p, and
– for all p ∈ p, pJ ≤ pI .

We say J <p I if J ≤p I and J 6= I .
As before, we assume a list q = (q1, . . . , qn) of new, distinct fuzzy atoms that corre-

sponds to p = (p1, . . . , pn), and define I ∪ Jp
q in the same way. That is, when I and J

agree on all atoms in σ \ p, I ∪ Jp
q denotes the interpretation of σ ∪ q that



Stable Models of Fuzzy Propositional Formulas 5

– agrees with I on all atoms in σ, and
– for each qi ∈ q, (I ∪ Jp

q )(qi) = J(pi).

The definition of F ∗ is also extended in a straightforward way: For any fuzzy for-
mula F of signature σ, F ∗(q) is defined as follows.

– p∗i = qi for each pi ∈ p;
– F ∗ = F for any atom F 6∈ p;
– c∗ = c for any numeric constant c;
– (¬F )∗ = ¬F ;
– (F ⊗G)∗ = F ∗ ⊗G∗; (F ⊕G)∗ = F ∗ ⊕G∗;
– (F → G)∗ = (F ∗ → G∗)⊗m (F → G). 4

Definition 3. A fuzzy interpretation I is a fuzzy y-stable model of F relative to p (de-
noted I |=y SM[F ;p]) if

– I |=y F , and
– there is no fuzzy interpretation J such that J <p I and I ∪ Jp

q |=y F ∗(q).

We often omit the threshold y when it is 1, and omit p if it contains all atoms in σ.
Clearly, when p is empty, Definition 3 reduces to the definition of a fuzzy model in

Definition 2 because there is no J such that J <∅ I .
Also, Definition 3 is very similar to the definition of a stable model for classical

propositional formulas in Definition 1. The main difference is that simply in the latter,
atoms may have various degrees of truth, and accordingly the notion of J <p I is more
general. The precise relationship between the definitions is discussed in Section 4.

Example 2. Consider the fuzzy formula F = ¬sp →r q and the interpretation I =
{(p, 0), (q, 0.6)}. F ∗(u, v) is

((¬sp)∗ →r q
∗)⊗m (¬s p→r q) = (¬sp→r v)⊗m (¬sp→r q).

I |=0.6 SM[F ; p, q]. First, it is easy to see that I |=0.6 F , as

F I =→r ((¬sp)I , qI) =→r (1− pI , qI) =→r (1, 0.6) = 0.6.

Suppose there exists J <pq I such that I ∪ Jpquv |=0.6 F , i.e.,

F ∗(u, v)I∪J
pq
uv = min

(
→r (¬s(pI), vI∪J

pq
uv ),→r (¬s(pI), qI)

)
= min

(
→r (1, q

J), 0.6
)

= min
(
qJ , 0.6

)
≥ 0.6.

So qJ ≥ 0.6. This contradicts the assumption that J <pq I . Therefore, such J does not
exist, and I is a 0.6-stable model of F .

4 Note the use of ⊗m here; the value of “conjunction” of (F ∗ → G∗) and (F → G) needs not
be smaller than the value of (F ∗ → G∗) and the value of (F → G). It turns out that ⊗m is the
only t-norm that satisfies this property.
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Example 3. p and ¬s¬sp have the same fuzzy models, but their stable models are differ-
ent. This is similar to the fact that p and ¬¬p have different stable models according to
the semantics from [10].

Clearly, any interpretation I = {(p, y)}, where y is any positive real number in [0, 1],
is a y-stable model of p relative to {p}. On the other hand, I = {(p, y)} is not a y-stable
model of F = ¬s¬sp relative to {p}. Formula F ∗(u) is ¬s¬sF , and although I |=y F ,
we have I ∪ Jpu |=y F ∗(u) regardless of any J .

Example 4. Let F1 = p→s p and F2 = ¬sp⊕m p. Their fuzzy models are the same, but
their stable models are not. This is similar to the relation between p→ p and ¬p∨p in the
Boolean stable model semantics. Indeed, observe that F ∗1 (u) = (p→s p)⊗m (u→s u)
and F ∗2 (u) = ¬sp⊕m u.

The interpretation I = {(p, 1)} is not a 1-stable model of F1 relative to p, as wit-
nessed by J = {(p, 0)}. However, I is a 1-stable model of F2 relative to p: for any J ,

F ∗2 (u)
I∪Jp

u = max
(
1− pI , pJ

)
= max

(
0, pJ

)
= pJ .

So, for I∪Jpu to satisfy F ∗2 (u) to degree 1, pJ should be 1. Consequently, it is not possible
to have J <p I .

The following example illustrates how the commonsense law of inertia involving
fuzzy truth values can be represented.

Example 5. Let σ be {p, np, q, nq} and let F be F1 ⊗m F2, where F1 represents that p
and np are complementary, i.e., the sum of their truth values is 1:

F1 = ¬s(p⊗l np)⊗m ¬s¬s(p⊕l np).

F2 represents that by default p has the truth value of q, and np has the truth value of nq:

F2 = ((q ⊗m ¬s¬sp)→r p)⊗m ((nq ⊗m ¬s¬snp)→r np).

Let p = {p, np} and u = {u, nu}. F ∗(u) is

¬s(p⊗l np)⊗m ¬s¬s(p⊕l np)
⊗m((q ⊗m ¬s¬sp)→r u)⊗m ((q ⊗m ¬s¬sp)→r p)
⊗m((nq ⊗m ¬s¬snp)→r nu)⊗m ((nq ⊗m ¬s¬snp)→r np).

One can check that interpretation I1 = {(p, x), (np, 1− x), (q, x), (nq, 1− x)} (x is
any value in [0, 1]) is a 1-stable model of F relative to (p, np); interpretation I2 =
{(p, y), (np, 1− y), (q, x), (nq, 1− x)}, where y 6= x, is not.

On the other hand, if we conjoin F with (y →r p) ⊗m (1− y →r np), the default
behavior is overridden: I1 is not a 1-stable model of F ⊗m (y →r p)⊗m (1− y →r np)
relative to (p, np), but I2 is.

This behavior is useful in expressing the commonsense law of inertia involving fuzzy
values. Suppose q represents some fluent at time t, and p represents the fluent at time
t+1. Then F states that, “by default, the fluent retains the previous value.” The default
value is overridden if there is an action that sets p to a different value.
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Example 6. The trust example in the introduction can be formalized in the fuzzy stable
model semantics as follows. Below x, y, z are schematic variables ranging over people,
and t is a schematic variable ranging over time steps. Trust(x, y, t) is a fuzzy atom repre-
senting that “x trusts y at time t.” Similarly, Distrust(x, y, t) is a fuzzy atom representing
that “x distrusts y at time t.”

The trust relation is reflexive:

F1 = Trust(x, x, t).

The trust and distrust degrees are complementary, i.e., their sum is 1 (similar to Ex-
ample 5):

F2 = ¬s(Trust(x, y, t)⊗l Distrust(x, y, t)),
F3 = ¬s¬s(Trust(x, y, t)⊕l Distrust(x, y, t)).

Initially, if x trusts y to degree d1 and y trusts z to degree d2, then x trusts z to degree
d1 × d2; further the initial distrust degree is 1 minus the initial trust degree.

F4 = Trust(x, y, 0)⊗p Trust(y, z, 0)→r Trust(x, z, 0),
F5 = ¬sTrust(x, y, 0)→r Distrust(x, y, 0).

The inertia assumption (similar to Example 5):

F6 = Trust(x, y, t)⊗m ¬s¬sTrust(x, y, t+1)→r Trust(x, y, t+1),
F7 = Distrust(x, y, t)⊗m ¬s¬sDistrust(x, y, t+1)→r Distrust(x, y, t+1).

A conflict increases the distrust degree by the conflict degree:

F8 = Conflict(x, y, t)⊕l Distrust(x, y, t)→r Distrust(x, y, t+1),
F9 = ¬s(Conflict(x, y, t)⊕l Distrust(x, y, t))→r Trust(x, y, t+1).

Let FTW be F1 ⊗m F2 ⊗m · · · ⊗m F9. Suppose we have the formula FFact =
Fact1 ⊗m Fact2 that gives the initial trust degree.

Fact1 = 0.8→r Trust(Alice,Bob, 0),
Fact2 = 0.7→r Trust(Bob,Carol, 0).

Although there is no fact about how much Alice trusts Carol, any 1-stable model of
FTW ⊗m FFact assigns value 0.56 to the atom Trust(Alice,Carol, 0). On the other hand,
the 1-stable model assigns value 0 to Trust(Alice,David, 0) due to the closed world as-
sumption under the stable model semantics.

When we conjoin FTW ⊗ FFact with 0.2 → Conflict(Alice,Carol, 0), the 1-stable
model of FTW ⊗m FFact ⊗m (0.2 → Conflict(Alice,Carol, 0)) manifests that the trust
degree between Alice and Carol decreases to 0.36 at time 1. More generally, if we have
more actions that change the trust degree in various ways, by specifying the entire history
of actions, we can determine the evolution of the trust distribution among all the partici-
pants. Useful decisions can be made based on this information. For example, Alice may
decide not to share her personal pictures to those whom she trusts less than degree 0.48.

Note that this example, like Example 5, uses nested connectives, such as ¬s¬s, that
are not available in previous fuzzy ASP semantics, such as [2, 3].
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4 Relation to Boolean-Valued Stable Models

The Boolean stable model semantics in Section 2.1 can be embedded into the fuzzy stable
model semantics as follows:

For any classical propositional formula F , define F fuzzy to be the fuzzy propositional
formula obtained from F by replacing⊥ with 0,> with 1, ¬ with ¬s, ∧ with⊗m, ∨ with
⊕m, and→ with→s. We identify the signature of F fuzzy with the signature of F . Also,
for any interpretation I , we define the corresponding fuzzy interpretation I fuzzy as

– I fuzzy(p) = 1 if I(p) = TRUE;
– I fuzzy(p) = 0 otherwise.

The following theorem tells us that the Boolean-valued stable model semantics can
be viewed as a special case of the fuzzy stable model semantics.

Theorem 1 For any classical propositional formula F and any classical propositional
interpretation I , I is a stable model of F relative to p iff I fuzzy is a 1-stable model of
F fuzzy relative to p.

Example 7. Let F be the classical propositional formula ¬p→ q. F has only one stable
model I = {q}. Clearly I fuzzy = {(p, 0), (q, 1)} is a 1-stable model of F fuzzy = ¬sp→s

q.

Theorem 1 does not hold for an arbitrary choice of operators, as illustrated by the
following example.

Example 8. Let F be the classical propositional formula p ∨ p. Classical interpretation
I = {p} is a stable model of F . However, I fuzzy = {(p, 1)} is not a stable model of
F ′ = p⊕l p because there is J = {(p, 0.5)} such that I ∪ Jpq |=1 q ⊕l q.

However, one direction of Theorem 1 holds for arbitrary choice of fuzzy operators.

Theorem 2 For any classical propositional formula F , let F fuzzy
1 be the fuzzy formula

obtained from F by replacing ⊥ with 0, > with 1, ¬ with any fuzzy negation symbol, ∧
with any fuzzy conjunction symbol, ∨ with any fuzzy disjunction symbol, and→ with any
fuzzy implication symbol. For any classical propositional interpretation I , if I fuzzy is a
1-stable model of F fuzzy

1 relative to p, then I is a stable model of F relative to p.

5 Relation to Other Approaches to Fuzzy ASP

5.1 Relation to Stable Models of Normal FASP Programs

A normal FASP program is a finite set of rules of the form

a ← b1 ⊗ . . .⊗ bm ⊗ ¬bm+1 ⊗ . . .⊗ ¬bn,

where n ≥ m ≥ 0, a, b1, . . . , bn are fuzzy atoms or numeric constants in [0, 1], and ⊗ is
any fuzzy conjunction. We identify the rule with the fuzzy implication

b1 ⊗ . . .⊗ bm ⊗ ¬sbm+1 ⊗ . . .⊗ ¬sbn →r a.
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We say that a fuzzy interpretation I of signature σ satisfies a rule R if RI = 1. I
satisfies an FASP program Π if I satisfies every rule in Π .

According to [2], an interpretation I is a fuzzy answer set of a normal FASP program
Π if I satisfies Π , and no interpretation J such that J <σ I satisfies the reduct of Π
w.r.t. I , which is the program obtained from Π by replacing each negative literal ¬b with
the constant for 1− bI .

Theorem 3 For any normal FASP program Π = {r1, . . . , rn}, let F be the fuzzy for-
mula r1 ⊗m . . .⊗m rn. An interpretation I is a fuzzy answer set of Π in the sense of [2]
if and only if I is a 1-stable model of F .

Example 9. Let Π be the following program

p← ¬q, q ← ¬p.

The answer sets of Π according to [2] are {(p, x), (q, 1 − x)}, where x is any value in
[0, 1]: the corresponding fuzzy formula F is (¬sq →r p)⊗m (¬sp→r q); F ∗(u, v) is

F ⊗m ((¬sq →r u)⊗m (¬sp→r v)).

One can check that the 1-stable models of F are also {(p, x), (q, 1−x)}, where x ∈ [0, 1].

5.2 Relation to Fuzzy Equilibrium Logic

Like the fuzzy stable model semantics introduced in this paper, fuzzy equilibrium logic [12]
generalizes fuzzy ASP programs to arbitrary propositional formulas, but its definition is
quite complex as it is based on a pair of intervals and considers strong negation as one of
the primary connectives. Nonetheless we show that fuzzy equilibrium logic is essentially
equivalent to the fuzzy stable model semantics where the threshold is restricted to 1 and
all atoms are subject to minimization.
Review: Fuzzy Equilibrium Logic We first review the definition of fuzzy equilibrium
logic from [12]. The syntax is the same as the one we reviewed in Section 2.2 except that
a new connective∼(strong negation) may appear in front of atoms.5 For any fuzzy propo-
sitional signature σ, a (fuzzy N5) valuation is a mapping from {h, t} × σ to subintervals
of [0, 1] such that V (t, a) ⊆ V (h, a) for each atom a ∈ σ. For V (w, a) = [u, v], where
w ∈ {h, t}, we write V −(w, a) to denote the lower bound u and V +(w, a) to denote the
upper bound v. The truth value of a fuzzy formula under V is defined as follows.

– V (w, c) = [c, c] for any numeric constant c;
– V (w,∼a) = [1− V +(w, a), 1− V −(w, a)], where∼ is the symbol for strong nega-

tion;
– V (w,F ⊗G) = [V −(w,F )⊗ V −(w,G), V +(w,F )⊗ V +(w,G)]; 6

– V (w,F ⊕G) = [V −(w,F )⊕ V −(w,G), V +(w,F )⊕ V +(w,G)];
– V (h,¬F ) = [1− V −(t, F ), 1− V −(h, F )];
– V (t,¬F ) = [1− V −(t, F ), 1− V −(t, F )];

5 The definition from [12] allows strong negation in front of any formulas. We restrict its occur-
rence only in front of atoms as usual in answer set programs.

6 For readability, we write the infix notation (x� y) in place of �(x, y).
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– V (h, F → G) = [min(V −(h, F )→ V −(h,G), V −(t, F )→ V −(t, G)),
V −(h, F )→ V +(h,G)];

– V (t, F → G) = [V −(t, F )→ V −(t, G), V −(t, F )→ V +(t, G)].

A valuation V is a (fuzzy N5) model of a formula F if V −(h, F ) = 1, which implies
V +(h, F ) = V −(t, F ) = V +(t, F ) = 1. For two valuations V and V ′, we say V ′ � V
if V ′(t, a) = V (t, a) and V (h, a) ⊆ V ′(h, a) for all atoms a. We say V ′ ≺ V if V ′ � V
and V ′ 6= V . We say that a model V of F is h-minimal if there is no model V ′ of F such
that V ′ ≺ V . An h-minimal fuzzy N5 model V of F is a fuzzy equilibrium model of F if
V (h, a) = V (t, a) for all atoms a.

In the Absence of Strong Negation We first establish the correspondence between
fuzzy stable models and fuzzy equilibrium models in the absence of strong negation. As
in [12], we assume that the fuzzy negation ¬ is ¬s.

For any valuation V , we define a fuzzy interpretation IV as pIV = V −(h, p) for each
atom p ∈ σ.

Theorem 4 Let F be a fuzzy propositional formula of σ that contains no strong negation.

(a) A valuation V of σ is a fuzzy equilibrium model of F iff V −(h, p) = V −(t, p),
V +(h, p) = V +(t, p) = 1 for all atoms p in σ and IV is a 1-stable model of F
relative to σ.

(b) An interpretation I of σ is a 1-stable model of F relative to σ iff I = IV for some
fuzzy equilibrium model V of F .

In the Presence of Strong Negation In this section we extend the relationship between
fuzzy equilibrium logic and our stable model semantics by allowing strong negation. This
is done by simulating strong negation by new atoms in our semantics.

Let σ denote the signature. For a fuzzy formula F over σ that may contain strong
negation, define F ′ over σ ∪ {np | p ∈ σ} as the formula obtained from F by replacing
all strong negations of atom ∼p with a new atom np. The transformation nneg(F ) (“no
strong negation”) is defined as nneg(F ) = F ′ ⊗m

⊗
m

p∈σ
¬s(p⊗l np).

For any valuation V of σ, we define the interpretation IV of σ ∪ {np | p ∈ σ} as{
pIV = V −(h, p) for each p ∈ σ ;

npIV = 1− V +(h, p) for each np /∈ σ .

Theorem 5 For any fuzzy formula F of signature σ that may contain strong negation,

(a) A valuation V of σ is a fuzzy equilibrium model of F iff V (h, p) = V (t, p) for all
atoms p in σ and IV is a 1-stable model of nneg(F ) relative to σ ∪ {np | p ∈ σ}.

(b) An interpretation I of σ ∪ {np | p ∈ σ} is a 1-stable model of nneg(F ) relative to
σ ∪ {np | p ∈ σ} iff I = IV for some fuzzy equilibrium model V of F .

Example 10. For fuzzy formula F = (0.2→r p)⊗m (0.3→r np), formula nneg(F ) is

(0.2→r p)⊗m (0.3→r np)⊗m ¬s(p⊗l np).

One can check that the valuation V defined as V (w, p) = [0.2, 0.7] is the only equilib-
rium model of F , and the interpretation IV = {(p, 0.2), (np, 0.3)} is the only 1-stable
model of nneg(F ).
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This idea of eliminating strong negation in favor of new atoms was used in Exam-
ples 5 and 6.

6 Properties of Fuzzy Stable Models

In this section, we show that several well-known properties of the Boolean stable model
semantics can be naturally extended to the fuzzy stable model semantics.

6.1 Alternative Definition of F ∗

Proposition 1 For any fuzzy formulas F , G and any fuzzy interpretations I , J such that
J ≤p I ,

– I ∪ Jp
q |=y ¬F ∗(q)⊗m ¬F iff I ∪ Jp

q |=y ¬F ;
– I ∪ Jp

q |=y (F ∗ ⊗G∗)(q)⊗m (F ⊗G) iff I ∪ Jp
q |=y (F ∗ ⊗G∗)(q);

– I ∪ Jp
q |=y (F ∗ ⊕G∗)(q)⊗m (F ⊕G) iff I ∪ Jp

q |=y (F ∗ ⊕G∗)(q).

This proposition tells us that F ∗ in Section 3 can be equivalently defined by treating
the fuzzy operators in the uniform way without affecting stable models.

– (¬F )∗ = ¬F ∗ ⊗m ¬F ;
– (F �G)∗ = (F ∗ �G∗)⊗m (F �G) for any binary operator �.

6.2 Theorem on Constraints

In answer set programming, constraints—rules with ⊥ in the head—play an important
role in view of the fact that adding a constraint eliminates the stable models that “violate”
the constraint. The following theorem is the counterpart of Theorem 3 from [10] for fuzzy
propositional formulas.

Theorem 6 For any fuzzy formulas F and G, I is a 1-stable model of F ⊗ ¬G (relative
to p) if and only if I is a 1-stable model of F (relative to p) and I |=1 ¬G.

Example 11. Consider F = (¬sp →r q) ⊗m (¬sq →r p) ⊗m ¬sp. Formula F has only
one 1-stable model I = {(p, 0), (q, 1)}, which is the only 1-stable model of
(¬sp→r q)⊗m (¬sq →r p) that satisfies ¬sp to degree 1.

If we consider a more general y-stable model, then only one direction holds.

Theorem 7 For any fuzzy formulas F andG, if I is a y-stable model of F⊗¬G (relative
to p), then I is a y-stable model of F (relative to p) and I |=y ¬G.

Example 12. The other direction, that is, “if I is a y-stable model of F and I |=y ¬G,
then I is a y-stable model of F ⊗ ¬G,” does not hold in general. For example, consider
F = G = p and ⊗ to be ⊗l, and interpretation I = {(p, 0.4)}. Clearly I is a 0.4-stable
model of p and I |=0.4 ¬p, but I is not a 0.4-stable model of p ⊗l ¬p. In fact, I is not
even a 0.4-model of the formula.
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6.3 Theorem on Choice Formulas

In the Boolean stable model semantics, formulas of the form p ∨ ¬p are called choice
formulas, and adding them to the program makes atoms p exempt from minimization.
Choice formulas have been shown to be useful in composing a program in the “Generate-
and-Test” method. This section shows their counterpart in the fuzzy stable model seman-
tics.

For any fuzzy atom p, Choice(p) stands for p⊕l ¬sp. For any list p = (p1, . . . pn) of
fuzzy atoms, Choice(p) stands for Choice(p1)⊗ . . .⊗Choice(pn), where⊗ is any fuzzy
conjunction.

The following proposition tells that choice formulas are tautological.

Proposition 2 For any fuzzy interpretation I and any list p of fuzzy atoms, I |=1 Choice(p).

Theorem 8 is an extension of Theorem 2 from [10].

Theorem 8 (a) If I is a y-stable model of F relative to p∪q, then I is a y-stable model
of F relative to p.

(b) I is a 1-stable model of F relative to p iff I is a 1-stable model of F ⊗ Choice(q)
relative to p ∪ q.

Theorem 8 (b) does not hold for arbitrary threshold y (i.e., if “1−” is replaced with
“y−”). For example, consider F = ¬s¬sq and I = {(q, 0.5)}. Clearly I is a 0.5-model
of F , and thus I is a 0.5-stable model of F relative to ∅. However, I is not a 0.5-stable
model of F ⊗m Choice(q) = ¬s¬sq⊗m (q⊕l ¬sq) relative to ∅ ∪ {q}, as witnessed by
J = {(q, 0)}.

Since the 1-stable models of F relative to ∅ are the models of F , it follows from
Theorem 8 (b) that the 1-stable models of F ⊗ Choice(σ) relative to σ are exactly the
1-models of F .

Corollary 1 Let F be a fuzzy formula of a finite signature σ. I is a 1-model of F iff I is
a 1-stable model of F ⊗ Choice(σ) relative to σ.

Example 13. Consider the fuzzy formula F = ¬sp→r q. Although any interpretation I
that satisfies 1−pI ≤ qI is a 1-model of F , among them only {(p, 0), (q, 1)} is a 1-stable
model of F . However, we check that all 1-models of F are exactly the 1-stable models
of G = F ⊗m Choice(p)⊗m Choice(q): G∗(u, v) is

(¬sp→r q)⊗m (¬sp→r v)⊗m (u⊕l ¬sp)⊗m (v ⊕l ¬sq)

and for K = I ∪ Jpquv ,

G∗(u, v)K = 1⊗m ((1− pK)→r v
K)⊗m (uK ⊕l (1− pK))⊗m (vK ⊕l (1− qK)).

So, for K to satisfy G∗(u, v) to degree 1, uK should be at least pK and vK should be at
least qK . So there does not exist J <pq I such that I ∪ Jpquv |=1 G

∗(u, v), from which it
follows that I is a 1-stable model of G.
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7 Other Related Work

Several approaches to incorporating fuzziness into the answer set programming frame-
work have been proposed. In this paper, we have formally compared our approach to [12]
and [2]. Most of them consider the specific syntax where each formula is of the rule form
h← B where h is an atom and B is a formula [4–7]. Among them, [4–6] allow B to be
any arbitrary formula corresponding to an increasing function whose arguments are the
atoms appearing in the formula. [7] allows B to correspond to either an increasing func-
tion or a decreasing function. [9] considers the normal program syntax, i.e., each rule is
of the form l0 ← l1 ⊗ . . .⊗ lm ⊗ not lm+1 ⊗ . . .⊗ not ln, where each li is an atom or
the strong negation of an atom. In terms of semantics, most of the previous works rely on
the notion of immediate consequence operator and relate the fixpoint of this operator to
the minimal model of a positive program.7 Similar to the approach [2] has adopted, the
answer set of a positive program is defined as its minimal model, while an answer set of
a non-positive program is defined in terms of the minimal model of the reduct, which is
a positive program obtained based on the normal program and the specific interpretation
being checked. [8] has proposed a semantics based on the notion of an unfounded set.

It is worth noting that some of the related works have discussed the so-called resid-
uated programs [4–6, 9], where each rule h ← B is assigned a weight θ, and a rule is
satisfied by an interpretation I if I(h← B) ≥ θ. According to [5], this class of programs
is able to capture many other logic programming paradigms, such as possibilistic logic
programming, hybrid probabilistic logic programming, generalized annotated logic pro-
gramming. Furthermore, as shown in [5], a weighted rule (h ← B, θ) can be simulated
by h← B ⊗ θ, where (⊗,←) forms an “adjoint pair.”

It is well known in the Boolean stable model semantics that strong negation can
be represented in terms of new atoms [10]. Our adaptation in the fuzzy stable model
semantics is similar to the method from [9], in which the consistency of an interpretation
is guaranteed by imposing the extra restriction I(∼p) ≤ ∼I(p) for all atom p. Strong
negation and consistency have also been studied in [13, 14].

8 Conclusion

We introduced a stable model semantics for fuzzy propositional formulas, which gener-
alizes both the Boolean stable model semantics and fuzzy propositional logic. The syntax
is the same as the syntax of fuzzy propositional logic, but the semantics defines stable
models instead of models. The formalism allows highly configurable default reasoning in-
volving fuzzy truth values. Our semantics, when we restrict threshold to be 1 and assume
all atoms to be subject to minimization, is essentially equivalent to fuzzy equilibrium
logic, but is much simpler. To the best of our knowledge, our representation of the com-
monsense law of inertia involving fuzzy values is new. The representation uses nested
fuzzy operators, which are not available in other fuzzy ASP semantics for a restricted
syntax.

We showed that several traditional results in answer set programming can be naturally
extended to this formalism, and expect that more results can be carried over. Future work
includes implementing this language using mixed integer programming solvers or bilevel
programming solvers [15].

7 We call a program positive if it does not contain any default negation.
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