
A Generalization

of the Lin-Zhao Theorem

Paolo Ferraris

University of Texas at Austin, Texas, USA

Joohyung Lee

Arizona State University, Tempe, Arizona, USA

Vladimir Lifschitz

University of Texas at Austin, Texas, USA

Abstract

The theorem on loop formulas due to Fangzhen Lin and Yuting
Zhao shows how to turn a logic program into a propositional formula
that describes the program’s stable models. In this paper we sim-
plify and generalize the statement of this theorem. The simplification
is achieved by modifying the definition of a loop in such a way that
a program is turned into the corresponding propositional formula by
adding loop formulas directly to the conjunction of its rules, with-
out the intermediate step of forming the program’s completion. The
generalization makes the idea of a loop formula applicable to stable
models in the sense of a very general definition that covers disjunctive
programs, programs with nested expressions, and more.

1 Introduction

The theorem on loop formulas due to Fangzhen Lin and Yuting Zhao [Lin
and Zhao, 2004] is an important result in the theory of stable models. It
shows how to turn a logic program Π into a propositional formula that
describes the stable models of Π. The reduction of the problem of com-
puting stable models to the satisfiability problem for propositional formulas
given by the Lin-Zhao theorem has led to the development of the answer

1

set solvers assat
1 and cmodels

2. If the program Π is tight [Fages, 1994;
Erdem and Lifschitz, 2003] then the corresponding propositional formula
is simply the completion of Π in the sense of [Clark, 1978]; otherwise the
corresponding formula is the conjunction of the completion of Π with the
additional formulas that Lin and Zhao called the “loop formulas” of Π. The
number of loop formulas is exponential in the size of Π in the worst case,
and there are reasons for this in complexity theory [Lifschitz and Razborov,
2006]. But in many cases the Lin-Zhao translation of Π into propositional
logic is not much bigger than Π.

In this paper we show how the statement of the Lin-Zhao theorem can be
simplified and generalized. The simplification is achieved by modifying the
definition of a loop from [Lin and Zhao, 2004] in such a way that a program is
turned into the corresponding propositional formula by adding loop formulas
directly to the conjunction of its rules, without the intermediate step of
forming the program’s completion.

The generalization, on the other hand, makes the idea of a loop for-
mula applicable to stable models in the sense of the very general definition
proposed in [Ferraris, 2005] and [Ferraris and Lifschitz, 2005], which is es-
sentially a reformulation of equilibrium logic [Pearce, 1997]. That general
definition covers, in particular, disjunctive programs; the possibility of ex-
tending the Lin-Zhao theorem to the disjunctive case has been used to design
a version of cmodels that can handle disjunctive programs [Lierler, 2005].
The definition covers even arbitrary programs with nested expressions in
the sense of [Lifschitz et al., 1999], and more. The discussion of the seman-
tics of aggregates (in particular, weight constraints with negative weights)
in [Ferraris, 2005] shows that this high degree of generality is useful in some
applications to knowledge representation.

Our version of the Lin-Zhao theorem is also more general than its original
statement in another sense: it shows that loop formulas can be formed in
two ways—not only “disjunctively” as in [Lin and Zhao, 2004], but also
“conjunctively.”

It can be viewed as an enhancement of the encoding of equilibrium logic
by quantified propositional formulas proposed by David Pearce, Hans Tom-
pits and Stefan Woltran [Pearce et al., 2001]. If we eliminate quantifiers
from that encoding, the result will be similar to the conjunction of loop
formulas, but it will be much longer in many cases.

This paper is organized as follows. In Section 2 we discuss our generaliza-

1http://assat.cs.ust.hk/ .
2http://www.cs.utexas.edu/users/tag/cmodels/ .

2

tion of the Lin-Zhao theorem for the simple case of “traditional” programs
from [Gelfond and Lifschitz, 1988], and show how to extend it to disjunctive
programs. The main theorem in full generality is stated in Section 3 and
proved in Section 4. To make the paper self-contained, we have also included
a review of the necessary background material from [Ferraris and Lifschitz,
2005] (Appendix A) and from [Pearce et al., 2001] (Appendix B).

Preliminary reports on some of the work presented below are published
in [Lee, 2005] and [Lee and Lifschitz, 2003].

2 Special Cases

2.1 Syntax and Semantics of Traditional Programs

A traditional rule is an expression of the form

a1 ← a2, . . . , am,not am+1, . . . ,not an (1)

where n ≥ m ≥ 1 and a1, . . . , an are propositional atoms. A traditional
program is a finite set of traditional rules. We will identify a traditional
rule (1) with the propositional formula

(a2 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an)→ a1. (2)

A traditional program Π will be identified with the conjunction of the for-
mulas (2) corresponding to the rules of Π. In view of this convention, the
definition of a stable model of a propositional formula from [Ferraris, 2005]

and [Ferraris and Lifschitz, 2005], reproduced here in Appendix A, is ap-
plicable, in particular, to traditional programs; according to [Ferraris and
Lifschitz, 2005, Proposition 28], it is equivalent in this special case to the
familiar definition of a stable model proposed in [Gelfond and Lifschitz,
1988].

For example, the traditional program

p← q

q ← p

p← not r

r ← not p

(3)

can be viewed as alternative notation for the formula

(q → p) ∧ (p→ q) ∧ (¬r → p) ∧ (¬p→ r). (4)

The stable models of this program are {p, q} and {r} (see Appendix A for
the verification of a part of this claim).

3

p q r

Figure 1: The dependency graph of program (3)

2.2 Main Theorem for Traditional Programs

The (positive) dependency graph of a traditional program Π is the directed
graph such that

• its vertices are the atoms occurring in Π, and

• its edges go from a1 to a2, . . . am for all rules (1) of Π.

A nonempty set L of atoms is called a loop of Π if, for every pair p, q of
atoms in L, there exists a path (possibly of length 0) from p to q in the
dependency graph of Π such that all vertices in this path belong to L. In
other words, L is a loop of Π iff the subgraph of the dependency graph of Π
induced by L is strongly connected. It is clear that any set consisting of a
single atom is a loop.

For example, the dependency graph of program (3) is shown in Figure 1.
This program has four loops:

{p}, {q}, {r}, {p, q}. (5)

Our definition of a loop is slightly different from the definition given in
[Lin and Zhao, 2004], because it takes into account paths of length 0. This
is what allows us to drop the completion step from the statement of the
Lin-Zhao theorem; see Section 2.3 for details.

For any finite set Y of formulas, by Y ∧ and Y ∨ we denote the conjunction
and, respectively, disjunction of the elements of Y . Using this notation, we
can write (2) as

(B∧ ∧N)→ a1 (6)

where B is the set {a2 . . . , am} of “positive body atoms,” and N is the
“negative part” ¬am+1 ∧ · · · ∧ ¬an.

For any set Y of atoms that occur in Π, the external support formula
of Y , denoted by ESΠ(Y), is the disjunction of the bodies B∧ ∧ N of all
rules (6) of Π such that

• a1 ∈ Y and

• B ∩ Y = ∅.

4

The first condition expresses that the atom “supported” by (6) is an element
of Y . The second condition expresses that this support is “external”: the
atoms B that it relies on do not belong to Y .

For instance, let Π be program (3), and let Y be {p, q}. Elements of Y

are “supported” by each of the first three rules of (3), but in the case of
the first two rules the support is not “external.” Accordingly, the external
support formula of {p, q} is the body of the third rule, ¬r.

Main Theorem for Traditional Programs Let Π be a traditional pro-
gram, and let X be a set of atoms occurring in Π. If X is a model of Π then
the following conditions are equivalent:

(a) X is stable;

(b) for every set Y of atoms occurring in Π, X satisfies

Y ∨ → ESΠ(Y); (7)

(c) for every loop Y of Π, X satisfies (7);

(d) for every nonempty set Y of atoms occurring in Π, X satisfies

Y ∧ → ESΠ(Y); (8)

(e) for every loop Y of Π, X satisfies (8).

We call (7) the disjunctive loop formula of Π corresponding to the set Y

of atoms, and (8) its conjunctive loop formula for Y . The two formulas
coincide when Y is a singleton.

For example, the loop formulas of program (3) are shown in Figure 2.
According to the theorem above, a model of (3) is stable iff it satisfies each
of the 8 disjunctive loop formulas. We can also say that a model of (3)
is stable iff it satisfies the disjunctive loop formulas corresponding to the
program’s loops (5):

p → (q ∨ ¬r)
q → p

r → ¬p

(p ∨ q) → ¬r.

(9)

Alternatively, the stable models of (3) can be characterized as the models
of (3) that satisfy the 7 conjunctive loop formulas shown in Figure 2, and,
equivalently, as the models of (3) that satisfy the 4 conjunctive loop formulas
corresponding to the program’s loops.

5

Y Disjunctive loop formula Conjunctive loop formula

∅ ⊥ → ⊥
{p} p → (q ∨ ¬r) p → (q ∨ ¬r)
{q} q → p q → p

{r} r → ¬p r → ¬p

{p, q} (p ∨ q) → ¬r (p ∧ q) → ¬r

{p, r} (p ∨ r) → (q ∨ ¬r ∨ ¬p) (p ∧ r) → (q ∨ ¬r ∨ ¬p)
{q, r} (q ∨ r) → (p ∨ ¬p) (q ∧ r) → (p ∨ ¬p)
{p, q, r} (p ∨ q ∨ r) → (¬r ∨ ¬p) (p ∧ q ∧ r) → (¬r ∨ ¬p)

Figure 2: The loop formulas of program (3)

Some of the implications between conditions (a)–(e) are obvious: it is
easy to see that (b) implies both (c) and (d), and each of these two con-
ditions implies (e). In Section 2.3 we show that the equivalence between
conditions (a) and (c) is essentially a reformulation of the Lin-Zhao the-
orem. The equivalence between (a) and (d) is a reformulation of another
published result; this is discussed in Section 2.5.

2.3 Comparison with the Lin-Zhao Theorem

We will now compare the theorem stated above with Theorem 1 from [Lin
and Zhao, 2004]. The discussion here does not cover constraints (rules with
empty heads), which are allowed by Lin and Zhao but are not allowed in
traditional programs.

The completion of a traditional program Π is the set consisting of the
equivalences

a1 ↔
∨

(a2 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an) (10)

for all atoms a1 occurring in Π, where the disjunction extends over all
rules (1) of Π with the head a1. For instance, the completion of (3) is

p↔ (q ∨ ¬r)
q ↔ p

r ↔ ¬p.

(11)

We say that a loop L of a traditional program Π is trivial if

• L is a singleton, and

6

• the dependency graph of Π does not contain an edge from the element
of L to itself.

For instance, the loops {p}, {q}, {r} of program (3) are trivial; {p, q} is
the only nontrivial loop. If we add the rule r ← r to program (3) then
the loop {r} will become nontrivial. Nontrivial loops in the sense of this
definition are loops in the sense of [Lin and Zhao, 2004].

Lin-Zhao Theorem For any traditional program Π and any set X of
atoms occurring in Π, X is a stable model of Π iff X satisfies

(i) the completion of Π, and

(ii) the disjunctive loop formulas for all nontrivial loops of Π.

For instance, the stable models {p, q} and {r} of (3) can be characterized
as the models of (11) that satisfy the last of the formulas (9).

The part of the theorem from Section 2.1 that asserts the equivalence
between conditions (a) and (c) is similar to the Lin-Zhao theorem. The
difference is that the former does not refer to completion, and the latter
does not refer to loop formulas for trivial loops.

It is not difficult to explain, however, why the set of formulas (i) and (ii)
above is equivalent to the union of Π with the set of the disjunctive loop
formulas of Π for all loops, both trivial and nontrivial. Indeed, (i) can be
equivalently rewritten as the set of implications that consists of

(i′) the right-to-left implications from (10),

(i′′) the left-to-right implications from (10) for the atoms a1 such that the
loop {a1} is trivial, and

(i′′′) the left-to-right implications from (10) for the atoms a1 such that the
loop {a1} is nontrivial.

Group (i′) is equivalent to Π. Each implication

a1 →
∨

(a2 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an) (12)

in group (i′′) is identical to the loop formula

{a1}
∨ → ESΠ({a1}), (13)

because, for every rule (1) of Π with the head a1,

B ∩ {a1} = {a2, . . . , am} ∩ {a1} = ∅.

7

Finally, group (i′′′) can be dropped in the presence of (ii), because each
implication (12) in group (i′′′) is entailed by the corresponding loop for-
mula (13): the loop formula can be obtained from (12) by dropping the
disjunctive terms with a1 ∈ {a2, . . . , am}.

2.4 Extension to Disjunctive Programs

As an intermediate step before discussing the main theorem in full generality,
we will consider the special case of “disjunctive” programs. Disjunctive rules
are often defined as expressions of the form

a1; . . . ; ak ← ak+1, . . . , am,not am+1, . . . ,not an (14)

(n ≥ m ≥ k ≥ 0), and the definition of a stable model from Appendix A can
be applied to finite sets of such rules if we treat (14) as alternative notation
for the formula

(ak+1 ∧ · · · ∧ am ∧ ¬am+1 ∧ · · · ∧ ¬an)→ (a1 ∨ · · · ∨ ak). (15)

The understanding of disjunctive rules in this section will be more gen-
eral. We say that a propositional formula is negative if every occurrence of
every atom in this formula is in the scope of a negation or in the antecedent
of an implication. For instance, the conjunction ¬am+1∧ · · · ∧¬an in (15) is
negative; any formula of the form F → ¬G is negative. The 0-place connec-
tives > and ⊥ are negative formulas also, because they don’t contain atoms.
A disjunctive rule is a formula of the form

(B∧ ∧N)→ A∨ (16)

where A and B are finite sets of atoms, and N is a negative formula. For
instance,

(p ∧ ¬(q ∧ ¬r))→ s

is a disjunctive rule in the sense of this definition; in the language of lparse,3

it can be written as
s :- p, {q, not r}1.

A disjunctive program is a conjunction of (0 or more) disjunctive rules.
The definition of the dependency graph (Section 2.2) is extended to

disjunctive programs in a straightforward way: the vertices of the graph are
the atoms occurring in the program, and its edges go from the elements of A

3http://www.tcs.hut.fi/Software/smodels/lparse.ps .

8

to the elements of B for all rules (16) of the program. For instance, a rule
of the form

(b1 ∧N)→ (a1 ∨ a2)

contributes two edges to the dependency graph: from a1 to b1 and from a2

to b1. Constraints (A = ∅) and rules with a negative body (B = ∅) don’t
contribute edges to the dependency graph.

The definition of a loop in terms of the dependency graph remains the
same as in Section 2.2.

For any set Y of atoms that occur in a disjunctive program Π, the
external support formula of Y , denoted by ESΠ(Y), is the disjunction of
the formulas

B∧ ∧N ∧
∧

a∈A\Y

¬a (17)

for all rules (16) of Π such that

• A ∩ Y 6= ∅, and

• B ∩ Y = ∅.

When Π is a traditional program, this definition reduces to the definition
of ESΠ given in Section 2.2.

The theorem from Section 2.2 remains correct after replacing “tradi-
tional program” in its statement with “disjunctive program.” The terms
“disjunctive loop formula” and “conjunctive loop formula” will be applied
to formulas (7) and (8) when Π is an arbitrary disjunctive program.

For instance, consider the program

p ; s← q

q ← p

p ; r ← not s

which is the “logic programming representation” of the formula

(q → (p ∨ s)) ∧ (p→ q) ∧ (¬s→ (p ∨ r)). (18)

The loops of this program are

{p}, {q}, {r}, {s}, {p, q},

and the corresponding disjunctive loop formulas are

p → ((q ∧ ¬s) ∨ (¬s ∧ ¬r))
q → p

r → (¬s ∧ ¬p)
s → (q ∧ ¬p)

(p ∨ q) → (¬s ∧ ¬r).

(19)

9

The stable models {p, q}, {r} of (18) can be characterized as the models
of (18) that satisfy (19).

2.5 Relation to Unfounded Sets

For programs consisting of rules of the form (14), the equivalence between
conditions (a) and (d) from the statement of the main theorem has been
established earlier, in a somewhat different form. Saccá and Zaniolo [1990]
showed that the stable models of what we call here traditional programs can
be characterized in terms of “unfounded sets.”4 Leone et al. [1997] extended
the notion of an unfounded set and the theorem by Saccá and Zaniolo to
disjunctive rules of the form (14).

Their definition can be further extended to arbitrary disjunctive pro-
grams in the sense of this section as follows. A set Y of atoms is unfounded
by a disjunctive program Π w.r.t. a set X of atoms if, for each rule (16) of
Π such that A ∩ Y 6= ∅,

• X 6|= B∧ ∧N , or

• B ∩ Y 6= ∅, or

• X ∩ (A \ Y) 6= ∅.

It is easy to see that X |= ESΠ(Y) iff Y is not unfounded by Π w.r.t. X.
A set X of atoms is called unfounded-free if it has no nonempty subsets

unfounded w.r.t. X. The equivalence between conditions (a) and (d) can be
reformulated as follows: for any model X of a disjunctive program Π, X is
stable iff X is unfounded-free. This is a generalization of Corollary 2 from
[Saccá and Zaniolo, 1990], and of Theorem 4.6 from [Leone et al., 1997].

3 General Theory of Loop Formulas

Our goal now is to extend the definition of a loop and the definition of a loop
formula, stated above for traditional programs (Section 2.2) and for disjunc-
tive programs (Section 2.4), to the general case of arbitrary propositional
formulas, and to state the main theorem in full generality.

4Their theorem refers actually to “assumption sets” rather than unfounded sets. But
as the authors noted, in the context of this theorem the two concepts are equivalent.
Unfounded sets were originally introduced for the purpose of characterizing the negative
consequences of a program under the well-founded semantics [Van Gelder et al., 1991].

10

For simplicity, we assume here that the only propositional connectives
allowed in formulas are

⊥, ∧, ∨ and →,

and all other connectives are treated as abbreviations, as in Section B.3. For
instance, (2) is now viewed as an abbreviation for

(a2 ∧ · · · ∧ am ∧ (am+1 → ⊥) ∧ · · · ∧ (an → ⊥))→ a1. (20)

Under this simplifying assumption, the definition of a negative formula from
Section 2.4 can be stated as follows: a formula is negative if every occurrence
of every atom in this formula belongs to the antecedent of an implication.

3.1 Loops

An occurrence of a formula G in a formula F is positive if the number of
implications in F containing that occurrence in the antecedent is even; it is
strictly positive if that number is 0.5 In (20), for instance, the occurrences of
a1, am+1, . . . , an are positive, but only the first of them is strictly positive. It
is clear that a formula F is negative iff it has no strictly positive occurrences
of atoms.

Note that we apply the term “negative” to formulas, and the terms
“positive” and “strictly positive” to occurrences of one formula in another.

We say that an atom a depends on an atom b in an implication G→ H

if

• a has a strictly positive occurrence in H, and

• b has a positive occurrence in G that does not belong to any occurrence
of a negative formula in G.

The dependency graph of a formula F is the directed graph such that

• its vertices are the atoms that occur in F , and

• it has an edge from a vertex a to a vertex b if a depends on b in an
implication that has a strictly positive occurrence in F .

In application to traditional programs, the new definition of the depen-
dency graph is equivalent to the definition from Section 2.2. Indeed, assume
that F is a conjunction of formulas of the form (20). Implications occurring

5The concept of a strictly positive occurrence plays an important role in intuitionistic
logic; see, for instance, [Troelstra and Schwichtenberg, 1996, Theorem 4.2.3].

11

in F are of two kinds: conjunctive terms (20) and implications of the form
ai → ⊥. The edges contributed to the dependency graph by (20) go from a1

to a2, . . . , am. Implications of the form ai → ⊥ do not contribute edges to
the dependency graph.

More generally, in application to disjunctive programs the new definition
of the dependency graph is equivalent to the definition from Section 2.4.
Indeed, assume that F is a conjunction of formulas of the form (16). Impli-
cations occurring in F are of two kinds: conjunctive terms (16) and impli-
cations that are subformulas of N in one of these conjunctive terms. The
edges contributed to the dependency graph by the implications (16) go from
elements of A to elements of B; these implications do not contribute any
other edges, because N is negative. Implications from N do not contribute
edges to the dependency graph: if an implication G → H has a strictly
positive occurrence in a negative formula N then H is a negative formula
also, and no occurrence of an atom in H can be strictly positive.

Consider now some formulas other than disjunctive programs. Formula

(p→ q) ∨ r (21)

is a disjunction of two traditional rules. Its dependency graph has one edge,
from q to p. The dependency graph of the nested implication

((p→ q)→ r)→ s

has two edges—from s to r and from s to p. The dependency graph of

((p→ ¬q)→ r)→ s

has only one edge, from s to r, because the formula p→ ¬q is negative.
Given this definition of a dependency graph, loops are defined in the

same way as in Section 2.2: a loop of a formula F is a nonempty set of
atoms occurring in F such that the subgraph of the dependency graph of F

induced by that set is strongly connected.

3.2 Loop Formulas

For any set Y of atoms occurring in a formula F , we want to define a formula
that would be similar to the external support formula ESF (Y) in the special
case when F is a disjunctive program. It is easier to define a formula such
that its negation is similar to ESF (Y).

Such a formula NESF (Y) is defined recursively, as follows:

12

• for an atom a, NESa(Y) is ⊥ if a ∈ Y , and a otherwise;

• NES⊥(Y) = ⊥;

• NESF∧G(Y) = NESF (Y) ∧ NESG(Y);

• NESF∨G(Y) = NESF (Y) ∨ NESG(Y);

• NESF→G(Y) = (NESF (Y)→ NESG(Y)) ∧ (F → G).

For instance, if F is p→ q then

NESF ({q}) = (NESp({q})→ NES q({q})) ∧ (p→ q)
= (p→ ⊥) ∧ (p→ q)
↔ ¬p.

The definitions of ES and NES look very different from each other. But
the calculation above shows that in the case of p→ q the formula NESF ({q})
is equivalent to the negation of the external support formula p of {q}. The
following proposition shows that NESΠ(Y) is “almost equivalent” to the
negation of ESΠ(Y) for any disjunctive program Π:

Theorem 1 If X is a model of a disjunctive program Π then, for any set Y

of atoms,
X |= NESΠ(Y) iff X |= ¬ESΠ(Y).

This fact suggests that ¬NESF (Y) may be an acceptable counterpart
of the external support formula of Y when F is syntactically different from
disjunctive programs. The main theorem, stated in the next section, shows
that this is indeed the case. Its statement refers to the formulas

Y ∨ → ¬NESF (Y) (22)

and
Y ∧ → ¬NESF (Y), (23)

which can be called the (disjunctive and conjunctive) loop formulas of a
formula F corresponding to the set Y of atoms.

3.3 Main Theorem

Theorem 2 (Main Theorem) Let F be a propositional formula, and
let X be a set of atoms occurring in F . If X is a model of F then the
following conditions are equivalent:

13

(a) X is stable;

(b) for every set Y of atoms occurring in F , X satisfies (22);

(c) for every loop Y of F , X satisfies (22);

(d) for every nonempty set Y of atoms occurring in F , X satisfies (23);

(e) for every loop Y of F , X satisfies (23).

Theorem 1 shows that the theorem stated in Section 2.2 and its exten-
sion to disjunctive programs (Section 2.4) can be viewed as special cases of
Theorem 2.

As an example, let’s apply Theorem 2 to formula (21). Its loops are the
singletons {p}, {q}, {r}, and the corresponding loop formulas (22) are

p→ ¬(((⊥ → q) ∧ (p→ q)) ∨ r),
q → ¬(((p→ ⊥) ∧ (p→ q)) ∨ r),
r→ ¬(((p→ q) ∧ (p→ q)) ∨ ⊥).

The conjunction of these formulas is equivalent to

¬q ∧ ¬r. (24)

According to the main theorem, the stable models of (21) can be charac-
terized as the sets that satisfy both (21) and (24). The conjunction of (21)
with (24) is equivalent to ¬p∧¬q∧¬r, so that the only stable model of (21)
is ∅.

4 Proofs

4.1 Proof of Theorem 1

Lemma 1 For any formula F and any set Y of atoms,

(a) NESF (Y) entails F ;

(b) if F has no strictly positive occurrences of atoms from Y then NESF (Y)
is equivalent to F .

14

Proof. (a) by induction on F . (b) by induction on F ; consider the case
when F is G→ H. By (a), NESG(Y) entails G; by the induction hypothesis,
NESH(Y) is equivalent to H. Consequently,

NESF (Y) = (NESG(Y)→ NESH(Y)) ∧ (G→ H)
↔ (NESG(Y)→ H) ∧ (G→ H)
↔ ((NESG(Y) ∨G)→ H)
↔ (G→ H)
= F.

Theorem 1 If X is a model of a disjunctive program Π then, for any set Y

of atoms,
X |= NESΠ(Y) iff X |= ¬ESΠ(Y).

Proof. Since NESΠ(Y) is the conjunction of the formulas NESR(Y) for
all rules R of Π, and ESΠ(Y) is the disjunction of the formulas ESR(Y), it
is sufficient to consider the case when Π is a single rule (16). In this case,
¬ESΠ(Y) is equivalent to

(B∧ ∧N)→ (A \ Y)∨ (25)

if A ∩ Y 6= ∅ and B ∩ Y = ∅, and is > otherwise. We need to show,
assuming (16), that this formula is equivalent to NESΠ(Y). In the presence
of (16), using Lemma 1(a),

NESΠ(Y) = (NESB∧∧N (Y)→ NESA∨(Y)) ∧ ((B∧ ∧N)→ A∨)
↔ NESB∧∧N (Y)→ NESA∨(Y)
↔ (NESB∧(Y) ∧ NESN (Y))→ NESA∨(Y)
↔ (NESB∧(Y) ∧N)→ NESA∨(Y)
↔ (NESB∧(Y) ∧N)→ (A \ Y)∨.

If B ∩ Y 6= ∅ then the last formula contains the conjunctive term ⊥ in
the antecedent, and consequently is equivalent to >. Otherwise, it can be
rewritten as (25). It remains to note that if A∩Y = ∅ then (25) is identical
to the assumption (16) and consequently can be rewritten as >.

15

4.2 Proof of Theorem 2: Equivalence of (a), (b), (d)

In the following lemma, F is a propositional formula, and a is a list of distinct
atoms a1, . . . , an containing all atoms occurring in F . For the definitions of

F ∗(v) and
−→
Y , see Section B.3.

Lemma 2 For any sets X, Y of atoms, X |= NESF (Y) iff X |= F ∗(
−−−→
X \ Y).

Proof. By induction on F . Consider the case when F is an atom. If F ∈ Y

then each of the formulas NESF (Y), F ∗(
−−−→
X \ Y) is ⊥. Otherwise NESF (Y)

is F , while F ∗(
−−−→
X \ Y) is > or ⊥ depending on whether F ∈ X. The other

cases are straightforward.

Proof of the equivalence of conditions (a), (b), (d) in the statement
of Theorem 2. Let a be the list of atoms occurring in F , and let a subset X

of a be a model of F . By the Pearce-Tompits-Woltran theorem, and in view
of the fact that PTW[F] can be written in the form (32), condition (a) (“X
is stable”) is equivalent to

X |=
∧

Y ⊆a

(
−→
Y < a→ ¬F ∗(

−→
Y))

and consequently to

X |=
∧

Y ⊂X

¬F ∗(
−→
Y).

Using Lemma 2, we can show that this condition is equivalent to condi-
tion (b):

X |=
∧

Y ⊂X

¬F ∗(
−→
Y) iff X |=

∧

Z⊆a: Z∩X 6=∅

¬F ∗(
−−−→
X \ Z)

iff X |=
∧

Z⊆a: Z∩X 6=∅

¬NESF (Z)

iff X |=
∧

Z⊆a

(Z∨ → ¬NESF (Z))

iff X |= Z∨ → ¬NESF (Z)

for all subsets Z of a.

16

It is also equivalent to (d):

X |=
∧

Y ⊂X

¬F ∗(
−→
Y) iff X |=

∧

Z⊆a: Z⊆X, Z 6=∅

¬F ∗(
−−−→
X \ Z)

iff X |=
∧

Z⊆a: Z⊆X, Z 6=∅

¬NESF (Z)

iff X |=
∧

Z⊆a: Z 6=∅

(Z∧ → ¬NESF (Z))

iff X |= Z∧ → ¬NESF (Z)

for all nonempty subsets Z of a.

4.3 Proof of Theorem 2: Equivalence of (c), (e) to the other
conditions

Lemma 3 For any formula F , set Y of atoms, and subset Z of Y ,

(a) if every positive occurrence of every atom from Y \ Z in F belongs to
a negative formula then NESF (Z) entails NESF (Y);

(b) if every nonpositive occurrence of every atom from Y \Z in F belongs
to a negative formula then NESF (Y) entails NESF (Z).

Proof. Both parts are proved simultaneously by induction on F . As-
sume that F is an atom. (a) Since every positive occurrence of every atom
from Y \ Z in F belongs to a negative formula, F 6∈ Y \Z, so that NESF (Z)
is the same formula as NESF (Y). (b) Since Z is a subset of Y , NESF (Y)
is equal to NESF (Z) or to ⊥. The cases when F is ⊥, a conjunction or a
disjunction are straightforward. Assume that F is G→ H. If F is negative
then, by Lemma 1(b), each of the formulas NESF (Y), NESF (Z) is equiva-
lent to F . Assume that F is not negative. (a) Every nonpositive occurrence
of every atom from Y \ Z in G belongs to a negative formula, and so does
every positive occurrence of every atom from Y \Z in H. We need to show
that

(NESG(Z)→ NESH(Z)) ∧ (G→ H)

entails
(NESG(Y)→ NESH(Y)) ∧ (G→ H),

This is clear from the fact that, by the induction hypothesis, NESG(Y)
entails NESG(Z) and NESH(Z) entails NESH(Y). (b) Similar.

17

Lemma 4 For any formula F and any nonempty set Y of atoms, there
exists a subset Z of Y such that

(a) Z is a loop of F , and

(b) the dependency graph of F has no edges from atoms in Z to atoms in
Y \ Z.

Proof. Consider the strongly connected components of the subgraph of the
dependency graph of F induced by Y . They form a finite acyclic graph. Any
terminal vertex of that graph satisfies conditions (a) and (b).

Lemma 5 Let X be a model of a formula F , Y a set of atoms, and Z a
nonempty subset of Y such that the dependency graph of F has no edges
from atoms in Z to atoms in Y \Z. If X |= NESF (Y) then X |= NESF (Z).

Proof. By induction on F .
Case 1: F is an atom or ⊥. Then the NESF (Y) is equal to NESF (Z)

or to ⊥.
Case 2: F is G ∧ H. All edges in the dependency graphs of G and H

belong to the dependency graph of F , so that the inductive hypothesis can
be applied both to G and to H.

Case 3: F is G ∨H. Similar to Case 2.
Case 4: F is G → H. Assume that the dependency graph of F has no

edges from Z to Y \ Z, and that X satisfies NESF (Y):

X |= (NESG(Y)→ NESH(Y)) ∧ (G→ H) (26)

but doesn’t satisfy NESF (Z):

X 6|= (NESG(Z)→ NESH(Z)) ∧ (G→ H). (27)

Since X is a model of G→ H, X doesn’t satisfy the first conjunctive term
of (27), so that

X |= NESG(Z) (28)

and
X 6|= NESH(Z). (29)

By Lemma 1(a), (28) implies X |= G. Since X is a model of G → H, it
follows that X |= H. In combination with (29) and Lemma 1(b), this fact
shows that H contains a strictly positive occurrence of an atom from Z.
Since there are no edges from Z to Y \ Z in the dependency graph of F , it

18

follows that every positive occurrence of every atom from Y \Z in G belongs
to a negative formula. By Lemma 3(a), we can conclude that NESG(Z)
entails NESG(Y). Then, in view of (28), X |= NESG(Y). By (26), it
follows that X |= NESH(Y). Since every edge in the dependency graph
of H belongs to the dependency graph of F , the inductive hypothesis is
applicable to H, and we can further conclude that X |= NESH(Z), which
contradicts (29).

Proof of the equivalence of conditions (d) and (e) in the statement
of Theorem 2. Let X be a model of F . It is clear that (d) implies (e).
Assume that (d) does not hold, and let Y be a nonempty set of atoms such
that X does not satisfy loop formula (23), so that

X |= Y ∧ (30)

and
X |= NESF (Y). (31)

By Lemma 4, there exists a subset Z of Y such that Z is a loop of F , and
the dependency graph of F has no edges from Z to Y \ Z. From (30) we
conclude that X |= Z∧. By Lemma 5, (31) implies that X |= NESF (Z).
Consequently (e) does not hold either.

Proof of the equivalence of condition (c) to the other conditions in
the statement of Theorem 2. Clearly (b) implies (c), and (c) implies (e).
On the other hand, we have already established that (b) is equivalent to (e).

5 Conclusion

We modified the definition of a loop due to Lin and Zhao so that the refer-
ence to the program’s completion in the statement of their theorem became
unnecessary, and generalized the theorem, first to disjunctive programs, and
then to arbitrary propositional formulas.

In the most general framework, the definition of the dependency graph
is guided by three ideas. First, rules of a given program can be viewed as
implications that occur in it strictly positively. Second, head atoms of a
rule can be viewed as atoms that occur in its head strictly positively. Third,
positive body atoms of a rule can be viewed as atoms that occur in its body
positively and do not belong to any negative formula.

19

The most general definition of a loop formula, on the other hand, is mo-
tivated by a relationship between external support formulas and a syntactic
transformation introduced by Pearce, Tompits and Woltran.

In this paper we did not discuss logic programs with two negations
[Gelfond and Lifschitz, 1990], which are important in many applications
to knowledge representation. Instead of treating the second negation as an
additional syntactic construct, we can think of it in terms of distinguishing
between atoms of two kinds, coming in “complementary pairs,” and in terms
of “coherent” stable models [Ferraris and Lifschitz, 2005, Section 3.9].

Acknowledgements

This research was partially supported by the National Science Foundation
under Grant IIS-0412907.

A Definition of a Stable Model

Atoms and formulas are understood here as in propositional logic. As usual,
we identify truth assignments with sets of atoms; for instance, the truth
assignment that makes the atom p true and all other atoms false is identified
with {p}. A model of a formula F is a set of atoms that satisfies F .

According to [Ferraris and Lifschitz, 2005, Section 2.1], the reduct FX

of a formula F relative to a set X of atoms is the formula obtained from F

by replacing each maximal subformula that is not satisfied by X with ⊥
(“false”). We say that X is a stable model (or an answer set) of F if X is
minimal among the sets satisfying FX . The minimality of X is understood
here in the sense of set inclusion.

Clearly, every set that is a stable model of F according to this definition
is a model of F . Indeed, if X does not satisfy F then FX is ⊥.

Thus we can verify that X is a stable model of F as follows:

(i) mark in F the maximal subformulas that are not satisfied by X;

(ii) replace each of these subformulas with ⊥ (after that, equivalent trans-
formations of classical propositional logic can be used to simplify the
result);

(iii) check that the resulting formula is satisfied by X;

(iv) check that it is not satisfied by any proper subset of X.

20

For instance, to check that {r} is a stable model of (4), we do the following:

(i) mark the maximal subformulas of (4) that are not satisfied by {r}:

(q → p) ∧ (p→ q) ∧ (¬r → p) ∧ (¬p→ r);

(ii) replace these subformulas with ⊥:

(⊥ → ⊥) ∧ (⊥ → ⊥) ∧ (⊥ → ⊥) ∧ (¬⊥ → r);

simplify:
r;

(iii) check that the last formula is satisfied by {r};

(iv) check that it is not satisfied by ∅.

As another example, the model {r} of formula (21) is not stable:

(i) mark the maximal subformulas of (21) that are not satisfied by {r}:

(p→ q) ∨ r;

(ii) replace these subformulas with ⊥:

(⊥ → ⊥) ∨ r;

simplify:
>.

The last formula is satisfied by {r}, but it is also satisfied by the proper
subset ∅ of {r}. In fact, the only stable model of (21) is ∅.

B Propositional Circumscription and the Pearce-
Tompits-Woltran Theorem

The Pearce-Tompits-Woltran theorem is about a syntactic transformation
that is similar to circumscription [McCarthy, 1980; McCarthy, 1986; Lif-
schitz, 1994]. For this reason, our review includes a brief discussion of that
concept.

21

B.1 Second-Order Propositional Formulas

Second-order propositional formulas (also known as quantified Boolean for-
mulas) are formed from propositional atoms (in this paper, p, q, . . .) and
an infinite supply of propositional variables (x, y, . . .) using propositional
connectives and the quantifiers ∀, ∃. The usual recursive definition of satis-
faction for propositional formulas is extended to second-order propositional
formulas without free variables as follows: a truth assignment (or a set
of atoms) satisfies ∀vF (v) if it satisfies both F (⊥) and F (>); it satisfies
∃vF (v) if it satisfies at least one of these two formulas. A second-order
propositional formula is logically valid if its universal closure is satisfied by
all truth assignments.

Quantifiers can be eliminated from any second-order propositional for-
mula by repeatedly replacing parts of the form ∀vF (v) with F (⊥) ∧ F (>),
and parts of the form ∃vF (v) with F (⊥)∨F (>). This transformation turns
logically valid formulas without free variables into tautologies. For example,

∀x∃y(y ↔ p ∧ x) ↔ ∃y(y ↔ p ∧ >) ∧ ∃y(y ↔ p ∧ ⊥)
↔ ∃y(y ↔ p) ∧ ∃y¬y

↔ ((> ↔ p) ∨ (⊥ ↔ p)) ∧ (¬> ∨ ¬⊥)
↔ >.

B.2 Propositional Circumscription

The review of circumscription in this section is limited to the propositional
case of parallel circumscription with no varied constants.

Let a be a tuple of distinct atoms a1, . . . , an, and F (a) a propositional
formula. The circumscription of a in F (a), denoted by CIRC[F (a);a], is the
second-order propositional formula

F (a) ∧ ¬∃v(v < a ∧ F (v)),

where v is a tuple of n distinct propositional variables v1, . . . , vn, and v < a
stands for

(v1 → a1) ∧ · · · ∧ (vn → an) ∧ ¬((a1 → v1) ∧ · · · ∧ (an → vn)).

For instance,

CIRC[p ∨ q; p] = (p ∨ q) ∧ ¬∃x(x < p ∧ (x ∨ q))
↔ (p ∨ q) ∧ ¬((⊥ < p ∧ (⊥ ∨ q)) ∨ (> < p ∧ (> ∨ q)))
↔ (p ∨ q) ∧ ¬((p ∧ q)) ∨ (⊥ ∧>))
↔ (p ∨ q) ∧ ¬(p ∧ q).

22

B.3 Pearce-Tompits-Woltran Theorem

In this section we assume that the connectives used in propositional formulas
are

⊥, ∧, ∨ and →;

> stands for ⊥ → ⊥, ¬F for F → ⊥, and F ↔ G for (F → G) ∧ (G→ F).
Let a1, . . . , an be all atoms occurring in a propositional formula F . By

PTW[F] we denote the second-order propositional formula

F ∧ ¬∃v(v < a ∧ F ∗(v)),

where a stands for a1, . . . , an, v is a tuple of n distinct propositional variables
v1, . . . , vn, and F ∗(v) is defined recursively, as follows:

• (ai)
∗ = vi;

• ⊥∗ = ⊥;

• (F ∧G)∗ = F ∗ ∧G∗;

• (F ∨G)∗ = F ∗ ∨G∗;

• (F → G)∗ = (F ∗ → G∗) ∧ (F → G).

For instance, let F be the formula p ∧ (p → (q ∨ r)), corresponding to
the disjunctive program

p

q ; r ← p.

Then
F ∗ = p∗ ∧ (p→ (q ∨ r))∗

= p∗ ∧ (p∗ → (q ∨ r)∗) ∧ (p→ (q ∨ r))
= p∗ ∧ (p∗ → (q∗ ∨ r∗)) ∧ (p→ (q ∨ r))
= x ∧ (x→ (y ∨ z)) ∧ (p→ (q ∨ r))
↔ x ∧ (y ∨ z) ∧ (p→ (q ∨ r))

23

and

PTW[F] ↔ p ∧ (p→ (q ∨ r))
∧¬∃xyz((x, y, z) < (p, q, r)

∧x ∧ (y ∨ z) ∧ (p→ (q ∨ r)))
↔ p ∧ (q ∨ r)

∧¬∃xyz((x, y, z) < (p, q, r) ∧ x ∧ (y ∨ z))
↔ p ∧ (q ∨ r) ∧ ¬∃yz((>, y, z) < (p, q, r) ∧ (y ∨ z))
↔ p ∧ (q ∨ r) ∧ ¬∃yz((y, z) < (q, r) ∧ p ∧ (y ∨ z))
↔ p ∧ (q ∨ r) ∧ ¬∃yz((y, z) < (q, r) ∧ (y ∨ z))
↔ p ∧ (q ∨ r) ∧ ¬∃yz((¬y ∧ z ∧ q ∧ r)

∨ (y ∧ ¬z ∧ q ∧ r))
↔ p ∧ (q ∨ r) ∧ ¬((q ∧ r) ∧ ∃yz((¬y ∧ z) ∨ (y ∧ ¬z))
↔ p ∧ (q ∨ r) ∧ ¬((q ∧ r) ∧>)
↔ p ∧ (q ∨ r) ∧ ¬(q ∧ r).

The sets satisfying PTW[F] are {p, q} and {p, r}, which are the two stable
models of F . This is an instance of a general theorem:

Pearce-Tompits-Woltran Theorem ([Pearce et al., 2001], Theorem 1)
A set X of atoms occurring in F is a stable model of F iff X satisfies
PTW[F].

To be precise, the statement of this result in [Pearce et al., 2001] refers
to equilibrium models, and its reformulation above refers to stable models
in the sense of Appendix A; these two concepts are equivalent to each other
by Theorem 1 from [Ferraris, 2005]. A direct proof of our version of the
theorem, not referring to this equivalence, is given in Section B.4 below.

Recall that the operation F 7→ F ∗(v) replaces the atoms from a with the
corresponding variables from v, and that it commutes with all connectives
except implication. If we drop the second conjunctive term from the clause
for implication in the definition of F ∗ then F ∗ will turn into the result of
substituting v for a in F , and PTW[F] will turn into CIRC[F ;a].

In one way, however, the operation F 7→ F ∗(v) is essentially different
from the substitution of v for a: for two equivalent formulas F and G, F ∗(v)
is not necessarily equivalent to G∗(v). Here is an example:

(p→ q)∗ = (x→ y) ∧ (p→ q),

(¬p ∨ q)∗ = (p→ ⊥)∗ ∨ q∗

= ((p∗ → ⊥∗) ∧ (p→ ⊥)) ∨ y

= (¬x ∧ ¬p) ∨ y

↔ (x→ y) ∧ (p→ y).

24

Applying the circumscription operator to each of two equivalent formulas
gives two equivalent results; the Pearce-Tompits-Woltran transformation
does not have this property.

The result of eliminating quantifiers from PTW[F] (see Section B.1) can

be represented using the following notation. For any subset Y of a, by
−→
Y

we denote the tuple (Y1, . . . , Yn), where

Yi =

{

>, if ai ∈ Y ;
⊥, otherwise.

Then PTW[F] can be written as

F ∧ ¬
∨

Y ⊆a

((
−→
Y < a ∧ F ∗(

−→
Y))

or, equivalently, as

F ∧
∧

Y ⊆a

(
−→
Y < a→ ¬F ∗(

−→
Y)). (32)

B.4 Proof

In the following lemma, F is a propositional formula, and a is a list of
distinct atoms a1, . . . , an containing all atoms occurring in F .

Lemma For any subset X of a and any Y ⊆ X,

Y |= FX iff X |= F ∗(
−→
Y).

Proof by induction on F .
Case 1: F is an atom ai, so that F ∗(a) is vi. If ai ∈ X then FX is ai;

F ∗(
−→
Y) is > or ⊥ depending on whether or not ai ∈ Y , that is, depending on

whether or not Y satisfies FX . Otherwise FX is ⊥; since Y ⊆ X, ai 6∈ Y ,

so that F ∗(
−→
Y) is ⊥ too.

Case 2: F is ⊥. Each of the formulas FX , F ∗(
−→
Y) is ⊥.

Case 3: F is G∧H, so that F ∗(
−→
Y) is G∗(

−→
Y)∧H∗(

−→
Y). If X satisfies G∧H

then FX is GX ∧HX , and we use the induction hypothesis. Otherwise FX

is ⊥, and X doesn’t satisfy at least one of the formulas G, H. Assume, for
instance, that X 6|= G. Then GX is ⊥, and, by the induction hypothesis,

X 6|= G∗(
−→
Y). It follows that X 6|= F ∗(

−→
Y).

25

Case 4: F is G ∨ H, so that F ∗(
−→
Y) is G∗(

−→
Y) ∨H∗(

−→
Y). If X satis-

fies G ∨ H then FX is GX ∨ HX , and we use the induction hypothesis.
Otherwise FX is ⊥, and X satisfies neither G nor H. Then each of the for-
mulas GX , HX is ⊥, and, by the induction hypothesis, X satisfies neither

G∗(
−→
Y) nor H∗(

−→
Y). It follows that X 6|= F ∗(

−→
Y).

Case 5: F is G→ H, so that F ∗(
−→
Y) is

(G∗(
−→
Y)→ H∗(

−→
Y)) ∧ (G→ H). (33)

If X satisfies the second term G → H of (33) then FX is GX → HX ;
from the induction hypothesis we conclude that X satisfies this formula iff
it satisfies the first term of (33). Otherwise FX is ⊥; X doesn’t satisfy (33)
because it doesn’t satisfy the second conjunctive term.

Proof of Pearce-Tompits-Woltran Theorem. It is clear that X satisfies
−→
Y < a iff Y is a proper subset of X. Using the representation (32) of
PTW[F], we conclude that X |= PTW[F] iff

(i) X |= F , and

(ii) for every proper subset Y of X, X 6|= F ∗(
−→
Y).

It is easy to check by induction on F that X |= FX iff X |= F . Using this
fact and the lemma above, we can restate conditions (i) and (ii) as follows:

(i′) X |= FX , and

(ii′) for every proper subset Y of X, Y 6|= FX .

This is equivalent to saying that X is a stable model of F .

References

[Clark, 1978] Keith Clark. Negation as failure. In Herve Gallaire and Jack
Minker, editors, Logic and Data Bases, pages 293–322. Plenum Press,
New York, 1978.

[Erdem and Lifschitz, 2003] Esra Erdem and Vladimir Lifschitz. Tight logic
programs. Theory and Practice of Logic Programming, 3:499–518, 2003.

[Fages, 1994] François Fages. Consistency of Clark’s completion and exis-
tence of stable models. Journal of Methods of Logic in Computer Science,
1:51–60, 1994.

26

[Ferraris and Lifschitz, 2005] Paolo Ferraris and Vladimir Lifschitz. Mathe-
matical foundations of answer set programming. In We Will Show Them!
Essays in Honour of Dov Gabbay. King’s College Publications, 2005. To
appear.

[Ferraris, 2005] Paolo Ferraris. Answer sets for propositional theories. In
Proceedings of International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR), pages 119–131, 2005.

[Gelfond and Lifschitz, 1988] Michael Gelfond and Vladimir Lifschitz. The
stable model semantics for logic programming. In Robert Kowalski and
Kenneth Bowen, editors, Proceedings of International Logic Programming
Conference and Symposium, pages 1070–1080, 1988.

[Gelfond and Lifschitz, 1990] Michael Gelfond and Vladimir Lifschitz. Logic
programs with classical negation. In David Warren and Peter Szeredi,
editors, Proceedings of International Conference on Logic Programming
(ICLP), pages 579–597, 1990.

[Lee and Lifschitz, 2003] Joohyung Lee and Vladimir Lifschitz. Loop formu-
las for disjunctive logic programs. In Proceedings of International Con-
ference on Logic Programming (ICLP), pages 451–465, 2003.

[Lee, 2005] Joohyung Lee. A model-theoretic counterpart of loop formulas.
In Proceedings of International Joint Conference on Artificial Intelligence
(IJCAI), pages 503–508, 2005.

[Leone et al., 1997] Nicola Leone, Pasquale Rullo, and Francesco Scarcello.
Disjunctive stable models: Unfounded sets, fixpoint semantics, and com-
putation. Information and Computation, 135(2):69–112, 1997.

[Lierler, 2005] Yuliya Lierler. Cmodels: SAT-based disjunctive answer set
solver. In Proceedings of International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR), pages 447–452, 2005.

[Lifschitz and Razborov, 2006] Vladimir Lifschitz and Alexander Razborov.
Why are there so many loop formulas? ACM Transactions on Computa-
tional Logic, 2006. To appear.

[Lifschitz et al., 1999] Vladimir Lifschitz, Lappoon R. Tang, and Hudson
Turner. Nested expressions in logic programs. Annals of Mathematics
and Artificial Intelligence, 25:369–389, 1999.

27

[Lifschitz, 1994] Vladimir Lifschitz. Circumscription. In D.M. Gabbay, C.J.
Hogger, and J.A. Robinson, editors, The Handbook of Logic in AI and
Logic Programming, volume 3, pages 298–352. Oxford University Press,
1994.

[Lin and Zhao, 2004] Fangzhen Lin and Yuting Zhao. ASSAT: Computing
answer sets of a logic program by SAT solvers. Artificial Intelligence,
157:115–137, 2004.

[McCarthy, 1980] John McCarthy. Circumscription—a form of non-mono-
tonic reasoning. Artificial Intelligence, 13:27–39,171–172, 1980. Repro-
duced in [McCarthy, 1990].

[McCarthy, 1986] John McCarthy. Applications of circumscription to for-
malizing common sense knowledge. Artificial Intelligence, 26(3):89–116,
1986. Reproduced in [McCarthy, 1990].

[McCarthy, 1990] John McCarthy. Formalizing Common Sense: Papers by
John McCarthy. Ablex, Norwood, NJ, 1990.

[Pearce et al., 2001] David Pearce, Hans Tompits, and Stefan Woltran. En-
codings for equilibrium logic and logic programs with nested expres-
sions. In Proceedings of Portuguese Conference on Artificial Intelligence
(EPIA), pages 306–320, 2001.

[Pearce, 1997] David Pearce. A new logical characterization of stable models
and answer sets. In Jürgen Dix, Luis Pereira, and Teodor Przymusinski,
editors, Non-Monotonic Extensions of Logic Programming (Lecture Notes
in Artificial Intelligence 1216), pages 57–70. Springer-Verlag, 1997.

[Saccá and Zaniolo, 1990] Domenico Saccá and Carlo Zaniolo. Stable mod-
els and non-determinism in logic programs with negation. In Proceedings
of ACM Symposium on Principles of Database Systems (PODS), pages
205–217, 1990.

[Troelstra and Schwichtenberg, 1996] A. S. Troelstra and H. Schwichten-
berg. Basic Proof Theory. Cambridge University Press, 1996.

[Van Gelder et al., 1991] Allen Van Gelder, Kenneth Ross, and John
Schlipf. The well-founded semantics for general logic programs. Jour-
nal of ACM, 38(3):620–650, 1991.

28

