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Abstract

Large language models (LLMs), such as GPT-3 and GPT-4,
have demonstrated exceptional performance in various natu-
ral language processing tasks and have shown the ability to
solve certain reasoning problems. However, their reasoning
capabilities are limited and relatively shallow, despite the ap-
plication of various prompting techniques. In contrast, formal
logic is adept at handling complex reasoning, but translating
natural language descriptions into formal logic is a challeng-
ing task that non-experts struggle with. This paper proposes a
neuro-symbolic method that combines the strengths of large
language models and answer set programming. Specifically,
we employ an LLM to transform natural language descrip-
tions of logic puzzles into answer set programs. We carefully
design prompts for an LLM to convert natural language de-
scriptions into answer set programs in a step by step man-
ner. Surprisingly, with just a few in-context learning exam-
ples, LLMs can generate reasonably complex answer set pro-
grams. The majority of errors made are relatively simple and
can be easily corrected by humans, thus enabling LLMs to
effectively assist in the creation of answer set programs.

1 Introduction
Transformer-based large language models (LLMs) have
recently shown remarkable success in many downstream
tasks, demonstrating their general reasoning capability
across diverse problems. However, while LLMs excel in
generating System 1 thinking, they struggle with System 2
thinking, resulting in output that is often inconsistent and
incoherent (Nye et al. 2021). This is because LLMs are ba-
sically trained to predict subsequent words in a sequence and
do not appear to have a deep understanding of concepts such
as cause and effect, logic, and probability, which are essen-
tial for reasoning.

To address the issue, Nye et al. (2021) propose a dual-
system model that combines the strengths of LLMs and sym-
bolic logic to achieve improved performance on reasoning
tasks. They leverage an LLM to generate a System 1 pro-
posal and employ symbolic computation to filter these pro-
posals for consistency and soundness.

We are interested in situations where problems are de-
scribed in natural language and solving them requires deep
reasoning. A system needs to take into account linguistic
variability and be able to perform symbolic reasoning. We

take logic puzzles as the testbed as they are well-suited for
this purpose.

We first note that GPT-3 (Brown et al. 2020) and GPT-
41 by themselves struggle with solving logic puzzles, de-
spite various prompts we tried. On the other hand, we find
that they can convert the natural language descriptions of
the puzzles into declarative answer set programming lan-
guages (Lifschitz 2008; Brewka, Niemelä, and Truszczynski
2011) surprisingly well. Even the errors these LLMs make
are mostly simple for humans to correct. We hope that our
finding will ease the efforts of writing answer set programs
and expand the application of answer set programming to a
broader audience.

The remainder of this paper is organized as follows. Sec-
tion 2 offers a brief overview of related work on automated
solving of logic puzzles. Sections 3 and 4 delve into the pro-
posed approach in detail. Section 5 presents experimental
results and performance evaluations of the approach. Sec-
tion 6 shows more examples demonstrating the generaliz-
ability of our method.

The code is available at https://github.com/azreasoners/
gpt-asp-rules.

2 Preliminaries
2.1 Large Language Models (LLMs)
LLMs have significantly improved natural language pro-
cessing, achieving strong performance on a variety of tasks
using few-shot learning (Brown et al. 2020). However,
LLMs remain weak at tasks that involve complex reason-
ing (Creswell, Shanahan, and Higgins 2022; Valmeekam
et al. 2022), and scaling model size alone is not enough
to achieve good performance (Rae et al. 2021). It has
been shown that various prompting methods improve accu-
racy on reasoning tasks (Wei et al. 2022; Zhou et al. 2022;
Creswell, Shanahan, and Higgins 2022). Nye et al. (2021)
present a dual-system model which uses an LLM as a se-
mantic parser and couples it with a custom symbolic mod-
ule to achieve performance gains on reasoning tasks. This
framework combines the strengths of LLMs for parsing
complex natural language and symbolic logic for handling

1Throughout the paper, we use GPT-3 to refer to the “text-
davinci-003” model and GPT-4 to refer to the “gpt-4-0314” (re-
leased March, 2023) model in the OpenAI API.

https://github.com/azreasoners/gpt-asp-rules
https://github.com/azreasoners/gpt-asp-rules


complex reasoning. However, the authors had to use hand-
engineered set of constraints for the latter part. To our
knowledge, our work is the first to use LLMs to generate
logic rules to solve complex reasoning tasks.

2.2 Automated Logic Puzzle Solving
Works focused on solving logic puzzles typically involve a
mapping from natural language to logic formalism. This
process often includes problem simplification techniques,
such as tailoring the puzzle to a specific domain, restrict-
ing natural language input to a certain form, or assuming
additional inputs like enumerated types. Lev et al. (2004)
employ a specialized automated multi-stage parsing process
to convert natural language text into an intermediate form
called Semantic Logic, which is then converted into First
Order Logic to finally evaluate on law school admissions
tests (LSAT) and the Graduate Records Examination (GRE).
Shapiro (2011) manually encodes the “Jobs Puzzle” in a
few different logical formalisms and compare them. Puz-
zler (Milicevic, Near, and Singh 2012) uses a general link
parser to translate puzzles into to the Alloy language for
solving, primarily through an automated process, albeit with
assumed types. LogicSolver (Nordstrom 2017) follows a
similar approach to Puzzler but replaces Alloy with a cus-
tom solver and conducts a more comprehensive evaluation.

Several works utilize translations into the language of
answer set programming (ASP) (Lifschitz 2008; Brewka,
Niemelä, and Truszczynski 2011). Schwitter (2013) ad-
dresses the “Jobs Puzzle” by representing the problem using
controlled natural language (Schwitter 2010), which can be
further turned into ASP. Baral and Dzifcak (2012) employ a
λ-calculus-based approach and trains a model that converts
a manually simplified version of natural language clues into
ASP rules for solving Zebra puzzle-type logic puzzles. Mi-
tra and Baral (2015) train a maximum entropy-based model
to extract relations for each clue, which are then converted
into a common ASP rule format, where a stable model corre-
sponds to the puzzle solution. LGPSolver (Jabrayilzade and
Tekir 2020) uses DistilBERT, a transformer-based model, as
a classifier that can distinguish between representative rule
types. With the clue classification, the authors use a hand-
crafted clue to Prolog translation (as opposed to ASP) and
compute the solution. The works mentioned involve some
combination of manual processing and/or brittle problem-
specific translations. Our work distinguishes itself by be-
ing both fully automated and featuring a general pipeline,
leveraging the extensive translation capacity available from
LLMs.

2.3 Generate-Define-Test with ASP
ASP programs are typically written following the Generate-
Define-Test structure, which generates potential solutions
(Generate) and eliminates invalid ones based on certain con-
straints (Test). The Generate portion usually includes choice
rules, while the Test portion consists of a set of constraints
that prune out invalid solutions. An additional part of the
program, the Define portion, includes necessary auxiliary
predicates that are used in the Test portion.

3 Method

Figure 1: Flow of Generating Answer Set Programs from Logic
Puzzle in English

In order to find a solution to a logic puzzle, we utilize
GPT-3 to convert the puzzle into an answer set program
so that the stable model (a.k.a answer set) encodes the so-
lution.2 Although GPT-3 exhibits strong capabilities, we
discovered that it cannot generate a correct answer set pro-
gram without being guided by carefully engineered prompts.
These prompts instructs GPT-3 to reliably extract constants
and generate accurate predicates and rules. In this paper, we
detail our prompt engineering efforts.

Figure 1 illustrates the structure of our pipeline, which uti-
lizes GPT-3 step by step to generate an ASP program. Sim-
ilar to how a human would approach the task, our pipeline
first extracts the relevant objects and their categories. Then,
it generates a predicate that describes the relations among
the objects from different categories. Using the generated
information, the pipeline further constructs an ASP program
in the style of Generate-Define-Test.

Let Fc and Fp denote the Constant Extraction and Predi-
cate Generation steps in Figure 1. LetFr1 andFr2 represent
the two parts of the Rule Generation step, i.e., the Generate
part and the Define&Test part, respectively. Our pipeline can
be modeled by the following equations that map a puzzle
story q to an ASP program Π = Πgenerate ∪Πdefine test.

c =Fc(q) p =Fp(q, c)

Πgenerate =Fr1(c, p) Πdefine test =Fr2(q, c, p).

Here, c and p denote extracted objects and generated pred-
icates. Each step F∗ is realized by GPT-3 with 2-shot
prompting, i.e., only 2 examples in each prompt.

3.1 Constant Extraction
The first step in the pipeline is to extract constants or entities
from the given story along with their corresponding cate-
gories. To accomplish this, we invoke GPT-3 using Prompt
C, which consists of three parts: instruction, examples, and
a query.

Prompt C:

2Though this section mostly mentions GPT-3, GPT-4 can be
used instead.



1 Given a problem, extract all different
constants and their categories in the form "
category: constant_1; constant_2; ...;
constant_n". Here, the format of each constant
is turned into either an integer or a string
surrounded by double quotes, e.g.,"some name".

2

3 Problem 1:
4 Consider N-Queens Puzzle on a chessboard of

size 8x8. The goal is to assign 8 queens on
the chessboard so that no two queens can share
the same row, column, or diagonal.

5

6 Constants:
7 index_of_row: 1; 2; 3; 4; 5; 6; 7; 8.
8 index_of_column: 1; 2; 3; 4; 5; 6; 7; 8.
9

10 Problem 2:
11 "Against the Grain" offers hand-made wooden

furniture at reasonable prices. Each item is
made by an in-house employee. Using only the
clues that follow, match each item to the
employee who crafted it, and determine its
price and the type of wood used to make it.
Remember, as with all grid-based logic puzzles
, no option in any category will ever be used
more than once.

12 1. Bonita’s piece costs $325.
13 2. The item made of poplar costs more than

Yvette’s piece.
14 3. Tabitha’s item costs 50 dollars less than

the piece made of sandalwood.
15 4. The $275 item is either the piece made of

ash or Yvette’s item.
16

17 Constants:
18 employee: "Bonita"; "Yvette"; "Tabitha".
19 price: 225; 275; 325.
20 wood_type: "ash"; "poplar"; "sandalwood".
21

22 Problem 3:
23 <story>
24

25 Constants:

Line 1 provides a general instruction for the task of ex-
tracting objects and directing GPT-3 to generate them in the
form of “category: constant1; . . . ; constantn.” Then, two ex-
amples follow: Lines 6-8 for Problem 1 specified in Lines
3-4, and Lines 17-20 for Problem 2 specified in Lines 10-
15. By replacing Line 23 (⟨story⟩) with a new example story
and invoking GPT-3 with the above prompt, a new list of
categories and constants for that story is generated, as with
the previous two examples.

The above two examples are chosen to cover two cases of
object extraction. For the N-Queens problem, the constants
1, . . . , 8 are not described in the Problem 1 statement (Line
4) but can be inferred. For the second puzzle, however, all
constants in Lines 18-20 are mentioned in the example story
provided in Lines 11-15.

The second puzzle is also intentionally selected to give an
example for GPT-3 so that certain constants (e.g., $225) can
be turned into valid integers (e.g., 225) so that arithmetic

can be applied correctly later when generating rules later on,
while others should be surrounded by double quotes. We ex-
perimented with various prompts to instruct GPT-3 to gener-
ate all non-numeric constants in lowercase and replace spe-
cial characters with underscores. However, GPT-3 was un-
able to strictly adhere to these instructions and consequently
made more errors.

3.2 Predicate Generation
The next step in the pipeline is to generate predicates p that
describe the relations among the extracted constants. We use
GPT-3 on the Prompt P below.

Prompt P:

1 Given a problem and some categorized constants
of the form "category: constant_1; constant_2;
...; constant_n", generate the minimum number
of predicates to define the relations among
the categories of constants. Each generated
predicate is of the form "predicate(X1, X2,
..., Xn)" where X1, X2, ..., Xn are different
variables and each variable X belongs to one
of the categories. For each category, there
must exist at least one variable of some
predicate that belongs to this category.

2

3 Problem 1:
4 (Lines 4-8 from Prompt C: Omitted)
5

6 Predicates:
7 % The categories in Constants include

index_of_row and index_of_column. We use
different variables Ir and Ic to represent
index_of_row and index_of_column.

8 % We assign a queen at row Ir and column Ic,
where Ir belongs to index_of_row and Ic
belongs to index_of_column.

9 assign(Ir, Ic)
10

11 Problem 2:
12 (Lines 11-20 from Prompt C: Omitted)
13

14 Predicates:
15 % The categories in Constants include employee,

price, and wood_type. We use different
variables E, P, and W to represent employee,
price, and wood_type.

16 % We match an employee E with price P and wood
type W, where E belongs to employee, P belongs
to price, and W belongs to wood_type.

17 match(E, P, W)
18

19 Problem 3:
20 <story>
21

22 Constants:
23 <constants>
24

25 Predicates:

Line 1 is a general instruction describing the task of pred-
icate generation, and that the generated predicates should
follow the form of “predicate(X1, . . . , Xn)” where each Xi

is a distinct variable that represents a category of constants.



Again, the two examples follow. Lines 3–4 are a copy
of the first example in Lines 3–8 of Prompt C (where we
omit Lines 4–8 from Prompt C to reduce the space). Lines
6–9 continue the first example, where it now generates the
predicates with variables as arguments following the instruc-
tion. It also contains two comments (starting with symbol
%). The first comment in Line 7 recalls the categories of
constants and assigns a different variable to each category.
The second comment in Line 8 gives the English reading of
the predicate and variables, and emphasizes the link between
each variable and a category of constants. Similarly, Lines
11–17 present the second example.

Next, the story and constants are given for the third prob-
lem and GPT-3 is prompted to generate the predicate for that
example, given the general instruction and the preceding two
examples.

Given the extracted constants c and generated predicates
p, the next step in the pipeline is to generate ASP rules Π,
consisting of the Generate part and the Define&Test part.

3.3 Rule Generation: Generate
The Generate part of an ASP program defines all possi-
ble mappings of constants from different categories. This
is done by choice rules. In this step, an ASP program
Πgenerate is obtained by calling GPT-3 with Prompt R1.

Prompt R1:

1 Given some categorized constants in the form "
category: constant_1; constant_2; ...;
constant_n" and some predicates about the
relation among different categories of
constants, write ASP (Answer Set Programming)
rules to generate the search space of possible
relations.

2

3 Constants:
4 employee: "Bonita"; "Yvette"; "Tabitha".
5 price: 225; 275; 325.
6 wood_type: "ash"; "poplar"; "sandalwood".
7

8 Predicates:
9 % The categories include employee, price, and

wood_type. We use different variables E, P,
and W to represent employee, price, and
wood_type.

10 % We match an employee E with price P and wood
type W, where E belongs to employee, P belongs
to price, and W belongs to wood_type.

11 match(E, P, W)
12

13 ASP Rules:
14 % Define the constants in each category.
15 employee("Bonita"; "Yvette"; "Tabitha").
16 price(225; 275; 325).
17 wood_type("ash"; "poplar"; "sandalwood").
18

19 % For each employee E, it matches with exactly
1 price P and 1 wood type W.

20 {match(E, P, W): price(P), wood_type(W)}=1 :-
employee(E).

21

22 Constants:

23 <constants>
24

25 Predicates:
26 <predicates>
27

28 ASP rules:

In the above prompt, ⟨constants⟩ and ⟨predicates⟩ are to
be replaced for a new example. GPT-3 generates facts and
choice rules following the last line of the prompt.

The task in this step is to write facts and choice rules based
on the generated constants and predicates. Since this step
doesn’t require the details of the story, we omit the story
from the prompt to avoid unnecessary noisy information be-
ing included in the prompt. Each example only consists of
constants, predicates, and ASP rules to be generated, i.e.,
facts and choice rules.

Similar to the previous prompts, Line 1 is a general in-
struction, Lines 3–20 provide an example, and Lines 22–28
are for the queried example. The example ASP rules in Lines
14–20 contain comments (Lines 14 and 19), which will also
be generated for the queried example and help to gather se-
mantic information before generating a rule.

3.4 Rule Generation: Define and Test
The Define&Test part of an ASP program contains con-
straints that “weed out” the stable models that do not cor-
respond to valid answers. This step takes as input the puzzle
story q, constants c, and predicates p: semantically, the ASP
rules represent the content in story q while, syntactically, the
ASP rules must be formed by the extracted constants c and
generated predicates p. The ASP program Πdefine test is
obtained by calling GPT-3 with Prompt R2.

Prompt R2:

1 Consider the constraint in the following form
2 <C1>; <C2>; ...; <Cm> :- <L1>, <L2>, ..., <Ln>.
3 which says that if the conjunction "<L1> and <

L2> and ... and <Ln>" is true, then the
disjunction of comparisons "<C1> or <C2> or
... or <Cm>" must be true.

4

5 One can also add a restriction that "exactly k
of <C1>, <C2>, ..., <Cm> is true" by using the
following form

6 {<C1>; <C2>; ...; <Cm>}=k :- <L1>, <L2>, ..., <
Ln>.

7

8 Given a problem, extract all constraints from
the clues in the problem using only the
provided constants and predicates.

9

10 Problem 1:
11 "Against the Grain" offers hand-made wooden

furniture at reasonable prices. Each item is
made by an in-house employee. Using only the
clues that follow, match each item to the
employee who crafted it, and determine its
price and the type of wood used to make it.
Remember, as with all grid-based logic puzzles
, no option in any category will ever be used
more than once.



12 1. Bonita’s piece costs $325.
13 2. The item made of poplar costs more than

Yvette’s piece.
14 3. Tabitha’s item costs 50 dollars less than

the piece made of sandalwood.
15 4. The $275 item is either the piece made of

ash or Yvette’s item.
16

17 Constants:
18 employee: "Bonita"; "Yvette"; "Tabitha".
19 price: 225; 275; 325.
20 wood_type: "ash"; "poplar"; "sandalwood".
21

22 Predicates:
23 % The categories include employee, price, and

wood_type. We use different variables E, P,
and W to represent employee, price, and
wood_type.

24 % We match an employee E with price P and wood
type W, where E belongs to employee, P belongs
to price, and W belongs to wood_type.

25 match(E, P, W)
26

27 Constraints:
28 % No option in any category will ever be used

more than once.
29 {E1=E2; P1=P2; W1=W2}=0 :- match(E1,P1,W1),

match(E2,P2,W2), (E1,P1,W1)!=(E2,P2,W2).
30

31 % 1. Bonita’s piece costs $325.
32 P=325 :- match(E,P,W), E="Bonita".
33

34 % 2. The item made of poplar costs more than
Yvette’s piece.

35 P1>P2 :- match(E1,P1,W1), match(E2,P2,W2), W1="
poplar", E2="Yvette".

36

37 % 3. Tabitha’s item costs 50 dollars less than
the piece made of sandalwood.

38 P1=P2-50 :- match(E1,P1,W1), match(E2,P2,W2),
E1="Tabitha", W2="sandalwood".

39

40 % 4. The $275 item is either the piece made of
ash or Yvette’s item.

41 {W="ash"; E="Yvette"}=1 :- match(E,P,W), P=275.
42

43 (Problem 2 omitted)
44

45 Problem 3:
46 <story>
47

48 Constants:
49 <constants>
50

51 Predicates:
52 <predicates>
53

54 Constraints:

In the above prompt, ⟨story⟩ is a new puzzle, and
⟨constants⟩, ⟨predicates⟩ are generated by GPT-3 for that
story using Prompt C and Prompt P in Section 3.1 and 3.2.

Lines 1–8 are a general instruction describing the task of
Πdefine test generation and provides two rule forms for the

target ASP rules. The first rule form

C1;C2; . . . ;Cm ← L1, L2, . . . , Ln

says that “C1 or ... or Cm is true if L1 and ... and Ln are
true.” Here, each Li is a literal and each Ci is a comparison
in the input language of CLINGO, e.g., A > B, A = B + 3,
etc. The second rule form

{C1;C2; . . . ;Cm} = k ← L1, L2, . . . , Ln

additionally restricts that “exactly k of {C1, . . . , Cm} must
be true.” In principle, the first rule form is enough to rep-
resent various constraints. However, since the second rule
form is syntactically closer to certain complex sentences re-
lated to cardinality, e.g., “either ... or ...”, “neither ... nor ...”,
or “no ... is ...”, etc, we found that GPT-3 works much better
when we also include the second rule form.

4 Optional Enhancements to the Pipeline
Section 3 presented a general pipeline that automatically
writes an ASP program for a puzzle in natural language us-
ing LLM. This section explains two optional enhancements
that strengthen its robustness.

4.1 Constant Formatting
In the Constant Extraction step (Section 3.1), GPT-3 may
extract the names of the objects as they appear in the puz-
zle story, such as $225, Sue Simpson, and 8:30 AM,
which do not conform to the syntax of the input language of
answer set solver CLINGO. Also, GPT-3 applies arithmetic
computations (e.g., L1=L2+3) to constants surrounded by
double quotes (e.g., L2 is constant "9 inches") instead
of constants that are integers (e.g., L2 is constant 9).

A rule-based post-processing could be applied to turn
them into the right syntax, but alternatively, we employ
GPT-3 to generate syntactically correct forms. We found
that this method requires significantly less efforts and is
more general because GPT-3 applies the constant formatting
correctly even for unforeseen formats using some “common
sense,” which is lacking in the rule-based approach. We use
the following prompt for this.

The Constant Formatting step is done by calling GPT-3
with the following prompt, where ⟨constants⟩ at the end of
the prompt is replaced by the original (extracted) constants c
obtained by the Constant Extraction step (Section 3.1). The
GPT-3 response in this step is the updated constants c, serv-
ing as an input to other steps in the pipeline.

1 Given categorized constants of the form "
category: constant_1; constant_2; ...;
constant_n", format the category and constants
such that:

2 each category consists of only lowercase
letters and underscores, and

3 each constant is either an integer or a string
surrounded by double quotes, e.g., "United
States".

4

5 There are two ways below to format constants
and we must use the same way for all constants
of the same category.



6 1. Turn all constants of the same category into
integers with no space or special character.

7 2. Add double quotes around all constants of
the same category.

8 Note that the 1st way has a higher priority,
meaning that we must turn all constants of the
same category into integers whenever possible
. For example, twice or second can be turned
into 2, September can be turned into 9,
September 5th can be turned into 5 if all
dates are in September, but 9:30am can only be
turned into "9:30am" since no integer can
represent 9:30am.

9

10 Original constants:
11 Employees: Bonita; Yvette; Tabitha.
12 Prices: $225; $275; $325.
13 Wood types: ash; poplar; sandalwood.
14

15 Formatted constants:
16 employee: "Bonita"; "Yvette"; "Tabitha".
17 price: 225; 275; 325.
18 wood_type: "ash"; "poplar"; "sandalwood".
19

20 Original constants:
21 months: January; April; October; December.
22 times: 8:30AM; 10:30AM; 2:30PM; 3:30PM.
23 durations: 1 day; 3 days; 11 days; 12 days.
24

25 Formatted constants:
26 month: 1; 4; 10; 12.
27 time: "8:30AM"; "10:30PM"; "2:30PM"; "3:30PM".
28 duration: 1; 3; 11; 12.
29

30 Original constants:
31 ⟨constants⟩
32

33 Formatted constants:

4.2 Sentence Paraphrasing
Sometimes sentences may need to be paraphrased before an
LLM can correctly generate rules from them. The Sentence
Paraphrasing step provides the opportunity to not only sim-
plify or formalize the sentences from the original question
but also add the hidden information assumed to underlie the
question. For example, the following sentence

1 Of the person who won the prize in
bioengineering and Sue Simpson, one won in
1976 and the other won in 1968.

is one clue in the example question in Section 3. The cor-
rect translation requires an LLM to turn the above sentence
into at least 3 ASP rules, which would be hard for the cur-
rent LLMs (e.g., GPT-3). Instead, we can ask GPT-3 to first
paraphrase such kind of sentence into simpler ones below.

1 The person who won the prize in bioengineering
and Sue Simpson are different.

2 The person who won the prize in bioengineering
won in 1976 or won in 1968.

3 Sue Simpson won in 1976 or won in 1968.

The Sentence Paraphrasing step is done by calling GPT-
3 with the following prompt, where ⟨sentences⟩ at the end
of the prompt is replaced by the numbered sentences in the
queried puzzle story q, and the GPT-3 response in text is
used to replace the original sentences in q. This prompt is
dedicated to the logic puzzles from Puzzle Baron and only
paraphrases one kind of sentence in the form “of A and B,
one is C and the other is D.”

1 Copy a sequence of numbered sentences.
2

3 If a sentence is of the form "N. Of A and B,
one is C and the other is D", replace it with
3 sentences below.

4 N.1 A and B are different.
5 N.2 A is C or D.
6 N.3 B is C or D.
7

8 For every sentence, if it is not of the form "N
. Of ... and ...", simply copy it without
replacement. An easy way to determine if a
sentence is not of the above form is to check
if its first word is not of.

9

10 In the following example, one sentence is of
the above form.

11 Given:
12 1. The squad from Grenada ended with 2 silver

medals.
13 2. Of the team from Oman and the team that won

10 silver medals, one finished with 2 gold
medals and the other finished with 1 gold
medal.

14 Copy:
15 1. The squad from Grenada ended with 2 silver

medals.
16 2.1 The team from Oman and the team that won 10

silver medals are different.
17 2.2 The team from Oman finished with 2 gold

medals or finished with 1 gold medal.
18 2.3 The team that won 10 silver medals finished

with 2 gold medals or finished with 1 gold
medal.

19

20 In the following example, no sentence is of the
above form.

21 Given:
22 1. Tabitha’s item costs 50 dollars less than

the piece made of sandalwood.
23 2. The $275 item is either the piece made of

ash or Yvette’s item.
24 Copy:
25 1. Tabitha’s item costs 50 dollars less than

the piece made of sandalwood.
26 2. The $275 item is either the piece made of

ash or Yvette’s item.
27

28 Given:
29 ⟨sentences⟩
30 Copy:

5 Experiments
We tested the above pipeline on the logic puzzles dataset
from (Mitra and Baral 2015). Since the constants are pro-



Method train set test set

(Mitra and Baral 2015) – 71%
Zero-shot GPT-3 0% 2%
Few-shot GPT-3 4% 3%
Zero-shot GPT-4 12% 21%
Few-shot GPT-4 6% 7%
GPT-3 Generated ASP Rules 86% 81%
GPT-4 Generated ASP Rules 92% 92%

Table 1: Accuracy on 50 train and 100 test puzzles. GPT-3 refers
to the model named“text-davinci-003” in the OpenAI API, while
GPT-4 is the model named “gpt-4.”

Step Count
GPT-3 GPT-4

constant formatting 3 1
paraphrasing 2 4
constraint generation (syntax) 3 0
constraint generation (semantics) 13 3

Table 2: Mistakes on 100 test puzzles at different pipeline steps.

vided in the dataset as necessary information to solve each
puzzle, we apply Constant Formatting directly on the given
constants to generate constants c.

The dataset consists of 50 training examples and 100 test-
ing examples. When designing our prompts, we only consult
the training examples and not the testing examples. Table 1
shows the performance of our approach to zero-shot GPT-
3/GPT-4, few-shot GPT-3/GPT-4, and a fully-supervised
learning system LOGICIA (Mitra and Baral 2015). 3 In
the few-shot setting, we use the first two examples in the
training set as the few-shot examples. GPT-3 with zero-shot
and few-shot settings didn’t perform well, while zero-shot
GPT-4 could solve 21% of the test puzzles correctly, which
is significantly better than GPT-3’s performance. However,
this is much lower than our method’s 81%. Interestingly,
while the few-shot setting slightly improves over the zero-
shot for GPT-3, this is quite different with GPT-4. This
is likely because GPT-4 with the zero-shot setting was in-
structed to solve the puzzles in a step by step manner. How-
ever, for the few-shot setting, the examples only include the
problem and solution, which may have discouraged GPT-4
from working through the puzzles in steps.

Besides the fact that the direct execution of the LLMs re-
sults in low performance, it is hard to understand why they
fail to solve puzzles; in other words, the results are hard to
interpret.

On the other hand, in our method, although the LLMs can
still produce incorrect ASP programs, the errors are much
less and it is easy to identify the failures by examining the
generated ASP programs. Table 2 summarizes the number
of mistakes we encountered on 100 test data at each pipeline
step. Below we provide a representative example for each

3For GPT-3/GPT-4, to avoid randomness, we use a temperature
of 0 (deterministic) and a top P value of 1 (default setting).

type of errors from Table 2 and highlight the mistakes in
red. 4 The examples are taken from GPT-3, although each
type also occurs with GPT-4, except for the syntax error.

• Failure to convert certain constants into integers dur-
ing constant formatting. The only mistake happens
when, given constants “points: 181 points; 184 points;
187 points; 190 points”, GPT-3 generated

1 points: "181 points"; "184 points";
2 "187 points"; "190 points".

while it should generate constants in integers below to be
able to apply arithmetic operations.

1 points: 181; 184; 187; 190.

• Addition of wrong clues during paraphrasing. One
such error happens when paraphrasing the sentence “2.
The book published in 2011 is either Orlando’s project
or Jan’s project”. GPT-3 generated the following three
sentences.

1 % 2.1 The book published in 2011 is either
Orlando’s project or Jan’s project.

2 % 2.2 Orlando’s project is the book
3 published in 2011 or the 200 page
4 project.
5 % 2.3 Jan’s project is the book
6 published in 2011 or the 200 page
7 project.

The first sentence is simply a copy of the original sentence
while the last two should not be there since they cannot be
inferred from the original sentence.

• Syntax error during constraint generation. One typ-
ical syntax error is an incorrect variable name in a gener-
ated rule. For example, given the sentence “The study on
the Liberty starts 2 months after Eunice’s project”, GPT-3
generates the following rule

1 M=M1+2 :- match(S,M,Sh), match(S1,M1,Sh1),
S="Eunice", Sh="Liberty".

while the variable S in the second line should have been
S1.

• Semantic error during constraint generation. One
typical semantic error is caused by a wrong equation. For
example, given the sentence “the $35,000 structure is 15
sq ft smaller than the $29,000 home”, GPT-3 generated

1 S1=S2+15 :- match(C1,S1,P1), match(C2,S2,P2)
, P1=35000, P2=29000.

while the equation in the head should have been
S1=S2-15.

While our pipeline doesn’t achieve 100% accuracy on
generated ASP programs, most failed puzzles only have one

4We have provided a breakdown of the errors we encoun-
tered on Github at https://github.com/azreasoners/gpt-asp-rules/
tree/main/error analysis.

https://github.com/azreasoners/gpt-asp-rules/tree/main/error_analysis
https://github.com/azreasoners/gpt-asp-rules/tree/main/error_analysis


mistake and such a mistake is easy to correct. This means
that our pipeline could serve as a good suggestion tool to
prepare draft ASP programs for users. For example, com-
pared to designing all the ASP programs for 50+100 puzzles
manually, it would save a significant amount of time to only
check the correctness of the automatically generated rules
for the programs that don’t have a single stable model.

6 More Examples
Previous approaches that automate logic puzzle solving ei-
ther only predict constants and relations (Mitra and Baral
2015) or treat rule generation as a classification problem on
a small set of rule templates (Jabrayilzade and Tekir 2020).
In comparison, our method is generative, where rules are
generated in an open-ended manner under the guidance of a
few examples.

While it’s hard to apply the previous methods to other
domains without substantial changes, applying our pipeline
to new domains requires only minor adjustments on the
prompts. To apply our pipeline to other domains, we make a
slight adjustment by turning the last sentence in Line 11 of
Prompt R2 into a numbered clue “0. No option in any cate-
gory will ever be used more than once.”, since it was specific
to grid logic puzzles.

In the following part of this section, we show how our
pipeline can be further applied to generate ASP programs
for Sudoku and the Jobs Puzzle.

6.1 Sudoku
If we describe Sudoku problem with the following story q

1 The Sudoku problem is a classic computer
science problem that involves filling a 9x9
grid with digits from 1 to 9.

2 1. The same number cannot appear twice in the
same row.

3 2. The same number cannot appear twice in the
same column.

4 3. The same number cannot appear twice in the 3
x3 box. (You can use division / to check if 2
cells are in the same box.)

our pipeline generates the following ASP program Π.

1 % Define the constants in each category.
2 index_of_row(1; 2; 3; 4; 5; 6; 7; 8; 9).
3 index_of_column(1; 2; 3; 4; 5; 6; 7; 8; 9).
4 number(1; 2; 3; 4; 5; 6; 7; 8; 9).
5 % For each row Ir and column Ic, it assigns

exactly 1 number N.
6 {assign(Ir, Ic, N): number(N)}=1 :-

index_of_row(Ir), index_of_column(Ic).
7

8 % 1. The same number cannot appear twice in the
same row.

9 {N1=N2}=0 :- assign(Ir,Ic1,N1), assign(Ir,Ic2,
N2), (Ic1,N1)!=(Ic2,N2).

10

11 % 2. The same number cannot appear twice in the
same column.

12 {N1=N2}=0 :- assign(Ir1,Ic,N1), assign(Ir2,Ic,
N2), (Ir1,N1)!=(Ir2,N2).

13

14 % 3. The same number cannot appear twice in the
3x3 box.

15 {N1=N2}=0 :- assign(Ir1,Ic1,N1), assign(Ir2,Ic2
,N2), (Ir1/3,Ic1/3)=(Ir2/3,Ic2/3), (Ir1,
Ic1,N1)!=(Ir2,Ic2,N2).

This ASP program Π is almost correct except that the red
part in Line 16 of Π should be

1 ((Ir1-1)/3, (Ic1-1)/3) = ((Ir2-1)/3, (Ic2-1)/3)

since the row and column indices start from 1. This for-
mula seems too difficult for GPT-3 to notice and generate
unless some examples are provided . On the other hand, if
we slightly adjust Lines 7–8 of Prompt C (Section 3.1) to
make the indices start from 0, then the generated ASP pro-
gram Π becomes correct as Lines 2–3 of Π are changed to
the following facts.

1 index_of_row(0; 1; 2; 3; 4; 5; 6; 7; 8).
2 index_of_column(0; 1; 2; 3; 4; 5; 6; 7; 8).

GPT-4 also fails to generate the last rule correctly, al-
though it makes a different mistake.

6.2 Jobs Puzzle
The Jobs Puzzle studied in (Schwitter 2013) asks one to as-
sign 8 different jobs to 4 people while satisfying the given
constraints. The full puzzle q is shown below.

1 1. There are four people: Roberta, Thelma,
Steve, and Pete.

2 2. Among them, they hold eight different jobs.
3 3. Each holds exactly two jobs.
4 4. The jobs are: chef, guard, nurse, telephone

operator, police officer (gender not implied),
teacher, actor, and boxer.

5 5. The job of nurse is held by a male.
6 6. The husband of the chef is the telephone

operator.
7 7. Roberta is not a boxer.
8 8. Pete has no education past the ninth grade.
9 9. Roberta, the chef, and the police officer

went golfing together.
10 Question: Who holds which jobs?

This puzzle was considered a challenge for logical express-
ibility and automated reasoning (Shapiro 2011).

To apply our method to the Jobs Puzzle, some paraphras-
ing was needed before the Define&Test part of rule genera-
tion. We manually paraphrased the above puzzle to the fol-
lowing

1 There are four people: Roberta, Thelma, Steve,
and Pete. Among them, they hold eight
different jobs. Each holds exactly two jobs.
The jobs are: chef, guard, nurse, telephone
operator, police officer (gender not implied),
teacher, actor, and boxer.

2 5. The job of nurse is held by a male.
3 6. The husband of the chef is the telephone

operator, which means the chef is a female and
the telephone operator is a male.

4 7. Roberta is not a boxer.



5 8. Pete has no education past the ninth grade.
(Three jobs teacher, nurse, and police officer
require higher education.)

6 9. Roberta, the chef, and the police officer
went golfing together, meaning they are
different people.

7 10.1 The same job cannot be assigned to
different people.

8 10.2 Roberta is a female.
9 10.3 Thelma is a female.

10 10.4 Steve is a male.
11 10.5 Pete is a male.
12 10.6 The actor is a male.
13 Question: Who holds which jobs?

by turning clues 1–4 as background story, clarifying clues 6,
8, and 9, and adding a few hidden clues numbered 10.X at
the end.

As for the prompts, we only need to update Line 1 of
Prompt R1 to the following to allow for {...}=k in a rule.

1 Given a problem as the background information,
turn the provided categorized constants and
predicates into rules.

2

3 Tasks:
4 1. Write a rule of the form "category(

constant_1; constant_2; ...; constant_n)" to
represent each row of categorized constants in
the form "category: constant_1; constant_2;
...; constant_n".

5 2. Write a rule of the form "{predicate(X_1,
X_2, ..., X_n): category_2(X_2), ...,
category_n(X_n)}=k :- category_1(X_1)" for
each predicate of the form "predicate(X_1, X_2
, ..., X_n)".

Finally, GPT-3 generates the following ASP program:

1 % Task 1. Define the constants in each category
.

2 person("Roberta"; "Thelma"; "Steve"; "Pete").
3 job("chef"; "guard"; "nurse"; "telephone

operator"; "police officer"; "teacher"; "actor
"; "boxer").

4 gender("male"; "female").
5 % Task 2. For each person P, there is exactly 2

jobs J and gender G.
6 {assign(P, J, G): job(J), gender(G)}=2 :-

person(P).
7 % Done tasks 1 and 2.
8 % 5. The job of nurse is held by a male.
9 G="male" :- assign(P,J,G), J="nurse".

10 % 6. The husband of the chef is the telephone
operator, which means the chef is a female and
the telephone operator is a male.

11 G1="female" :- assign(P1,J1,G1), assign(P2,J2,
G2), J1="chef", J2="telephone operator".

12 G2="male" :- assign(P1,J1,G1), assign(P2,J2,G2)
, J1="chef", J2="telephone operator".

13 % 7. Roberta is not a boxer.
14 J!="boxer" :- assign(P,J,G), P="Roberta".
15 % 8. Pete has no education past the ninth grade

. (Three jobs teacher, nurse, and police
officer require higher education.)

16 {J="teacher"; J="nurse"; J="police officer"}=0
:- assign(P,J,G), P="Pete".

17 % 9. Roberta, the chef, and the police officer
went golfing together, meaning they are
different people.

18 P1!=P2 :- assign(P1,J1,G1), assign(P2,J2,G2),
assign(P3,J3,G3), P1="Roberta", J2="chef", J3
="police officer".

19 P2!=P3 :- assign(P1,J1,G1), assign(P2,J2,G2),
assign(P3,J3,G3), P1="Roberta", J2="chef", J3
="police officer".

20 P1!=P3 :- assign(P1,J1,G1), assign(P2,J2,G2),
assign(P3,J3,G3), P1="Roberta", J2="chef", J3
="police officer".

21 % 10.1 The same job cannot be assigned to
different people.

22 {P1=P2}=0 :- assign(P1,J,G1),
23 assign(P2,J,G2), (P1,G1)!=(P2,G2).
24 % 10.2 Roberta is a female.
25 G="female" :- assign(P,J,G), P="Roberta".
26 % 10.3 Thelma is a female.
27 G="female" :- assign(P,J,G), P="Thelma".
28 % 10.4 Steve is a male.
29 G="male" :- assign(P,J,G), P="Steve".
30 % 10.5 Pete is a male.
31 G="male" :- assign(P,J,G), P="Pete".
32 % 10.6 The actor is a male.
33 G="male" :- assign(P,J,G), J="actor".

which is almost correct with a single mistake in translating
clue 10.1. If we just replace this constraint (in red) with

1 P1=P2 :- assign(P1,J,G1), assign(P2,J,G2).

the corrected ASP program has exactly one stable model,
which is the correct solution to the Jobs Puzzle.

Similarly, GPT-4 also failed to generate a completely cor-
rect ASP program. It also couldn’t generate a correct rule for
constraint 10.1, and furthermore failed to produce the gen-
der category in constant extraction step Prompt C), missing
“gender: "male"; "female".”

7 Conclusion
LLMs are a relatively recent technology that have shown to
be disruptive. Despite their wide range of applications, their
responses are not always reliable and cannot be trusted.

Automatic rule generation is a difficult problem. How-
ever, by using LLMs as a front-end to answer set program-
ming, we can utilize their linguistic abilities to translate nat-
ural language descriptions into the declarative language of
answer set programs. Unlike previous methods that use al-
gorithmic or machine learning techniques, we find that a pre-
trained large language model with a good prompt can gener-
ate reasonably accurate answer set programs. We present a
pipeline with general steps that systematically build an ASP
program in a natural way. This method not only leads to
higher accuracy but also makes the results interpretable.

We expect this type of work to expand the application of
KR methods that may appear unfamiliar to non-experts. We
also anticipate that this pipeline will serve as a suggestion
tool to help users prepare valid constants, useful predicates,
or draft ASP programs.
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A Prompts in the Pipeline
In this section, we list all prompts used in our pipeline.

Prompt C:

1 Given a problem, extract all different
constants and their categories in the form "
category: constant_1; constant_2; ...;
constant_n". Here, the format of each constant
is turned into either an integer or a string
surrounded by double quotes, e.g., "some name
".

2

3 Problem 1:
4 Consider N-Queens Puzzle on a chessboard of

size 8x8. The goal is to assign 8 queens on
the chessboard so that no two queens can share
the same row, column, or diagonal.

5

6 Constants:
7 index_of_row: 1; 2; 3; 4; 5; 6; 7; 8.
8 index_of_column: 1; 2; 3; 4; 5; 6; 7; 8.
9

10 Problem 2:
11 "Against the Grain" offers hand-made wooden

furniture at reasonable prices. Each item is
made by an in-house employee. Using only the
clues that follow, match each item to the
employee who crafted it, and determine its
price and the type of wood used to make it.
Remember, as with all grid-based logic puzzles
, no option in any category will ever be used
more than once.

12 1. Bonita’s piece costs $325.
13 2. The item made of poplar costs more than

Yvette’s piece.
14 3. Tabitha’s item costs 50 dollars less than

the piece made of sandalwood.
15 4. The $275 item is either the piece made of

ash or Yvette’s item.
16

17 Constants:
18 employee: "Bonita"; "Yvette"; "Tabitha".
19 price: 225; 275; 325.
20 wood_type: "ash"; "poplar"; "sandalwood".
21

22 Problem 3:
23 <question: query>
24

25 Constants:

Prompt P:

1 Given a problem and some categorized constants
of the form "category: constant_1; constant_2;
...; constant_n", generate the minimum number
of predicates to define the relations among
the categories of constants. Each generated
predicate is of the form "predicate(X1, X2,
..., Xn)" where X1, X2, ..., Xn are different
variables and each variable X belongs to one
of the categories. For each category, there
must exist at least one variable of some
predicate that belongs to this category.

2

3 Problem 1:
4 Consider N-Queens Puzzle on a chessboard of

size 8x8. The goal is to assign 8 queens on
the chessboard so that no two queens can share
the same row, column, or diagonal.

5

6 Constants:
7 index_of_row: 1; 2; 3; 4; 5; 6; 7; 8.
8 index_of_column: 1; 2; 3; 4; 5; 6; 7; 8.
9

10 Predicates:
11 % The categories in Constants include

index_of_row and index_of_column. We use
different variables Ir and Ic to represent
index_of_row and index_of_column.

12 % We assign a queen at row Ir and column Ic,
where Ir belongs to index_of_row and Ic
belongs to index_of_column.

13 assign(Ir, Ic)
14

15 Problem 2:
16 "Against the Grain" offers hand-made wooden

furniture at reasonable prices. Each item is
made by an in-house employee. Using only the
clues that follow, match each item to the
employee who crafted it, and determine its
price and the type of wood used to make it.
Remember, as with all grid-based logic puzzles
, no option in any category will ever be used
more than once.

17 1. Bonita’s piece costs $325.
18 2. The item made of poplar costs more than

Yvette’s piece.
19 3. Tabitha’s item costs 50 dollars less than

the piece made of sandalwood.
20 4. The $275 item is either the piece made of

ash or Yvette’s item.
21

22 Constants:
23 employee: "Bonita"; "Yvette"; "Tabitha".
24 price: 225; 275; 325.
25 wood_type: "ash"; "poplar"; "sandalwood".
26

27 Predicates:
28 % The categories in Constants include employee,

price, and wood_type. We use different
variables E, P, and W to represent employee,
price, and wood_type.

29 % We match an employee E with price P and wood
type W, where E belongs to employee, P belongs
to price, and W belongs to wood_type.

30 match(E, P, W)
31

32 Problem 3:
33 <question: query>
34

35 <constants: query>
36

37 Predicates:

Prompt R1:

1 Given some categorized constants in the form "
category: constant_1; constant_2; ...;
constant_n" and some predicates about the



relation among different categories of
constants, write ASP (Answer Set Programming)
rules to generate the search space of possible
relations.

2

3 Constants:
4 number: 1; 2; 3; 4; 5; 6; 7; 8.
5

6 Predicates:
7 % The categories include number. Note that we

must use different variables in each predicate
.

8 % We assign a queen at row N1 and column N2,
where N1 belongs to number and N2 belongs to
number.

9 assign(N1, N2)
10

11 ASP Rules:
12 % Define the constants in each category.
13 number(1; 2; 3; 4; 5; 6; 7; 8).
14 % For each row N1, there is exactly 1 queen

assigned at some column N2.
15 {assign(N1, N2): number(N2)}=1 :- number(N1).
16

17 Constants:
18 employee: "Bonita"; "Yvette"; "Tabitha".
19 price: 225; 275; 325.
20 wood_type: "ash"; "poplar"; "sandalwood".
21

22 Predicates:
23 % The categories include employee, price, and

wood_type. We use different variables E, P,
and W to represent employee, price, and
wood_type.

24 % We match an employee E with price P and wood
type W, where E belongs to employee, P belongs
to price, and W belongs to wood_type.

25 match(E, P, W)
26

27 ASP Rules:
28 % Define the constants in each category.
29 employee("Bonita"; "Yvette"; "Tabitha").
30 price(225; 275; 325).
31 wood_type("ash"; "poplar"; "sandalwood").
32 % For each employee E, it matches with exactly

1 price P and 1 wood type W.
33 {match(E, P, W): price(P), wood_type(W)}=1 :-

employee(E).
34

35 <constants: query>
36

37 <predicates: query>
38

39 ASP rules:

Prompt R2:

1 Consider the constraint in the following form
2 <C1>; <C2>; ...; <Cm> :- <L1>, <L2>, ..., <Ln>.
3 which says that if the conjunction "<L1> and <

L2> and ... and <Ln>" is true, then the
disjunction of comparisons "<C1> or <C2> or
... or <Cm>" must be true.

4

5 One can also add a restriction that "exactly k

of <C1>, <C2>, ..., <Cm> is true" by using the
following form

6 {<C1>; <C2>; ...; <Cm>}=k :- <L1>, <L2>, ..., <
Ln>.

7

8 Given a problem, extract all constraints from
the clues in the problem using only the
provided constants and predicates.

9

10 Problem 1:
11 "Against the Grain" offers hand-made wooden

furniture at reasonable prices. Each item is
made by an in-house employee. Using only the
clues that follow, match each item to the
employee who crafted it, and determine its
price and the type of wood used to make it.
Remember, as with all grid-based logic puzzles
, no option in any category will ever be used
more than once.

12 1. Bonita’s piece costs $325.
13 2. The item made of poplar costs more than

Yvette’s piece.
14 3. Tabitha’s item costs 50 dollars less than

the piece made of sandalwood.
15 4. The $275 item is either the piece made of

ash or Yvette’s item.
16

17 Constants:
18 employee: "Bonita"; "Yvette"; "Tabitha".
19 price: 225; 275; 325.
20 wood_type: "ash"; "poplar"; "sandalwood".
21

22 Predicates:
23 % The categories include employee, price, and

wood_type. We use different variables E, P,
and W to represent employee, price, and
wood_type.

24 % We match an employee E with price P and wood
type W, where E belongs to employee, P belongs
to price, and W belongs to wood_type.

25 match(E, P, W)
26

27 Constraints:
28 % No option in any category will ever be used

more than once.
29 {E1=E2; P1=P2; W1=W2}=0 :- match(E1,P1,W1),

match(E2,P2,W2), (E1,P1,W1)!=(E2,P2,W2).
30

31 % 1. Bonita’s piece costs $325.
32 P=325 :- match(E,P,W), E="Bonita".
33

34 % 2. The item made of poplar costs more than
Yvette’s piece.

35 P1>P2 :- match(E1,P1,W1), match(E2,P2,W2), W1="
poplar", E2="Yvette".

36

37 % 3. Tabitha’s item costs 50 dollars less than
the piece made of sandalwood.

38 P1=P2-50 :- match(E1,P1,W1), match(E2,P2,W2),
E1="Tabitha", W2="sandalwood".

39

40 % 4. The $275 item is either the piece made of
ash or Yvette’s item.

41 {W="ash"; E="Yvette"}=1 :- match(E,P,W), P=275.
42



43 Problem 2:
44 The Winter Olympics have just wrapped up in

Norway. Using only the clues that follow,
determine the number of gold, silver and
bronze medals won by each country. Remember,
as with all grid-based logic puzzles, no
option in any category will ever be used more
than once.

45 1. The four teams are the team from Bolivia,
the team that won 3 gold medals, the team that
won 6 silver medals, and the team from
Argentina.

46 2. The team from Oman and the team that won 10
silver medals are different.

47 3. The team from Oman finished with 2 gold
medals or finished with 1 gold medal.

48 5. The squad that won 3 gold medals, the squad
that won 6 silver medals and the squad from
Bolivia were all different teams.

49 6. Neither the team from Argentina nor the
squad that won 2 silver medals is the squad
that won 4 gold medals.

50 8. The squad that won 2 gold medals is either
the squad that won 6 silver medals or the team
from Grenada.

51

52 Constants:
53 country: "Argentina"; "Bolivia"; "Grenada"; "

Oman".
54 silver_medals: 2; 6; 10; 11.
55 gold_medals: 1; 2; 3; 4.
56

57 Predicates:
58 % The categories include country, silver_medals

, and gold_medals. We use different variables
C, S, and G to represent country,
silver_medals, and gold_medals.

59 % We assign a country C with silver medals S
and gold medals G, where C belongs to country,
S belongs to silver_medals, and G belongs to
gold_medals.

60 assign(C, S, G)
61

62 Constraints:
63 % No option in any category will ever be used

more than once.
64 {C1=C2; S1=S2; G1=G2}=0 :- assign(C1,S1,G1),

assign(C2,S2,G2), (C1,S1,G1)!=(C2,S2,G2).
65

66 % 1. The four teams are the team from Bolivia,
the team that won 3 gold medals, the team that
won 6 silver medals, and the team from
Argentina.

67 {C="Bolivia"; G=3; S=6; C="Argentina"}=1 :-
assign(C,S,G).

68

69 % 2. The team from Oman and the team that won
10 silver medals are different.

70 C1!=C2 :- assign(C1,S1,G1), assign(C2,S2,G2),
C1="Oman", S2=10.

71

72 % 3. The team from Oman finished with 2 gold
medals or finished with 1 gold medal.

73 {G=2; G=1}=1 :- assign(C,S,G), C="Oman".
74

75 % 5. The squad that won 3 gold medals, the
squad that won 6 silver medals and the squad
from Bolivia were all different teams.

76 C1!=C2 :- assign(C1,S1,G1), assign(C2,S2,G2),
assign(C3,S3,G3), G1=3, S2=6, C3="Bolivia".

77 C2!=C3 :- assign(C1,S1,G1), assign(C2,S2,G2),
assign(C3,S3,G3), G1=3, S2=6, C3="Bolivia".

78 C1!=C3 :- assign(C1,S1,G1), assign(C2,S2,G2),
assign(C3,S3,G3), G1=3, S2=6, C3="Bolivia".

79

80 % 6. Neither the team from Argentina nor the
squad that won 2 silver medals is the squad
that won 4 gold medals.

81 {C="Argentina"; S=2}=0 :- assign(C,S,G), G=4.
82 C1!=C2 :- assign(C1,S1,G1), assign(C2,S2,G2),

C1="Argentina", S2=2.
83

84 % 8. The squad that won 2 gold medals is either
the squad that won 6 silver medals or the
team from Grenada.

85 {S=6; C="Grenada"}=1 :- assign(C,S,G), G=2.
86

87 Problem 3:
88 <question: query>
89

90 <constants: query>
91

92 <predicates: query>
93

94 Constraints:

In Prompt R2, since the maximum number of tokens (in-
cluding the tokens in prompt and response) allowed by GPT-
3 is 4096, we deleted 2 clues (numbered 4 and 7) in the ques-
tion description of the second logic puzzle (lines 44-50) and
their corresponding ASP rules (lines 63-85).

B A Few Example Answer Set Programs
Generated by GPT-3

B.1 Puzzle 1 in test set
Given the question q below,

1 The local foodie club met at Chez Martin last
night for their monthly meal. Match each
person to their choice of wine and entree, and
determine how much each owed at the end of
the night. Remember, as with all grid-based
logic puzzles, no option in any category will
ever be used more than once.

2 1. The person who had the port paid 1 dollar
more than Kurt.

3 2. Of the person who paid $25 and the person
who paid $24, one was Priscilla and the other
had the shiraz.

4 3. Of the person who paid $27 and Priscilla,
one had the chianti and the other had the port
.

5 4. Isabel paid $25.

our pipeline generates the following ASP program

1 % Define the constants in each category.
2 wine("chianti"; "port"; "riesling"; "shiraz").
3 price(24; 25; 26; 27).



4 name("Isabel"; "Kurt"; "Priscilla"; "Robin").
5 % For each person N, it matches with exactly 1

wine W and 1 price P.
6 {match(W, P, N): wine(W), price(P)}=1 :- name(N

).
7

8 % No option in any category will ever be used
more than once.

9 {W1=W2; P1=P2; N1=N2}=0 :- match(W1,P1,N1),
match(W2,P2,N2), (W1,P1,N1)!=(W2,P2,N2).

10

11 % 1. The person who had the port paid 1 dollar
more than Kurt.

12 P1=P2+1 :- match(W1,P1,N1), match(W2,P2,N2), W1
="port", N2="Kurt".

13

14 % 2.1 The person who paid $25 and the person
who paid $24 are different.

15 N1!=N2 :- match(W1,P1,N1), match(W2,P2,N2), P1
=25, P2=24.

16

17 % 2.2 The person who paid $25 was Priscilla or
had the shiraz.

18 {N="Priscilla"; W="shiraz"}=1 :- match(W,P,N),
P=25.

19

20 % 2.3 The person who paid $24 was Priscilla or
had the shiraz.

21 {N="Priscilla"; W="shiraz"}=1 :- match(W,P,N),
P=24.

22

23 % 3.1 The person who paid $27 and Priscilla are
different.

24 N1!=N2 :- match(W1,P1,N1), match(W2,P2,N2), P1
=27, N2="Priscilla".

25

26 % 3.2 The person who paid $27 had the chianti
or had the port.

27 {W="chianti"; W="port"}=1 :- match(W,P,N), P
=27.

28

29 % 3.3 Priscilla had the chianti or had the port
.

30 {W="chianti"; W="port"}=1 :- match(W,P,N), N="
Priscilla".

31

32 % 4. Isabel paid $25.
33 P=25 :- match(W,P,N), N="Isabel".

which has exactly 1 stable model and this stable model
matches with the solution.

1 match("chianti",24,"Priscilla")
2 match("shiraz",25,"Isabel")
3 match("riesling",26,"Kurt")
4 match("port",27,"Robin")

B.2 Puzzle 2 in test set
Given the question q below,

1 A group of friends has decided to try several
different weight-loss diets and exercises to
see who amongst them can lose the most weight
in 3 months. Using only the clues below, match
each person to their total number of pounds

lost, and determine the diet type they used
and their preferred type of exercise. Remember
, as with all grid-based logic puzzles, no
option in any category will ever be used more
than once.

2 1. Celia used the gluten-free diet.
3 2. The friend who lost 3 pounds used the low-

fat diet.
4 3. Mandy lost 2 fewer pounds than Raymond.
5 4. Mandy lost 4 more pounds than Tom.
6 5. The dieter who used the vegan diet is either

Mandy or the friend who lost 3 pounds.

our pipeline generates the following ASP program

1 % Define the constants in each category.
2 pounds_lost(3; 5; 7; 9).
3 diet("dairy-free"; "gluten-free"; "low-fat"; "

vegan").
4 name("Celia"; "Mandy"; "Raymond"; "Tom").
5 % For each name N, it matches with exactly 1

pounds lost Pl and 1 diet D.
6 {match(N, Pl, D): pounds_lost(Pl), diet(D)}=1

:- name(N).
7

8 % No option in any category will ever be used
more than once.

9 {N1=N2; Pl1=Pl2; D1=D2}=0 :- match(N1,Pl1,D1),
match(N2,Pl2,D2), (N1,Pl1,D1)!=(N2,Pl2,D2).

10

11 % 1. Celia used the gluten-free diet.
12 D="gluten-free" :- match(N,Pl,D), N="Celia".
13

14 % 2. The friend who lost 3 pounds used the low-
fat diet.

15 Pl=3 :- match(N,Pl,D), D="low-fat".
16

17 % 3. Mandy lost 2 fewer pounds than Raymond.
18 Pl1=Pl2-2 :- match(N1,Pl1,D1), match(N2,Pl2,D2)

, N1="Mandy", N2="Raymond".
19

20 % 4. Mandy lost 4 more pounds than Tom.
21 Pl1=Pl2+4 :- match(N1,Pl1,D1), match(N2,Pl2,D2)

, N1="Mandy", N2="Tom".
22

23 % 5. The dieter who used the vegan diet is
either Mandy or the friend who lost 3 pounds.

24 {N="Mandy"; Pl=3}=1 :- match(N,Pl,D), D="vegan
".

which has exactly 1 stable model and this stable model
matches with the solution.

1 match("Tom",3,"low-fat")
2 match("Celia",5,"gluten-free")
3 match("Mandy",7,"vegan")
4 match("Raymond",9,"dairy-free")

B.3 Variants of Sudoku
Continuing the process in Section 6, we can generate the
ASP program for variants of Sudoku by adding 1 or 2 more
clues to the puzzle description q. Below are the newly gen-
erated constraints for the added clues in each variant.
Anti-Knight Sudoku



1 % 4. The same number cannot appear twice in a
knight move.

2 {N1=N2}=0 :- assign(Ir1,Ic1,N1), assign(Ir2,Ic2
,N2), |Ir1-Ir2|+|Ic1-Ic2|=3, (Ir1,Ic1,N1)!=(
Ir2,Ic2,N2).

Sudoku-X

1 % 4. The same number cannot appear twice among
the cells whose row index is equal to column
index.

2 {N1=N2}=0 :- assign(Ir1,Ic1,N1), assign(Ir2,Ic2
,N2), Ir1=Ic1, Ir2=Ic2, (Ir1,Ic1,N1)!=(Ir2,Ic2
,N2).

3

4 % 5. The same number cannot appear twice among
the cells whose row and column indices sum up
to 8.

5 {N1=N2}=0 :- assign(Ir1,Ic1,N1), assign(Ir2,Ic2
,N2), Ir1+Ic1=8, Ir2+Ic2=8, (Ir1,Ic1,N1)!=(Ir2
,Ic2,N2).

Offset Sudoku

1 % 4. The same number cannot appear twice among
the cells with the same relative position in
3*3 boxes.

2 {N1=N2}=0 :- assign(Ir1,Ic1,N1), assign(Ir2,Ic2
,N2), Ir1\3=Ir2\3, Ic1\3=Ic2\3, (Ir1,Ic1,N1)
!=(Ir2,Ic2,N2).

C Additional GPT-4 Analysis
C.1 Representative Example Errors (for GPT-4)
• Failure to convert certain constants into integers dur-

ing constant formatting. Given the constants: “times:
8:00am; 9:00am; 10:00am; 11:00am”, GPT-4 generated

1 times("8:00am"; "9:00am"; "10:00am";
2 "11:00am").

instead of the correct generation

1 times(8;9;10;11).

• Addition of wrong clues during paraphrasing. Given
the clue “2. The conductor working on June 12 is either
the conductor departing from Buttonwillow or Greg.”,
GPT-4 generates the three sentences

1 2.1 The conductor working on June 12
and

2 Greg are different.
3 2.2 The conductor working on June 12 is

either the conductor departing from
Buttonwillow or Greg.

4 Greg is either the conductor departing
5 from Buttonwillow or the conductor
6 working on June 12

The second sentence is a copy of the original, while 2.1
and 2.3 cannot be inferred and are therefore wrong.

• Semantic error during constraint generation. The
sentence “Vasquez will leave sometime after Macdonald.”
is parsed by GPT-4 into

1 M1<M2 :- schedule(D1,M1,Du1), schedule(D2,M2
,Du2), D1="Vasquez", D2="Macdonald".

which is incorrect, the less than sign should be changed to
greater than:

1 M1>M2 :- schedule(D1,M1,Du1), schedule(D2,M2,
Du2), D1="Vasquez", D2="Macdonald".

There are no syntax errors encountered with GPT-4.

C.2 Error Subtypes
We further break down the paraphrasing error into two types,
(p1) a sentence representing an exclusive disjunction is in-
correctly translated into additional sentences. For example,
“3. The card with an APR of 11% is either the card with the
$4,000 credit limit or the one with the $20,000 credit limit.”,
is incorrectly translated into

1 3.1 The card with an APR of 11% and the card
with the $4,000 credit limit are different.

2 3.2 The card with an APR of 11% is either the
card with the $4,000 credit limit or the one
with the $20,000 credit limit.

3 3.3 The card with the $4,000 credit limit is
either the card with an APR of 11% or the one
with the $20,000 credit limit.

and (p2) a sentence representing that four things are different
is incorrectly translated into two incorrect sentences. For ex-
ample, the statement “ 5. The four people are Deep Shadow,
the superhero who started in 2007, the hero who started in
2009 and Matt Minkle.”, is incorrectly translated into

1 5.1 Deep Shadow, the superhero who started in
2007, the hero who started in 2009, and Matt
Minkle are different.

2 5.2 Deep Shadow is either the superhero who
started in 2007 or the hero who started in
2009 or Matt Minkle.

3 5.3 The superhero who started in 2007 is either
Deep Shadow or the hero who started in 2009
or Matt Minkle.

4 5.4 The hero who started in 2009 is either Deep
Shadow or the superhero who started in 2007
or Matt Minkle.

Constraint Generation (semantic errors) is further broken
into four subtypes. The first (c1) has to do with an incorrect
comparison between times. For example, the statement “Tri-
cia came in a half-hour after Ora.” is incorrectly translated
into

1 % 2. Tricia came in a half-hour after Ora.
2 T1="7:00am", T2="7:30am" :- order(C1,B1,T1),

order(C2,B2,T2), C1="Ora", C2="Tricia".
3 T1="7:30am", T2="8:00am" :- order(C1,B1,T1),

order(C2,B2,T2), C1="Ora", C2="Tricia".
4 T1="8:00am", T2="8:30am" :- order(C1,B1,T1),

order(C2,B2,T2), C1="Ora", C2="Tricia".



The second (c2) is when an incorrect operator is used (e.g.
“+” in place of “-”). For example, the statement “% 1.
Vasquez will leave sometime after Macdonald.” is incor-
rectly translated into

1 M1<M2 :- schedule(D1,M1,Du1), schedule(D2,M2,
Du2), D1="Vasquez", D2="Macdonald".

the third (c3) is a disjunction in the head of a rule which
should not be there. For example, the statement “% 3. The
11-year-old bird has a wingspan 8 inches shorter than Char-
lie.” is incorrectly translated into

1 A=11, W=W1-8 :- assign(N,W,A), assign(N1,W1,A1)
, N="Charlie".

and last (c4) belongs to semantic errors which do not fit
into any of the previous types and only occur once.

Error Subtype Count
GPT-3 GPT-4

Constant Formatting 3 1
Paraphrasing 2 3

p1 1 3
p2 1 1

Cons. Gen. (syntax) 3 0
Cons. Gen. (semantics) 13 4

c1 3 2
c2 4 1
c3 3 0
c4 3 0

Table 3: Errors on 100 test puzzles on GPT-3 and GPT-4, broken
down by subtype.

Table 3 shows the count for the errors and error subtypes
encountered for GPT-3 and GPT-4. We find that unlike GPT-
3, GPT-4 does not make any syntax errors, however it in-
creases its rate of paraphrasing errors.

C.3 Sudoku and Jobs Puzzle
Sudoku GPT-4 correctly generates all rules except for the
the constraints here:

1 % 1. The same number cannot appear twice in the
same row.

2 {Ir1=Ir2; Ic1=Ic2; N1=N2}=0 :- assign(Ir1,
Ic1,N1), assign(Ir2,Ic2,N2), (Ir1,Ic1,N1)!=(
Ir2,Ic2,N2), Ir1=Ir2.

3 % 2. The same number cannot appear twice in the
same column.

4 {Ir1=Ir2; Ic1=Ic2; N1=N2}=0 :- assign(Ir1,
Ic1,N1), assign(Ir2,Ic2,N2), (Ir1,Ic1,N1)!=(
Ir2,Ic2,N2), Ic1=Ic2.

5 % 3. The same number cannot appear twice in the
3x3 box.

6 {Ir1=Ir2;
Ic1=Ic2; N1=N2}=0 :- assign(Ir1,Ic1,N1),
assign(Ir2,Ic2,N2), (Ir1,Ic1,N1)!=(Ir2,Ic2,N2)
, (Ir1-1)/3=(Ir2-1)/3, (Ic1-1)/3=(Ic2-1)/3.

The red portion should not be included, otherwise the pro-
gram runs correctly. Note that GPT-4 generates the cor-
rect (Ir1-1), (Ir2-2), (Ic1-1), and (Ic2-1) terms
while GPT-3 does not.

Jobs Puzzle In the constant extraction step, GPT-4 fails
to generate the gender category. From the problem

1 Problem 3:
2 1. There are four people: Roberta, Thelma,

Steve, and Pete.
3 2. Among them, they hold eight different jobs.
4 3. Each holds exactly two jobs.
5 4. The jobs are: chef, guard, nurse, telephone

operator, police officer (gender not
6 implied), teacher, actor, and boxer.
7 5. The job of nurse is held by a male.
8 6. The husband of the chef is the telephone

operator.
9 7. Roberta is not a boxer.

10 8. Pete has no education past the ninth grade.
11 9. Roberta, the chef, and the police officer

went golfing together.
12 Question: Who holds which jobs?

It produces:

1 person: "Roberta"; "Thelma"; "Steve"; "Pete".
2 job: "chef"; "guard"; "nurse"; "telephone

operator"; "police officer"; "teacher"; "actor
"; "boxer"

and is missing “gender: "male"; "female".”
Also, on prompt Prompt R1, GPT-4 produces the cor-

rect output but then continues to produces constraints that it
should not:

1 % Task 1. Define the constants in each category
.

2 person("Roberta"; "Thelma"; "Steve"; "Pete").
3 job("chef"; "guard"; "nurse"; "telephone

operator"; "police officer"; "teacher"; "actor
"; "boxer").

4 gender("male"; "female").
5 % Task 2. For each person P, they hold exactly

2 jobs J and have a gender G.
6 {assign(P, J, G): job(J), gender(G)}=2 :-

person(P).
7 % Additional rules based on the problem
8 constraints:
9 % 5. The job of nurse is held by a

male.
10 assign(P, "nurse", "male") :-

person(P).
11 % 6. The husband of the chef is the
12 telephone operator.
13 assign(P1, "chef", "female"),

assign(P2,
14 "telephone operator", "male") :-
15 person(P1), person(P2).
16 % 7. Roberta is not a boxer.
17 :- assign("Roberta", "boxer", ).
18 % 8. Pete has no education past the

ninth
19 grade.
20 :- assign("Pete", "teacher", ).
21 % 9. Roberta, the chef, and the police
22 officer went golfing together.



23 assign("Roberta", , ), assign( ,
"chef", ),

24 assign( , "police officer", ) :-
25 person().

Since these constraints not supposed to be generated yet,
they are not appropriately prompted and hence GPT-4 pro-
duces incorrect constraints. Apart from that, GPT-4 pro-
duces a similar incorrect rule on rule 10.1 that GPT-3 pro-
duces.

1 % 10.1 The same job cannot be assigned to
different people.

2 {P1=P2}=0 :- assign(P1,J1,G1), assign(P2,J2,G2)
, J1=J2, P1!=P2.

which should be

1 P1=P2 :- assign(P1,J,G1), assign(P2,J,G2).
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