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Abstract

While large language models (LLMs), such as
GPT-3, appear to be robust and general, their
reasoning ability is not at a level to compete
with the best models trained for specific natural
language reasoning problems. In this work, we
observe that a large language model could serve
as a highly effective few-shot semantic parser
that turns natural language sentences into a log-
ical form that can be used as input to answer
set programs, a logic-based declarative knowl-
edge representation formalism. The combina-
tion leads to a robust and general system that
works across multiple QA tasks without the
need to retrain for new tasks. It requires only
a few examples to direct an LLM to tune to
an individual task, along with ASP knowledge
modules that can be reused over multiple tasks.
We demonstrate that this method achieves state-
of-the-art performance on several NLP bench-
marks, such as bAbI, StepGame, CLUTRR,
and gSCAN, and also handles robot planning
tasks that an LLM alone fails to solve.

1 Introduction

A typical way to handle a question-answering task
is to train a neural network model on large train-
ing data and test it on similar data. Such models
work well with linguistic variability and ambiguity,
but often learn statistical features and correlations
rather than true reasoning (Ruder, 2021), which
makes them not robust, lack generalization, and
difficult to interpret.

Alternatively, transformer-based large language
models (LLMs) have recently shown wide success
on many downstream tasks, demonstrating general
reasoning capability on diverse tasks without being
retrained. However, when we restrict our atten-
tion to individual NLP reasoning benchmarks, they
usually do not perform as well as state-of-the-art
models despite various efforts to improve accuracy
through prompt engineering (Wei et al., 2022; Zhou
et al., 2022).

Similarly, LLMs gained attention for plan gener-
ation for robots due to the rich semantic knowledge
they acquired about the world (Ahn et al., 2022;
Huang et al., 2022; Zeng et al., 2022). However,
LLMs are known to perform shallow reasoning
and cannot find complex plans (Valmeekam et al.,
2022).

In another context, Nye et al. (2021) note that
LLMs are good at generating system 1-like se-
quences, which are often inconsistent and inco-
herent. This is because LLMs are trained to predict
subsequent words in a sequence and do not appear
to have a deep understanding of concepts such as
cause and effect, logic, and probability, which are
important for reasoning.

Nevertheless, we note that the rich semantic
knowledge that LLMs possess makes them effec-
tive general-purpose few-shot semantic parsers that
can convert linguistically variable natural language
sentences into atomic facts that serve as input to
logic programs. We also note that the fully declara-
tive nature of answer set programs (Lifschitz, 2008;
Brewka et al., 2011) makes them a good pair with
the LLM semantic parsers, providing interpretable
and explainable reasoning on the parsed result of
the LLMs using background knowledge. Combin-
ing large language models and answer set programs
leads to an attractive dual-process, neuro-symbolic
reasoning that works across multiple QA tasks with-
out retraining for individual tasks.

We tested this idea with several NLP bench-
marks, bAbI (Weston et al., 2016), StepGame (Shi
et al., 2022), CLUTRR (Sinha et al., 2019), and
gSCAN (Ruis et al., 2020), by applying the same
dual-system model and achieved state-of-the-art
performance in all of them. Furthermore, the high
accuracy and transparency allow us to easily iden-
tify the source of errors, making our system a useful
data set validation tool as well. In particular, we
found a significant amount of errors in the original
CLUTRR dataset that are hard to detect manually.

While the new version of GPT-3 (Brown et al.,



2020) (text-davinci-003) shows improvement over
its predecessors, we observe that it also retains
critical limitations. In the process, we develop
prompt methods for semantic parsing to overcome
some of them.

2 Preliminaries

2.1 Semantic Parsing and LLMs
Semantic parsing involves converting a natural lan-
guage query or statement into a structured represen-
tation that a computer can understand and manip-
ulate. Statistical methods have increased in popu-
larity (Zelle and Mooney, 1996; Miller et al., 1996;
Zettlemoyer and Collins, 2005; Wong and Mooney,
2007), and encoder-decoder models in particular
have been widely used (Dong and Lapata, 2016; Jia
and Liang, 2016; Kočiskỳ et al., 2016). However,
these statistical methods require annotated input
and output pairs. Furthermore, machine learning
models too often fail to compositionally generalize
to unseen data (Lake and Baroni, 2018).

More recently, pre-trained language models have
been applied to semantic parsing tasks (Liu et al.,
2021), such as generating SQL queries, SPARQL
queries, logical forms, or programs, from natu-
ral language, together with fine-tuning or prompt-
tuning on pre-trained models, such as BART,
RoBERTa and GPT-2 (Chen et al., 2020a; Shin
et al., 2021; Schucher et al., 2022). With larger
pre-trained networks, such as GPT-3, prompting ap-
pears to yield a reasonable semantic parser without
the need for fine-tuning (Shin et al., 2021; Drozdov
et al., 2022).

Another line of related work is to apply pre-
trained language models to relation extraction, the
task of extracting semantic relationships from a text
given two or more entities (Liu et al., 2021). Wang
et al. (2022) do zero-shot relation extraction with
pre-trained language models from the BERT family
and GPT-2 variants. Zhou and Chen (2022) fine-
tune BERT and RoBERTa models for the extraction
of sentence-level relations. Chen et al. (2022) apply
prompt-tuning to RoBERT_LARGE for relation ex-
traction. Similar to ours, Agrawal et al. (2022) use
a few-shot prompt with GPT-3 for the extraction of
clinical relations.

2.2 Dual-System Model
There is increasing interest in combining neural
and symbolic systems (Marcus, 2018; Lamb et al.,
2020; Sarker et al., 2021). Such dual-system mod-
els achieved new state-of-the-art results in visual

QA (Goldman et al., 2018; Sampat and Lee, 2018;
Yi et al., 2019; Chen et al., 2020b; Ding et al.,
2021). In the case of textual problems, to improve
LLMs to generate more consistent and coherent
sentences, Nye et al. (2021) suggest that generation
be decomposed into two parts: candidate sentence
generation by an LLM (system 1 thinking) and
a logical pruning process (system 2 thinking) im-
plemented via a separate symbolic module. They
show that this neuro-symbolic, dual-process model
requires fewer data to learn and achieves higher
accuracy and better generalization. However, the
main limitation of their work is that the symbolic
module is manually constructed in Python code for
the specific given task, which requires nontrivial
efforts. Furthermore, their Python symbolic mod-
ule is not readily reusable or composable. Also, the
main results focused on the consistent text genera-
tion problem rather than evaluating the method on
the datasets and comparing it with existing models.
This is because writing the world models in Python
is not a scalable method.

We follow the idea from (Nye et al., 2021)
but adopt logic programming in place of the Sys-
tem 2 process. We argue that this combination
is much more appealing than the one from (Nye
et al., 2021), achieving the results that were only
promised in (Nye et al., 2021) but not shown.

2.3 Answer Set Programming
Answer Set Programming (ASP) (Lifschitz, 2008;
Brewka et al., 2011) is a declarative logic program-
ming paradigm that has been shown to be effective
in knowledge-intensive applications. It is based
on the stable model (a.k.a. answer set) semantics
of logic programs (Gelfond and Lifschitz, 1988),
which could express causal reasoning, default rea-
soning, aggregates, and various other constraints.
There are several efficient solvers, such as CLINGO,
DLV, and WASP.

It is also known that classical logic-based ac-
tion formalisms, such as the situation calculus (Mc-
Carthy and Hayes, 1969; Reiter, 2001) and the
event calculus (Shanahan, 1995), can be formu-
lated as answer set programs. For example, the
following is one of the axioms in Discrete Event
Calculus stating the commonsense law of inertia,
saying that fluent F holds at the next time if there
is no action affecting it.

% (DEC5)
holds_at(F,T+1) :- timepoint(T), fluent(F),

holds_at(F,T), -released_at(F,T+1),
not terminated(F,T).



Such a rule is universal and applies to almost all
objects.

Answer set programs are also known to be elab-
oration tolerant (McCarthy, 1998). There has been
work on modularizing knowledge bases in ASP,
such as module theorem (Oikarinen and Janhunen,
2006; Babb and Lee, 2012) and knowledge mod-
ules (Baral et al., 2006). While ASP has been
widely applied to many reasoning problems, it has
not been considered as much in reasoning with nat-
ural language text because its input is expected to
be strictly in a logical form, giving little flexibil-
ity in accepting diverse forms of natural language
input.

We use CLINGO v5.6.0 as the answer set solver.
For the language of CLINGO, we refer the reader
to the textbook (Lifschitz, 2019) or the CLINGO

manual.1

3 Our Method

We call our framework [LLM]+ASP where [LLM]
denotes a large pre-trained network such as GPT-3,
which we use as a semantic parser to generate input
to the ASP reasoner. More specifically, we assume
data instances of the form ⟨S, q, a⟩, where S is a
context story in natural language, q is a natural lan-
guage query associated with S, and a is the answer.
We use an LLM to convert a problem description
(that is, context S and query q) into atomic facts,
which are inputted into the ASP solver, together
with background knowledge encoded as ASP rules.
The output of the ASP solver is interpreted as the
prediction to this data instance. Figure 1 illustrates
the inference flow in the context of StepGame. The
pipeline is simple but general enough to apply to
various tasks without retraining; it only requires re-
placing few-shot prompts to the LLM and the ASP
background knowledge with those appropriate for
the new tasks.

Combining LLMs and ASP this way allows sym-
bolic reasoning to be robust to varying and raw
textual input; the ASP knowledge modules are not
affected by the various forms of text input that ex-
press the same facts. Our method does not require
training datasets. Instead, a few examples that turn
natural language sentences into atomic facts are suf-
ficient to build a semantic parser thanks to learned
representations in LLMs. ASP knowledge modules
can be reused for different tasks.

1https://github.com/potassco/guide/
releases.

3.1 Prompts for Fact Extraction
We use GPT-3 to extract atomic facts from the
story and query. Most of the time, giving several
examples yields accurate semantic parsing. The
following is an example prompt for bAbI.
Please parse the following statements into facts

. The available keywords are: pickup, drop,
and go.

Sentence: Max journeyed to the bathroom.
Semantic parse: go(Max, bathroom).

Sentence: Mary grabbed the football there.
Semantic parse: pickup(Mary, football).
...

We find that GPT-3 is highly tolerable to linguis-
tic variability. For example, in StepGame, GPT-3
can turn various sentences below into the same
atomic fact top_right("C","D").
C is to the top right of D.
C is to the right and above D at an angle of

about 45 degrees.
C is at a 45 degree angle to D, in the upper

righthand corner.
C is directly north east of D.
C is below D at 2 o’clock.

In the experiments to follow, we find that the
following strategy works well for fact extraction.

1. In general, we find that if the information in
a story (or query) can be extracted indepen-
dently, parsing each sentence separately (us-
ing the same prompt multiple times) typically
works better than parsing the whole story.

2. There is certain commonsense knowledge that
GPT-3 is not able to leverage from the exam-
ples in the prompt. In this case, detailing the
missing knowledge in the prompt could work.
For example, in StepGame, clock numbers are
used to denote cardinal directions, but GPT-3
couldn’t translate correctly even with a few
examples in the prompt. It works after enu-
merating all cases (“12 denotes top, 1 and 2
denote top_right, 3 denotes right, . . . ") in the
prompt.

3. Semantic parsing tends to work better if we
instruct GPT-3 to use a predicate name that
better reflects the intended meaning of the
sentence. For example, "A is there and B
is at the 5 position of a clock face" is better
to be turned into down_right(B,A) than
top_left(A,B) although, logically speak-
ing, the relations are symmetric.

The complete set of prompts for semantic parsing
is given in Appendix ??.

https://github.com/potassco/guide/releases
https://github.com/potassco/guide/releases


Figure 1: The GPT-3+ASP pipeline for the StepGame dataset.

3.2 Knowledge Modules
Instead of constructing a minimal world model for
each task in Python code (Nye et al., 2021), we
use ASP knowledge modules. While some knowl-
edge could be lengthy to be described in English,
it could be concisely expressed in ASP. For exam-
ple, the location module contains rules for spatial
reasoning in a 2D grid space and is used for bAbI,
StepGame, and gSCAN. Below is the main rule
in the location module that computes the location
(Xa,Ya) of object A from the location (Xb,Yb)
of object B by adding the offsets (Dx,Dy) defined
by the spatial relation R between A and B.
location(A, Xa, Ya) :- location(B, Xb, Yb),

is(A, R, B), offset(R, Dx, Dy),
Xa=Xb+Dx, Ya=Yb+Dy.

The location module also includes 9 predefined
offsets, e.g., offset(left,-1,0), that can be
used to model multi-hop spatial relations of objects
or effects of a robot’s moving in a 2D space. For
example, queries in StepGame are about the spatial
relation R of object A to B. Using the location
module, one can fix B’s location to be (0,0) and
compute the spatial relation R based on the location
of A as follows.
location(B, 0, 0) :- query(A, B).
answer(R) :- query(A, B), location(A, X, Y),

offset(R, Dx, Dy),
Dx=-1: X<0; Dx=0: X=0; Dx=1: X>0;
Dy=-1: Y<0; Dy=0: Y=0; Dy=1: Y>0.

The second rule above contains six conditional
literals among which Dx=-1:X<0 says that “Dx
must be -1 if X<0.” For example, if A’s location
(X,Y) is (-3,0), then (Dx,Dy) is (-1,0)

and the answer R is left. Similar rules can also
be applied to bAbI task 17, which asks if A is R of
B.

In the above rules, the relation R in, e.g.,
is(A,R,B), is a variable and can be substituted
by any binary relation. Such high-order representa-
tion turns out to be quite general and applicable to
many tasks that query relation or its arguments.

Figure 2: The knowledge modules at the bottom are
used in each task on the top.

Figure 2 shows the knowledge modules used in
this paper, where DEC denotes the Discrete Event
Calculus axioms from (Mueller, 2006; Lee and
Palla, 2012). In this section, we explained the main
rules in the location module. The complete ASP
knowledge modules are given in Appendix ??.

4 Experiments

We apply the method in the previous section to four
datasets.2 Recall that we do few-shot in-context
learning, but do not use the training set included
in these datasets. We use the same pipeline as in
Figure 1 with different prompts and knowledge
modules for each dataset. More details about exper-
iment settings are available in the appendix. The
code is submitted as supplementary material.

2Due to space restriction, we put the experiments about
Pick&Place in Appendix ??.



Task GPT-3(d3) GPT-3(d3) GPT-3(d3) STM(Le et al., 2020) QRN(Seo et al., 2017)
Few-Shot CoT +ASP (10k train) (10k train) (1k train)

1: Single supporting fact 98.4 97.3 100.0 100.0 ± 0.0 100.0 100.0
2: Two supporting facts 60.8 72.2 100.0 99.79 ± 0.23 100.0 99.3
3: Three supporting facts 39.6 54.1 100.0 97.87 ± 1.14 100.0 94.3
4: Two arg relations 60.4 72.7 100.0 100.0 ± 0.0 100.0 100.0
5: Three arg relations 88.2 89.1 99.8 99.43 ± 0.18 100.0 98.9
6: Yes/no questions 97.4 97.3 100.0 100.0 ± 0.0 100.0 99.1
7: Counting 90.6 88.6 100.0 99.19 ± 0.27 100.0 90.4
8: Lists/sets 96.2 97.1 100.0 99.88 ± 0.07 99.6 94.4
9 : Simple negation 98.4 98.2 100.0 100.0 ± 0.0 100.0 100.0
10: Indefinite knowledge 93.6 92.4 100.0 99.97 ± 0.06 100.0 100.0
11: Basic coreference 93.6 99.2 100.0 99.99 ± 0.03 100.0 100.0
12: Conjunction 88.6 88.8 100.0 99.96 ± 0.05 100.0 100.0
13: Compound coreference 98.4 97.3 100.0 99.99 ± 0.03 100.0 100.0
14: Time reasoning 78.0 91.5 100.0 99.84 ± 0.17 99.9 99.2
15: Basic deduction 57.0 95.0 100.0 100.0 ± 0.0 100.0 100.0
16: Basic induction 90.8 97.5 100.0 99.71 ± 0.15 100.0 47.0
17: Positional reasoning 66.0 70.8 100.0 98.82 ± 1.07 95.9 65.6
18: Size reasoning 89.8 97.1 100.0 99.73 ± 0.28 99.3 92.1
19: Path finding 21.0 28.7 100.0 97.94 ± 2.79 99.9 21.3
20: Agents motivations 100.0 100.0 100.0 100.0 ± 0.0 100.0 99.8
Average 80.34 86.18 99.99 99.85 99.70 90.1

Table 1: Test accuracy on 20 tasks in bAbI data

4.1 bAbI
The bAbI dataset (Weston et al., 2016) is a collec-
tion of 20 QA tasks that have been widely applied
to test various natural language reasoning problems,
such as deduction, path-finding, spatial reasoning,
and counting. State-of-the-art models, such as
self-attentive associative-based two-memory model
(STM) (Le et al., 2020) and Query-Reduction net-
works (QRN) (Seo et al., 2017) achieve close to
100% accuracy after training with 10k instances
while QRN’s accuracy drops to 90% with 1k train-
ing instances.

We first designed two GPT-3 baselines, one with
few shot prompts (containing a few example ques-
tions and answers) and the other with Chain-of-
Thought (CoT) prompts (Wei et al., 2022), which
state the relevant information to derive the answer.

We also apply GPT-3+ASP. For example, we use
GPT-3 to turn “the kitchen is south of the bathroom”
into an atomic fact is(kitchen, southOf,
bathroom) by giving a few examples of the same
kind. Regarding knowledge modules, Tasks 1–3, 6–
9, 10–14, and 19 are about events over time and use
the DEC knowledge module. Tasks 4, 17, and 19
require various domain knowledge modules such
as location and action knowledge modules. The
remaining tasks do not require domain knowledge
and rely only on simple rules to extract answers
from parsed facts.

Table 1 compares our method with the two GPT-
3 baselines, as well as two state-of-the-art methods

on bAbI datasets, STM and QRN. Interestingly, the
new GPT-3, text-davinci-003 (denoted GPT-3 (d3)),
with basic few-shot prompting achieves 80.34%
accuracy, while CoT improves it to 86.18%. GPT-
3(d3)+ASP achieves state-of-the-art performance
on bAbI with 99.99% average performance among
all tasks, producing only two answers that disagree
with the labels in the dataset. It turns out that the
two questions are malformed since the answers
are ambiguous, and our model’s answers can be
considered correct.3

4.2 StepGame
Although bAbI has been extensively tested, it has
several problems. Shi et al. (2022) note data
leakage between the train and the test sets where
named entities are fixed and only a small number
of relations are used. Palm et al. (2018) point
out that models do not need multi-hop reasoning
to solve the bAbI dataset. To address the issues,
Shi et al. (2022) propose the StepGame dataset. It
is a contextual QA dataset in which the system is
required to interpret a story S about spatial relation-
ships among several entities and answers a query q
about the relative position of two of those entities,
as illustrated in Figure 1. Unlike the bAbI dataset,
StepGame uses a large number of named entities,
and requires multi-hop reasoning up to as many as
10 reasoning steps.

In the basic form of the StepGame dataset, each
3See Appendix ?? for the examples.



story consists of k sentences that describe k spatial
relationships between k + 1 entities in a chain-like
shape. In this paper, we evaluate the StepGame
dataset with noise, where the original chain is ex-
tended with noise statements by branching out with
new entities and relations.

Similarly to bAbI, we designed two GPT-3 base-
lines and applied our method to the StepGame data
set. More details on the prompts are available in
Appendix ??.

Method k=1 k=2 k=3 k=4 k=5

RN 22.6 17.1 15.1 12.8 11.5
RRN 24.1 20.0 16.0 13.2 12.3
UT 45.1 28.4 17.4 14.1 13.5
STM 53.4 36.0 23.0 18.5 15.1
TPR-RNN 70.3 46.0 36.1 26.8 24.8
TP-MANN 85.8 60.3 50.2 37.5 31.3
SynSup 98.6 95.0 92.0 79.1 70.3

Few-Shot (d3) 55.0 37.0 25.0 30.0 32.0
CoT (d3) 61.0 45.0 30.0 35.0 35.0
GPT-3(c1)+ASP 44.7 38.8 40.5 58.8 62.4
GPT-3(d2)+ASP 92.6 89.9 89.1 93.8 92.9

Method k=6 k=7 k=8 k=9 k=10

RN 11.1 11.5 11.2 11.1 11.3
RRN 11.6 11.4 11.8 11.2 11.7
UT 12.7 12.1 11.4 11.4 11.7
STM 13.8 12.6 11.5 11.3 11.8
TPR-RNN 22.3 19.9 15.5 13.0 12.7
TP-MANN 28.5 26.5 23.7 22.5 21.5
SynSup 63.4 58.7 52.1 48.4 45.7

Few-Shot (d3) 29.0 21.0 22.0 34.0 31.0
CoT (d3) 27.0 22.0 24.0 23.0 25.0
GPT-3(c1)+ASP 57.4 56.2 58.0 56.5 54.1
GPT-3(d2)+ASP 91.6 91.2 90.4 89.0 88.3

Table 2: Test accuracy on the StepGame test dataset,
where (c1), (d2), and (d3) denote text-curie-001, text-
davinci-002, and text-davinci-003 models, respectively

For each k ∈ {1, . . . , 10}, the StepGame dataset
with noise consists of 30,000 training samples,
1000 validation samples, and 10,000 test samples.
To save the API cost for GPT-3, we only evaluated
the two GPT-3 baselines on the first 100 test sam-
ples and evaluated our method on the first 1,000
test samples for each k ∈ {1, . . . , 10}. Table 2
compares the accuracy of our method with the two
baselines of GPT-3 and the current methods, i.e.
RN (Santoro et al., 2017), RRN (Palm et al., 2018),
UT (Dehghani et al., 2018), STM (Le et al., 2020),
TPR-RNN (Schlag and Schmidhuber, 2018), TP-
MANN (Shi et al., 2022), and SynSup (with pre-
training on the SPARTUN dataset) (Mirzaee and
Kordjamshidi, 2022). Surprisingly, the GPT-3 base-
lines could achieve accuracy comparable to other
models (except for SynSup) for large k values. CoT

does not always help and decreases the accuracy
with big ks. This may be because there is a higher
chance of making a mistake in a long chain of
thought. GPT-3(d2)+ASP outperforms all state-
of-the-art methods and the GPT-3 baselines by a
large margin for k = 4, . . . , 10. Although SynSup
achieves a higher accuracy for k = 1, 2, 3, this
is misleading due to errors in the dataset. As we
analyze below, about 10.7% labels in the data are
wrong. The SynSup training makes the model learn
to make the same mistakes over the test dataset,
which is why its performance looks better than
ours.

The modular design of GPT-3+ASP enables us
to analyze the reasons behind its wrong predictions.
We collected the first 100 data instances for each
k ∈ {1, . . . , 10} and manually analyzed the predic-
tions on them.

Among 1000 predictions of GPT-3(d2)+ASP,
108 of them disagree with the dataset labels, and
we found that 107 of those have errors in the labels.
For example, given the story and question “J and Y
are horizontal and J is to the right of Y. What is the
relation of the agent Y with the agent J?”, the label
in the dataset is “right” while the correct relation
should be “left”.4 Recall that our method is inter-
pretable, so we could easily identify the source of
errors.

4.3 CLUTRR

CLUTRR (Sinha et al., 2019) is a contextual QA
dataset that requires inferring family relationships
from a story. Sentences in CLUTRR are generated
using 6k template narratives written by Amazon
Mechanical Turk crowd-workers, and thus are more
realistic and complex compared to those in bAbI
and StepGame.

CLUTRR consists of two subtasks, systematic
generalization that evaluates stories containing un-
seen combinations of logical rules (Minervini et al.,
2020; Bergen et al., 2021) and robust reasoning
that evaluates stories with noisy descriptions (Tian
et al., 2021). Since we use ASP for logical rea-
soning, which easily works for any combination
of logical rules, we focus on the robust reasoning
task.

Table 3 compares our method with RN (Santoro

4The remaining disagreeing case is due to text-davinci-
002’s mistake. For the sentence, “if E is the center of a clock
face, H is located between 2 and 3.” text-davinci-002 turns
it into “right(H, E)” whereas text-davinci-003 turns it into
“top-right(H, E)” correctly. To save API cost for GPT-3, we
did not re-run the whole experiments with text-davinci-003.



Method CLU. clean supp. irre. disc.

RN 1.0 49 68 50 45
MAC 1.0 63 65 56 40
Bi-att 1.0 58 67 51 57
GSM 1.0 68.5 48.6 62.9 52.8
GPT-3(d3)+ASP 1.0 68.5 82.8 74.8 67.4

GPT-3(d3)+ASP 1.3 97.0 84.0 92.0 90.0

Table 3: Test accuracy on 4 categories in CLUTRR 1.0
and CLUTRR 1.3 datasets

et al., 2017), MAC (Hudson and Manning, 2018),
BiLSTM-attention (Sinha et al., 2019), and GSM
(Tian et al., 2021) on the original CLUTRR dataset,
namely CLUTRR 1.0, in four categories of data
instances: clean, supporting, irrelevant, and discon-
nected. Except for our method, all other models are
trained on the corresponding category of CLUTRR
training data. Although our method achieves simi-
lar or higher accuracies in all categories, they are
still much lower than we expected.

We found that such low accuracy is due to the
clear errors in CLUTRR, originating mostly from
errors in the template narratives or the generated
family graphs that violate common sense. The au-
thors of CLUTRR recently published CLUTRR
1.3 codes to partially resolve this issue. 5 With
the new code, we created a new dataset, namely
CLUTRR 1.3, consisting of 400 data instances with
100 for each of the four categories. The last row in
Table 3 shows that our method actually performs
well on realistic sentences in CLUTRR. Indeed,
with our method (text-davinci-003) on CLUTRR
1.3 dataset, 363 out of 400 predictions are correct,
16 are still wrong due to data mistakes (e.g., the
label says “Maryann has an uncle Bruno” while the
noise sentence added to the story is “Maryann told
her son Bruno to give the dog a bath”), and 21 are
wrong due to GPT-3’s parsing mistakes (e.g., GPT-
3 turned the sentence “Watt and Celestine asked
their mother, if they could go play in the pool” into
mother("Watt", "Celestine"). Since
the sentences in CLUTRR 1.3 are more realistic
than those of bAbI and StepGame, GPT-3 makes
more mistakes even after reasonable efforts of
prompt engineering. More details on data errors
and GPT-3 errors are available in Appendix ?? and
Appendix ??.

We also evaluated our method on a simpler and
cleaner variant of the CLUTRR data set, namely
CLUTRR-S, that was used as a benchmark prob-

5https://github.com/facebookresearch/
clutrr/tree/develop

Method clean supp. irre. disc.

DeepProbLog 100 100 100 94
GPT-3(d2)+ASP 100 100 97 97
GPT-3(d3)+ASP 100 100 100 100

Table 4: Test accuracy on CLUTRR-S dataset

lem for a state-of-the-art neuro-symbolic approach
DeepProbLog (Manhaeve et al., 2021). Table 4
compares the accuracy of our method and Deep-
ProbLog in all 4 categories of test data. GPT-
3(d3)+ASP achieves 100% accuracy, outperform-
ing DeepProbLog without the need for training.
Remark: Due to the modular structure, our
method could serve as a data set validation tool to
detect errors in a dataset. We detected 107 wrong
data instances in the first 1000 data in StepGame
and 16 wrong data instances in the 400 data in
CLUTRR 1.3.

4.4 gSCAN

The gSCAN dataset (Ruis et al., 2020) poses a task
in which an agent must execute action sequences
to achieve a goal (specified by a command in a
natural language sentence) in a grid-based visual
navigation environment. The dataset consists of
two tasks, and we evaluate our method on the data
splits from the compositional generalization task.
There is one shared training set, one test set (split
A) randomly sampled from the same distribution
of the training set, and seven test sets (splits B
to H) with only held-out data instances (i.e., not
appearing in the training set) in different ways.

In the gSCAN dataset, each data instance is a
tuple ⟨G, q, a⟩ where G is the grid configuration (in
JSON format) describing the size of the gird, the
location and direction of the agent, and the location
and features of each object in the grid; q is a query
(e.g., “pull a yellow small cylinder hesitantly”); and
a is the answer in the form of a sequence of actions
(e.g., “turn right, walk, stay, pull, stay, pull, stay”).
For each data instance, we (i) use a Python script to
extract atomic facts (e.g., pos(agent,(2,3)))
from the grid configuration G; (ii) extract
atomic facts from query q into atomic facts
(e.g., query(pull), queryDesc(yellow),
while(hesitantly)) using GPT-3; and (iii)
predict the sequence of actions for this query us-
ing ASP. The details of the prompts are given in
Appendix ??.

Table 5 compares the accuracy of our method
and the state-of-the-art methods, i.e., GECA (Ruis
et al., 2020), DualSys (Nye et al., 2021) and Vil-

https://github.com/facebookresearch/clutrr/tree/develop
https://github.com/facebookresearch/clutrr/tree/develop


Method A B C D

GECA 87.60 34.92 78.77 0.00
DualSys 74.7 81.3 78.1 0.01
Vilbert+CMA 99.95 99.90 99.25 0.00

GPT-3(c1)+ASP 98.30 100 100 100
GPT-3(d2)+ASP 100 100 100 100

Method E F G H

GECA 33.19 85.99 0.00 11.83
DualSys 53.6 76.2 0.0 21.8
Vilbert+CMA 99.02 99.98 0.00 22.16

GPT-3(c1)+ASP 100 100 100 100
GPT-3(d2)+ASP 100 100 100 100

Table 5: Test accuracy on the gSCAN dataset

bert+CMA (Qiu et al., 2021), on the gSCAN test
dataset in eight splits. To save API cost for GPT-
3, we only evaluated the first 1000 data instances
of each split. With text-davinci-002, our method
achieves 100% accuracy. GPT-3+ASP with text-
curie-001, the accuracy is slightly lower, making
17 errors in split A. The errors are of two kinds.
The language model fails to extract adverbs in the
correct format for 11 data instances (e.g., GPT-3 re-
sponded queryDesc(while spinning) in-
stead of while(spinning)) and didn’t ground
the last word in a query for 6 data instances (e.g.,
for query walk to a small square, GPT-
3 missed an atomic fact queryDesc(square)).
Once the parsed results are correct, ASP does not
make a mistake in producing plans.

4.5 Findings

The following summarizes the findings of the ex-
perimental evaluation.

• Our experiments confirm that LLMs like GPT-
3 are still not good at multi-step reasoning
despite various prompts we tried. Chain-of-
Thought is less likely to improve accuracy
when a long chain of thought is required.

• On the other hand, LLMs are surprisingly
good at turning a variety of expressions into
a "canonical form" of information extraction.
This in turn allows ASP knowledge modules
to be isolated from linguistic variability in the
input.

• Even for generating simple atomic facts,
larger models tend to perform better. For ex-
ample, in StepGame and gSCAN, text-curie-
001 performs significantly worse compared to
text-davinci-002 (Tables 2 and 5).

• The total amount of knowledge that needs

to be encoded for all of the above datasets
is not too large. This is in part due to the
fact that GPT-3 "normalized" various forms
of input sentences for ASP to process and that
knowledge modules could be reused across
different datasets.

• The modular design of our approach makes it
possible to locate the root cause of each failed
prediction in the training data and improve
upon it. There are three sources of errors: se-
mantic parsing in LLMs, symbolic constraints,
and the dataset itself, and we can resolve the
first two issues by improving the prompts and
updating the constraints, respectively.

• Our framework could serve as a few-shot
dataset justifier and corrector. Among all pre-
dictions by our method that do not align with
the labels, almost all of them (with only a few
exceptions discussed in the paper) are due to
errors in the dataset.

5 Conclusion

Symbolic logic programming was considered to be
limited in reasoning from text due to the inability
to handle various and ambiguous linguistic expres-
sions. Combining it with a large language model
that learned distributed representations alleviates
the problem. The method not only leads to the best
accuracy but also the results are interpretable be-
cause the source of the errors can be identified. It
is also general; by using pre-trained networks with
few-shot prompts and reusable knowledge modules,
adapting to a new domain does not require massive
training.

The knowledge modules used in our experi-
ments are reusable. For the above experiments,
the modules are relatively simple to write, as are
the prompts for parsing natural language for LLMs.
However, acquiring this kind of knowledge on a
massive scale is also an important line of research
(Liu and Singh, 2004; Bosselut et al., 2019; Hwang
et al., 2021) that needs to be combined. In addition,
it is possible to use LLM’s code generation capa-
bility (Chen et al., 2021) to generate logic program
rules, which we leave for future work.

One may think that the logic rules are too rigid.
However, there are many weighted or probabilistic
rules that can be defeated (Richardson and Domin-
gos, 2006; Fierens et al., 2013; Lee and Wang,
2018). They could be used for more realistic set-
tings, but for the benchmark problems above, they
were not needed.



6 Ethical Considerations

All datasets used in this paper are publicly avail-
able. For CLUTRR dataset, the gender informa-
tion is essential to tell if, e.g., A is B’s uncle or
niece. We used GPT-3 to predict the genders of
persons in each story. Since each story is systemati-
cally generated using sampled common first names
and sampled sentence templates, it does not reveal
any identity. As mentioned, the original CLUTRR
dataset had some errors, and we describe carefully
the codes and settings of the generated CLUTRR
1.3 dataset in Appendix ??.

7 Limitations

The current work requires that knowledge modules
be written by hand. Commonly used axioms, such
as general knowledge like the commonsense law of
inertia expressed by event calculus, can be reused
easily, but there are vast amounts of other common-
sense knowledge that are not easy to obtain. LLMs
could be used to supply this information, but we
have not tried. Knowledge graphs, such as Con-
ceptNet (Liu and Singh, 2004), COMET (Bosselut
et al., 2019) and ATOMIC (Hwang et al., 2021),
can be utilized to populate ASP rules. Like code
models, we expect that LLMs could generate ASP
code, which we leave for future work.

Also, using large language models, despite vari-
ous efforts, sometimes it is not understandable why
GPT-3 does not behave as expected. And although
not encountered, our model may have degraded
performance when parsing more complex text pas-
sages.
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mig, Thomas Demeester, and Luc De Raedt. 2021.
Neural probabilistic logic programming in deep-
problog. Artificial Intelligence, 298:103504.

Gary Marcus. 2018. Deep learning: A critical appraisal.
arXiv preprint arXiv:1801.00631.

John McCarthy. 1998. Elaboration tolerance. In Work-
ing Papers of the Fourth Symposium on Logical For-
malizations of Commonsense Reasoning.

John McCarthy and Patrick Hayes. 1969. Some philo-
sophical problems from the standpoint of artificial
intelligence. In B. Meltzer and D. Michie, editors,
Machine Intelligence, volume 4, pages 463–502. Ed-
inburgh University Press, Edinburgh.

https://openreview.net/forum?id=3R3Pz5i0tye
https://openreview.net/forum?id=3R3Pz5i0tye
https://openreview.net/forum?id=3R3Pz5i0tye


Scott Miller, David Stallard, Robert Bobrow, and
Richard Schwartz. 1996. A fully statistical approach
to natural language interfaces. In 34th Annual Meet-
ing of the Association for Computational Linguistics,
pages 55–61.

Pasquale Minervini, Sebastian Riedel, Pontus Stenetorp,
Edward Grefenstette, and Tim Rocktäschel. 2020.
Learning reasoning strategies in end-to-end differ-
entiable proving. In International Conference on
Machine Learning, pages 6938–6949. PMLR.

Roshanak Mirzaee and Parisa Kordjamshidi. 2022.
Transfer learning with synthetic corpora for spatial
role labeling and reasoning. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, page 6148–6165. Association
for Computational Linguistics.

Erik Mueller. 2006. Commonsense reasoning. Elsevier.

Maxwell Nye, Michael Tessler, Josh Tenenbaum, and
Brenden M Lake. 2021. Improving coherence and
consistency in neural sequence models with dual-
system, neuro-symbolic reasoning. Advances in
Neural Information Processing Systems, 34:25192–
25204.

Emilia Oikarinen and Tomi Janhunen. 2006. Modular
equivalence for normal logic programs. In 17th Eu-
ropean Conference on Artificial Intelligence(ECAI),
pages 412–416.

Rasmus Palm, Ulrich Paquet, and Ole Winther. 2018.
Recurrent relational networks. In Proceedings of
Advances in Neural Information Processing Systems,
pages 3368–3378.

Linlu Qiu, Hexiang Hu, Bowen Zhang, Peter Shaw, and
Fei Sha. 2021. Systematic generalization on gscan:
What is nearly solved and what is next? In Proceed-
ings of the 2021 Conference on Empirical Methods
in Natural Language Processing, pages 2180–2188.

Raymond Reiter. 2001. Knowledge in Action: Log-
ical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press.

Matthew Richardson and Pedro Domingos. 2006.
Markov logic networks. Machine Learning, 62(1-
2):107–136.

Sebastian Ruder. 2021. Challenges and Opportuni-
ties in NLP Benchmarking. http://ruder.io/
nlp-benchmarking.

Laura Ruis, Jacob Andreas, Marco Baroni, Diane
Bouchacourt, and Brenden M Lake. 2020. A bench-
mark for systematic generalization in grounded lan-
guage understanding. Advances in neural informa-
tion processing systems, 33:19861–19872.

Shailaja Sampat and Joohyung Lee. 2018. A model-
based approach to visual reasoning on cnlvr dataset.
In Sixteenth International Conference on Principles
of Knowledge Representation and Reasoning.

Adam Santoro, David Raposo, David G Barrett, Ma-
teusz Malinowski, Razvan Pascanu, Peter Battaglia,
and Timothy Lillicrap. 2017. A simple neural net-
work module for relational reasoning. In Advances in
neural information processing systems, pages 4967–
4976.

Md Kamruzzaman Sarker, Lu Zhou, Aaron Eberhart,
and Pascal Hitzler. 2021. Neuro-symbolic artificial
intelligence. AI Communications, pages 1–13.

Imanol Schlag and Jürgen Schmidhuber. 2018. Learn-
ing to reason with third order tensor products. Ad-
vances in neural information processing systems, 31.

Nathan Schucher, Siva Reddy, and Harm de Vries. 2022.
The power of prompt tuning for low-resource seman-
tic parsing. In Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 148–156.

Min Joon Seo, Sewon Min, Ali Farhadi, and Hannaneh
Hajishirzi. 2017. Query-reduction networks for ques-
tion answering. In 5th International Conference
on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Pro-
ceedings.

Murray Shanahan. 1995. A circumscriptive calculus of
events. Artif. Intell., 77(2):249–284.

Zhengxiang Shi, Qiang Zhang, and Aldo Lipani. 2022.
Stepgame: A new benchmark for robust multi-hop
spatial reasoning in texts. Association for the Ad-
vancement of Artificial Intelligence.

Richard Shin, Christopher Lin, Sam Thomson, Charles
Chen Jr, Subhro Roy, Emmanouil Antonios Platanios,
Adam Pauls, Dan Klein, Jason Eisner, and Benjamin
Van Durme. 2021. Constrained language models
yield few-shot semantic parsers. In Proceedings of
the 2021 Conference on Empirical Methods in Natu-
ral Language Processing, pages 7699–7715.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L Hamilton. 2019. Clutrr: A di-
agnostic benchmark for inductive reasoning from text.
In Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the 9th
International Joint Conference on Natural Language
Processing (EMNLP-IJCNLP), pages 4506–4515.

Jidong Tian, Yitian Li, Wenqing Chen, HE Hao, and
Yaohui Jin. 2021. A generative-symbolic model for
logical reasoning in nlu. In Is Neuro-Symbolic SOTA
still a myth for Natural Language Inference? The
first workshop.

Karthik Valmeekam, Alberto Olmo, Sarath Sreedharan,
and Subbarao Kambhampati. 2022. Large language
models still can’t plan (a benchmark for LLMs on
planning and reasoning about change). In NeurIPS
2022 Foundation Models for Decision Making Work-
shop.

https://aclanthology.org/2022.emnlp-main.413
https://aclanthology.org/2022.emnlp-main.413
http://ruder.io/nlp-benchmarking
http://ruder.io/nlp-benchmarking
https://openreview.net/forum?id=B1MRcPclx
https://openreview.net/forum?id=B1MRcPclx
https://openreview.net/forum?id=wUU-7XTL5XO
https://openreview.net/forum?id=wUU-7XTL5XO
https://openreview.net/forum?id=wUU-7XTL5XO


Chenguang Wang, Xiao Liu, and Dawn Song. 2022.
Ielm: An open information extraction benchmark for
pre-trained language models. In Proceedings of the
2022 Conference on Empirical Methods in Natural
Language Processing, page 8417–8437. Association
for Computational Linguistics.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, brian ichter, Fei Xia, Ed H. Chi, Quoc V Le,
and Denny Zhou. 2022. Chain of thought prompt-
ing elicits reasoning in large language models. In
Advances in Neural Information Processing Systems.

Jason Weston, Antoine Bordes, Sumit Chopra, and
Tomás Mikolov. 2016. Towards ai-complete question
answering: A set of prerequisite toy tasks. In 4th In-
ternational Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016,
Conference Track Proceedings.

Yuk Wah Wong and Raymond Mooney. 2007. Learn-
ing synchronous grammars for semantic parsing with
lambda calculus. In Proceedings of the 45th Annual
Meeting of the Association of Computational Linguis-
tics, pages 960–967.

Kexin Yi, Chuang Gan, Yunzhu Li, Pushmeet Kohli,
Jiajun Wu, Antonio Torralba, and Joshua B Tenen-
baum. 2019. CLEVRER: Collision events for video
representation and reasoning. In ICLR.

John M Zelle and Raymond J Mooney. 1996. Learning
to parse database queries using inductive logic pro-
gramming. In Proceedings of the national conference
on artificial intelligence, pages 1050–1055.

Andy Zeng, Adrian Wong, Stefan Welker, Krzysztof
Choromanski, Federico Tombari, Aveek Purohit,
Michael Ryoo, Vikas Sindhwani, Johnny Lee, Vin-
cent Vanhoucke, et al. 2022. Socratic models: Com-
posing zero-shot multimodal reasoning with lan-
guage. arXiv preprint arXiv:2204.00598.

Luke S Zettlemoyer and Michael Collins. 2005. Learn-
ing to map sentences to logical form: structured clas-
sification with probabilistic categorial grammars. In
Proceedings of the Twenty-First Conference on Un-
certainty in Artificial Intelligence, pages 658–666.

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei,
Nathan Scales, Xuezhi Wang, Dale Schuurmans,
Olivier Bousquet, Quoc Le, and Ed Chi. 2022.
Least-to-most prompting enables complex reason-
ing in large language models. arXiv preprint
arXiv:2205.10625.

Wenxuan Zhou and Muhao Chen. 2022. An improved
baseline for sentence-level relation extraction. In Pro-
ceedings of the 2nd Conference of the Asia-Pacific
Chapter of the Association for Computational Lin-
guistics and the 12th International Joint Conference
on Natural Language Processing (Volume 2: Short
Papers), pages 161–168, Online only. Association for
Computational Linguistics.

https://aclanthology.org/2022.emnlp-main.576
https://aclanthology.org/2022.emnlp-main.576
https://openreview.net/forum?id=_VjQlMeSB_J
https://openreview.net/forum?id=_VjQlMeSB_J
http://arxiv.org/abs/1502.05698
http://arxiv.org/abs/1502.05698
https://aclanthology.org/2022.aacl-short.21
https://aclanthology.org/2022.aacl-short.21

