Two New Definitions of Stable Models of Logic
Programs with Generalized Quantifiers

Joohyung Lee and Yunsong Meng

School of Computing, Informatics and Decision Systems Engineering
Arizona State University, Tempe, USA

Abstract. We present alternative definitions of the first-order stable model se-
mantics and its extension to incorporate generalized quantifiers by referring to the
familiar notion of a reduct instead of referring to the SM operator in the original
definitions. Also, we extend the FLP stable model semantics to allow generalized
quantifiers by referring to an operator that is similar to the SM operator. For a
reasonable syntactic class of logic programs, we show that the two stable model
semantics of generalized quantifiers are interchangeable.

1 Introduction

Most versions of the stable model semantics involve grounding. For instance, according
to the FLP semantics from [1; 2], assuming that the domain is {—1, 1, 2}, program

p(2) < not sSUM(x:p(z)) <2
p(—1) « suM(z:p(z))>-1 (1)
p(1) < p(=1)

is identified with its ground instance w.r.t the domain:

p(2) < not SUM{{—1:p(-1),1:p(1),2:p(2)}) <2
p(—1) « suM{({—1:p(—1),1:p(1),2:p(2)})>—1
p(1) «+ p(=1).

@)

As described in [1], it is straightforward to extend the definition of satisfaction to ground
aggregate expressions. For instance, set {p(—1),p(1)} does not satisfy the body of the
first rule of (2), but satisfies the bodies of the other rules. The FLP reduct of program (2)
relative to {p(—1), p(1)} consists of the last two rules, and {p(—1), p(1)} is its minimal
model. Indeed, {p(—1), p(1)} is the only FLP answer set of program (2).

On the other hand, according to the semantics from [3], program (2) is identified
with some complex propositional formula containing nested implications:

(~(@@)=p(=1)vp(1) A P AD(2) (1) A (H(=1) Ap(1)AP(2) = 1)) = p(2))
A ((r(=1)=p(1)Vp(2) = p(-1))
A (p(=1) = p(1)) -

Under the stable model semantics of propositional formulas [3], this formula has two
answer sets: {p(—1),p(1)} and {p(—1), p(1), p(2)}. The relationship between the FLP
and the Ferraris semantics was studied in [4; 5].

Unlike the FLP semantics, the definition from [3] is not applicable when the do-
main is infinite because it would require the representation of an aggregate expression
to involve “infinite” conjunctions and disjunctions. This limitation was overcome in
the semantics presented in [4; 6], which extends the first-order stable model semantics
from [7; 8] to incorporate aggregate expressions. Recently, it was further extended to
formulas involving generalized quantifiers [9], which provides a unifying framework
of various extensions of the stable model semantics, including programs with aggre-
gates, programs with abstract constraint atoms [10], and programs with nonmonotonic
dl-atoms [11].

In this paper, we revisit the first-order stable model semantics and its extension to
incorporate generalized quantifiers. We provide an alternative, equivalent definition of a
stable model by referring to grounding and reduct instead of the SM operator. Our work
is inspired by the work of Truszczynski [12], who introduces infinite conjunctions and
disjunctions to account for grounding quantified sentences. Our definition of a stable
model can be viewed as a reformulation and a further generalization of his definition
to incorporate generalized quantifiers. We define grounding in the same way as done in
the FLP semantics, but define a reduct differently so that the semantics agrees with the
one by Ferraris [3]. As we explain in Section 3.3, our reduct of program (2) relative to

{p(=1),p(1)} is

1« L
p(=1) < sum({-1:p(-1),1:p(1),2: L))} >—-1 3
p(1) < p(-1),

which is the program obtained from (2) by replacing each maximal subformula that
is not satisfied by {p(—1),p(1)} with L. Set {p(—1),p(1)} is an answer set of pro-
gram (1) as it is a minimal model of the reduct. Likewise the reduct relative to {p(—1), p(1), p(2)}
is
p(

2) «+
p(—1) « SUM{(1:p(—1),1:p(1),2:p(2))} >—1
p(1) « p(=1)

and {p(—1),p(1),p(2)} is a minimal model of the program. The semantics is more
direct than the one from [3] as it does not involve the complex translation into a propo-
sitional formula.

While the FLP semantics in [1] was defined in the context of logic programs with ag-
gregates, it can be straightforwardly extended to allow other “complex atoms.” Indeed,
the FLP reduct is the basis of the semantics of HEX programs [13]. In [14], the FLP
reduct was applied to provide a semantics of nonmonotonic dl-programs [11]. In [5],
the FLP semantics of logic programs with aggregates was generalized to the first-order
level. That semantics is defined in terms of the FLP operator, which is similar to the SM
operator. This paper further extends the definition to allow generalized quantifiers.

By providing an alternative definition in the way that the other semantics was de-
fined, this paper provides a useful insight into the relationship between the first-order

stable model semantics and the FLP stable model semantics for programs with gener-
alized quantifiers. While the two semantics behave differently in the general case, we
show that they coincide on some reasonable syntactic class of logic programs. This
implies that an implementation of one of the semantics can be viewed as an implemen-
tation of the other semantics if we limit attention to that class of logic programs.

The paper is organized as follows. Section 2 reviews the first-order stable model
semantics and its equivalent definition in terms of grounding and reduct, and Section 3
extends that definition to incorporate generalized quantifiers. Section 4 provides an al-
ternative definition of the FLP semantics with generalized quantifiers via a translation
into second-order formulas. Section 5 compares the FLP semantics and the first-order
stable model semantics in the general context of programs with generalized quantifiers.

2 First-Order Stable Model Semantics

2.1 Review of First-Order Stable Model Semantics

This review follows [8], a journal version of [7], which distinguishes between inten-
sional and non-intensional predicates.

A formula is defined the same as in first-order logic. A signature consists of func-
tion constants and predicate constants. Function constants of arity 0 are also called
object constants. We assume the following set of primitive propositional connectives
and quantifiers:

1, T, AV, =, ¥, 3.

—F is an abbreviation of /' — 1, and F' <> G stands for (F' — G) A (G — F). We
distinguish between atoms and atomic formulas as follows: an atom of a signature o
is an n-ary predicate constant followed by a list of n terms that can be formed from
function constants in ¢ and object variables; atomic formulas of o are atoms of o,
equalities between terms of o, and the 0-place connectives L and T.

The stable models of F' relative to a list of predicates p = (p1, . .., pn) are defined
via the stable model operator with the intensional predicates p, denoted by SM[F’; p].!
Let u be a list of distinct predicate variables uy,...,u,. By u = p we denote the
conjunction of the formulas Vx(u;(x) < p;(x)), where x is a list of distinct object
variables of the same length as the arity of p;, forallt = 1,...,n. By u < p we denote
the conjunction of the formulas Vx(u;(x) — p;(x)) foralli = 1,...,n,andu < p
stands for (u < p) A =(u = p). For any first-order sentence F, expression SM[F’; p]
stands for the second-order sentence

F A=3u((u<p)AF*(u)),
where F**(u) is defined recursively:

— pi(t)* = u;(t) for any list t of terms;
— F* = F for any atomic formula F’ that does not contain members of p;
- (FAG)* = F* NG

! The intensional predicates p are the predicates that we “intend to characterize” by F.

- (FVG)* =F*VvG

- (F G) (F* = G*)N(F = G);
- (VaF)* =VaF™,

- (3zF)* =3z F™.

A model of a sentence F (in the sense of first-order logic) is called p-stable if it
satisfies SM[F'; p].

Example 1 Let I’ be sentence VY (—p(x) — q(x)), and let I be an interpretation whose
universe is the set of all nonnegative integers N, and p'(n) = FALSE, ¢! (n) = TRUE
for all n € N. Section 2.4 of [8] tells us that I satisfies SM[F; pq|.

2.2 Alternative Definition of First-Order Stable Models via Reduct

For any signature o and its interpretation I, by o/ we mean the signature obtained
from o by adding new object constants £°, called object names, for every element £ in
the universe of I. We identify an interpretation I of ¢ with its extension to o/ defined
by I(¢°) = &.

In order to facilitate defining a reduct, we provide a reformulation of the standard
semantics of first-order logic via “a ground formula w.r.t. an interpretation.”

Definition 1. For any interpretation I of a signature o, a ground formula w.r.t. I is
defined recursively as follows.

- p(&,...,&), where p is a predicate constant of o and & are object names of o,
is a ground formula w.r.t. I;

— T and L are ground formulas w.r.t. I;

— If F and G are ground formulas w.rt. I, then F N G, FV G, F — G are ground
formulas w.rt. I;

— If S is a set of pairs of the form £°: F where £° is an object name in o' and F is a
ground formula w.r.t. I, then ¥(S) and 3(S) are ground formulas w.rt. I.

The following definition describes a process that turns any first-order sentence into
a ground formula w.r.t. an interpretation:

Definition 2. Letr F' be any first-order sentence of a signature o, and let I be an inter-
pretation of o whose universe is U. By gri[F| we denote the ground formula w.rt. I,
which is obtained by the following process:

grilp(te, - ta)] = p((H)°, .. (8)°);

T iftl =tl, and

1 otherwise;

- grr[T) =T, grill]=L;

gri[F © G = gri[F) © gri[G] (® € {A,V,—=});
gri[QuF(z)] = Q({€gr[F(€°)] [£ € UY) (Q € {V,3}).

Definition 3. For any interpretation 1 and any ground formula F w.rt. I, the truth
value of F under I, denoted by F', is defined recursively as follows.

- grl[tl = t2] =

D€) = P)

- T! =TRUE; 1! = FALSE;

- (FAG)! = TRUE iff F! = TRUE and G! = TRUE;

- (FVG)! = TRUE iff F! = TRUE or G! = TRUE;

- (F — G)! = TRUE iff G! = TRUE whenever F1 = TRUE;

- V(S)! = TRUE iff the set {£ | £°: F(€°) € S and F(£°)! = TRUE} is the same as
the universe of I,

— 3(S)! = TRUE iff the set {¢ | £°: F(£°) € S and F(£°)! = TRUE} is not empty.
We say that I satisfies F, denoted I |= F, if F! = TRUE.

Example 1 continued (I). gr;[F]is V({n®: (=p(n®) — ¢(n°®)) | n € N}). Clearly, I
satisfies grr[F].

An interpretation I of a signature o can be represented as a pair (I/%n¢ [pred),
where I4"¢ g the restriction of I to the function constants of &, and I?"¢¢ is the set of
atoms, formed using predicate constants from ¢ and the object names from o/, which
are satisfied by /. For example, interpretation / in Example 1 can be represented as
(Ifume’ Lg(n®) | n € N}, where I7%"¢ maps each integer to itself.

The following proposition is immediate from the definitions:

Proposition 1. Let o be a signature that contains finitely many predicate constants, let
o7 be the set of predicate constants in o, let [= (I7""¢ [P7¢d) be an interpretation
of o, and let F be a first-order sentence of a. Then I |= F iff I""*? = gr;[F).

The introduction of the intermediate form of a ground formula w.r.t. an interpreta-
tion helps us define a reduct.

Definition 4. For any ground formula F w.r.t. I, the reduct of F relative to I, denoted
by FZL is obtained by replacing each maximal subformula that is not satisfied by I
with L. It can also be defined recursively as follows.

- o oWL — p(§f7"'7£’fb) #I):p(gfv~-~,€§)7
(et - €0)) {J_ otherwise;

- TL = T; 1=

FLoGL fIEFOG (0e{AV,—}),
1 otherwise;

CQS) {Q({E°:(F(§°))I|§°:F(§°)€5}) f1EQS) (Qe{¥.3)),

- (FoG)l=

1 otherwise.

The following theorem tells us how first-order stable models can be characterized
in terms of grounding and reduct.

Theorem 1. Let o be a signature that contains finitely many predicate constants, let
o be the set of predicate constants in o, let [= (I7""¢ [P"d) be an interpretation
of o, and let F be a first-order sentence of o. I satisfies SM[F; oP"¢?] iff IP"*? is a

minimal set of atoms that satisfies (gr;[F])L.

Example 1 continued (II). The reduct of gr;[F)] relative to I, (gr;[F))%, is
V({n®: (=L — ¢q(n®)) | n € N}), which is equivalent to V({n°: ¢(n®) | n € N}).
Clearly, IP"*? = {q(n®) | n € N} is a minimal set of atoms that satisfies (gr;[F])L.

2.3 Relation to Infinitary Formulas by Truszczynski

The definitions of grounding and a reduct in the previous section are inspired by the
work of Truszczynski [12], where he introduces infinite conjunctions and disjunctions
to account for the result of grounding V and 3 w.r.t. a given interpretation. Differences
between the two approaches are illustrated in the following example:

Example 2 Consider the formula F = Yz p(x) and the interpretation I whose uni-
verse is the set of all nonnegative integers N. According to [12], grounding of F w.r..
I results in the infinitary propositional formula

{p(n®) |n e N}".
On the other hand, formula gri[F)] is
V({n®:p(n°) | n € N}).

Our definition of a reduct is essentially equivalent to the one defined in [12]. In the
next section, we extend our definition to incorporate generalized quantifiers.

3 Stable Models of Formulas with Generalized Quantifiers

3.1 Review: Formulas with Generalized Quantifiers

We follow the definition of a formula with generalized quantifiers from [15, Section 5]
(that is to say, with Lindstrom quantifiers [16] without the isomorphism closure condi-
tion).

We assume a set Q of symbols for generalized quantifiers. Each symbol in Q is as-
sociated with a tuple of nonnegative integers (ny,...,nx) (k > 0, and each n; is > 0),
called the type. A (GQ-)formula (with the set Q of generalized quantifiers) is defined in
a recursive way:

— an atomic formula (in the sense of first-order logic) is a GQ-formula;
- if F1,..., Fx (kK > 0) are GQ-formulas and () is a generalized quantifier of type
(ny,...,ng) in Q, then

Qlxa]. xul(Fi(xa), - Fi(xk)) @

is a GQ-formula, where each x; (1 < 7 < k) is a list of distinct object variables
whose length is n;.

We say that an occurrence of a variable z in a GQ-formula F' is bound if it belongs
to a subformula of F’ that has the form Q[x1] ... [xx](F1(x1), ..., Fx(xx)) such that =
is in some x;. Otherwise the occurrence is free. We say that x is free in F' if F' contains
a free occurrence of z. A (GQ-)sentence is a GQ-formula with no free variables.

We assume that Q contains type () quantifiers @, and Q, type (0,0) quanti-
fiers Qn, Qv, Q—,, and type (1) quantifiers Qv, Q3. Each of them corresponds to the
standard logical connectives and quantifiers — 1, T, A,V, —,V, 3. These generalized
quantifiers will often be written in the familiar form. For example, we write F' A G in
place of QA[][|(F, G), and write Vz F () in place of Qv[z](F(x)).

As in first-order logic, an interpretation / consists of the universe U and the evalua-
tion of predicate constants and function constants. For each generalized quantifier @) of
type (ni,...,nx), QU is a function from P(U™) x --- x P(U™*) to {TRUE, FALSE},
where P(U™) denotes the power set of U™:.

Example 3 Besides the standard connectives and quantifiers, the following are some
examples of generalized quantifiers.

— type (1) quantifier Q<o such that Q%,(R) = TRUE iff |R| < 2; 2
- hype <1> quantiﬁer Qmajority such that ngjority(R> = TRUE lff|R| > |U \ R
— type (1,1) quantifier Q(sym,<) such that Q%UM,<)<R1’ Ry) = TRUE iff

e SUM(Ry) is defined,

e Ry = {b}, where b is an integer, and

e SUM(Ry) < b.

>

Given a sentence F of o, FI is defined recursively as follows:

- p(ty,.. .t =pl (.. th),
- (i =1t2)" = (t{ =t]),
— For a generalized quantifier @ of type (nq,...,ng),

(Q[x1] - - - [Xe](F1(x1), -, Fr(x))! = QU((x1: F1(x1)),. .., (xx: Fr(xx))P),

where (x;: Fi(x;))f = {€ e U™

(F;(€°))" = TRUE}.

We assume that, for the standard logical connectives and quantifiers @, functions
QY have the standard meaning:

-~ Q%(R) = TRUE iff R = U; - QY (R, Ry) = TRUE iff Ry is () or
- E(R) = TRUEiff RNU # 0; Ry is {e};
- QR (3R1,R2) =TRUEIff By = Ry = _ QU() = FALSE;
{ehs - QY() = TRUE.
- Qé(Rl, Ry) = TRUE iff Ry = {¢} or 70
R2 = {6};

2 It is clear from the type of the quantifier that R is any subset of U. We will skip such explana-
tion.

3 ¢ denotes the empty tuple. For any interpretation I, U = {¢}. For I to satisfy QA [][}(F, G),
both (e: F) and (e: G)” have to be {¢}, which means that F¥ = G' = TRUE.

We say that an interpretation I satisfies a GQ-sentence F', or is a model of F’, and
write I |= F, if FT = TRUE. A GQ-sentence F is logically valid if every interpretation
satisfies F'. A GQ-formula with free variables is said to be logically valid if its universal
closure is logically valid.

Example 4 Program (1) in the introduction is identified with the following GQ-formula F :

(ﬁQ(SUM,<)[x][y]<p(x)’ y:2) — p(2))
A (Qsum,>) [2][y](p(z), y=—1) = p(-1))
A (p(=1) = p(1))

Consider two Herbrand interpretations of the universe U = {—1,1,2}: I; = {p(—1),p(1)}

and I = {p(=1),p(1),p(2)}. We have (Q(sum,«)[z][y](p(z), y = 2))"" = TRUE

- (z:p@)r ={-1,1} and (y : y=2)"r = {2};
- Qfsum,<)({~1,1},{2}) = TRUE.

Similarly, (Q(sum,>)[][y](p(2), y=—1))!2 = TRUE since

- (z:p(x)2 ={-1,1,2} and (y : y=—1)2 = {1},
- QEJSUM,>)({_17 172}7 {—1}) = TRUE.

Consequently, both I and I satisfy F}.

3.2 Review: SM-Based Definition of Stable Models of GQ-Formulas

For any GQ-formula F' and any list of predicates p = (p1, - . ., P), formula SM[F’; p]
is defined as
F A—Fu((u < p) A F*(u)),

where F*(u) is defined recursively:

— pi(t)* = u;(t) for any list t of terms;
— F* = F for any atomic formula F’ that does not contain members of p;

(Qx1]. .. [xi](Fi(x1), ..., Fi(xk)))" =
Qx1] ... [xe](FY(x1), .., FF(xp)) A Q[x1] ... [xg])(F1(x1), ..., Fr(xx)).

When F'is a sentence, the models of SM[F; p| are called the p-stable models of F:
they are the models of F that are “stable” on p. We often simply write SM[F] in place of
SM[F’; p] when p is the list of all predicate constants occurring in F', and call p-stable
models simply stable models.

As explained in [17], this definition of a stable model is a proper generalization of
the first-order stable model semantics.

Example 4 continued (I). For GQ-sentence F; considered earlier, SM[F}] is

Fiy A—Fu(u <pA Ff(u)),)

where F*(u) is equivalent to the conjunction of Fj and

(—Qsum,<) 2] [yl (p(2), y=2) — u(2))
A ((Q(SUM7>)[m][y](u(x)y:—l) A Q(SUM,>)[x] [pr(w)ﬂ y:_l)) - u(_1>)
A (u(=1) = u(1)) .

The equivalence can be explained by Proposition 1 from [9], which simplifies the trans-
formation for monotone and antimonotone GQs. I; and I, considered earlier satisfy (5)
and thus are stable models of F}.

3.3 Reduct-Based Definition of Stable Models of GQ-Formulas

The reduct-based definition of stable models presented in Section 2.2 can be extended
to GQ-formulas as follows.

Let I be an interpretation of a signature o. As before, we assume a set Q of general-
ized quantifiers, which contains all propositional connectives and standard quantifiers.

Definition 5. A ground GQ-formula w.r.t. I is defined recursively as follows:

- p(&,...,£2), where p is a predicate constant of o and & are object names of o,
is a ground GQ-formula w.rt. 1;

— forany Q € Q of type (n1,...,ny), if each S; is a set of pairs of the form £°: F
where £° is a list of object names from o’ whose length is n; and F is a ground
GQ-formula w.rt. I, then

Q(S1,...,Sk)

is a ground GQ-formula w.rt. 1.

The following definition of grounding turns any GQ-sentence into a ground GQ-
formula w.r.t. an interpretation:

Definition 6. Ler F' be a GQ-sentence of a signature o, and let I be an interpretation
of 0. By gr1|F] we denote the ground GQ-formula w.r.t. I that is obtained by the process
similar to the one in Definition 2 except that the last two clauses are replaced by the
following single clause:

- grr[Q[x1] ... [xk](F1(x1), ..., Fr(xx))] = Q(S1,- .., Sk)
where S; = {€%: gri[Fi(€°)] | £€° is a list of object names from o' whose length is n;}.

For any interpretation I and any ground GQ-formula F' w.r.t. I, the satisfaction
relation I |= F is defined recursively as follows.

Definition 7. For any interpretation I and any ground GQ-formula F w.r.t. I, the satis-
faction relation I |= F is defined similar to Definition 3 except that the last five clauses
are replaced by the following single clause:

- Q(S1,..., k) =QY(S],...,S]) where Sf = {¢ | ¢ F(¢°) € S;, F(¢°)! =
TRUE}.

Example 4 continued (II). For Herbrand interpretation I; = {p(—1),p(1)}, formula

grr, [Fy]is*
(ﬂQ(SUM< ({—1:p(=1),1:p(1),2:p(2)},{-1: L, 1: L,2: T}) = p(2))
AQesom,>) ({=1:p(=1), L:p(1), 2:p(2)}, {=1: T, 1: L, 2: L}) = p(=1)) ~ (6)
A (p(=1) = p(1)) .
I satisfies Qsum,<)({—1:p(=1),1:p(1),2:p(2)},{—1:1L,1:1L,2:T}) because
I = p(=1), Iy = p(1), Iy = p(2), and

qum,q({—la 1}7 {2}) — TRUE.
I satisfies Q(sum,>)({—=1:p(—=1),1:p(1),2:p(2)},{—1:T,1:1,2: L }) because

QSUM> ({ 1, 1} { 1})—TRUE

Consequently, I; satisfies (6).

Proposition 2. Let o be a signature that contains finitely many predicate constants, let
oPr? be the set of predicate constants in o, let [= (I7""¢ IP7¢d) be an interpretation
of o, and let I be a GQ-sentence of 0. Then I |= F iff I*™*? |= gri[F].

Definition 8. For any GQ-formula F w.r.t. I, the reduct of F relative to I, denoted by
FL s defined in the same way as in Definition 4 by replacing the last two clauses with
the following single clause:

QS S = {@(SL-.-,S;) i1 QS Su),

where ST = {€°: (F(€°))1 | €% F(€°) € Si}.

Theorem 2. Let o be a signature that contains finitely many predicate constants, let
oPr? be the set of predicate constants in o, let [= (I7""¢ IP"¢d) be an interpretation
of o, and let F be a GQ-sentence of 0. I |= SM[F; o?™d] iff I*"*? is a minimal set of
atoms that satisfies (gr;[F])L.

1 otherwise;

Example 4 continued (III). Interpretation I; considered earlier can be identified with
the tuple (I7v"¢ {p(—1),p(1)}) where I7%"¢ maps every term to itself. The reduct

(grr [Fa]) ™ is
(L—1)
A (Qsum,>)({=1:p(=1),1:p(1),2: L}, {-1:T,1: L,2: 1 }) = p(-1))
A (p(—1) = p(1)),

which is the GQ-formula representation of (3). We can check that {p(—1),p(1)} is a
minimal model of the reduct.

Extending Theorem 2 to allow an arbitrary list of intensional predicates, rather than
oPred is straightforward in view of Proposition 1 from [18].

* For simplicity, we write —1, 1, 2 instead of their object names (—1)°,1°,2°.

4 FLP Semantics of Programs with Generalized Quantifiers

The FLP stable model semantics [1] is an alternative way to define stable models. It is
the basis of HEX programs, an extension of the stable model semantics with higher-
order and external atoms, which is implemented in system DLV-HEX. The first-order
generalization of the FLP stable model semantics for programs with aggregates was
given in [5], using the FLP operator that is similar to the SM operator. In this section
we show how it can be extended to allow generalized quantifiers.

4.1 FLP Semantics of Programs with Generalized Quantifiers

A (general) rule is of the form
H<+ B (7

where H and B are arbitrary GQ-formulas. A (general) program is a finite set of rules.

Let p be a list of distinct predicate constants p1, . . . , p,, and let u be a list of distinct
predicate variables u1, . .., u,. For any formula G, formula G(u) is obtained from G
by replacing all occurrences of predicates from p with the corresponding predicate
variables from u.

Let II be a finite program whose rules have the form (7). The GQ-representation
ITG® of IT is the conjunction of the universal closures of B — H for all rules (7) in
I1. By FLP|[II; p] we denote the second-order formula

9 A =3u(u < p A I (u))
where T4 (u) is defined as the conjunction of the universal closures of
B A B(u)— H(u)

forall rules H < Bin II.
We will often simply write FLP[I]] instead of FLP[IT; p] when p is the list of all

predicate constants occurring in I7, and call a model of FLP[II] an FLP-stable model
of IT.

Example 4 continued (IV). For formula F; considered earlier, FLP[F}] is
Fi A—3u(u <pA FlA(u)) , (8)
where FlA(u) is

2) A =Qsum, <) [l [yl(u(2), y=2) — u(2))

(_‘Q(SUM <)[$} [y}(p(a:) Yy=
(éy:_l) (Q(SUM,>)[x

A (Q(SUM >) [‘T] [yl(p
A(p(=1) Au(-1) —

I, considered earlier satisfies (8) but I5 does not.

=
—~
=
8
~
NS
I
|
—
~—
I~
T
—
Nt

5 Comparing the FLP Semantics and the First-Order Stable
Model Semantics

In this section, we show a class of programs with GQs for which the FLP semantics and
the first-order stable model semantics coincide.

The following definition is from [17]. We say that a generalized quantifier @ is
monotone in the i-th argument position if the following holds for any universe U: if
QY(Ry,...,R;) = TRUE and R; C R, C U™, then

QU(Rl, ey R, R;,Ri_;,_l, ceey Rk) = TRUE.
Consider a program I consisting of rules of the form
Ay A+ Eq,...,E,,not By 1, ... 0ot By,

(I > 0;n > m > 0), where each A; is an atomic formula and each E; is an atomic
formula or a GQ-formula (4) such that all Fy(x1), ..., Fi(xx) are atomic formulas.
Furthermore we require that, for every GQ-formula (4) in one of F,,y1,..., Ey, Q is
monotone in all its argument positions.

Proposition 3. Ler I1 be a program whose syntax is described as above, and let F' be
the GQ-representation of II. Then FLP[II; p| is equivalent to SM|[F’; p|.

Example 5 Consider the following one-rule program:

p(a) « not Q<olz] p(x) - ©

This program does not belong to the syntactic class of programs stated in Proposition 3
since Q<olz] p(x) is not monotone in {1}. Indeed, both) and {p(a)} satisfy SM[II; p],
but only () satisfies FLP[IT; p].

Conditions under which the FLP semantics coincides with the first-order stable
model semantics has been studied in [4; 5] in the context of logic programs with aggre-
gates.

6 Conclusion

We introduced two definitions of a stable model. One is a reformulation of the first-order
stable model semantics and its extension to allow generalized quantifiers by referring
to grounding and reduct, and the other is a reformulation of the FLP semantics and
its extension to allow generalized quantifiers by referring to a translation into second-
order logic. These new definitions help us understand the relationship between the FLP
semantics and the first-order stable model semantics, and their extensions. For the class
of programs where the two semantics coincide, system DLV-HEX can be viewed as an
implementation of the stable model semantics of GQ-formulas; A recent extension of
system F2LP [19] to allow “complex” atoms may be considered as a front-end to DLV-
HEX to implement the generalized FLP semantics.

Acknowledgements

We are grateful to Vladimir Lifschitz for useful discussions related to this paper. We
are also grateful to Joseph Babb and the anonymous referees for their useful comments.
This work was partially supported by the National Science Foundation under Grant IIS-
0916116 and by the South Korea IT R&D program MKE/KIAT 2010-TD-300404-001.

References

10.

11.

12.

13.

14.

15.

. Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic programs: Se-

mantics and complexity. In: Proceedings of European Conference on Logics in Artificial
Intelligence (JELIA). (2004)

. Faber, W, Pfeifer, G., Leone, N.: Semantics and complexity of recursive aggregates in an-

swer set programming. Artificial Intelligence 175(1) (2011) 278-298

. Ferraris, P.: Answer sets for propositional theories. In: Proceedings of International Confer-

ence on Logic Programming and Nonmonotonic Reasoning (LPNMR). (2005) 119-131

. Lee, J., Meng, Y.: On reductive semantics of aggregates in answer set programming. In: Pro-

ceedings of International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR). (2009) 182-195

. Bartholomew, M., Lee, J., Meng, Y.: First-order extension of the flp stable model semantics

via modified circumscription. In: Proceedings of International Joint Conference on Artificial
Intelligence (IJCAI). (2011) 724-730

. Ferraris, P., Lifschitz, V.: On the stable model semantics of first-order formulas with ag-

gregates. In: Proceedings of International Workshop on Nonmonotonic Reasoning (NMR).
(2010)

. Ferraris, P, Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proceedings of

International Joint Conference on Atrtificial Intelligence (IICAI), AAAI Press (2007) 372—
379

. Ferraris, P, Lee, J., Lifschitz, V.: Stable models and circumscription. Artificial Intelligence

175 (2011) 236-263

. Lee, J., Meng, Y.: Stable models of formulas with generalized quantifiers (preliminary re-

port). In: Technical Communications of the 28th International Conference on Logic Pro-
gramming. (2012)

Marek, V.W., Truszczynski, M.: Logic programs with abstract constraint atoms. In: Proceed-
ings of the AAAI Conference on Artificial Intelligence (AAAI). (2004) 86-91

Eiter, T., Ianni, G., Lukasiewicz, T., Schindlauer, R., Tompits, H.: Combining answer set
programming with description logics for the semantic web. Artificial Intelligence 172(12-
13) (2008) 1495-1539

Truszczynski, M.: Connecting first-order ASP and the logic FO(ID) through reducts. In:
Correct Reasoning: Essays on Logic-Based Al in Honor of Vladimir Lifschitz. (2012) 543—
559

Eiter, T., Ianni, G., Schindlauer, R., Tompits, H.: A uniform integration of higher-order rea-
soning and external evaluations in answer-set programming. In: Proceedings of International
Joint Conference on Artificial Intelligence (IICAI). (2005) 90-96

Fink, M., Pearce, D.: A logical semantics for description logic programs. In: Proceedings of
European Conference on Logics in Artificial Intelligence (JELIA). (2010) 156-168
Westerstahl, D.: Generalized quantifiers. In: The Stanford En-
cyclopedia of Philosophy (Winter 2008 Edition). (2008) URL =
<http://plato.stanford.edu/archives/win2008/entries/generalized-quantifiers/>.

16.

17.

18.

19.

Lindstrom, P.: First-order predicate logic with generalized quantifiers. Theoria 32 (1966)
186-195

Lee, J., Meng, Y. Stable models of formulas with generalized quantifiers. In:
Proceedings of International Workshop on Nonmonotonic Reasoning (NMR). (2012)
http://peace.eas.asu.edu/joolee/papers/smgg—nmr.pdf.

Lee, J., Palla, R.: Reformulating the situation calculus and the event calculus in the general
theory of stable models and in answer set programming. Journal of Artificial Intelligence
Research (JAIR) 43 (2012) 571-620

Lee, J., Palla, R.: System F2LP — computing answer sets of first-order formulas. In: Pro-
ceedings of International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR). (2009) 515-521

