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Abstract. The recently proposed notion of an elementary set yielded a refine-
ment of the theorem on loop formulas, telling us that the stable models of a
disjunctive logic program can be characterized by the loop formulas of its ele-
mentary sets. Based on the notion of an elementary set, we propose the notion
of head-elementary-set-free (HEF) programs, a more general class of disjunctive
programs than head-cycle-free (HCF) programs proposed by Ben-Eliyahu and
Dechter, that can still be turned into nondisjunctive programs in polynomial time
and space by ”shifting” the head atoms into the body. We show several prop-
erties of HEF programs that generalize earlier results on HCF programs. Given
an HEF program, we provide an algorithm for finding an elementary set whose
loop formula is not satisfied, which has a potential for improving stable model
computation by answer set solvers.

1 Introduction

Disjunctive logic programs under the stable model semantics are more expressive than
nondisjunctive programs. The problem of deciding whether adisjunctive program has a
stable model isΣP

2 -complete [1], while the same problem for a nondisjunctive program
is NP-complete.

However, Ben-Eliyahu and Dechter [2] showed that a class of disjunctive programs
called “head-cycle-free (HCF)” programs can be turned intonondisjunctive programs
in polynomial time and space, by “shifting” the head atoms into the body—a simple
operation defined in [3]. This tells us that an HCF program is an “easy” disjunctive
program, which is merely a syntactic shortcut of a nondisjunctive program. Thus, HCF
programs play an important role in efficient computation of stable models for disjunc-
tive programs. Indeed, the HCF property is exploited by answer set solversDLV 1 [4]
andCMODELS2 [5].

In this paper, we propose the notion of head-elementary-set-free (HEF) programs, a
more general class of disjunctive programs than HCF programs, that can still be turned
into nondisjunctive programs in polynomial time and space by shifting. This is mo-
tivated by the recent study on elementary sets [6], which yielded a refinement of the
theorem on loop formulas by Lin and Zhao [7]. All elementary sets are loops, but not
all loops are elementary sets; still stable models can be characterized by elementary

1 http://www.dbai.tuwien.ac.at/proj/dlv/
2 http://www.cs.utexas.edu/users/tag/cmodels/



sets’ loop formulas. Our definition of an HEF program is similar to the definition of
an HCF program except that the former refers to elementary sets instead of loops. We
observe that some other properties of nondisjunctive programs and HCF programs can
be extended to HEF programs, including the main results by Lin and Zhao [8] charac-
terizing the stable models of a nondisjunctive program by “inherent tightness,” and the
operational characterization of stable models of HCF programs by Leoneet al.[9].

The properties of HEF programs studied here may be useful forimproving the com-
putation of disjunctive answer set solvers, such asDLV andCMODELS. As a first step,
we provide an algorithm for finding an elementary set whose loop formula is not satis-
fied for a given HEF program, which is simpler and more efficient than the algorithm
described in [10].

The outline of the paper is as follows. In Section 2, we reviewthe definition of an
elementary set introduced in [6] and show some of its properties. In Section 3, we intro-
duce the notion of HEF programs and show that shifting preserves their stable models.
In Section 4, we demonstrate that the notion of inherent tightness can be generalized
to HEF programs, but not to general disjunctive programs. This section also includes
simplifications of earlier notions. In Section 5, we show that the operational character-
ization of stable models by Leoneet al. [9] can be extended to HEF programs as well.
We also define “bounding” loops that allow for enhancing the model checking approach
for disjunctive programs introduced in [9, 11]. In Section 6, we present an algorithm for
computing an elementary set for a given HEF program.

2 Review of Elementary Sets for Disjunctive Programs

We begin with a review of elementary sets, introduced in [6],which are a reformulation
and generalization of elementary loops [12].

A disjunctive programis a finite set of(disjunctive) rulesof the form

a1; . . . ; ak ← ak+1, . . . , al, notal+1, . . . , notam, not notam+1, . . . , not notan (1)

wheren ≥ m ≥ l ≥ k ≥ 0 anda1, . . . , an are propositional atoms. We will identify a
rule of the form (1) with the propositional formula

(ak+1 ∧ · · · ∧ al ∧ ¬al+1 ∧ · · · ∧ ¬am ∧ ¬¬am+1 ∧ · · · ∧ ¬¬an)→ (a1 ∨ · · · ∨ ak) .

We will also write (1) as
A← B, F (2)

whereA is a1; . . . ; ak, B is ak+1, . . . , al, andF is

notal+1, . . . , notam, not notam+1, . . . , not notan ,

and we identifyA andB with their corresponding sets of atoms.
Let Π be a disjunctive program. A nonempty setX of atoms occurring inΠ is

called aloop of Π if, for all nonempty proper subsetsY of X , there is a rule (2) inΠ
such thatA ∩ Y 6= ∅ andB ∩ (X \ Y ) 6= ∅. As shown in [6], this definition of a loop
is equivalent to the definition based on a positive dependency graph given in [13].



We say that a subsetY of X is outboundin X for Π if there is a rule (2) inΠ such
thatA ∩ Y 6= ∅, B ∩ (X \ Y ) 6= ∅, A ∩ (X \ Y ) = ∅, andB ∩ Y = ∅. A nonempty
setX of atoms that occur inΠ is elementaryfor Π if all nonempty proper subsets ofX

are outbound inX for Π . It is clear that every elementary set is also a loop, but the
converse does not hold. The definition of an elementary set above remains equivalent
even if we restrictY to be loops or even elementary sets.

Proposition 1. For any disjunctive programΠ and any nonempty setX of atoms that
occur inΠ , X is elementary forΠ iff all proper subsets ofX that are elementary forΠ
are outbound inX for Π .

For any setY of atoms, theexternal support formulaof Y , denoted byESΠ(Y ), is
the disjunction of conjunctionsB ∧ F ∧

∧
a∈A\Y ¬a for all rules (2) ofΠ such that

A ∩ Y 6= ∅ andB ∩ Y = ∅.
The following proposition describes the relationship between the external support

formula of an arbitrary set of atoms and the external supportformulas of its subsets.

Proposition 2. Let Π be a disjunctive program, and letX , Y , Z be sets of atoms
such thatX ⊇ Y ⊇ Z. If Z is not outbound inY for Π and X |= ESΠ(Z), then
X |= ESΠ(Y ).

This proposition is similar to Lemma 5 in [14], which states thatESΠ(Z) |= ESΠ(Y )
holds if there is no rule (2) inΠ such thatA∩Z 6= ∅ andB∩(Y \Z) 6= ∅. Proposition 2
is more general in the sense that it refers to the stronger condition of “outboundness.”

For any setY of atoms, byLFΠ(Y ) we denote the following formula:

∧
a∈Y a→ ESΠ(Y ) . (3)

Formula (3) is called the(conjunctive) loop formulaof Y for Π . Note that we still call
(3) a loop formula even whenY is not a loop.

From Proposition 2, we derive the following relationship among loop formulas.

Proposition 3. For any disjunctive programΠ and any nonempty setX of atoms that
occur inΠ , there is a subsetY of X such thatY is elementary forΠ and LFΠ(Y ) |=
LFΠ(X).

Proposition 3 allows us to restrict the attention to loop formulas of elementary sets
only, rather than those of arbitrary sets or even loops. Thisyields the following theorem.

Theorem 1. [6] For any disjunctive programΠ and any modelX of Π whose atoms
occur inΠ , the following conditions are equivalent:

(a) X is stable forΠ ;3

(b) X satisfies LFΠ(Y ) for all nonempty setsY of atoms occurring inΠ ;
(c) X satisfies LFΠ(Y ) for all loopsY of Π ;
(d) X satisfies LFΠ(Y ) for all elementary setsY of Π .

3 For a model ofΠ , we will say that it is “stable forΠ” if it is a stable model ofΠ .



3 Head-Elementary-Set-Free Logic Programs

Ben-Eliyahu and Dechter [2] defined a class of disjunctive programs called “head-cycle-
free” programs that can be mapped in polynomial time and space to nondisjunctive
programs, preserving the stable models. A disjunctive programΠ is calledHead-Cycle-
Free(HCF) if, for every rule (2) inΠ , there is no loopY of Π such that|A ∩ Y | > 1.

By referring to elementary sets in place of loops in the definition, we can define a
class of programs that is more general than HCF programs. We will call a programΠ

Head-Elementary-set-Free(HEF) if, for every rule (2) inΠ , there is no elementary
setY of Π such that|A ∩ Y | > 1. From the fact that every elementary set is a loop,
it is clear that every HCF program is an HEF program as well. However, not all HEF
programs are HCF. For example, consider the following programΠ1:

p← r

q ← r

r ← p, q

p ; q ← .

(4)

The program has6 loops,{p}, {q}, {r}, {p, r}, {q, r}, {p, q, r}. Since the head of the
last rule contains two atoms from loop{p, q, r}, the program is not HCF. However, it
is HEF since{p, q, r} is not elementary forΠ1 (its subsets{p, r} and{q, r} are not
outbound in{p, q, r} for Π1).

Let us write rule (2) in the following form:

a1; . . . ; ak ← B, F . (5)

Gelfondet al. [3] defined a mapping of a disjunctive programΠ into a nondisjunctive
programΠsh , the “shifted” variant ofΠ , by replacing each rule (5) withk new rules:

ai ← B, F, not a1, . . . , not ai−1, not ai+1, . . . , not ak . (6)

They showed that every stable model ofΠsh is also a stable model ofΠ , but not vice
versa. Ben-Eliyahu and Dechter [2] showed that the other direction holds as well ifΠ
is HCF. Here we extend the result to HEF programs.

Theorem 2. If a programΠ is HEF, thenΠ andΠsh have the same stable models.

For instance, one can check that bothΠ1 and (Π1)sh have{p} and{q} as their
only stable models. Theorem 2 shows that HEF programs are notmore expressive than
nondisjunctive programs, so that one can regard the use of disjunctive rules in such
programs as a syntactic shortcut. Another consequence is that the problem of deciding
whether a model is stable for an HEF program is tractable, as in the case of nondisjunc-
tive and HCF programs. (In the general disjunctive case, it is coNP-complete [4].)

Comparing the elementary sets ofΠ and the elementary sets ofΠsh gives the fol-
lowing result.

Proposition 4. For any disjunctive programΠ , if X is an elementary set ofΠ , thenX

is an elementary set ofΠsh .



The converse of Proposition 4 does not hold, even ifΠ is HEF. For instance, con-
sider the following HEF programΠ2:

p ; q ← r

r ← p

r ← q .

Set{p, q, r} is not elementary forΠ2 since, for instance,{p} is not outbound in{p, q, r}.
On the other hand,{p, q, r} is elementary for(Π2)sh :

p← r, not q
q ← r, not p
r ← p

r ← q .

(7)

However, there is a certain subset ofΠsh whose elementary sets are also elementary
sets ofΠ . For a setX of atoms, byΠX we denote the set of all rules inΠ whose bodies
are satisfied byX .

Proposition 5. LetΠ be a disjunctive program,X a set of atoms that occur inΠ , and
Y a subset ofX . If Y is elementary for(Πsh )X , thenY is elementary forΠ as well.

For X = {p, q, r} and(Π2)sh , we have that[(Π2)sh ]X consists of the last two rules
of (7) only. Only singletons{p}, {q}, and{r} are elementary for[(Π2)sh ]X , and they
are elementary forΠ2 as well.

4 HEF Programs and Inherent Tightness

When we add more rules to a program, a stable model of the original program remains
to be a stable model of the extended program as long as it satisfies the new rules.

Proposition 6. For any disjunctive programΠ and any modelX of Π , X is stable
for Π iff there is a subsetΠ ′ of Π such thatX is stable forΠ ′.

In view of Theorem 1, Proposition 6 tells us that, provided thatX is a model ofΠ ,
it is sufficient to find a subsetΠ ′ of Π such thatX is stable forΠ ′, in order to verify
thatX is stable forΠ . Of course, one can trivially takeΠ itself as the subsetΠ ′, but
there are nontrivial subsets that deserve attention. IfΠ is nondisjunctive in Proposi-
tion 6, it is known that the subsetΠ ′ can be further restricted to a “tight” program [15,
16]—the result known as “inherently tight”, or “weakly tight” programs [8, 17]. We will
reformulate these results and show that they can be extendedto HEF programs.

As in [13], we call a set of atoms occurring inΠ trivial if it consists of a single
atoma that has no rule (2) inΠ such thata ∈ A∩B. Recall that byΠX we denote the
set of all rules inΠ whose bodies are satisfied byX .

Definition 1. [16, 13] A disjunctive programΠ is called tight if every loop ofΠ is
trivial. ProgramΠ is calledtight ona setX of atoms if every loop ofΠX is trivial.



As defined in [18], a setX of atoms issupportedby a nondisjunctive programΠ
if, for every atoma ∈ X , there is a rule (2) inΠX such thatA = {a}. We reformulate
Lin and Zhao’s notion of inherent tightness [8] as follows.

Definition 2. A nondisjunctive programΠ is calledinherently tighton a setX of atoms
if there is a subsetΠ ′ of Π such thatΠ ′ is tight andX is supported byΠ ′.

Theorem 1 from [8] can be reformulated as follows.

Proposition 7. For any nondisjunctive programΠ and any modelX of Π , X is stable
for Π iff Π is inherently tight onX .

One may wonder whether Proposition 7 can be extended to disjunctive programs
as well, since the definition of a tight program (Definition 1)applies to disjunctive
programs as well, and the notion of support was already extended to disjunctive pro-
grams [19, 20, 13]: a setX of atoms issupportedby a disjunctive programΠ if, for
every atoma ∈ X , there is a rule (2) inΠX such thatA ∩ X = {a}. We extend
Definition 2 to disjunctive programs with these extended notions.

Unfortunately, for disjunctive programs, this straightforward extension of inherent
tightness is not sufficient to characterize the stability ofa model. In other words, only
one direction of Proposition 7 holds for disjunctive programs.

Proposition 8. For any disjunctive programΠ and any modelX of Π , if Π is inher-
ently tight onX , thenX is stable forΠ .

The following programΠ3 illustrates that the converse does not hold:

p ; q ←
p← q

q ← p .

Set{p, q} is the only stable model ofΠ3, but there is no subsetΠ ′ of Π3 such thatΠ ′

is tight and{p, q} is supported byΠ ′.
However, one may expect that Proposition 7 can be extended toHEF programs

since, as we noted in Section 3, HEF programs are merely a syntactic shortcut of nondis-
junctive programs. Indeed, the following proposition holds.

Proposition 9. For any HEF programΠ and any modelX of Π , X is stable forΠ iff
Π is inherently tight onX .

Since every HCF program is HEF, the proposition also holds for HCF programs.
We observed that by turning to the notion of an elementary setin place of a loop, we

can get generalizations of results known for loops, such as Theorem 2 and Proposition 9.
This brings our attention to the following question. Can thenotion of a tight program,
which is based on loops, be generalized by referring to elementary sets instead? To
answer this, let us modify Definition 1 as follows.

Definition 3. A disjunctive programΠ is callede-tight if every elementary set ofΠ is
trivial. ProgramΠ is callede-tight ona setX of atoms if every elementary set ofΠX

is trivial.



Since every elementary set is a loop, it is clear that a tight program is e-tight as well. But
is the class of e-tight programs strictly more general than the class of tight programs?
The reason why this is an interesting question to consider isbecause, if so, it would
lead to a generalization of Fages’ theorem [15], which wouldprovide a more general
class of programs for which the stable model semantics and the completion semantics
coincide. However, it turns out that e-tight programs are not truly more general than
tight programs.

Proposition 10. (a) A disjunctive program is e-tight iff it is tight.
(b) A disjunctive program is e-tight on a setX of atoms iff it is tight onX .

This result also indicates that the notion of an inherently tight program does not become
more general by referring to elementary sets. That is, replacing “Π ′ is tight” in the
statement of Definition 2 by “Π ′ is e-tight” does not affect the definition.

In the remainder of this section, we compare our reformulation of inherent tightness
above with the original definition by Lin and Zhao.

Definition 4. [8] A nondisjunctive programΠ is calledinherently tighton a setX of
atoms if there is a subsetΠ ′ of Π such thatΠ ′ is tight onX andX is a stable model
of Π ′.

There are two differences between our reformulation (Definition 2) and Definition 4.
The former does not rely on the relative notion of tightness (“tight on a set of atoms”)
and uses a weaker condition of supportedness. Neverthelessit is not difficult to check
that the two definitions are equivalent.

Proposition 7 above is a simplification of Theorem 1 from [8].

Proposition 11. [8, Theorem 1] For any nondisjunctive programΠ and any setX of
atoms,X is a stable model ofΠ iff X is a model of the completion ofΠ and Π is
inherently tight onX .

Our reformulation of inherently tight programs is closely related to what Fages’
called “well-supported” models [15]. We do not reproduce Fages’ definition here due
to lack of space, but it is not difficult to check that, for a nondisjunctive programΠ and
a setX of atoms,X is well-supported byΠ iff Π is inherently tight onX . Proposition 7
is similar to Theorem 3.1 from [15], which showed that well-supported models coincide
with stable models.

The notion of an inherently tight program is also closely related to the notion of a
weakly tight program presented in [17].

5 Checking the Stability of Models for HEF Programs

The problem of deciding whether a given model is stable is coNP-complete for a dis-
junctive program, while it is tractable for HCF programs [9]. Leoneet al.[9] presented
an operational framework for checking the stability of a model in polynomial time for
HCF programs. Given a disjunctive programΠ and setsX , Y of atoms, they defined a
sequenceR0

Π,X(Y ), R1
Π,X(Y ), . . . that converges to a limitRω

Π,X(Y ) as follows:



– R0
Π,X(Y ) = Y and

– Ri+1

Π,X(Y ) is obtained fromRi
Π,X(Y ) by removing every atoma for which there is

a rule (2) inΠX such thatA ∩X = {a} andB ∩Ri
Π,X(Y ) = ∅.4

A set Y of atoms is calledunfoundedby Π w.r.t. X if X 6|= ESΠ(Y ). Set X is
unfounded-freefor Π if it contains no nonempty subset that is unfounded byΠ w.r.t.X .
As shown in Corollary 2 from [21] and Theorem 4.6 from [9], unfounded-free models
coincide with stable models.

Proposition 6.5 from [9] shows thatX is unfounded-free forΠ if Rω
Π,X(X) = ∅.

The converse also holds ifΠ is restricted to be a HCF program, as shown in Theo-
rem 6.9 from the same paper. That theorem can be extended to HEF programs.5

Proposition 12. For any HEF programΠ and any setX of atoms,X is unfounded-free
for Π iff Rω

Π,X(X) = ∅.

As an example, consider again programΠ1 ((4) in Section 3), which is HEF but
not HCF. Theorem 6.9 from [9] does not apply since it is limited to HCF programs.
However, for setX1 = {p, q, r}, it holds thatRω

Π1,X1
(X1) = X1, and in accordance

with Proposition 12,X1 is not a stable model ofΠ1. For setX2 = {p}, the limit
Rω

Π1,X2
(X2) = ∅, andX2 is a stable model ofΠ1.

The following proposition shows how the HEF property andRω
Π,X can be used to

decide whether a setY of atoms contains a nonempty unfounded set forΠ w.r.t. X .
By ΠX,Y we denote the set of all rules (2) inΠX such thatX ∩ (A \ Y ) = ∅.

Proposition 13. For any disjunctive programΠ , any setX of atoms, and any subsetY

of X such thatΠX,Y is HEF, Rω
Π,X(Y ) 6= ∅ iff Y contains a nonempty unfounded

subset forΠ w.r.t. X .

If we replace “Rω
Π,X(Y ) 6= ∅” by “ Rω

Π,X(Y ) = Y andY is nonempty” in Propo-
sition 13, only the left-to-right direction still holds. Inthe next section, we present an
algorithm based on this for finding a non-trivial unfounded set for a HEF (sub)program.

As defined in [6], we say that a setY of atoms occurring in a disjunctive programΠ
is elementarily unfoundedby Π w.r.t. a setX of atoms if

– Y is an elementary set ofΠX,Y that is unfounded byΠ w.r.t. X , or
– Y is a singleton that is unfounded byΠ w.r.t. X .

For a modelX of Π , Theorem 1(e′) from [6] states thatX is stable forΠ iff no subset
of X is elementarily unfounded byΠ w.r.t.X . Thus stability checking can be cast into
a problem of ensuring the absence of elementarily unfoundedsets. Since every elemen-
tarily unfounded set is a loop, every elementarily unfounded set is clearly contained
in a maximal loop, which allows us to split the search for elementarily unfounded sets
by maximal loops. Below we describe a notion called “bounding loops,” which give
tighter bounds than maximal loops. We remark that the idea ofusing maximal loops for

4 Recall thatΠX consists of all rules (2) inΠ such thatX |= B, F .
5 We here consider slightly more general rules than those considered in [9], since the body of a

rule may contain double negation (not not).



partitioning the program and splitting stability checkingby subprograms was already
presented by Leoneet al. [9] and Kochet al. [11]. Their results can be enhanced by
referring to bounding loops.

For a disjunctive programΠ and a setX of atoms, letS be the set of all setsY of
atoms such thatY is a loop ofΠX,Y andRω

Π,X(Y ) = Y . We call a maximal element
of S a boundingloop for Π w.r.t. X . The following two propositions describe prop-
erties of bounding loops, that are similar to maximal loops used for modular stability
checking.

Proposition 14. For any disjunctive programΠ and any setX of atoms, bounding
loops forΠ w.r.t. X are disjoint.

Proposition 15. For any disjunctive programΠ and any setX of atoms, every non-
singleton elementarily unfounded set forΠ w.r.t. X belongs to a bounding loop forΠ
w.r.t. X .

Clearly, every bounding loop is contained in a maximal loop.However, as shown
in the example below, bounding loops provide tighter boundsthan maximal loops for
locating elementarily unfounded sets. Propositions 14 and15 tell us that the process of
checking the absence of elementarily unfounded sets can be split by bounding loops.

Proposition 16. For any disjunctive programΠ and any modelX of Π , X is stable
for Π iff X is supported byΠ andX contains no bounding loopY for Π w.r.t. X such
thatY has a nonempty unfounded subset forΠ w.r.t X .

We note that computing all bounding loops forΠ w.r.t. X that are contained inX
can be done in polynomial time using the following method:

1. LetY := X .
2. LetZ := Rω

Π,X(Y ). (Note thatZ = Rω
Π,X(Z) holds.)

3. If Z 6= ∅, then consider the following cases:
(a) If Z is a loop ofΠX,Z , then markZ as a bounding loop forΠ w.r.t.X .
(b) Otherwise, proceed with step 2 for every maximal loopY of ΠX,Z that is

contained inZ.

For example, consider programΠ4,

p← r s ; t← p ; q ← s

q ← r s← t t ; u← q

r ← p, q t← s, u u ; v ← ,

and its modelX = {p, q, r, s, t, u}. It holds that(Π4)X,X = Π4, andX is a maximal
loop of Π4. Note thatRω

Π4,X(X) = {p, q, r, s, t} 6= X , so thatX is not a bounding
loop forΠ4 w.r.t.X . SetZ = {p, q, r, s, t} is not a loop of(Π4)X,Z ; the maximal loops
of (Π4)X,Z contained inZ areY1 = {p, q, r} andY2 = {s, t}. Indeed,Y1 andY2 are
the two bounding loops forΠ4 w.r.t. X .

From Proposition 13 and the definition of a bounding loop, we derive the following.



Corollary 1. Let Π be a disjunctive program,X a set of atoms, andY a bounding
loop for Π w.r.t. X that is contained inX . If ΠX,Y is HEF, then there is a nonempty
subset ofY that is unfounded byΠ w.r.t. X .

Recall programΠ4, its modelX , and bounding loopY1. Note that(Π4)X,Y1
is HEF. By

Corollary 1, the fact that(Π4)X,Y1
is HEF implies thatX is not stable forΠ4. In fact,

Y1 contains{p, r} and{q, r}, which are both elementarily unfounded byΠ4 w.r.t. X .

6 Computing Elementarily Unfounded Sets

It is inevitable that exponentially many loop formulas haveto be considered in the worst
case [22]. Hence, SAT-based answer set solvers do not try to find all loop formulas at
once; loop formulas are added incrementally until a stable model is found (if there is
any). As shown in [6], it is sufficient to consider only loop formulas of elementarily
unfounded sets in this process. Thus, it is important to design an efficient algorithm for
finding elementarily unfounded sets.

For a general disjunctive program, it has been shown that deciding whether a given
set of atoms is elementary is coNP-complete [6]. While we do not expect a tractable
algorithm for computing elementarily unfounded sets of general disjunctive programs,
it is possible for HEF programs. Below we present a tractablealgorithm for HEF pro-
grams, which is simpler and more efficient than the one described in [10].6

For any disjunctive programΠ and any setY of atoms, we define(Y, ECΠ(Y )) as
a directed graph where:

EC0
Π(Y ) = ∅

ECi+1

Π (Y ) = { (a, b) | there is a rule (2) inΠ such thatA ∩ Y = {a} and
all atomsb in B ∩ Y belong to the same
strongly connected component of(Y, ECi

Π(Y )) }
ECΠ(Y ) =

⋃
i≥0

ECi
Π(Y ) .

This graph is equivalent to the “elementary subgraph” defined in [6], and it is closer to
the algorithm for computing an elementarily unfounded set described below.

We first note that Theorem 2 in [6] can be extended to HEF programs.

Proposition 17. For any HEF programΠ and any nonempty setY of atoms that occur
in Π , Y is elementary forΠ iff (Y, ECΠ(Y )) is a strongly connected graph.

Given a disjunctive programΠ , a setX of atoms occurring inΠ , and a nonempty
subsetY of X such thatΠX,Y is HEF andRω

Π,X(Y ) = Y , Figure 1 shows an algorithm
for computing an elementarily unfounded set byΠ w.r.t.X that is contained inY .7

Due to Step I, E-SET never considers any rule (2) ofΠX,Y such that|A ∩ Y | > 1.
This is similar to the definition ofECi+1

Π (Y ) above, where only rules (2) satisfying
A ∩ Y = {a} contribute to any edge. In a bottom-up manner, Step 1(a) of E-SET adds
edges toECΠX,Y

(Y ) for rules (2) such that|B ∩ Y | = 1. This ensures that all rules

6 That algorithm was designed for nondisjunctive programs, but also applies to HEF programs.
7 “SCC” is used as a shorthand for “Strongly Connected Component.”



E-SET(ΠX,Y , Y )

I. ΠX,Y := ΠX,Y \ {(A← B, F ) ∈ ΠX,Y | |A ∩ Y | > 1}

II. ECΠX,Y
(Y ) := ∅

III. While (Y, ECΠX,Y
(Y )) is not strongly connected Do

1. While there is a rule(A← B, F ) in ΠX,Y such that|A ∩ Y | = 1 and|B ∩ Y | = 1 Do

(a) For each rule(A← B, F ) in ΠX,Y such that|A ∩ Y | = 1 and|B ∩ Y | = 1 Do

i. ECΠX,Y
(Y ) := ECΠX,Y

(Y ) ∪ {(a, b) | A ∩ Y ={a}, B ∩ Y ={b}}

ii. ΠX,Y := ΠX,Y \ {(A← B, F )} /* the rule needs not be considered further */

(b) For each (non-trivial) SCC(C, ECΠX,Y
(Y ) ∩ (C×C)) of (Y, ECΠX,Y

(Y )) Do

i. Select an atomb ∈ C

ii. ΠX,Y := (ΠX,Y \ {(A← B, F ) ∈ ΠX,Y | |B ∩ C| > 1}) ∪

{(A← b, B \ C, F ) | (A← B, F ) ∈ ΠX,Y , |B ∩ C| > 1}

2. If (Y, ECΠX,Y
(Y )) is not strongly connected Then

(a) Select some SCC(C, ECΠX,Y
(Y )∩ (C ×C)) of (Y, ECΠX,Y

(Y )) that is not reached
in (Y, ECΠX,Y

(Y ))

(b) Y := Y \ C /* someZ ⊆ Y \ C is elementarily unfounded byΠ w.r.t.X */

(c) ECΠX,Y
(Y ) := ECΠX,Y

(Y ) \ {(a, b) ∈ ECΠX,Y
(Y ) | a ∈ C}

IV. ReturnY

Fig. 1.E-SET: An algorithm to compute an elementarily unfounded set

contributing to edges depend on a single SCC of(Y, ECΠX,Y
(Y )). In rules (2) ofΠX,Y

such thatB contains multiple atoms from a recently computed SCC, Step 1(b) replaces
all atoms of the SCC by a single representative. If this leadsto |B ∩ Y | = 1, rule (2)
contributes an edge in the next iteration of Step 1(a). The described process is iterated
until no further edges can be added. If a single SCC is obtained, i.e., if(Y, ECΠX,Y

(Y ))
is strongly connected, thenY is elementarily unfounded byΠ w.r.t. X . Otherwise,
in Step 2, we remove atoms fromY that belong to some SCCC that is not reached
(Y \C still contains an elementarily unfounded set forΠ w.r.t.X). In the next iteration
of Step 1, this might allow to add more edges toECΠX,Y

(Y ) for rules (2) ofΠX,Y such
that B ∩ C 6= ∅. The process is repeated until(Y, ECΠX,Y

(Y )) becomes a strongly
connected graph. Note that the computed setY can be a proper subset of theY in the
invocation of E-SET(ΠX,Y , Y ).

When we apply E-SET toΠ1 ((4) in Section 3) andY = {p, q, r}, it adds edges
(p, r) and (q, r) to ECΠ1

(Y ). As the resulting graph is not strongly connected, ei-
therq or p is removed fromY . After this, adding edge(r, p) or (r, q), respectively, to
ECΠ1

(Y ) leads to a strongly connected graph. The result of E-SET is thus either{p, r}
or {q, r}, which are the two elementarily unfounded sets forΠ1 w.r.t. {p, q, r}.

The following proposition states the correctness of the E-SET algorithm.



Proposition 18. LetΠ be a disjunctive program,X a set of atoms that occur inΠ , and
Y a nonempty subset ofX . If ΠX,Y is HEF andRω

Π,X(Y ) = Y , then E-SET(ΠX,Y ,Y )
returns an elementarily unfounded set forΠ w.r.t. X .

It is reasonable to take a bounding loopY for Π w.r.t. X such thatΠX,Y is HEF as
input for E-SET since every elementarily unfounded set is a subset of some bound-
ing loop. For the correctness of E-SET, it is however sufficient thatΠX,Y is HEF and
Rω

Π,X(Y ) = Y .
Finally, we comment on the complexity of E-SET. Note that E-SET successively

merges atoms from an input setY into SCCs until finally obtaining a single SCC. When-
ever a new SCCC is produced, all its atoms are replaced by a single element ofC in
rules (2) such that|B ∩C| > 1. This can be regarded as counting down body elements
until only one atom fromY is left, in which case a rule “fires.” This behavior is similar
to theDowling-Gallier algorithm [23], also used to compute the minimal model of a
set of Horn clauses. Since the computation of SCCs and the Dowling-Gallier algorithm
have linear complexity, the same is concluded for E-SET. In contrast, the elementary
set computation algorithm in [10] has complexityO(n × log n).

7 Conclusion

The main contribution of this paper is identifying the classof HEF programs, a more
general class of disjunctive programs than HCF programs, that can be turned into
nondisjunctive programs in polynomial time and space by shifting head atoms into the
body. We showed that several properties of nondisjunctive programs and HCF programs
can be extended to HEF programs in a straightforward way. Since HCF programs have
played an important role in the computation of stable modelsfor disjunctive programs,
we expect that HEF programs can be useful as well. As a first step, we have provided
an algorithm for finding an elementarily unfounded set for a HEF program, which has
a potential for improving the stable model computation for disjunctive programs.

As a future work, we plan to implement algorithm E-SET, presented in this paper, in
CMODELS for an empirical evaluation. It is an open question whether identifying HEF
programs is tractable, while it is known that identifying HCF programs can be done in
linear time.
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