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Abstract. The recently proposed notion of an elementary set yieldesfiner

ment of the theorem on loop formulas, telling us that thelstahodels of a
disjunctive logic program can be characterized by the laomtilas of its ele-
mentary sets. Based on the notion of an elementary set, vpegeahe notion
of head-elementary-set-free (HEF) programs, a more geclass of disjunctive
programs than head-cycle-free (HCF) programs proposeddnyBEiyahu and
Dechter, that can still be turned into nondisjunctive paogs in polynomial time
and space by "shifting” the head atoms into the body. We sheweral prop-
erties of HEF programs that generalize earlier results of lgfdgrams. Given
an HEF program, we provide an algorithm for finding an elemgnset whose
loop formula is not satisfied, which has a potential for inyimg stable model
computation by answer set solvers.

1 Introduction

Disjunctive logic programs under the stable model semsugtie more expressive than
nondisjunctive programs. The problem of deciding whettgispnctive program has a
stable model isZf’-complete [1], while the same problem for a nondisjunctikegoam
is NP-complete.

However, Ben-Eliyahu and Dechter [2] showed that a classspictive programs
called “head-cycle-free (HCF)” programs can be turned midadisjunctive programs
in polynomial time and space, by “shifting” the head atonts ithe body—a simple
operation defined in [3]. This tells us that an HCF programnis'@asy” disjunctive
program, which is merely a syntactic shortcut of a nondisfiwve program. Thus, HCF
programs play an important role in efficient computationtabte models for disjunc-
tive programs. Indeed, the HCF property is exploited by amsset solver®Lv?! [4]
andCMODELS? [5].

In this paper, we propose the notion of head-elementarfrse(HEF) programs, a
more general class of disjunctive programs than HCF progrémat can still be turned
into nondisjunctive programs in polynomial time and spageshifting. This is mo-
tivated by the recent study on elementary sets [6], whickdg a refinement of the
theorem on loop formulas by Lin and Zhao [7]. All elementagyssare loops, but not
all loops are elementary sets; still stable models can beactexized by elementary
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sets’ loop formulas. Our definition of an HEF program is sémilo the definition of
an HCF program except that the former refers to elementasyisgtead of loops. We
observe that some other properties of nondisjunctive pmgrand HCF programs can
be extended to HEF programs, including the main results hyabd Zhao [8] charac-
terizing the stable models of a nondisjunctive program bjéirent tightness,” and the
operational characterization of stable models of HCF mogrby Leonet al.[9].

The properties of HEF programs studied here may be usefuhfammoving the com-
putation of disjunctive answer set solvers, suclbag andCMODELS. As a first step,
we provide an algorithm for finding an elementary set whose formula is not satis-
fied for a given HEF program, which is simpler and more effictban the algorithm
described in [10].

The outline of the paper is as follows. In Section 2, we revieevdefinition of an
elementary set introduced in [6] and show some of its prégeeriin Section 3, we intro-
duce the notion of HEF programs and show that shifting pvesaheir stable models.
In Section 4, we demonstrate that the notion of inherentriggs can be generalized
to HEF programs, but not to general disjunctive programss $hction also includes
simplifications of earlier notions. In Section 5, we showtti& operational character-
ization of stable models by Leors# al.[9] can be extended to HEF programs as well.
We also define “bounding” loops that allow for enhancing theelel checking approach
for disjunctive programs introduced in [9, 11]. In Sectiqm@ present an algorithm for
computing an elementary set for a given HEF program.

2 Review of Elementary Sets for Disjunctive Programs

We begin with a review of elementary sets, introduced iny8lich are a reformulation
and generalization of elementary loops [12].
A disjunctive prograrnis a finite set of(disjunctive) ruleof the form

ai;...;ap < Ggy1,---,0;,N0tagyq, ..., N0ta,,, not nota,,+1, . ..,not nota,, (1)

wheren > m > 1 > k > 0 anday, . .., a,, are propositional atoms. We will identify a
rule of the form (1) with the propositional formula

(a1 N ANag A=aipr A A= A —"@mip1 Ao A—may) — (a1 V- Vag) .

We will also write (1) as

A+~ B F (2
whereAisay;...;ak, BiSagy1,--.,a;, andF' is
nota;.1,...,Nnota,,, not nota,,.1, . ..,Not nota,, ,

and we identifyA and B with their corresponding sets of atoms.

Let IT be a disjunctive program. A nonempty sEtof atoms occurring in7 is
called aloopof IT if, for all nonempty proper subseis of X, there is a rule (2) idI
suchthatdA NY # @ andB N (X \ Y) # (. As shown in [6], this definition of a loop
is equivalent to the definition based on a positive dependgraph given in [13].



We say that a subs&t of X is outboundn X for IT if there is a rule (2) in7 such
thatANY #0,BN(X\Y)#0,An(X\Y)=0,andBNY = (. A nonempty
setX of atoms that occur ih/ is elementaryor IT if all nonempty proper subsets af
are outbound inX for I1. It is clear that every elementary set is also a loop, but the
converse does not hold. The definition of an elementary setealemains equivalent
even if we restrict” to be loops or even elementary sets.

Proposition 1. For any disjunctive prograni/ and any nonempty sé&f of atoms that
occurin/l, X is elementary fod7 iff all proper subsets oK that are elementary fafl
are outbound inX for I7.

For any selt” of atoms, theexternal support formulaf Y, denoted byES; (Y), is
the disjunction of conjunction8 A F' A /\aeA\Yja for all rules (2) ofIT such that
ANY #PandBNY = 0.

The following proposition describes the relationship bestw the external support
formula of an arbitrary set of atoms and the external sugpomntulas of its subsets.

Proposition 2. Let IT be a disjunctive program, and leX, Y, Z be sets of atoms
such thatX D Y D Z. If Z is not outbound inY” for IT and X | ESy(Z), then

X = ESy(Y).

This proposition is similar to Lemma 5 in [14], which stateattES; (Z) = ESy(Y)

holds if there is no rule (2) il suchthatAnZ # ) andBN(Y'\ Z) # (). Proposition 2

is more general in the sense that it refers to the strongefittom of “outboundness.”
For any set” of atoms, byLF 7 (Y") we denote the following formula:

Nacye — ESz(Y) . (3)

Formula (3) is called théconjunctive) loop formulaf Y for I1. Note that we still call
(3) aloop formula even wheXi is not a loop.
From Proposition 2, we derive the following relationshiparg loop formulas.

Proposition 3. For any disjunctive prograni/ and any nonempty sé&f of atoms that
occur inII, there is a subsét” of X such thafY” is elementary fod7 and LF;(Y) =
LF7(X).

Proposition 3 allows us to restrict the attention to looprfatas of elementary sets
only, rather than those of arbitrary sets or even loops. yiklds the following theorem.

Theorem 1. [6] For any disjunctive program// and any modelX of IT whose atoms
occur inI1, the following conditions are equivalent:

(@) X is stable forlI;®

(b) X satisfies Lk (Y") for all nonempty set¥” of atoms occurring irf7;
(c) X satisfies L (Y) for all loopsY of IT;

(d) X satisfies Lz (Y") for all elementary set¥” of I1.

3 For a model off7, we will say that it is “stable fod7” if it is a stable model offI.



3 Head-Elementary-Set-Free Logic Programs

Ben-Eliyahu and Dechter [2] defined a class of disjunctiegpams called “head-cycle-
free” programs that can be mapped in polynomial time andespamondisjunctive
programs, preserving the stable models. A disjunctiveramod! is calledHead-Cycle-
Free(HCF) if, for every rule (2) inlT, there is no loofy” of IT suchthafANY| > 1.

By referring to elementary sets in place of loops in the diédinj we can define a
class of programs that is more general than HCF programs. \Veal a programil
Head-Elementary-set-FrédlEF) if, for every rule (2) inll, there is no elementary
setY of IT such thaiA N Y| > 1. From the fact that every elementary set is a loop,
it is clear that every HCF program is an HEF program as wellvéieer, not all HEF
programs are HCF. For example, consider the following @ogil; :

per
q<—T
r—n4q
piq—.

(4)

The program has loops,{p}, {q}, {r}, {p, 7}, {¢,7}, {p, q,r}. Since the head of the
last rule contains two atoms from lodp, ¢, }, the program is not HCF. However, it
is HEF since{p, ¢, r} is not elementary fofl; (its subsetyp,r} and{q,r} are not
outbound ir{p, ¢, r} for II;).

Let us write rule (2) in the following form:

ai;...;ap — B, I . (5)

Gelfondet al.[3] defined a mapping of a disjunctive progrdiinto a nondisjunctive
programl7,, the “shifted” variant ofi1, by replacing each rule (5) with new rules:

a; — B, F, not ay, ..., not a;_1, not a;11,..., not aj . (6)

They showed that every stable modelléf;, is also a stable model df, but not vice
versa. Ben-Eliyahu and Dechter [2] showed that the othexction holds as well if 7
is HCF. Here we extend the result to HEF programs.

Theorem 2. If a programIT is HEF, thenlT and ], have the same stable models.

For instance, one can check that béth and (I1;)s, have{p} and{q} as their
only stable models. Theorem 2 shows that HEF programs am@oi@ expressive than
nondisjunctive programs, so that one can regard the usespfndtive rules in such
programs as a syntactic shortcut. Another consequencatithth problem of deciding
whether a model is stable for an HEF program is tractablay teei case of nondisjunc-
tive and HCF programs. (In the general disjunctive case,dbNP-complete [4].)

Comparing the elementary setsi@fand the elementary sets ff;, gives the fol-
lowing result.

Proposition 4. For any disjunctive prograni/, if X is an elementary set d@f, thenX
is an elementary set df , .



The converse of Proposition 4 does not hold, evefd is HEF. For instance, con-
sider the following HEF progranis:

pP;gerT
T D
T q.

Set{p, ¢, r} is not elementary fofl, since, for instancep} is not outbound i p, ¢, r}.
On the other handp, ¢, r} is elementary fo(I15)p:

p < 7,N0tq
q < r,notp
D
T q.

(7)

However, there is a certain subset/df;, whose elementary sets are also elementary
sets oflI. For a setX of atoms, byll x we denote the set of all rules ih whose bodies
are satisfied byX.

Proposition 5. Let IT be a disjunctive programX a set of atoms that occur iff, and
Y asubset ofX. If Y is elementary fo( 1) x, thenY is elementary foiT as well.

For X = {p,q,r} and(Il;),, we have thaf(Il;)s,]x consists of the last two rules
of (7) only. Only singletongp}, {¢}, and{r} are elementary fof(I12)s:] x, and they
are elementary fofl, as well.

4 HEF Programs and Inherent Tightness

When we add more rules to a program, a stable model of thenatigrogram remains
to be a stable model of the extended program as long as ifisstise new rules.

Proposition 6. For any disjunctive prograni/ and any modelX of I, X is stable
for IT iff there is a subsefl’ of IT such thatX is stable forlT’.

In view of Theorem 1, Proposition 6 tells us that, provideattki is a model ofi7,
it is sufficient to find a subsdfl’ of IT such thatX is stable forlI’, in order to verify
that X is stable forII. Of course, one can trivially tak# itself as the subsdi’, but
there are nontrivial subsets that deserve attentiori 1§ nondisjunctive in Proposi-
tion 6, it is known that the subsét’ can be further restricted to a “tight” program [15,
16]—the result known as “inherently tight”, or “weakly titjiprograms [8, 17]. We wiill
reformulate these results and show that they can be exté¢ad#eF programs.

As in [13], we call a set of atoms occurring ii trivial if it consists of a single
atoma that has no rule (2) id such that: € AN B. Recall that bylTx we denote the
set of all rules infT whose bodies are satisfied By

Definition 1. [16, 13] A disjunctive prograniT is called tight if every loop ofII is
trivial. Program I7 is calledtight ona setX of atoms if every loop dff x is trivial.



As defined in [18], a seX of atoms issupportedy a nondisjunctive programfy
if, for every atoma € X, there is a rule (2) idIx such thatd = {a}. We reformulate
Lin and Zhao’s notion of inherent tightness [8] as follows.

Definition 2. A nondisjunctive prograny is calledinherently tighon a setX of atoms
if there is a subsefl’ of IT such that/T’ is tight andX is supported byT’.

Theorem 1 from [8] can be reformulated as follows.

Proposition 7. For any nondisjunctive prografy and any modeK of I7, X is stable
for IT iff IT is inherently tight onX.

One may wonder whether Proposition 7 can be extended tondispe programs
as well, since the definition of a tight program (Definitiondgplies to disjunctive
programs as well, and the notion of support was already detdto disjunctive pro-
grams [19, 20, 13]: a seX of atoms issupporteddy a disjunctive prograni/ if, for
every atoma € X, there is a rule (2) iflIx such thatA N X = {a}. We extend
Definition 2 to disjunctive programs with these extendedanst

Unfortunately, for disjunctive programs, this straightfard extension of inherent
tightness is not sufficient to characterize the stabilita afiodel. In other words, only
one direction of Proposition 7 holds for disjunctive pragsa

Proposition 8. For any disjunctive prograni/ and any modekX of I1, if IT is inher-
ently tight onX, thenX is stable forlI.

The following progran¥I; illustrates that the converse does not hold:

pi;q—
p—yq
q—p-.

Set{p, ¢} is the only stable model dff3, but there is no subsét’ of 175 such that/1’
is tight and{p, ¢} is supported by7’.

However, one may expect that Proposition 7 can be extendétEte programs
since, as we noted in Section 3, HEF programs are merely acymshortcut of nondis-
junctive programs. Indeed, the following proposition reld

Proposition 9. For any HEF program/I and any modeK of /7, X is stable forlT iff
I is inherently tight onX.

Since every HCF program is HEF, the proposition also hold$ifoF programs.

We observed that by turning to the notion of an elementaringgtice of a loop, we
can get generalizations of results known for loops, sucthe®iiem 2 and Proposition 9.
This brings our attention to the following question. Can tie¢ion of a tight program,
which is based on loops, be generalized by referring to aeiang sets instead? To
answer this, let us modify Definition 1 as follows.

Definition 3. A disjunctive prograni! is callede-tightif every elementary set @1 is
trivial. Program I7 is callede-tight ona setX of atoms if every elementary seti@f
is trivial.



Since every elementary setis aloop, it is clear that a tigigam is e-tight as well. But
is the class of e-tight programs strictly more general thendass of tight programs?
The reason why this is an interesting question to considbeause, if so, it would
lead to a generalization of Fages’ theorem [15], which waqrlovide a more general
class of programs for which the stable model semantics anddmpletion semantics
coincide. However, it turns out that e-tight programs aretndy more general than
tight programs.

Proposition 10. (a) A disjunctive program is e-tight iff it is tight.
(b) A disjunctive program is e-tight on a s&tof atoms iff it is tight onX..

This result also indicates that the notion of an inhererglyttprogram does not become
more general by referring to elementary sets. That is, capda‘' 1’ is tight” in the
statement of Definition 2 byIT’ is e-tight” does not affect the definition.

In the remainder of this section, we compare our reformattedif inherent tightness
above with the original definition by Lin and Zhao.

Definition 4. [8] A nondisjunctive program{ is calledinherently tighton a setX of
atoms if there is a subsét’ of IT such that/I’ is tight on X and X is a stable model
of IT'.

There are two differences between our reformulation (Défimi2) and Definition 4.
The former does not rely on the relative notion of tightnésgt{t on a set of atoms”)
and uses a weaker condition of supportedness. Nevertheigs®t difficult to check
that the two definitions are equivalent.

Proposition 7 above is a simplification of Theorem 1 from [8].

Proposition 11. [8, Theorem 1] For any nondisjunctive prografh and any setX of
atoms, X is a stable model of! iff X is a model of the completion df and IT is
inherently tight onX.

Our reformulation of inherently tight programs is closeglated to what Fages’
called “well-supported” models [15]. We do not reproducgés definition here due
to lack of space, but it is not difficult to check that, for a digjunctive progranil and
a setX of atoms,X is well-supported byT iff IT is inherently tight onX'. Proposition 7
is similar to Theorem 3.1 from [15], which showed that welpported models coincide
with stable models.

The notion of an inherently tight program is also closehatedl to the notion of a
weakly tight program presented in [17].

5 Checking the Stability of Models for HEF Programs

The problem of deciding whether a given model is stable isRe@Nmplete for a dis-
junctive program, while it is tractable for HCF programs.[9¢oneet al.[9] presented
an operational framework for checking the stability of a mldd polynomial time for
HCF programs. Given a disjunctive progrdimand setsX, Y of atoms, they defined a
sequence®y; «(Y), Rp; x(Y), ... that convergesto a limiky; (V') as follows:



- Ry x(Y) =Y and
- RZ;}{(Y) is obtained fronRﬁLX(Y) by removing every atom for which there is
arule (2) in/Tx such thatd N X = {a} andB N R (Y) = 0.4

A setY of atoms is calledunfoundedby IT w.rt. X if X [~ ESz(Y). SetX is
unfounded-fre®or IT if it contains no nonempty subset that is unfoundediw.r.t. X.
As shown in Corollary 2 from [21] and Theorem 4.6 from [9], anhded-free models
coincide with stable models.

Proposition 6.5 from [9] shows thaf is unfounded-free foT if R} (X) = 0.
The converse also holds if is restricted to be a HCF program, as shown in Theo-
rem 6.9 from the same paper. That theorem can be extendedR@tdgrams.

Proposition 12. For any HEF progran¥ and any sefX of atoms X is unfounded-free
for IT iff R} x(X) = 0.

As an example, consider again progrdm ((4) in Section 3), which is HEF but
not HCF. Theorem 6.9 from [9] does not apply since it is lidite HCF programs.
However, for setX; = {p,g,}, it holds thatR§, « (X1) = Xi, and in accordance
with Proposition 12,X; is not a stable model of7;. For setX, = {p}, the limit
R%, x,(X2) =0, and X, is a stable model of7; .

The following proposition shows how the HEF property a@#f]  can be used to
decide whether a séf of atoms contains a nonempty unfounded set/fow.r.t. X.
By I1x y we denote the set of all rules (2) iiix such thatX N (A\Y) = 0.

Proposition 13. For any disjunctive prograni/, any setX of atoms, and any subsgt
of X such that/Tx y is HEF, Rf; «(Y)) # 0 iff Y contains a nonempty unfounded
subset forll w.r.t. X.

If we replace Ry, (V) # 0" by “RY, «+(Y) = Y andY is nonempty” in Propo-
sition 13, only the Iei‘t-to-right direction still holds. lthe next section, we present an
algorithm based on this for finding a non-trivial unfoundetifsr a HEF (sub)program.

As defined in [6], we say that a sEtof atoms occurring in a disjunctive prograih
is elementarily unfoundeloly IT w.r.t. a setX of atoms if

— Y is an elementary set df x y that is unfounded byl w.r.t. X, or
— Y is a singleton that is unfounded By w.r.t. X.

For a modelX of IT, Theorem 1(§ from [6] states thafX is stable forlI iff no subset
of X is elementarily unfounded bif w.r.t. X . Thus stability checking can be cast into
a problem of ensuring the absence of elementarily unfousdesd Since every elemen-
tarily unfounded set is a loop, every elementarily unfouhdet is clearly contained
in a maximal loop, which allows us to split the search for edatarily unfounded sets
by maximal loops. Below we describe a notion called “bougdmops,” which give
tighter bounds than maximal loops. We remark that the idessiofg maximal loops for

* Recall that/Tx consists of all rules (2) idl such thatX = B, F.
5 We here consider slightly more general rules than thoseideresi in [9], since the body of a
rule may contain double negationat noj.



partitioning the program and splitting stability checking subprograms was already
presented by Leonet al.[9] and Kochet al.[11]. Their results can be enhanced by
referring to bounding loops.

For a disjunctive progranmi/ and a setX of atoms, letS be the set of all set¥” of
atoms such that” is a loop ofI1x y andR“ﬁ,X(Y) =Y. We call a maximal element
of S a boundingloop for IT w.r.t. X. The following two propositions describe prop-
erties of bounding loops, that are similar to maximal loopsdifor modular stability
checking.

Proposition 14. For any disjunctive prograni/ and any setX of atoms, bounding
loops forII w.r.t. X are disjoint.

Proposition 15. For any disjunctive prograni/ and any setX of atoms, every non-
singleton elementarily unfounded set f@rw.r.t. X belongs to a bounding loop fair
w.rt. X.

Clearly, every bounding loop is contained in a maximal lodpwever, as shown
in the example below, bounding loops provide tighter bouhds maximal loops for
locating elementarily unfounded sets. Propositions 141anill us that the process of
checking the absence of elementarily unfounded sets caplibbysbounding loops.

Proposition 16. For any disjunctive prograni/ and any model of I7, X is stable
for IT iff X is supported by7 and X contains no bounding loop for I7 w.r.t. X such
thatY has a nonempty unfounded subsetfibw.r.t X .

We note that computing all bounding loops fl@rw.r.t. X that are contained iX
can be done in polynomial time using the following method:

1. LetY := X.
2. LetZ := R§ x(Y). (Note thatZ = R§; (Z) holds.)
3. If Z # 0, then consider the following cases:
(a) If Zisaloop ofllx z, then markZ as a bounding loop faff w.r.t. X.
(b) Otherwise, proceed with step 2 for every maximal |dopf I7x ; that is
contained inZ.

For example, consider prograffy,

peT CHA D;gs
q—r st tiu<«q
r<—p,q t— s, u U —,

and its modelX = {p, ¢,, s,t,u}. It holds that(11,) x, x = II4, andX is a maximal
loop of /7,. Note thatR$;, (X) = {p,q,7,s,t} # X, so thatX is not a bounding
loop for Ty w.rt. X. SetZ = {p, q,r, s,t} is notaloop of I14) x, z; the maximal loops
of (I14)x,z contained inZ areY; = {p, q,r} andY; = {s,t}. Indeed)Y; andY; are
the two bounding loops fof7, w.r.t. X.

From Proposition 13 and the definition of a bounding loop, eevé the following.



Corollary 1. Let IT be a disjunctive programX a set of atoms, and” a bounding
loop for IT w.r.t. X that is contained inX. If IIx y is HEF, then there is a nonempty
subset oft” that is unfounded by7 w.r.t. X.

Recall progranily, its modelX, and bounding loofy; . Note that(I14) x vy, is HEF. By
Corollary 1, the fact that/l4) x v, is HEF implies thatX is not stable fodl,. In fact,
Y; contains{p, r} and{q, r}, which are both elementarily unfounded By w.r.t. X.

6 Computing Elementarily Unfounded Sets

Itis inevitable that exponentially many loop formulas h&wbe considered in the worst
case [22]. Hence, SAT-based answer set solvers do not trgdalfi loop formulas at
once; loop formulas are added incrementally until a stabdeehis found (if there is
any). As shown in [6], it is sufficient to consider only loopriculas of elementarily
unfounded sets in this process. Thus, it is important togthesin efficient algorithm for
finding elementarily unfounded sets.

For a general disjunctive program, it has been shown thadliegovhether a given
set of atoms is elementary is coNP-complete [6]. While we dbaxpect a tractable
algorithm for computing elementarily unfounded sets ofegahdisjunctive programs,
it is possible for HEF programs. Below we present a tractatgerithm for HEF pro-
grams, which is simpler and more efficient than the one desdiin [10]°

For any disjunctive prografy and any set” of atoms, we defin€Y, EC;;(Y)) as
a directed graph where:

ECL(Y) =0
EC(Y) = { (a,b) | there is arule (2) inT such thatA N Y = {a} and
all atomsb in BN'Y belong to the same
strongly connected component@f, EC,, (Y)) }

ECi1(Y) = U;»oECr (Y) -

This graph is equivalent to the “elementary subgraph” ddfind6], and it is closer to
the algorithm for computing an elementarily unfounded sstcdibed below.
We first note that Theorem 2 in [6] can be extended to HEF progra

Proposition 17. For any HEF programi/7 and any nonempty s&t of atoms that occur
in I1,Y is elementary fodI iff (Y, EC;(Y)) is a strongly connected graph.

Given a disjunctive prograny, a setX of atoms occurring i/, and a nonempty
subset” of X suchthatllx y is HEF andR$; (Y') = Y, Figure 1 shows an algorithm
for computing an elementarily unfounded setlfyw.r.t. X that is contained iry".”

Due to Step I, E-SET never considers any rule (2Jigf y such thafANY| > 1.
This is similar to the definition oECﬁYH(Y) above, where only rules (2) satisfying
ANY = {a} contribute to any edge. In a bottom-up manner, Step 1(a) SEE-adds
edges tECy, , (Y') for rules (2) such thatB N Y| = 1. This ensures that all rules

® That algorithm was designed for nondisjunctive prograrasatso applies to HEF programs.
7“3CC”is used as a shorthand for “Strongly Connected Comptghe



E-SET({Ixy,Y)
I HX,Y::HX,Y\{(AHBVF)GHX’Y||AﬂY|>1}
1. ECHX’Y(Y) =0

1. While (Y, ECr 4 (Y)) is not strongly connected Do

1. While thereisaruléA — B, F)in IIxy suchthafANY|=1and|BNY|=1Do

(a) Foreachrul¢A — B,F)inIlxy suchthatANY|=1and|BNY|=1Do
i. ECrryy (Y) :=ECny, (Y)U{(a,b) | ANY={a}, BNY={b}}
i. Ixy :=1IIxy\{(A< B,F)} [*therule needs not be considered further */

(b) For each (non-trivial) SCQC, ECrr - (Y) N (C'xC)) of (Y,ECrr« . (Y)) Do
i. Selectan atom € C
i. IIxy:={Ixy\{(A—B,F)ellxy||BNC|>1})U
{(A<bB\C,F)| (A~ B,F)ellxy,|BNC| > 1}

2. If (Y,ECrnx , (Y)) is not strongly connected Then
(a) Selectsome SC@,ECrr . (Y)N(C x C)) of (Y,ECry  (Y)) thatis not reached
in (Y,ECrrx +(Y))
b)) Y:=Y\C [*someZ C Y \ C is elementarily unfounded bif w.r.t. X */
(c) ECHX,Y (Y) = ECHX,Y(Y) \ {(aa b) € ECHX,Y (Y) | a € C}

IV. ReturnY

Fig. 1. E-SET: An algorithm to compute an elementarily unfounded se

contributing to edges depend on a single SCQOEC, . (Y)). Inrules (2) of/Ix y
such thatB contains multiple atoms from a recently computed SCC, Stepréplaces
all atoms of the SCC by a single representative. If this lead® N Y| = 1, rule (2)
contributes an edge in the next iteration of Step 1(a). Tlserileed process is iterated
until no further edges can be added. If a single SCC is olfaires, if (Y, ECr, .. (Y))

is strongly connected, the¥ is elementarily unfounded by7 w.r.t. X. Otherwise,
in Step 2, we remove atoms froin that belong to some SCC that is not reached
(Y'\ C still contains an elementarily unfounded setfémv.r.t. X). In the next iteration
of Step 1, this might allow to add more edge&t0y; . . (Y') for rules (2) oflIx y such
that BN C # (. The process is repeated ur(f, ECr, ,. (Y')) becomes a strongly
connected graph. Note that the computediseian be a proper subset of thein the
invocation of E-SETll x vy, Y).

When we apply E-SET tdl; ((4) in Section 3) and” = {p, ¢, r}, it adds edges
(p,7) and (¢, r) to ECp, (Y). As the resulting graph is not strongly connected, ei-
therq or p is removed fromY". After this, adding edgér, p) or (r, ¢), respectively, to
ECy, (Y) leads to a strongly connected graph. The result of E-SETusefther{p, r}
or {q,r}, which are the two elementarily unfounded setsfarw.r.t. {p, ¢, r}.

The following proposition states the correctness of theEH-8lgorithm.



Proposition 18. Let IT be a disjunctive program¥ a set of atoms that occur iff, and
Y a nonempty subset &f. If ITx y is HEF andR;JY,X(Y) =Y, thenE-SET{x y.Y)
returns an elementarily unfounded set férw.r.t. X.

It is reasonable to take a bounding lobpfor II w.r.t. X such that//x y is HEF as
input for E-SET since every elementarily unfounded set isilzsst of some bound-
ing loop. For the correctness of E-SET, it is however sufficteat 7 x y is HEF and
Ry x(Y) =Y.

Finally, we comment on the complexity of E-SET. Note that EFSsuccessively
merges atoms from an input Sétinto SCCs until finally obtaining a single SCC. When-
ever a new SCC is produced, all its atoms are replaced by a single eleme@tiaf
rules (2) such thatB N C| > 1. This can be regarded as counting down body elements
until only one atom fronY” is left, in which case a rule “fires.” This behavior is similar
to the Dowling-Gallieralgorithm [23], also used to compute the minimal model of a
set of Horn clauses. Since the computation of SCCs and thdimp@allier algorithm
have linear complexity, the same is concluded for E-SET.0mtrast, the elementary
set computation algorithm in [10] has complexityn x log n).

7 Conclusion

The main contribution of this paper is identifying the cla§d$HEF programs, a more
general class of disjunctive programs than HCF progranat, ¢en be turned into
nondisjunctive programs in polynomial time and space bitisgihead atoms into the
body. We showed that several properties of nondisjunctiwgnams and HCF programs
can be extended to HEF programs in a straightforward wage3#HCF programs have
played an important role in the computation of stable mofildisjunctive programs,
we expect that HEF programs can be useful as well. As a firgt ste have provided
an algorithm for finding an elementarily unfounded set foresRprogram, which has
a potential for improving the stable model computation figjuthctive programs.

As a future work, we plan to implement algorithm E-SET, presd in this paper, in
CMODELS for an empirical evaluation. It is an open question whettlentifying HEF
programs is tractable, while it is known that identifying HBrograms can be done in
linear time.
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