
On Loop Formulas with Variables

Joohyung Lee and Yunsong Meng
Computer Science and Engineering

School of Computing and Informatics
Arizona State University, Tempe, USA

{joolee, Yunsong.Meng}@asu.edu

Abstract

Recently Ferraris, Lee and Lifschitz proposed a new defini-
tion of stable models that does not refer to grounding, which
applies to the syntax of arbitrary first-order sentences. We
show its relation to the idea of loop formulas with variables
by Chen, Lin, Wang and Zhang, and generalize their loop
formulas to disjunctive programs and to arbitrary first-order
sentences. We also extend the syntax of logic programs to al-
low explicit quantifiers, and define its semantics as a subclass
of the new language of stable models by Ferrariset al. Such
programs inherit from the general language the ability to han-
dle nonmonotonic reasoning under the stable model seman-
tics even in the absence of the unique name and the domain
closure assumptions, while yielding more succinct loop for-
mulas than the general language due to the restricted syntax.
We also show certain syntactic conditions under which query
answering for an extended program can be reduced to entail-
ment checking in first-order logic, providing a way to apply
first-order theorem provers to reasoning about non-Herbrand
stable models.

Introduction
The theorem on loop formulas showed that the stable models
(answer sets) are the models of the logic program that satisfy
all its loop formulas. This idea has turned out to be widely
applicable in relating the stable model semantics (Gelfond
and Lifschitz 1988) to propositional logic, which in turn al-
lowed to use SAT solvers for computing answer sets. Since
the original invention of loop formulas for nondisjunctive
logic programs (Lin and Zhao 2004), the theorem has been
extended to more general classes of logic programs, such
as disjunctive programs (Lee and Lifschitz 2003), programs
with classical negation and infinite programs (Lee 2005),
arbitrary propositional formulas under the stable model se-
mantics (Ferrariset al. 2006), and programs with aggre-
gates (Liu and Truszczyński 2005). The theorem has also
been applied to other nonmonotonic formalisms, such as
nonmonotonic causal theories (Lee 2004) and McCarthy’s
circumscription (Lee and Lin 2006). The notion of a loop
has been further refined by “elementary sets” (Gebseret al.
2006).

Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

However, most work has been restricted to the proposi-
tional case. Variables contained in a program are first elimi-
nated by grounding—the process which replaces every vari-
able with every object constant—and then loop formulas are
computed from the ground program. As a result, loop for-
mulas were defined as formulas in propositional logic.

Chenet al.’s definition of loop formulas [2006] is dif-
ferent in that loop formulas are obtained from the original
program without converting to the ground program, so that
variables remain. However, since the underlying semantics
of logic programs refers to grounding, such a loop formula
was understood as a schema for the set of propositional loop
formulas.

Recently there emerged a generalization of the stable
model semantics that does not refer to grounding (Ferraris
et al. 2007). The semantics turns a first-order sentence
into a second-order sentence using the “stable model opera-
tor” SM, similar to the use of the “circumscription operator”
CIRC (McCarthy 1980). Logic programs are understood as
a special class of first-order sentences under the stable model
semantics. Unlike the traditional stable model semantics,
the new language has quantifiers with genuine object vari-
ables and the notion of first-order models instead of Her-
brand models. Consequently, as in classical logic, it has no
built-in unique name and domain closure assumptions.

In this paper, we study the relationship between first-order
loop formulas from (Chenet al. 2006) and the new defini-
tion of stable models from (Ferrariset al. 2007). We also ex-
tend the definition of first-order loop formulas from (Chenet
al. 2006) to disjunctive programs and to arbitrary first-order
sentences, and present certain conditions under which the
new second-order definition of stable models can be turned
into formulas in first-order logic in the form of loop formu-
las.

The studied relationship helps extend the syntax of logic
programs by allowing explicit quantifiers, which will be use-
ful in overcoming the difficulties of traditional answer set
programs in reasoning about the existence (or absence) of
unnamed objects. We define the semantics of extended pro-
grams as a subclass of the new language of stable models
from (Ferrariset al. 2007). Such programs inherit from the
general language the ability to handle nonmonotonic reason-
ing under the stable model semantics even in the absence of
the unique name and the domain closure assumptions. On

the other hand, extended programs yield succinct loop for-
mulas due to the restricted syntax so that it is feasible to
apply first-order theorem provers as computational engines.

Imagine an insurance policy considering “a person is eli-
gible for a discount plan if he or she has a spouse and has no
record of accident.” This can be represented by the follow-
ing programΠ1 that contains explicit existential quantifiers.

GotMarried(x, y)←Spouse(x, y)
Spouse(x, y)←GotMarried(x, y), not Divorced(x, y)

∃w Discount(x, w)←Spouse(x, y), not∃z Accident(x, z)

We will say that a programΠ entails a queryF (under the
stable model semantics) if every stable model ofΠ satis-
fiesF . For example,

• Π1 entails each of ¬∃xy Spouse(x, y) and
¬∃xy Discount(x, y).

• Π1 conjoined withΠ2 = {∃y GotMarried(marge, y)},
no more entails ¬∃xw Discount(x, w), but
entails each of ∃xw Discount(x, w) and
∀x(Discount(x, plan1)→ x = marge).

• Π1 conjoined with

Π3 = {Spouse(homer, marge), ∃z Accident(homer, z)}

entails¬∃w Discount(homer, w).

For the reasoning of this kind, we need the notion of non-
Herbrand models since the names of discount plans, spouses
and accident records may be unknown. However, answer
sets are defined as a special class of Herbrand models. In-
stead, we will show how reasoning about non-Herbrand sta-
ble models can be represented by extended programs and
can be computed using loop formulas with variables. This
provides a way to apply first-order theorem provers to rea-
soning about non-Herbrand stable models.

The paper is organized as follows. In the next section
we review the new definition of stable models from (Fer-
rariset al. 2007). Then we review first-order loop formulas
from (Chenet al. 2006) and extend the result to disjunc-
tive programs and to arbitrary sentences. We compare the
new definition of stable models with first-order loop formu-
las and show certain conditions under which the former can
be reduced to the latter. Given these results we give the no-
tion of extended programs with explicit quantifiers and show
how query answering for extended programs can be reduced
to entailment checking in first-order logic.

Review of the New Stable Model Semantics
Let p be a list of distinct predicate constantsp1, . . . , pn, and
let u be a list of distinct predicate variablesu1, . . . , un of the
same length asp. By u = p we denote the conjunction of
the formulas∀x(ui(x)↔ pi(x)), wherex is a list of distinct
object variables of the same arity as the length ofpi, for all
i = 1, . . . n. By u ≤ p we denote the conjunction of the
formulas∀x(ui(x)→ pi(x)) for all i = 1, . . . n, andu < p

stands for(u ≤ p) ∧ ¬(u = p).
For any first-order sentenceF , SM[F] stands for the

second-order sentence

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

wherep is the listp1, . . . , pn of all predicate constants oc-
curring inF , u is a listu1, . . . , un of distinct predicate vari-
ables of the same length asp, andF ∗(u) is defined recur-
sively:

• pi(t1, . . . , tm)∗ = ui(t1, . . . , tm);

• (t1 = t2)
∗ = (t1 = t2);

• ⊥∗ = ⊥;

• (F ∧G)∗ = F ∗ ∧G∗;

• (F ∨G)∗ = F ∗ ∨G∗;

• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);

• (∀xF)∗ = ∀xF ∗;

• (∃xF)∗ = ∃xF ∗.

(There is no clause for negation here, because we treat¬F
as shorthand forF → ⊥.) According to (Ferrariset al.
2007), an interpretation of the signatureσ(F) consisting of
the object, function and predicate constants occurring inF
is astable modelof F if it satisfies SM[F].

The terms “stable model” and “answer set” are often used
in the literature interchangeably. In the context of the new
language of stable models, it is convenient to distinguish be-
tween them as follows: By ananswer setof a first-order
sentenceF that contains at least one object constant we will
understand an Herbrand1 interpretation ofσ(F) that satis-
fies SM[F].

Logic programs are viewed as alternative notation for
first-order sentences of special kinds (called the FOL-
representation) by

• replacing every comma by∧, every semi-colon by∨, and
everynot by¬ ;

• turning every ruleHead← Bodyinto a formula by rewrit-
ing it as the implicationBody→ Head, and

• forming the conjunction of the universal closures of these
formulas.

Example 1 For programΠ that contains three rules

p(a)
q(b)
r(x)← p(x), not q(x)

the FOL-representationF of Π is

p(a) ∧ q(b) ∧ ∀x((p(x) ∧ ¬q(x))→ r(x)) (1)

andSM[F] is

p(a) ∧ q(b) ∧ ∀x((p(x) ∧ ¬q(x))→ r(x))
∧¬∃uvw(((u, v, w) < (p, q, r)) ∧ u(a) ∧ v(b)

∧∀x(((u(x) ∧ (¬v(x) ∧ ¬q(x)))→ w(x))
∧((p(x) ∧ ¬q(x))→ r(x)))),

which is equivalent to first-order sentence

∀x(p(x)↔ x = a) ∧ ∀x(q(x)↔ x = b)
∧∀x(r(x) ↔ (p(x) ∧ ¬q(x)))

(2)

1Recall that anHerbrand interpretationof a signatureσ (con-
taining at least one object constant) is an interpretation of σ such
that its universe is the set of all ground terms ofσ, and every ground
term represents itself. An Herbrand interpretation can be identified
with the set of ground atoms to which it assigns the valuetrue.

(see (Ferrariset al. 2007), Example 3). The stable mod-
els ofF are any first-order models of (1) whose signature
is σ(F). On the other handF has only one answer set:
{p(a), q(b), r(a)}.

We call a formulanegativeif every occurrence of every
predicate constant in it belongs to the antecedent of an im-
plication. For instance, any formula of the form¬F is neg-
ative, because this expression is shorthand forF → ⊥.

First-Order Loop Formulas
Review of Loop Formulas from (Chenet al. 2006)
We reformulate the definition of a first-order loop formula
for a nondisjunctive program from (Chenet al. 2006).

Let Π be a nondisjunctive program that has no function
constants of positive arity, consisting of a finite number of
rules of the form

A← B, N (3)

whereA is an atom, andB is a set of atoms, andN is a
negative formula.

We will say thatΠ is in normal formif, for all rules (3)
in Π, no object constants occur inA. It is clear that ev-
ery program can be turned into normal form using equality.
Let’s assume thatΠ is in normal form.

Let σ(Π) be the signature consisting of object and predi-
cate constants occurring inΠ. Given a finite setY of non-
equality atoms ofσ(Π), we first rename variables inΠ so
that no variables occur inY . The(first-order) external sup-
port formulaof Y for Π, denoted byFESΠ(Y), is the dis-
junction of

∨

θ:Aθ∈Y

∃z

(

Bθ ∧Nθ ∧
∧

p(t)∈Bθ

p(t′)∈Y

(t 6= t′)

)

(4)

for all rules (3) inΠ whereθ is a substitution that maps
variables inA to terms occurring inY , andz is the list of
all variables that occur in

Aθ ← Bθ, Nθ

but not inY . 2

The (first-order) loop formula of Y , denoted by
FLFΠ(Y), is the universal closure of

∧

Y → FESΠ(Y). (5)

If Π is a propositional program, for any nonempty finite
setY of propositional atoms,FLFΠ(Y) is equivalent to con-
junctive loop formulas defined in (Ferrariset al. 2006),
which we will denote byLFΠ(Y).

The definition of a(first-order) loopis as follows. We say
thatp(t) depends onq(t′) in Π if Π has a rule (3) such that
p(t) is A andq(t′) is in B. The (first-order) dependency
graphof Π is an infinite directed graph(V, E) such that

• V is a set of non-equality atoms formed fromσ(Π), along
with an infinite supply of variables;

2For any lists of termst = (t1, . . . , tn) andt
′ = (t′1, . . . , t

′

n
)

of the same length,t = t
′ stands fort1 = t′1 ∧ · · · ∧ tn = t′

n
.

• (p(t)θ, q(t′)θ) is in E if p(t) depends onq(t′) in Π and
θ is a substitution that maps variables int andt′ to object
constants and variables occurring inV .

A nonempty finite subsetL of V is called a(first-order)
loopof Π if the subgraph of the first-order dependency graph
of Π induced byL is strongly connected.

Example 2 LetΠ be the following program:

p(x)← q(x)
q(y)← p(y)
p(x)← not r(x).

(6)

The following sets are first-order loops:Y1 = {p(z)},
Y2 = {q(z)}, Y3 = {r(z)}, Y4 = {p(z), q(z)}. Their loop
formulas are

FLFΠ(Y1) = ∀z(p(z)→ (q(z) ∨ ¬r(z)));
FLFΠ(Y2) = ∀z(q(z)→ p(z));
FLFΠ(Y3) = ∀z(r(z)→ ⊥);
FLFΠ(Y4) = ∀z(p(z) ∧ q(z)→

(q(z) ∧ z 6= z) ∨ (p(z) ∧ z 6= z) ∨ ¬r(z)).

Example 3 LetΠ be the one-rule program

p(x)← p(y). (7)

Its first-order loops areYk = {p(x1), . . . , p(xk)} where
k > 0. Formula FLFΠ(Yk) is

∀x1 . . . xk(p(x1) ∧ . . . ∧ p(xk)
→ ∃y(p(y) ∧ (y 6= x1) ∧ . . . ∧ (y 6= xk))).

(8)

Definition 1 (Grounding a program) For any nondisjunc-
tive programΠ we denote by Ground(Π) the ground in-
stance ofΠ, that is the program obtained fromΠ by replac-
ing every occurrence of object variables with every object
constant occurring inΠ, and then replacing equalitya = b
with> or ⊥ depending on whethera is the same symbol as
b.

Given a programΠ, let (σ(Π))g be a propositional sig-
nature consisting of all the ground atoms ofσ(Π). An Her-
brand model ofσ(Π) can be identified with a corresponding
propositional model of(σ(Π))g .

The following is a reformulation of Theorem 1
from (Chenet al. 2006).

Proposition 1 LetΠ be a nondisjunctive program in normal
form, and letI be an Herbrand model ofΠ whose signature
is σ(Π). The following conditions are equivalent to each
other:

(a) I is an answer set ofΠ;
(b) I is an Herbrand model of
{FLFΠ(Y) : Y is a nonempty finite set of atoms ofσ(Π)};

(c) I is an Herbrand model of
{FLFΠ(Y) : Y is a first-order loop ofΠ};

(d) I is a (propositional) model of{LFGround(Π)(Y) :
Y is a nonempty (finite) set of ground atoms of(σ(Π))g};

(e) I is a (propositional) model of{LFGround(Π)(Y) :
Y is a loop of Ground(Π)} ∪ {¬p : p is an atom in
(σ(Π))g not occurring in Ground(Π)}.

The sets of first-order loop formulas considered in condi-
tions (b), (c) above have obvious redundancy. For instance,
the loop formula of{p(x)} is equivalent to the loop formula
of {p(y)}; the loop formula of{p(x), p(y)} entails the loop
formula of{p(z)}. Following (Chenet al. 2006), given two
sets of atomsY1, Y2 not containing equality, we say thatY1

subsumesY2 if there is a substitutionθ that maps variables
in Y1 to terms so thatY1θ = Y2. We say thatY1 andY2 are
equivalentif they subsume each other.

Proposition 2 (Chenet al.2006, Proposition 7) Given two
loopsY1 andY2, if Y1 subsumesY2, then FLFΠ(Y1) entails
FLFΠ(Y2).

Therefore in condition (c) from Proposition 1, it is suffi-
cient to consider a setΓ of loops such that for every loop
L of Π, there is a loopL′ in Γ that subsumesL. Chenet
al. [2006] called this set of loopscomplete. In Example 2,
set{Y1, Y2, Y3, Y4} is a finite complete set of loops of pro-
gram (6). Program (7) in Example 3 has no finite complete
set of loops.

In condition (c) of Proposition 1, instead of the first-order
loops of the given program, one may consider the first-order
loops of any strongly equivalent program, including a pro-
gram that is not in normal form. This sometimes yields a
smaller number of loop formulas to consider. For example,
the ground loops of program

p(a)← p(b)
p(b)← p(c)

(9)

are{p(a)}, {p(b)}, {p(c)}, all of which are subsumed by
{p(x)}. Thus it is sufficient to consider the loop formula of
{p(x)}:

∀x(p(x)→ ((x = a) ∧ p(b) ∧ (x 6= b))
∨((x = b) ∧ p(c) ∧ (x 6= c))).

(10)

On the other hand, the ground loops of its normal form

p(x)← x=a, p(b)
p(x)← x=b, p(c)

contain {p(b), p(c)} in addition to the singleton ground
loops.

Extension to Disjunctive Programs
A disjunctive program consists of a finite number of rules of
the form

A← B, N (11)
whereA, B are sets of atoms, andN is a negative formula.
As in the nondisjunctive case we assume that there are no
function constants of positive arity. Similar to above, a pro-
gram is innormal formif, for all rules (11) inΠ, no object
constants occur inA. We assume thatΠ is in normal form.

Given a finite setY of non-equality atoms ofσ(Π), we
first rename variables inΠ so that no variables occur inY .
The (first-order) external support formulaof Y for Π, de-
noted byFESΠ(Y), is the disjunction of

∨

θ:Aθ∩Y 6=∅

∃z
(

Bθ ∧Nθ ∧
∧

p(t)∈Bθ

p(t′)∈Y

(t 6= t′)

∧¬
(
∨

p(t)∈Aθ

(

p(t) ∧
∧

p(t′)∈Y t 6= t′
))

)

(12)

for all rules (11) inΠ whereθ is a substitution that maps
variables inA to terms occurring inY or to themselves, and
z is the list of all variables that occur in

Aθ ← Bθ, Nθ

but not inY . The(first-order) loop formulaof Y for Π, de-
noted byFLFΠ(Y), is the universal closure of (5). Clearly,
(12) is equivalent to (4) whenΠ is nondisjunctive.

Similar to the nondisjunctive case, we say thatp(t) de-
pends onq(t′) in Π if there is a rule (11) inΠ such that
p(t) is in A andq(t′) is in B. The notions of grounding, a
dependency graph and a first-order loop are extended to dis-
junctive programs in a straightforward way. Propositions 1
and 2 can be extended to disjunctive programs with these
extended notions.

Example 4 Let Π be the following program
p(x, y) ∨ p(y, z)← q(x) and let Y = {p(u, v)}. For-
mula FLFΠ(Y) is the universal closure of

p(u, v)→ ∃z(q(u) ∧ ¬(p(v, z) ∧ ((v, z) 6= (u, v))))
∨ ∃x(q(x) ∧ ¬(p(x, u) ∧ ((x, u) 6= (u, v)))).

Extension to Arbitrary Sentences
First-order loop formulas can even be extended to arbitrary
sentences under the stable model semantics (Ferrariset al.
2007).

As in (Ferrariset al. 2006), it will be easier to discuss the
result with a formula whosenegationis similar toFES. We
define formulaNFESF (Y) (“Negation” of FES) as follows,
whereF is a first-order formula andY is a finite set of atoms
not containing equality. The reader familiar with (Ferrariset
al. 2006) will notice that this is a generalization of the notion
NESfrom that paper to first-order formulas.

We assume that no variables inY occur inF by renaming
bound variables inF .

• NFESpi(t)(Y) = pi(t) ∧
∧

pi(t′)∈Y t 6= t′;

• NFESt1=t2(Y) = (t1 = t2);

• NFES⊥(Y) = ⊥;

• NFESF∧G(Y) = NFESF (Y) ∧ NFESG(Y);

• NFESF∨G(Y) = NFESF (Y) ∨ NFESG(Y);

• NFESF→G(Y) = (NFESF (Y)→NFESG(Y))∧(F→G);

• NFES∀xG(Y) = ∀xNFESG(Y);

• NFES∃xG(Y) = ∃xNFESG(Y).

The (first-order) loop formula ofY for sentenceF , de-
noted byFLFF (Y), is the universal closure of

∧

Y → ¬NFESF (Y). (13)

It is not difficult to check that for any propositional for-
mula F and any nonempty finite setY of propositional
atoms,FLFF (Y) is equivalent toLFF (Y), whereLF de-
notes loop formula for a propositional formula as defined
in (Ferrariset al. 2006).

This notion of a loop formula is a generalization of a loop
formula for a disjunctive program in view of the following
lemma.

Lemma 1 Let Π be a disjunctive program in normal form,
F the FOL-representation ofΠ, andY a finite set of atoms
not containing equality. Formula NFESF (Y) is equivalent
to¬FESΠ(Y) under the assumptionΠ.

To define a first-order dependency graph ofF , we need
a few notions. Recall that an occurrence of a formulaG in
a formulaF is positiveif the number of implications inF
containing that occurrence in the antecedent is even; it is
strictly positiveif that number is0. We will call a formula in
rectified formif it has no variables that are both bound and
free, and the quantifiers are followed by pairwise distinct
variables. Any formula can be turned into rectified form by
renaming bound variables.

Let F be a formula in rectified form. We say that an
atomp(t) weakly depends onan atomq(t′) in an implication
G→ H if

• p(t) has a strictly positive occurrence inH , and

• q(t′) has a positive occurrence inG that does not belong
to any occurrence of a negative formula inG.

We say thatp(t) depends onq(t′) in F if p(t) weakly
depends onq(t′) in an implication that has a strictly positive
occurrence inF .

The definition of a first-order dependency graph for a
nondisjunctive program is extended toF in a straightfor-
ward way using this extended notion of dependency between
two atoms. A loop is also defined similarly.

Definition 2 (Grounding a sentence)For any sentenceF
that has no function constants of positive arity, Ground(F)
is defined recursively. IfF is an atomp(t) then Ground(F)
isF . If F is an equalitya = b then Ground(F) is> or⊥ de-
pending on whethera is the same symbol asb. The function
Ground commutes with all propositional connectives; quan-
tifiers turn into finite conjunctions and disjunctions over all
object constants occurring inF .

Proposition 1 remains correct even after replacing “a
nondisjunctive program in normal form” in the statement
with “a sentence in rectified form that contains no function
constants of positive arity,” and using the extended notions
accordingly. Proposition 2 can be extended to arbitrary sen-
tences as well.

Loop Formulas in Second-Order Logic
SM and Loop Formulas
LetF be a first-order formula, letp1, . . . , pn be the list of all
predicate constants occurring inF , and letu andv be lists
of predicate variables corresponding top1, . . . , pn.

We defineNESF (u) recursively as follows, which is sim-
ilar to NFESabove but contains second-order variables as its
argument.

• NESpi(t)(u) = pi(t) ∧ ¬ui(t);

• NESt1=t2(u) = (t1 = t2);

• NES⊥(u) = ⊥;

• NESF∧G(u) = NESF (u) ∧ NESG(u);

• NESF∨G(u) = NESF (u) ∨ NESG(u);

• NESF→G(u) = (NESF (u)→NESG(u)) ∧ (F→G);

• NES∀xF (u) = ∀xNESF (u);

• NES∃xF (u) = ∃xNESF (u).

By Nonempty(u) we denote the formula

∃x1u1(x
1) ∨ · · · ∨ ∃xnun(xn).

SM[F] can be written in the style of “loop formulas” in
the following way.

Proposition 3 For any sentenceF , SM[F] is equivalent to

F ∧ ∀u((u ≤ p) ∧ Nonempty(u)→ ¬NESF (u)). (14)

Second-Order Characterization of Loops
The notion of a loop can be incorporated into the second-
order definition of stable models as follows.

Given a sentenceF in rectified form, byEF (v,u) we
denote

∨

(pi(t),pj (t′)) :

pi(t) depends onpj(t′) in F

∃z(vi(t) ∧ uj(t
′) ∧ ¬vj(t

′))

wherez is the list of all object variables int and t′. By
SCF (u) we denote the second-order sentence

Nonempty(u)∧∀v((v < u)∧Nonempty(v)→ EF (v,u)).
(15)

Formula (15) represents the concept of a loop without refer-
ring to the notion of a dependency graph explicitly, based on
the following observation. Consider a finite propositional
programΠ. A setU of atoms is a loop ofΠ iff for every
nonempty proper subsetV of U , there is an edge from an
atom inV to an atom inU \ V in the dependency graph of
Π (Gebseret al. 2006). To see the relation in the first-order
case, we first define a dependency graph and a loop that are
relative to a given interpretation. LetF be a sentence in rec-
tified form and letI be an interpretation ofF . Thedepen-
dency graph ofF w.r.t. I is an infinite directed graph(V, E)
where

• V is the set of all atoms of the formpi(~ξ∗) where~ξ∗ is a
list of object names,3 and

• (pi(~ξ∗), pj(~η∗)) is in E if there arepi(t), pj(t
′) such

that pi(t) depends onpj(t
′) in F and there is a map-

ping θ from variables int and t′ to object names such
that(tθ)I = ~ξ, and(t′θ)I = ~η.

We call a nonempty subsetL of V a loop of F w.r.t. I
if the subgraph of the dependency graph ofF w.r.t. I that
is induced byL is strongly connected.4 The following
lemma describes the relation between formula (15) and a
loop w.r.t.I.

3Each elementξ of the universe|I | has a correspondingob-
ject name, which is an object constant not from the given signature
See (Lifschitzet al. 2008) for details.

4Note that unlike first-order loops defined earlier we don’t re-
strict L to be finite. There the assumption was required to be able
to write a loop formula.

Lemma 2 Let F be a first-order sentence in rectified form,
I an interpretation ofF andq a list of predicate names5

corresponding top. I |= SCF (q) iff

Y = {pi(~ξ∗) : qI
i (~ξ)=TRUE where~ξ is a list of object names}

is a loop ofF w.r.t. I.

One may expect that, similar to the equivalence between
conditions (b) and (c) from Proposition 1, formula (14) is
equivalent to the following formula:

F ∧ ∀u((u ≤ p) ∧ SCF (u)→ ¬NESF (u)). (16)

However, this is not the case as shown in the following ex-
ample.

Example 5 Let F be the FOL-representation of pro-
gramΠ :

p(x, y)← q(x, z)
q(x, z)← p(y, z).

Consider interpretationI whose universe is the set of all
nonnegative integers such that

pI(m, n) =

{

TRUE if m = n,

FALSE otherwise;

qI(m, n) =

{

TRUE if n = m + 1,

FALSE otherwise;

One can check thatI is not a stable model ofF , but satis-
fies (16).

This mismatch is similar to the observation from (Lee
2005) that the external support of all loops does not ensure
the stability of the model if the program is allowed to be
infinite. Consider the following infinite program:

pi ← pi+1 (i > 0). (17)

The only loops are singletons, and their loop formulas are
satisfied by the model{p1, p2, . . .} of (17), which is not sta-
ble. To check the stability, not only we need to check ev-
ery loop is externally supported, but also need to check that
{p1, p2, . . .} is “externally supported.” Example 5 shows
that the mismatch can occur even if the program is fi-
nite once it is allowed to contain variables. What distin-
guishes{p1, p2, . . .} from loops is that, for every loop in
{p1, p2, . . .}, there is an outgoing edge in the dependency
graph. Taking this into account, we defineLoopF (u) as

SCF (u) ∨ (Nonempty(u)
∧ ∀v((v ≤ u) ∧ SCF (v)→ EF (v,u))).

(18)
Given a dependency graph ofF w.r.t. I, we say that a

nonempty setY of vertices isunboundedw.r.t.I if, for every
subsetZ of Y that induces a strongly connected subgraph,
there is an edge from a vertex inZ to a vertex inY \Z. For
instance, for the interpretationI in Example 5,

{p(0∗, 0∗), q(0∗, 1∗), p(1∗, 1∗), q(1∗, 2∗), . . . , }

is an unbounded set w.r.t.I.
The following lemma describes the relation between the

second disjunctive term of (18) with unbounded sets.
5Like object names, for everyn > 0, each subset of|I |n has

a name, which is ann-ary predicate constant not from the given
signature.

Lemma 3 Let F be a first-order sentence in rectified form,
I an interpretation, andq a list of predicate names corre-
sponding top.

I |= Nonempty(q) ∧ ∀v((v ≤ q) ∧ SCF (v)→ EF (v,q))

iff

Y = {pi(~ξ∗) : qI
i (~ξ)=TRUE where~ξ is a list of object names}

is an unbounded set ofF w.r.t. I.

An extended loopof F w.r.t. I is a loop or an unbounded
set ofF w.r.t. I. ClearlyI |= (18) iff

Y = {pi(~ξ∗) : qI
i (~ξ)=TRUE where~ξ is a list of object names}

is an extended loop ofF w.r.t. I.
The following proposition shows that the formula ob-

tained from (16) by replacingSCF (u) with LoopF (u) is
equivalent to SM[F].

Proposition 3′ For any sentenceF in rectified form, the fol-
lowing second-order sentences are equivalent to each other:

(a) SM[F];

(b) F ∧ ∀u((u ≤ p) ∧ Nonempty(u)→ ¬NESF (u));

(c) F ∧ ∀u((u ≤ p) ∧ LoopF (u)→ ¬NESF (u)).

(See appendix A for an example.)

Proposition 3′ is essentially a generalization of the main
theorem from (Ferrariset al. 2006) to first-order sentences.
If F is a propositional formula, then for any subsetY of p,
by
−→
Y we denote the tuple(Y1, . . . , Yn), where

Yi =

{

>, if pi ∈ Y ;
⊥, otherwise.

Corollary 1 (Ferraris et al. 2006, Theorem 2) For any
propositional formulaF , the following conditions are equiv-
alent to each other under the assumptionF .

(a) SM[F];

(b) The conjunction of
∧

Y → ¬NESF (
−→
Y) for all nonempty

setsY of atoms occurring inF ;

(c) The conjunction of
∧

Y → ¬NESF (
−→
Y) for all loopsY

of F .

Several other propositions in this paper are derived from
Proposition 3′.

BetweenSM and First-Order Loop Formulas
In general, SM[F] is not reducible to any first-order sen-
tence, even in the absence of function constants of positive
arity. As in circumscription, transitive closure can be rep-
resented using SM, while it cannot be done by any set of
first-order formulas, even if that set is allowed to be infinite.6

However, if the universe consists of finite elements, then the
following holds. We will say thatF is in normal form if
no object constants occur in a strictly positive occurrenceof
atoms inF .

6Vladimir Lifschitz, personal communication.

Proposition 4 For any sentenceF and any modelI of F
whose universe is finite, the following conditions are equiv-
alent:

(a) I satisfiesSM[F];
(b) for every nonempty finite setY of atoms formed from

predicate constants inσ(F) and an infinite supply of vari-
ables,I satisfies FLFF (Y).

If F is in rectified and normal form that has no function
constants of positive arity, the following condition is also
equivalent to each of (a) and (b):

(c) for every first-order loopY of F , I satisfies FLFF (Y).

Unlike Proposition 1 in which loops can be found from
any strongly equivalent program, condition (c) requires that
loops be found from a normal form. This is related to the fact
that Proposition 4 considers non-Herbrand stable models as
well, which may not satisfy the unique name assumption.
For instance, recall that program (9) has singleton loops
only, which are subsumed by{p(x)}. Consider an inter-
pretationI such that|I| = {1, 2} andaI = cI = 1, bI = 2,
pI(m) = TRUE for m = 1, 2. I is a non-Herbrand model
which is not stable, but it satisfies (10), the loop formula of
{p(x)}.

The proof of the equivalence between (a) and (c) uses the
following lemma.

Lemma 4 LetF be a sentence in rectified and normal form
that contains no function constants of positive arity, and let
I be an interpretation. If there is no infinite extended loop
of F w.r.t. I, thenI |= SM[F] iff, for every first-order loop
Y of F , I |= FLFF (Y).

Without the finite universe assumption, Proposition 4
would be incorrect, as shown in Example 5. For another
example, consider program (7) with an interpretationI with
an infinite universe such thatp is identically true.I does not
satisfy SM[F], but satisfiesF andFLFF (Y) for any finite
setY of atoms.

In view of Proposition 2, if the size of the universe|I|
is known, as with the answer sets (whose universe is the
Herbrand universe ofσ(F)), it is sufficient to consider at
most2|p| − 1 loop formulas wherep is set of all predicate
constants occurring in the sentence. Each loop formula is for
setYq corresponding to a nonempty subsetq of p, defined
asYq = {p(x1), . . . , p(x|I|n) : p ∈ q} wheren is the arity
of p. For instance, for program (7), if the size of the universe
is known to be3, it is sufficient to consider only one loop
formula (8) wherek = 3.

In the next section we consider certain classes of sen-
tences for which SM[F] is equivalent to a first-order sen-
tence without the finite universe assumption.

Reducibility to first-order formulas
Finite complete set of first-order loops
Proposition 8 from (Ferrariset al. 2007) shows that SM[F]
can be reduced to a first-order sentence ifF is “tight”, i.e.,
F has no “nontrivial” predicate loops. (Predicate loops are
defined similar to first-order loops, but from a “predicate de-
pendency graph” (Ferrariset al. 2007), which does not take

into account “pointwise dependency.”) We further general-
ize this result using the notion of finite complete set of loops.

Let F be a sentence in rectified form that contains no
function constants of positive arity. Theorem 2 from (Chen
et al. 2006) provides a syntactic condition under which a
nondisjunctive program has a finite complete set of loops,
which can be extended to disjunctive programs and arbitrary
sentences in a straightforward way.

The following proposition tells that ifF has a finite com-
plete set of loops, then SM[F] can be equivalently rewritten
as a first-order sentence.

Proposition 5 Let F be a sentence in rectified and normal
form that contains no function constants of positive arity.
If F has a finite complete setΓ of first-order loops, then
SM[F] is equivalent to the conjunction ofF with the set of
loop formulas for all loops inΓ.

This proposition generalizes Proposition 8 from (Ferraris
et al. 2007). Clearly, every tight sentence has a finite com-
plete set of first-order loops.

The proof of Proposition 5 follows from Lemma 4 and the
following lemma.

Lemma 5 LetF be a sentence in rectified and normal form
that contains no function constants of positive arity. IfF
has a finite complete set of loops, then there is no infinite
extended loop ofF w.r.t any interpretation.

Proposition 5 would go wrong if we replace “a finite com-
plete set of loops” in the statement with “a finite number of
predicate loops.” Obviously any sentenceF contains a fi-
nite number of predicate constants, so that this condition is
trivial. In view of intranslatability of SM to first-order sen-
tences, this fact tells that the more refined notion of first-
order loops is essential for this proposition to hold.

For nondisjunctive programΠ, Proposition 9 from (Chen
et al. 2006) shows that if every variable in the head occurs in
the body, thenΠ has a finite complete set of loops. However,
this does not hold onceΠ is allowed to be disjunctive. For
instance,

p(x, y)← q(x), r(y)
q(x) ∨ r(y)← p(x, y)

has no finite complete set of loops.

Safe formulas
A disjunctive programΠ is calledsafeif, for each rule (11)
of Π, every variable occurring in the rule occurs inB as
well. (Leeet al. 2008) generalized this notion to sentences,
showing that for any safe sentence, its Herbrand stable mod-
els are not affected by “irrelevant” object constants that do
not occur in the program. We will show that this notion is
also related to reducing SM[F] to a first-order sentence.

We review the notion of safety from (Leeet al. 2008).7

We assume that there are no function constants of positive
arity. As a preliminary step, we assign to every formulaF
in rectified form a setRV(F) of its restricted variables, as
follows:

7The definition here is slightly weaker and applies to arbitrary
sentences, unlike the one in (Leeet al. 2008) that refers to prenex
form.

• For an atomF ,

– if F is an equality between two variables then
RV(F) = ∅;

– otherwise,RV(F) is the set of all variables occurring
in F ;

• RV(⊥) = ∅;

• RV(F ∧G) = RV(F) ∪ RV(G);

• RV(F ∨G) = RV(F) ∩ RV(G);

• RV(F → G) = ∅;

• RV(QvF) = RV(F) \ {v} whereQ ∈ {∀, ∃}.

We say that a variablex is unsafein F if there is an oc-
currence ofx in F that is not in any of

• ∀x, ∃x, and

• any subformulaG→ H of F such thatx ∈ RV(G).

By UF we denote the formula
∧

p∈p

∀x
(

p(x)→
∧

x∈x

∨

c∈C

x = c
)

whereC is the set of all object constants occurring inF ,
andx is a list of distinct object variables whose length is the
same as the arity ofp.

The following proposition tells that for a safe sentenceF ,
formula SM[F] can be equivalently rewritten as a first-order
sentence.

Proposition 6 LetF be a sentence in rectified form that has
no function constants of positive arity. IfF has no unsafe
variables, thenSM[F] is equivalent to the conjunction ofF ,
UF and a finite number of loop formulas.

We note that the syntactic conditions in Proposi-
tions 5 and 6 do not entail each other. For instance,
∀x (q(x) ∧ p(y)→ p(x)) has no unsafe variables, but has
no finite complete set of first-order loops, while∀x p(x) has
a finite complete set of loops{{p(x)}}, but has an unsafe
variablex.

Safety is usually imposed on input programs for answer
set solvers, but it could be somewhat restricted in first-order
reasoning which is not confined to generating Herbrand sta-
ble models. For instance, the example program in the intro-
duction (identified as a sentence) has an unsafe variablew
(but has a finite complete set of loops).

Programs with Explicit Quantifiers
In the following we extend the syntax of logic programs by
allowing explicit quantifiers. As in answer set programs,
the syntax uses the intuitive if-then form, but allows explicit
quantifiers. Anextended ruleis of the form

H ← G (19)

whereG andH are formulas with no function constants of
positive arity such that every occurrence of an implication
in G andH is in a negative formula. An extended program is
a finite set of extended rules. The semantics of an extended
program is defined by identifying the program with SM[F]

whereF is a conjunction of the universal closure of implica-
tions that correspond to the rules (FOL-representation). An
example of an extended program is given in the introduction.

Let Π be an extended program. Given a nonempty fi-
nite setY of non-equality atoms ofσ(Π), we first rename
variables inΠ so that no variables occur inY . Formula
EFESΠ(Y) (“ExtendedFES”) is defined as the disjunction
of

∃z(NFESG(Y) ∧ ¬NFESH(Y)) (20)

for all rules (19) whereH contains a strictly positive occur-
rence of a predicate constant that belongs toY , andz is the
list of all free variables in the rule that do not occur inY .

The loop formula ofY for Π is the universal closure of

∧

Y → EFESΠ(Y). (21)

The following proposition tells that (21) is a generaliza-
tion of the definition of a loop formula for a disjunctive pro-
gram and is equivalent to the definition of a loop formula
(13) for an arbitrary sentence.

Proposition 7 Let Π be an extended program,F the FOL-
representation ofΠ, andY a finite set of atoms not contain-
ing equality. Under the assumptionΠ, formula EFESΠ(Y)
is equivalent to¬NFESF (Y). If Π is a disjunctive program,
then EFESΠ(Y) is also equivalent to FESΠ(Y) under the
assumptionΠ.

While the size of (13) is exponential to the size ofF in
the worst case, (21) can be equivalently written in a linear
size due to the following lemma.

Lemma 6 For any negative formulaF and any finite setY
of non-equality atoms, NFESF (Y) is equivalent toF .

For instance, forF = (p(x)→⊥)→⊥ andY = {p(a)},
formulaNFESF (Y) is

[(((p(x)∧x 6=a)→⊥)∧(p(x)→⊥))→⊥]∧ [(p(x)→⊥)→⊥],

which is equivalent toF .
A finite setΓ of sentencesentailsa sentenceF under the

stable model semantics (symbolically,Γ |=SM F), if every
stable model ofΓ satisfiesF .

If SM[F] can be reduced to a first-order sentence, as al-
lowed in Propositions 5 and 6, clearly, the following holds.

Γ |=SM F iff Γ ∪∆ |= F

where∆ is the set of first-order loop formulas required. This
fact allows us to use first-order theorem provers to reason
about query entailment under the stable model semantics.

Example 6 Consider the insurance policy example in
the introduction, which has the following finite com-
plete set of loops: {Divorced(u, v)}, {Accident(u, v)},
{Discount(u, v)}, {GotMarried(u, v)}, {Spouse(u, v)} and
{GotMarried(u, v), Spouse(u, v)}. Their loop formulas for

Π1 ∪Π2 are equivalent to the universal closure of

Div(u, v)→ ⊥

Acc(u, v)→ ⊥

Dis(u, v)→ ∃xy[Spo(x, y) ∧ ¬∃zAcc(x, z)
∧ ¬(∃w(Dis(x, w) ∧ (x, w) 6= (u, v)))]

Mar(u, v)→
∃xy[Spo(x, y) ∧ ¬(Mar(x, y) ∧ (x, y) 6= (u, v))]
∨ ¬∃y[Mar(marge, y) ∧ (marge, y) 6= (u, v)]

Spo(u, v)→
∃xy[Mar(x, y) ∧ ¬Div(x, y)

∧¬(Spo(x, y) ∧ (x, y) 6= (u, v))]

Mar(u, v) ∧ Spo(u, v)→
∃xy[(Spo(x, y) ∧ (x, y) 6= (u, v))

∧¬(Mar(x, y) ∧ (x, y) 6= (u, v))]
∨ ¬∃y[Mar(marge, y) ∧ (marge, y) 6= (u, v)]
∨ ∃xy[(Mar(x, y) ∧ (x, y) 6= (u, v)) ∧ ¬Div(x, y)

∧¬(Spo(x, y) ∧ (x, y) 6= (u, v))].

These loop formulas, conjoined with the FOL-representation
of Π1 ∪ Π2, entail under first-order logic each of
∃xw Dis(x, w) and∀x(Dis(x, plan1)→ x = marge). We
verified the answers using a first-order theorem prover Vam-
pire 8.

Conclusion
Our main contributions are as follows.

• We extended loop formulas with variables from (Chenet
al. 2006) to disjunctive programs and to arbitrary first-
order sentences and showed their relations to the new lan-
guage of stable models from (Ferrariset al. 2007).

• We presented certain syntactic conditions under which the
language of stable models from (Ferrariset al. 2007) can
be reduced to first-order logic, which allows to use first-
order theorem provers to reason about stable models.

• We defined the notion of an extended program which al-
lows closed-world reasoning under the stable model se-
mantics even in the absence of the unique name and the
domain closure assumptions. We provided a computa-
tional method for extended programs by means of loop
formulas.

The use of first-order theorem provers for the stable model
semantics was already investigated in (Sabuncu and Al-
paslan 2007), but their results are limited in several ways.
They considered nondisjunctive logic programs with “triv-
ial” loops only, in which case the stable model semantics is
equivalent to the completion semantics (Clark 1978); their
notion of models were limited to Herbrand models.

SAT-based answer set solvers may also benefit from loop
formulas with variables. Instead of finding propositional
loop formulas one by one from the ground program, one

8http://www.vampire.fm .

may consider a set of formulas in a batch which are obtained
from grounding first-order loop formulas. Whether it leads
to computational efficiency needs empirical evaluation.

Acknowledgements
We are grateful to Vladimir Lifschitz, Ravi Palla and the
anonymous referees for their useful comments on this paper.

References
Yin Chen, Fangzhen Lin, Yisong Wang, and Mingyi
Zhang. First-order loop formulas for normal logic pro-
grams. InProceedings of International Conference on
Principles of Knowledge Representation and Reasoning
(KR), pages 298–307, 2006.

Keith Clark. Negation as failure. In Herve Gallaire and
Jack Minker, editors,Logic and Data Bases, pages 293–
322. Plenum Press, New York, 1978.

Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. A
generalization of the Lin-Zhao theorem.Annals of Mathe-
matics and Artificial Intelligence, 47:79–101, 2006.

Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. A
new perspective on stable models. InProceedings of In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), pages 372–379, 2007.

Martin Gebser, Joohyung Lee, and Yuliya Lierler. Elemen-
tary sets for logic programs. InProceedings of National
Conference on Artificial Intelligence (AAAI), pages 244–
249, 2006.

Michael Gelfond and Vladimir Lifschitz. The stable model
semantics for logic programming. In Robert Kowalski
and Kenneth Bowen, editors,Proceedings of International
Logic Programming Conference and Symposium, pages
1070–1080. MIT Press, 1988.

Joohyung Lee and Vladimir Lifschitz. Loop formulas for
disjunctive logic programs. InProceedings of Interna-
tional Conference on Logic Programming (ICLP), pages
451–465, 2003.

Joohyung Lee and Fangzhen Lin. Loop formulas for
circumscription. Artificial Intelligence, 170(2):160–185,
2006.

Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. A re-
ductive semantics for counting and choice in answer set
programming. InProceedings of AAAI Conference on Ar-
tificial Intelligence (AAAI), 2008. To appear.

Joohyung Lee. Nondefinite vs. definite causal theories.
In Proc. 7th Int’l Conference on Logic Programming and
Nonmonotonic Reasoning, pages 141–153, 2004.

Joohyung Lee. A model-theoretic counterpart of loop for-
mulas. InProceedings of International Joint Conference
on Artificial Intelligence (IJCAI), pages 503–508, 2005.

Vladimir Lifschitz, Leora Morgenstern, and David
Plaisted. Knowledge representation and classical logic. In
Frank van Harmelen, Vladimir Lifschitz, and Bruce Porter,
editors,Handbook of Knowledge Representation. Elsevier,
2008.

Fangzhen Lin and Yuting Zhao. ASSAT: Computing an-
swer sets of a logic program by SAT solvers.Artificial
Intelligence, 157:115–137, 2004.
Lengning Liu and Mirosław Truszczyński. Properties of
programs with monotone and convex constraints. InPro-
ceedings of National Conference on Artificial Intelligence
(AAAI), pages 701–706, 2005.
John McCarthy. Circumscription—a form of non-mono-
tonic reasoning.Artificial Intelligence, 13:27–39,171–172,
1980.
Orkunt Sabuncu and Ferda N. Alpaslan. Computing an-
swer sets using model generation theorem provers. In
Working Notes of Answer Set Programming (ASP) 2007,
2007.

Appendix. Additional Examples
Consider program (6) from Example 2:

p(x)← q(x)
q(y)← p(y)
p(x)← not r(x).

Let F be the FOL-representation ofΠ:

∀xy((q(x)→ p(x)) ∧ (p(y)→ q(y)) ∧ (¬r(x)→ p(x))).

Below we use the following fact to simplify the formulas.

Lemma 7 For any negative formulaF , the formula

NESF (u)↔ F

is logically valid.

1. SM[F] is equivalent to

F ∧ ¬∃u1u2u3((u1, u2, u3) < (p, q, r))
∧∀xy((u2(x)→ u1(x))

∧(u1(y)→ u2(y))
∧(¬r(x) → u1(x))).

2. Formula in Proposition 3′ (b):

F ∧ ∀u(u ≤ p ∧ Nonempty(u)→ ¬NESF (u))

is equivalent to

F ∧ ∀u1u2u3((u1, u2, u3) ≤ (p, q, r)
∧(∃x u1(x) ∨ ∃x u2(x) ∨ ∃x u3(x))
→ ¬∀xy([q(x) ∧ ¬u2(x)→ p(x) ∧ ¬u1(x)]

∧[p(y) ∧ ¬u1(y)→ q(y) ∧ ¬u2(y)]
∧[¬r(x) → p(x) ∧ ¬u1(x)])).

(22)

3. Formula in Proposition 3′ (c): Similar to (22) except
that

∃x u1(x) ∨ ∃x u2(x) ∨ ∃x u3(x)

in (22) is replaced withLoopF (u), which is

SCF (u) ∨ [(∃x u1(x) ∨ ∃x u2(x) ∨ ∃x u3(x))
∧ ∀v1v2v3(((v1, v2, v3) ≤ (u1, u2, u3)) ∧ SCF (v)

→ (∃x(v1(x) ∧ u2(x) ∧ ¬v2(x))
∨∃y(v2(y) ∧ u1(y) ∧ ¬v1(y))))],

whereSCF (u) is

(∃x u1(x) ∨ ∃x u2(x) ∨ ∃x u3(x))
∧ ∀v1v2v3(((∃x v1(x) ∨ ∃x v2(x) ∨ ∃x v3(x))

∧(v1, v2, v3) < (u1, u2, u3))
→ (∃x(v1(x) ∧ u2(x) ∧ ¬v2(x))
∨∃y(v2(y) ∧ u1(y) ∧ ¬v1(y)))).

Remark: Proposition 3′ tells that each of the formulas in1,
2, 3 are equivalent to each other.

4. First-Order Loop Formula for Sentence F (Using
NFES) : Let Y1 = {p(z)},Y2 = {q(z)}, Y3 = {r(z)},
Y4 = {p(z), q(z)}. Set{Y1, Y2, Y3, Y4} is a complete set of
loops.

Under the assumptionF ,
• FLFF (Y1) is equivalent to the universal closure of

p(z)→ ¬∀xy([q(x)→ p(x) ∧ x 6= z]
∧[p(y) ∧ y 6= z → q(y)]
∧[¬r(x) → p(x) ∧ x 6= z]).

• FLFF (Y2) is equivalent to the universal closure of

q(z)→ ¬∀xy([q(x) ∧ x 6= z → p(x)]
∧[p(y)→ q(y) ∧ y 6= z]).

• FLFF (Y3) is equivalent to the universal closure of

r(z)→ ⊥.

• FLFF (Y4) is equivalent to the universal closure of

p(z) ∧ q(z)→
¬∀xy([q(x) ∧ x 6= z → p(x) ∧ x 6= z]
∧[p(y) ∧ y 6= z → q(y) ∧ y 6= z]
∧[¬r(x)→ p(x) ∧ x 6= z]).

5. First-Order Loop Formula for Nondisjunctive Pro-
gram (Using FES): See Example 2.

6. First-Order Loop Formula when Π is understood as
an extended program (UsingEFES) : Consider the same
Yi as before.

Under the assumptionΠ,

• FLFΠ(Y1) is equivalent to the universal closure of

p(z)→ (∃x(q(x) ∧ ¬(p(x) ∧ x 6= z))
∨ ∃x(¬r(x) ∧ ¬(p(x) ∧ x 6= z))).

• FLFΠ(Y2) is equivalent to the universal closure of
q(z)→ ∃y(p(y) ∧ ¬(q(y) ∧ y 6= z)).

• FLFΠ(Y3) is equivalent to the universal closure of
r(z)→ ⊥.

• FLFΠ(Y4) is equivalent to the universal closure of

(p(z) ∧ q(z))→ (∃x((q(x) ∧ x 6= z) ∧ ¬(p(x) ∧ x 6= z))
∨ ∃y((p(y) ∧ y 6= z) ∧ ¬(q(y) ∧ y 6= z))
∨ ∃x(¬r(x) ∧ ¬(p(x) ∧ x 6= z))).

Remark: Proposition 7 tells that the sets of formulas in each
of 4, 5, 6 are equivalent to each other, under the assumption
F . In view of Proposition 5, each set conjoined withF is
equivalent to each of the formulas in1, 2, 3.

