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Abstract

Recently Ferraris, Lee and Lifschitz proposed a new defini-
tion of stable models that does not refer to grounding, which
applies to the syntax of arbitrary first-order sentences. We
show its relation to the idea of loop formulas with variables
by Chen, Lin, Wang and Zhang, and generalize their loop
formulas to disjunctive programs and to arbitrary firstesrd
sentences. We also extend the syntax of logic programs to al-
low explicit quantifiers, and define its semantics as a sgbcla
of the new language of stable models by Ferratial. Such
programs inherit from the general language the ability toha
dle nonmonotonic reasoning under the stable model seman-
tics even in the absence of the unique name and the domain
closure assumptions, while yielding more succinct loop for
mulas than the general language due to the restricted syntax
We also show certain syntactic conditions under which query
answering for an extended program can be reduced to entail-
ment checking in first-order logic, providing a way to apply
first-order theorem provers to reasoning about non-Hedbran
stable models.

Introduction

The theorem on loop formulas showed that the stable models
(answer sets) are the models of the logic program that gatisf
all its loop formulas. This idea has turned out to be widely
applicable in relating the stable model semantics (Gelfond
and Lifschitz 1988) to propositional logic, which in turn al
lowed to use SAT solvers for computing answer sets. Since
the original invention of loop formulas for nondisjunctive
logic programs (Lin and Zhao 2004), the theorem has been
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However, most work has been restricted to the proposi-
tional case. Variables contained in a program are first elimi
nated by grounding—the process which replaces every vari-
able with every object constant—and then loop formulas are
computed from the ground program. As a result, loop for-
mulas were defined as formulas in propositional logic.

Chenet al’s definition of loop formulas [2006] is dif-
ferent in that loop formulas are obtained from the original
program without converting to the ground program, so that
variables remain. However, since the underlying semantics
of logic programs refers to grounding, such a loop formula
was understood as a schema for the set of propositional loop
formulas.

Recently there emerged a generalization of the stable
model semantics that does not refer to grounding (Ferraris
et al. 2007). The semantics turns a first-order sentence
into a second-order sentence using the “stable model opera-
tor” SM, similar to the use of the “circumscription oper&tor
CIRC (McCarthy 1980). Logic programs are understood as
a special class of first-order sentences under the stablelmod
semantics. Unlike the traditional stable model semantics,
the new language has quantifiers with genuine object vari-
ables and the notion of first-order models instead of Her-
brand models. Consequently, as in classical logic, it has no
built-in uniqgue name and domain closure assumptions.

In this paper, we study the relationship between first-order
loop formulas from (Cheet al. 2006) and the new defini-
tion of stable models from (Ferragsal. 2007). We also ex-
tend the definition of first-order loop formulas from (Clegn
al. 2006) to disjunctive programs and to arbitrary first-order

extended to more general classes of logic programs, such sentences, and present certain conditions under which the

as disjunctive programs (Lee and Lifschitz 2003), programs
with classical negation and infinite programs (Lee 2005),
arbitrary propositional formulas under the stable model se
mantics (Ferrariet al. 2006), and programs with aggre-
gates (Liu and Truszczyhski 2005). The theorem has also
been applied to other nonmonotonic formalisms, such as
nonmonotonic causal theories (Lee 2004) and McCarthy’s
circumscription (Lee and Lin 2006). The notion of a loop
has been further refined by “elementary sets” (Gebsaet.
2006).
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new second-order definition of stable models can be turned
into formulas in first-order logic in the form of loop formu-
las.

The studied relationship helps extend the syntax of logic
programs by allowing explicit quantifiers, which will be use
ful in overcoming the difficulties of traditional answer set
programs in reasoning about the existence (or absence) of
unnamed objects. We define the semantics of extended pro-
grams as a subclass of the new language of stable models
from (Ferrariset al. 2007). Such programs inherit from the
general language the ability to handle nonmonotonic reason
ing under the stable model semantics even in the absence of
the unique name and the domain closure assumptions. On



the other hand, extended programs yield succinct loop for- wherep is the listpy, ...
mulas due to the restricted syntax so that it is feasible to curring inF', uis a listug, . .

, pn, Of all predicate constants oc-
., up Of distinct predicate vari-

apply first-order theorem provers as computational engines ables of the same length asand F*(u) is defined recur-

Imagine an insurance policy considering “a person is eli-

gible for a discount plan if he or she has a spouse and has no
record of accident.” This can be represented by the follow-

ing programll; that contains explicit existential quantifiers.

GotMarried(z, y) < Spousér, y)
Spousér, y) < GotMarried(x, y), not Divorcedz, y)
Jw Discountz, w) < Spousér, y), not 3z Accidentz, z)

We will say that a progranil entails a query” (under the

stable model semantics) if every stable modellogatis-

fies F'. For example,

e II; entails each
—3Jzy Discountz, y).

e II; conjoined withTl; = {3y GotMarried/marge y)},
no more entails -3zw Discounfz,w), but
entails each of 3Jzw  Discountz,w) and
Vz(Discoun{z, planl) — = = marge.

e II; conjoined with

of —3zy Spousér,y) and

II3 = {Spousghomer marge, 3z Accidenthomer z)}
entails—3w Discounthomer w).
For the reasoning of this kind, we need the notion of non-

Herbrand models since the names of discount plans, spouse
and accident records may be unknown. However, answer ¢
sets are defined as a special class of Herbrand models. In-

sively:

o Dilte, . tm) = wilty,. .. tm);
° (tl :tg)* = (tl :tg);

o 1" =1;

(FAG)* = F* NG™

o (FV@G)=F*VGr
(F—-G)=(F*—=G)N(F — G);

(VxF)* = Vo F*,

o (JzF)* = JxF*.

(There is no clause for negation here, because we trEat
as shorthand fo" — 1.) According to (Ferrarist al.
2007), an interpretation of the signaturéF’) consisting of
the object, function and predicate constants occurring in
is astable modedf F if it satisfies SMF.

The terms “stable model” and “answer set” are often used
in the literature interchangeably. In the context of the new
language of stable models, it is convenient to distinguesh b
tween them as follows: By aanswer sebf a first-order
sentencd’ that contains at least one object constant we will
understand an Herbrahéhterpretation ofo(F) that satis-
fies SMF.

S Logic programs are viewed as alternative notation for

t-order sentences of special kinds (called the FOL-
representation) by

stead, we will show how reasoning about non-Herbrand sta- . .
ble models can be represented by extended programs and® "€Placing every comma by, every semi-colon by, and
can be computed using loop formulas with variables. This ~ €verynotby —;

provides a way to apply first-order theorem provers to rea- e turning every ruleHead«— Bodyinto a formula by rewrit-

soning about non-Herbrand stable models.

ing it as the implicatioBody— Head and

The paper is organized as follows. In the next section o forming the conjunction of the universal closures of these

we review the new definition of stable models from (Fer-
rariset al. 2007). Then we review first-order loop formulas

formulas.
Example 1 For programlII that contains three rules

from (Chenet al. 2006) and extend the result to disjunc-
tive programs and to arbitrary sentences. We compare the
new definition of stable models with first-order loop formu-
las and show certain conditions under which the former can
be reduced to the latter. Given these results we give the no-
tion of extended programs with explicit quantifiers and show

r(x) < p(z),notq(x)
the FOL-representatio’ of IT is

how query answering for extended programs can be reduced pla) A g(b) AVz((p(x) A —q(x)) — r(z)) (1)
to entailment checking in first-order logic. andSM[F] is
Review of the New Stable Model Semantics pla) A q(b) AV ((p(z) A ~q(x)) — r(x)
Letp be a list of distinct predicate constapts and A=Juvw(((u, v, w) < (p,q,7)) Au(a) Av(b)
, - : : b AV (((u(z) A (mo(z) A =q(z))) — w(z))
letu be a list of distinct predicate variables, . . ., u,, of the A(p(z) A =g(z)) — r(z))
same length ap. By u = p we denote the conjunction of o ] } ’
the formulasrx(u;(x) < p;(x)), wherexis alist of distinct ~ Which is equivalent to first-order sentence
object variables of the same arity as the lengthp;ofor all Va(p(z) < z = a) AVx(q(z) <>z =)
i =1,...n. Byu < p we denote the conjunction of the AYx(r(z) < (p(z) A —q(x))) )

formulasvx(u;(x) — p;(x)) foralli =1,...n,andu < p
stands fofu < p) A =(u = p).

For any first-order sentencE, SM[F| stands for the
second-order sentence

F A —=Fu((u < p) A F*(u)),

'Recall that arHerbrand interpretationf a signatures (con-
taining at least one object constant) is an interpretatfom such
that its universe is the set of all ground termspénd every ground
term represents itself. An Herbrand interpretation cardbatified
with the set of ground atoms to which it assigns the vatue



(see (Ferrariset al. 2007), Example 3). The stable mod-
els of F' are any first-order models of (1) whose signature
is o(F). On the other hand® has only one answer set:
{p(a), q(b), r(a)}.

We call a formulanegativeif every occurrence of every
predicate constant in it belongs to the antecedent of an im
plication. For instance, any formula of the foraf’ is neg-
ative, because this expression is shorthandfer L.

First-Order Loop Formulas
Review of Loop Formulas from (Chenet al. 2006)

We reformulate the definition of a first-order loop formula
for a nondisjunctive program from (Chetal. 2006).

Let IT be a nondisjunctive program that has no function
constants of positive arity, consisting of a finite number of
rules of the form

A« B,N 3)

where A is an atom, andB3 is a set of atoms, and/ is a
negative formula.

We will say thatlT is in normal formif, for all rules (3)
in IT, no object constants occur iA. It is clear that ev-
ery program can be turned into normal form using equality.
Let's assume thdt is in normal form.

Let o(IT) be the signature consisting of object and predi-
cate constants occurring Ih. Given a finite set” of non-
equality atoms o (II), we first rename variables il so
that no variables occur ili. The(first-order) external sup-
port formulaof Y for II, denoted byFES;(Y), is the dis-
junction of

\/Elz

0:A0cY

(BG/\N@/\ A (t;ﬁt’)> (4)

p(t)EBO

p(t/)eY

for all rules (3) inII wheref is a substitution that maps
variables inA to terms occurring irt’, andz is the list of
all variables that occur in

Af — BO, N6

but notinY'. 2
The (first-order) loop formulaof Y, denoted by
FLF(Y), is the universal closure of

/\Y — FES;(Y). (5)

If IT is a propositional program, for any nonempty finite
setY of propositional atoms;LF;(Y") is equivalent to con-
junctive loop formulas defined in (Ferraret al. 2006),
which we will denote byt Fr; (V).

The definition of first-order) loogs as follows. We say
thatp(t) depends oq(t’) in IT if II has a rule (3) such that
p(t) is A andqg(t’) is in B. The (first-order) dependency
graphof IT is an infinite directed grapfV/, E) such that
e 1/ is a set of non-equality atoms formed frertiI), along

with an infinite supply of variables;

2For any lists of terms = (t1,...,t,) andt’ = (¢}, ...
of the same length, = t’ stands fort; =) A--- A t, = t,.

,tn)

e (p(t)8,¢q(t')0) is in E if p(t) depends om(t’) in IT and
6 is a substitution that maps variablegiandt’ to object
constants and variables occurringhin

A nonempty finite subset of V is called a(first-order)
loopof IT if the subgraph of the first-order dependency graph

- of IT induced byL is strongly connected.

Example 2 LetII be the following program:

p(z) — q(x)
q(y) — ply) (6)
p(x) < notr(z).

The following sets are first-order loopsY; = {p(z)},

Ys = {q(2)}, Y3 = {r(2)}, Ya = {p(2), q(2)}. Their loop
formulas are

FLFn(Y1) = Vz(p(z) — (q(2) vV =r(2)));
FLFn(Y2) = Vz(q(z) — p(2));
FLFn(Y3) = Vz(r(z) — 1);
FLFn(Yy) = Vz(p(2) Ag(z) —
(q(z) Nz #2) V (p(2) Nz # 2) V —r(2)).

Example 3 LetII be the one-rule program

p(z) < p(y). (@)
Its first-order loops areY, = {p(z1),...,p(xr)} where
k > 0. Formula FLR;(Y%) is
Vay...zp(p(z1) A ... Ap(zk) )
= @AY # o)A A (Y # k)

Definition 1 (Grounding a program) For any nondisjunc-
tive programII we denote by Grour{dl) the ground in-
stance ofl1, that is the program obtained froii by replac-

ing every occurrence of object variables with every object
constant occurring irfll, and then replacing equality = b
with T or L depending on whetheris the same symbol as
b.

Given a progranil, let (¢(II))¢ be a propositional sig-
nature consisting of all the ground atomsodiT). An Her-
brand model of-(IT) can be identified with a corresponding
propositional model ofo (IT))9.

The following is a reformulation of Theorem 1
from (Chenet al. 2006).

Proposition 1 LetII be a nondisjunctive program in normal
form, and let/ be an Herbrand model df whose signature
is o(IT). The following conditions are equivalent to each
other:

(a) I'is an answer set dfl;
(b) I is an Herbrand model of

{FLF(Y) : Y is a nonempty finite set of atomsaqfil) };
(c) Iis an Herbrand model of
{FLF(Y) : Y is afirst-order loop ofil};

(d) I is a (propositional) model of{LFgoundm)(Y)

Y is a nonempty (finite) set of ground atomg®fII))9 };
(e) I is a (propositional) model of{LFgrunqm)(Y)

Y is aloop of GroundII)} U {—p : pis anatomin

(o(IT))¢ not occurring in GroundI)}.



The sets of first-order loop formulas considered in condi-
tions (b), (c) above have obvious redundancy. For instance,
the loop formula of p(x)} is equivalent to the loop formula
of {p(y)}; the loop formula of p(x), p(y)} entails the loop
formula of {p(z)}. Following (Cheret al. 2006), given two
sets of atom&7, Y5> not containing equality, we say that
subsume¥; if there is a substitutioff that maps variables
in Y7 to terms so tha¥1 0 = Y. We say that; andY; are
equivalenif they subsume each other.

Proposition 2 (Chenet al. 2006, Proposition 7) Given two
loopsY; andYs, if Y1 subsumed¥?, then FLR; (Y1) entails
FLF(Y2).

Therefore in condition (c) from Proposition 1, it is suffi-
cient to consider a sdt of loops such that for every loop
L of I, there is a loopl’ in T" that subsumeg,.. Chenet
al. [2006] called this set of loopsomplete In Example 2,
set{Y1, Ys, Y5, Y4} is a finite complete set of loops of pro-
gram (6). Program (7) in Example 3 has no finite complete
set of loops.

In condition (c) of Proposition 1, instead of the first-order
loops of the given program, one may consider the first-order
loops of any strongly equivalent program, including a pro-
gram that is not in normal form. This sometimes yields a
smaller number of loop formulas to consider. For example,
the ground loops of program

p(a) < p(b)
p(b) — plc) ®)
are{p(a)}, {p(d)}, {p(c)}, all of which are subsumed by
{p(z)}. Thus itis sufficient to consider the loop formula of
{p(z)}:
Vz(p(z) — ((x = a) Ap(b) A (z # b))
V((z =b) Ap(e) A (z # c))).
On the other hand, the ground loops of its normal form
p(z) —z=a, p(b)
p(x) — =0, p(c)
p(c)} in addition to the singleton ground

(10)

contain {p(b),
loops.

Extension to Disjunctive Programs

A disjunctive program consists of a finite number of rules of
the form
A« B,N (11)

whereA, B are sets of atoms, and is a negative formula.
As in the nondisjunctive case we assume that there are no
function constants of positive arity. Similar to above, a-pr
gram is innormal formif, for all rules (11) inII, no object
constants occur inl. We assume thdl is in normal form.

Given a finite se” of non-equality atoms of (II), we
first rename variables ifl so that no variables occur .
The (first-order) external support formulaf Y for II, de-
noted byFES;(Y), is the disjunction of

(VA" (Bo ANOA N swreno (6 # )

/ Y
0:AONY £0 pehe

A=(Viwreas (000 A Apenyey £ # 1)) )(22)

for all rules (11) inII where# is a substitution that maps
variables inA to terms occurring irY” or to themselves, and
z is the list of all variables that occur in

Af — BO, N6

but not inY. The (first-order) loop formulaf Y for 11, de-
noted byFLF;(Y), is the universal closure of (5). Clearly,
(12) is equivalent to (4) wheH is nondisjunctive.

Similar to the nondisjunctive case, we say thét) de-
pends om(t’) in 11 if there is a rule (11) inll such that
p(t) isin A andg(t’) is in B. The notions of grounding, a
dependency graph and a first-order loop are extended to dis-
junctive programs in a straightforward way. Propositions 1
and 2 can be extended to disjunctive programs with these
extended notions.

Example4 Let II be the following program

p(z,y) Vp(y,2) < q(z) and letY {p(u,v)}. For-
mula FLF; (Y) is the universal closure of

p(u,v) = Jz(q(u) A =(p(v, 2) A ((v, 2)
V 3z(g(z) A =(p(z,u) A ((w,

# (u,0))))

u) # (u,0))))-

Extension to Arbitrary Sentences

First-order loop formulas can even be extended to arbitrary
sentences under the stable model semantics (Feetaais
2007).

As in (Ferrariset al. 2006), it will be easier to discuss the
result with a formula whoseegatioris similar toFES We
define formulaNFES-(Y") (“Negation” of FES as follows,
whereF is a first-order formula antf is a finite set of atoms
not containing equality. The reader familiar with (Fersa
al. 2006) will notice that this is a generalization of the notion
NESfrom that paper to first-order formulas.

We assume that no variableslihoccur inF’ by renaming
bound variables irF'.

o NFES, t)(Y) =pi(t) NNy, 6)ev t # ¢

o NFES,_,,(Y) = (ti=t3);

e NFES (V) = 1;

e NFESrnq(Y) = NFES(Y) ANFES:(Y);

e NFES-¢(Y) = NFES-(Y) VNFES;(Y);

* NFES_.¢(Y) = (NFES (V) = NFES: (Y)) A (F—G);
e NFES/,¢(Y) = VaNFES;(Y);

NFES;,¢(Y) = JzNFES; (Y).

The (first-order) loop formula oY for sentencer’, de-
noted byFLF (YY), is the universal closure of

Y — -NFES:(Y).

It is not difficult to check that for any propositional for-
mula F' and any nonempty finite sé&t of propositional
atoms,FLF(Y") is equivalent toLF (Y"), whereLF de-
notes loop formula for a propositional formula as defined
in (Ferrariset al. 2006).

This notion of a loop formula is a generalization of a loop
formula for a disjunctive program in view of the following
lemma.

(13)



Lemma 1 LetII be a disjunctive program in normal form,
F the FOL-representation dff, andY a finite set of atoms
not containing equality. Formula NFESY') is equivalent
to -FES;(Y") under the assumptioii.

To define a first-order dependency graphrgfwe need
a few notions. Recall that an occurrence of a form@ilan
a formulaF is positiveif the number of implications i’
containing that occurrence in the antecedent is even; it is
strictly positiveif that number i€). We will call a formulain
rectified formif it has no variables that are both bound and
free, and the quantifiers are followed by pairwise distinct
variables. Any formula can be turned into rectified form by
renaming bound variables.

Let F' be a formula in rectified form. We say that an
atomp(t) weakly depends can atony(t’) in an implication
G— Hif

e p(t) has a strictly positive occurrence i, and

e ¢(t') has a positive occurrence @ that does not belong
to any occurrence of a negative formulain

We say thaip(t) depends or(t’) in F if p(t) weakly
depends og(t’) in an implication that has a strictly positive
occurrence irnf'.

The definition of a first-order dependency graph for a
nondisjunctive program is extended toin a straightfor-
ward way using this extended notion of dependency between
two atoms. A loop is also defined similarly.

Definition 2 (Grounding a sentence)For any sentencé’
that has no function constants of positive arity, Groufy

is defined recursively. If" is an atomp(t) then GroundF")

is F. If F'is an equalitys = bthen GroundF’) is T or L de-
pending on whethet is the same symbol &s The function
Ground commutes with all propositional connectives; quan-
tifiers turn into finite conjunctions and disjunctions ovédlr a
object constants occurring iR'.

Proposition 1 remains correct even after replacing “a
nondisjunctive program in normal form” in the statement
with “a sentence in rectified form that contains no function
constants of positive arity,” and using the extended nation
accordingly. Proposition 2 can be extended to arbitrary sen
tences as well.

Loop Formulas in Second-Order Logic
SM and Loop Formulas

Let I be a first-order formula, lety, . . ., p,, be the list of all
predicate constants occurring iy and letu andv be lists
of predicate variables correspondingtq. . ., p,..

We defineNESe (u) recursively as follows, which is sim-
ilar to NFESabove but contains second-order variables as its
argument.

o NES, (1)(u) = pi(t) A —ui(t);
NES, =, (u) = (t1=t2);
NES. (u) = L;

NESic (1)
NESy G (u)

NES-(u) A NES; (u);
NES-(u) V NES; (u);

o NES_.¢(u) = (NESp(u) = NES:(u)) A (F—G);
e NES,.r(u) = V2NESs (u);
e NES;, r(u) = 3zNES-(u).

By Nonemptyu) we denote the formula

Ixtug (xh) V-V Ix g, (x).

SM[F] can be written in the style of “loop formulas” in
the following way.
Proposition 3 For any sentencé&’, SM[F] is equivalent to

F AVu((u < p) A Nonemptyu) — =NES-(u)). (14)

Second-Order Characterization of Loops

The notion of a loop can be incorporated into the second-
order definition of stable models as follows.
Given a sentencé’ in rectified form, by Er(v,u) we
denote
V

(i (£),p; (£)) :
p; (t) depends omp ; #/)inF

Fz (v (t) A wj(t') A —w;(t))

wherez is the list of all object variables in andt’. By
SCr(u) we denote the second-order sentence

Nonemptyu) AVv((v < u) ANonemptyv) — Epr(v,u)).
15

Formula (15) represents the concept of a loop without refer-
ring to the notion of a dependency graph explicitly, based on
the following observation. Consider a finite propositional
programIl. A setU of atoms is a loop ofl iff for every
nonempty proper subsét of U, there is an edge from an
atom inV to an atom inU \ V' in the dependency graph of
IT (Gebsetret al. 2006). To see the relation in the first-order
case, we first define a dependency graph and a loop that are
relative to a given interpretation. Létbe a sentence in rec-
tified form and let/ be an interpretation of’. Thedepen-
dency graph of” w.r.t. I is an infinite directed grapti’, E)
where

e V is the set of all atoms of the form (¢*) where¢* is a
list of object names’ and

- N

o (pi(&*),pj(n*)) is in E if there arep;(t), p;(t’) such
that p;(t) depends orp;(t’) in F' and there is a map-
ping 6 from variables int andt’ to object names such

that(t0)! = &, and(t'6)! = 7.

We call a nonempty subsét of V' a loop of F' w.r.t. I
if the subgraph of the dependency graphrofv.r.t. I that
is induced byL is strongly connectefl. The following
lemma describes the relation between formula (15) and a
loop w.r.t. 1.

3Each element of the universgI| has a correspondingb-
ject namewhich is an object constant not from the given signature
See (Lifschitzet al. 2008) for details.

“Note that unlike first-order loops defined earlier we dor't re
strict L to be finite. There the assumption was required to be able
to write a loop formula.



Lemma 2 Let F' be a first-order sentence in rectified form,
I an interpretation ofF and q a list of predicate name%
corresponding t@. I = SCr(q) iff

Y = {p;(€*) : ¢! (€)=TRUE where¢ is a list of object namds
is a loop of FF w.r.t. I.

One may expect that, similar to the equivalence between
conditions (b) and (c) from Proposition 1, formula (14) is
equivalent to the following formula:

F /\Vu((u < p) A SCF(U) — _‘NEST'(U)) (16)

However, this is not the case as shown in the following ex-
ample.

Example 5 Let ' be the FOL-representation of pro-
gramlII :

p(z,y) < q(=,2)

q(x,z) < p(y, 2).
Consider interpretation/ whose universe is the set of all
nonnegative integers such that

I(m,n) = TRUE ifm =n,
prm, FALSE otherwise;
. TRUE ifn=m+1,
q (m,n) = C
FALSE otherwise;

One can check that is not a stable model af, but satis-
fies (16).
This mismatch is similar to the observation from (Lee

Lemma 3 Let F' be a first-order sentence in rectified form,
I an interpretation, andy a list of predicate names corre-
sponding top.
I = Nonemptyq) A Vv((v < q) ASCp(v) — Er(v,q))
iff
Y = {pi(£*) : ¢! (€)=TRUE where¢ is a list of object namés
is an unbounded set @f w.r.t. I.

An extended loopf F' w.r.t. I is a loop or an unbounded
setof Fw.r.t. I. ClearlyT [ (18) iff
Y = {pi(¢*) : ¢! (€)=TRUE where¢ is a list of object namés

is an extended loop of w.r.t. I.

The following proposition shows that the formula ob-
tained from (16) by replacin®Cr(u) with Loopg(u) is
equivalent to SNIF).

Proposition 3 For any sentenckE in rectified form, the fol-
lowing second-order sentences are equivalent to each other

(a) SMIF];
(b) F AVu((u < p) ANonemptyu) — -NESr(u));
(¢) F AVu((u < p) ALoopg(u) = “NES(u)).

(See appendix A for an example.)
Proposition 3is essentially a generalization of the main

2005) that the external support of all loops does not ensure theorem from (Ferrarist al. 2006) to first-order sentences.

the stability of the model if the program is allowed to be
infinite. Consider the following infinite program:

Di < Dit+1 (Z > O). (17)
The only loops are singletons, and their loop formulas are

satisfied by the mod€lpy, ps, . . .} of (17), which is not sta-
ble. To check the stability, not only we need to check ev-

If F'is a propositional formula, then for any sub%ebf p,

by? we denote the tupléys, ..., Y, ), where
Y, — T, if pi € Y;
7 1 L, otherwise

Corollary 1 (Ferraris et al. 2006, Theorem 2) For any

ery loop is externally supported, but also need to check that propositional formulaF’, the following conditions are equiv-

{p1,p2,...} is “externally supported.” Example 5 shows

alent to each other under the assumptign

that the mismatch can occur even if the program is fi- (3) SM[F;

nite once it is allowed to contain variables. What distin-
guishes{pi, po, ...} from loops is that, for every loop in
{p1,p2, ...}, there is an outgoing edge in the dependency
graph. Taking this into account, we defib@op, (u) as

SCr(u) V (Nonemptyu)
AVYV((v <u) ASCr(v) — Ep(v,u))).
(18)
Given a dependency graph &f w.r.t. I, we say that a

nonempty set” of vertices isunboundedv.r.t. I if, for every
subset”Z of Y that induces a strongly connected subgraph,
there is an edge from a vertexhto a vertexiny” \ Z. For
instance, for the interpretatianin Example 5,

{p(0%,0%),4(0%,1%),p(1%,1%),q(17,2%), . ..
is an unbounded set w.rk.

The following lemma describes the relation between the
second disjunctive term of (18) with unbounded sets.

3 }

SLike object names, for every > 0, each subset dff|* has
a name, which is am-ary predicate constant not from the given
signature.

(b) The conjunctionof\ Y — —\NES?(}_/}) for all nonempty

setsY” of atoms occurring int;

(c) The conjunction o\ Y — —\NESF(}_/)) for all loopsY

of F.

Several other propositions in this paper are derived from
Proposition 3

BetweenSM and First-Order Loop Formulas

In general, SNIF'] is not reducible to any first-order sen-
tence, even in the absence of function constants of positive
arity. As in circumscription, transitive closure can be-rep
resented using SM, while it cannot be done by any set of
first-order formulas, even if that set is allowed to be inéfit
However, if the universe consists of finite elements, then th
following holds. We will say thatF’ is in normal formif

no object constants occur in a strictly positive occurresfce
atoms inF'.

Vladimir Lifschitz, personal communication.



Proposition 4 For any sentencé” and any model of F’
whose universe is finite, the following conditions are equiv
alent:

(a) I satisfiesSM[F];

(b) for every nonempty finite sé&f of atoms formed from
predicate constants in(F") and an infinite supply of vari-
ables,] satisfies FLE(Y").

If F is in rectified and normal form that has no function

constants of positive arity, the following condition isals
equivalent to each of (a) and (b):

(c) for every first-order loofy” of F, I satisfies FLE(Y").

Unlike Proposition 1 in which loops can be found from
any strongly equivalent program, condition (c) requires th
loops be found from a normal form. This is related to the fact

into account “pointwise dependency.”) We further general-
ize this result using the notion of finite complete set of lpop

Let F' be a sentence in rectified form that contains no
function constants of positive arity. Theorem 2 from (Chen
et al. 2006) provides a syntactic condition under which a
nondisjunctive program has a finite complete set of loops,
which can be extended to disjunctive programs and arbitrary
sentences in a straightforward way.

The following proposition tells that if" has a finite com-
plete set of loops, then S| can be equivalently rewritten
as a first-order sentence.

Proposition 5 Let F' be a sentence in rectified and normal
form that contains no function constants of positive arity.
If F' has a finite complete sét of first-order loops, then
SM[F] is equivalent to the conjunction &f with the set of

that Proposition 4 considers non-Herbrand stable models as 00p formulas for all loops if".

well, which may not satisfy the unique name assumption.
For instance, recall that program (9) has singleton loops
only, which are subsumed b§p(z)}. Consider an inter-
pretation/ such thai/| = {1,2} anda’ = ¢! = 1,b! = 2,
p!(m) = TRUE for m = 1,2. I is a non-Herbrand model
which is not stable, but it satisfies (10), the loop formula of
{p(2)}.

The proof of the equivalence between (a) and (c) uses the
following lemma.

Lemma 4 Let F' be a sentence in rectified and normal form
that contains no function constants of positive arity, agid |
1 be an interpretation. If there is no infinite extended loop
of Fw.rt. I, thenl = SM[F] iff, for every first-order loop
Y of F, I EFLFr(Y).

Without the finite universe assumption, Proposition 4
would be incorrect, as shown in Example 5. For another
example, consider program (7) with an interpretatiomith
an infinite universe such thatis identically true.l does not
satisfy SMF), but satisfiess” andFLFr(Y") for any finite
setY of atoms.

In view of Proposition 2, if the size of the univertg
is known, as with the answer sets (whose universe is the
Herbrand universe of (F)), it is sufficient to consider at
most2/Pl — 1 loop formulas where is set of all predicate
constants occurring in the sentence. Each loop formulais fo
setY corresponding to a nonempty subgedf p, defined
asYq = {p(x1),...,p(xjn) : p € q} Wheren is the arity
of p. For instance, for program (7), if the size of the universe
is known to be3, it is sufficient to consider only one loop
formula (8) where: = 3.

In the next section we consider certain classes of sen-
tences for which SNF7 is equivalent to a first-order sen-
tence without the finite universe assumption.

Reducibility to first-order formulas
Finite complete set of first-order loops

Proposition 8 from (Ferrarist al. 2007) shows that SM]

can be reduced to a first-order sentenck if “tight”, i.e.,

F has no “nontrivial” predicate loops. (Predicate loops are
defined similar to first-order loops, but from a “predicate de
pendency graph” (Ferraret al. 2007), which does not take

This proposition generalizes Proposition 8 from (Ferraris
et al. 2007). Clearly, every tight sentence has a finite com-
plete set of first-order loops.

The proof of Proposition 5 follows from Lemma 4 and the
following lemma.

Lemma5 Let F' be a sentence in rectified and normal form
that contains no function constants of positive arity.FIf
has a finite complete set of loops, then there is no infinite
extended loop of’ w.r.t any interpretation.

Proposition 5 would go wrong if we replace “a finite com-
plete set of loops” in the statement with “a finite number of
predicate loops.” Obviously any sentenEecontains a fi-
nite number of predicate constants, so that this condison i
trivial. In view of intranslatability of SM to first-order se
tences, this fact tells that the more refined notion of first-
order loops is essential for this proposition to hold.

For nondisjunctive prograri, Proposition 9 from (Chen
et al. 2006) shows that if every variable in the head occurs in
the body, thedl has a finite complete set of loops. However,
this does not hold oncH is allowed to be disjunctive. For
instance,

p(z,y) < q(z),r(y)
q(x) Vr(y) < p(z,y)
has no finite complete set of loops.

Safe formulas

A disjunctive progranil is calledsafeif, for each rule (11)
of II, every variable occurring in the rule occurs ihas
well. (Leeet al. 2008) generalized this notion to sentences,
showing that for any safe sentence, its Herbrand stable mod-
els are not affected by “irrelevant” object constants that d
not occur in the program. We will show that this notion is
also related to reducing S to a first-order sentence.

We review the notion of safety from (Lest al. 2008)/
We assume that there are no function constants of positive
arity. As a preliminary step, we assign to every formfla
in rectified form a seRV(F) of its restricted variablesas
follows:

"The definition here is slightly weaker and applies to arbjtra
sentences, unlike the one in (Lekal. 2008) that refers to prenex
form.



For an atony¥’,
—if F is an equality between two variables then

RV(F) = 0;

— otherwise,RV(F) is the set of all variables occurring

in I;
e RV(1) =0;
e RV(F AG) =RV(F)URV(G);
e RV(FV G) =RV(F)NRV(G);
° (F‘—»(?)—-@
o RV(QuF) = RV(F) \ {v} whereQ € {V,3}.

We say that a variable is unsafein F if there is an oc-
currence ofr in F' thatis not in any of

e Yz, Jx, and
e any subformulay — H of F' such thatr € RV(G).
By Ur we denote the formula

A we(p60 — A\ z=c)

PEP reEX ceC

whereC is the set of all object constants occurringAh
andx is a list of distinct object variables whose length is the
same as the arity of.

The following proposition tells that for a safe senteiite
formula SMF| can be equivalently rewritten as a first-order
sentence.

Proposition 6 Let F' be a sentence in rectified form that has
no function constants of positive arity. # has no unsafe
variables, therSM[F1] is equivalent to the conjunction &f,
Ur and a finite number of loop formulas.

We note that the syntactic conditions in Proposi-
tions 5 and 6 do not entail each other. For instance,
v (g(x) A p(y) — p(z)) has no unsafe variables, but has
no finite complete set of first-order loops, while p(z) has
a finite complete set of loop§{p(z)}}, but has an unsafe
variablex.

Safety is usually imposed on input programs for answer
set solvers, but it could be somewhat restricted in firseord
reasoning which is not confined to generating Herbrand sta-
ble models. For instance, the example program in the intro-
duction (identified as a sentence) has an unsafe variable
(but has a finite complete set of loops).

Programs with Explicit Quantifiers

In the following we extend the syntax of logic programs by
allowing explicit quantifiers. As in answer set programs,
the syntax uses the intuitive if-then form, but allows egipli
quantifiers. Anextended rulés of the form

H« G (19)

whereG and H are formulas with no function constants of
positive arity such that every occurrence of an implication
in G andH is in a negative formula. An extended programis

a finite set of extended rules. The semantics of an extended {Discountu, v)}, { GotMarried(u, v)}, { Spouseu,

program is defined by identifying the program with §Kj

whereF is a conjunction of the universal closure of implica-
tions that correspond to the rules (FOL-representatiom). A
example of an extended programis given in the introduction.

Let IT be an extended program. Given a nonempty fi-
nite setY” of non-equality atoms of (IT), we first rename
variables inll so that no variables occur . Formula
EFES:(Y) (“ExtendedFES’) is defined as the disjunction
of

Jz(NFES: (V) A -NFES; (Y)) (20)
for all rules (19) wherdd contains a strictly positive occur-
rence of a predicate constant that belong¥t@ndz is the
list of all free variables in the rule that do not occuiin

The loop formula oft” for IT is the universal closure of

/\Y — EFESi(Y). (21)

The following proposition tells that (21) is a generaliza-
tion of the definition of a loop formula for a disjunctive pro-
gram and is equivalent to the definition of a loop formula
(13) for an arbitrary sentence.

Proposition 7 LetII be an extended progrank, the FOL-
representation ofI, andY a finite set of atoms not contain-
ing equality. Under the assumptidh, formula EFE$(Y)

is equivalent to-NFES»(Y). If IT is a disjunctive program,
then EFEg(Y) is also equivalent to FEFY) under the
assumptiodl.

While the size of (13) is exponential to the sizefofin
the worst case, (21) can be equivalently written in a linear
size due to the following lemma.

Lemma 6 For any negative formuld’ and any finite set”
of non-equality atoms, NFESY") is equivalent taF'.

For instance, fo' = (p(z)—L1)—L1 andY = {p(a)},

formulaNFES-(Y) is

[(((p(x) N F#a)=L)A(p(z)—L))—L

which is equivalent ta".

A finite setI" of sentencegntailsa sentencé’ under the
stable model semantics (symbolically,=sm F), if every
stable model of" satisfiesF'.

If SM[F] can be reduced to a first-order sentence, as al-
lowed in Propositions 5 and 6, clearly, the following holds.

A [(p(x)—L)—L],

IleEsw Fif TUAEF

whereA is the set of first-order loop formulas required. This
fact allows us to use first-order theorem provers to reason
about query entailment under the stable model semantics.

Example 6 Consider the insurance policy example in
the introduction, which has the following finite com-
plete set of loops: {Divorcedu,v)}, {Accidentu,v)},
v)} and

{GotMarried(u, v), Spouséu,v)}. Their loop formulas for



II, U I, are equivalent to the universal closure of
Div(u,v) — L

Ace(u,v) — L

Dis(u,v) — Jzy[Spo(x,y) A =3Iz Acc(z, 2

)
A =(Fw(Dis(z, w) A (z, w) # (u,v)))]

Mar(u,v) —

Jzy[Spo(z,y) A ~(Mar(z,y) A (x, ) # (311 ;0)]

V =Jy[Mar(marge,y) A (marge,y) # (u,
Spo(u v) —
Jwy[Mar(z,y) A ~Div(z, y)

/\ﬁ(SpO(xa y) A (:Ea y) 7& (ua ’U))]
Mar(u,v) A Spo(u,v) —
Jay[(Spo(z,y) A (z,y) # (u,v))
A (Mar(z,y) A (z,y) # (u,v))]
V =Jy[Mar(marge, y) A (marge,y) # (u,v)]
V 3zy[(Mar(z,y) A (2,y) # (u,v)) A ~Div(z,
A=(Spo(z,y) A (z,y) # (u,v))]-

These loop formulas, conjoined with the FOL-representatio
of TI; U Il,, entail under first-order logic each of
Jzw Dis(x,w) andVz(Dis(z, planl) — z = marge. We
veriféed the answers using a first-order theorem prover Vam-
pire ©.

)

Conclusion
Our main contributions are as follows.

e We extended loop formulas with variables from (Cletn
al. 2006) to disjunctive programs and to arbitrary first-
order sentences and showed their relations to the new lan-

guage of stable models from (Ferragtsal. 2007).

We presented certain syntactic conditions under which the
language of stable models from (Ferragtsal. 2007) can

be reduced to first-order logic, which allows to use first-
order theorem provers to reason about stable models.

We defined the notion of an extended program which al-

lows closed-world reasoning under the stable model se-
mantics even in the absence of the unique name and the
domain closure assumptions. We provided a computa-
tional method for extended programs by means of loop

formulas.

The use of first-order theorem provers for the stable model
semantics was already investigated in (Sabuncu and Al-
paslan 2007), but their results are limited in several ways.
They considered nondisjunctive logic programs with “triv-
ial” loops only, in which case the stable model semantics is
equivalent to the completion semantics (Clark 1978); their
notion of models were limited to Herbrand models.

SAT-based answer set solvers may also benefit from loop
formulas with variables. Instead of finding propositional
loop formulas one by one from the ground program, one

8http://wwv. vanpire.fm.

may consider a set of formulas in a batch which are obtained
from grounding first-order loop formulas. Whether it leads
to computational efficiency needs empirical evaluation.
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Appendix. Additional Examples
Consider program (6) from Example 2:

p(z) — q(x)
q(y) = p(y)
p(x) < notr(z).

Let F' be the FOL-representation oif;

Vay((a(x) — p(x)) A (p(y) — a(y)) A (-r(z) — p(2)))-
Below we use the following fact to simplify the formulas.

Lemma 7 For any negative formuld’, the formula

NES-(u) < F
is logically valid.

1. SM[F] is equivalent to

F A =Fuquous((u1, ug, us) < (p,q,7))

AYzy((uz2(z) — ui(z))
ANua(y) — uz2(y))

A= (@) = ui(2))).

2. Formula in Proposition 3’ (b):
F AVu(u < p A Nonemptyu) — -NESz(u))
is equivalent to

F AVuyugus((ur, uz, us) < (p,q,7)
A3z uy(x) V Iz ug(z) V Iz uz(x))

— —ny([q(:c) A —ug(x) — p(x) A —uq ()]
Ap(y) A —ua(y) — q(y) A ~ua(y)]
A[-r(z) — p(2) A —ui(2)])).

(22)

3. Formula in Proposition 3’ (c): Similar to (22) except
that
Jz uy () V Iz ug(z) V Iz uz(x)

in (22) is replaced witth.oopg (u), which is

SCr(u) V [(Fz ui(x) V Iz uz(z) V Iz ug(x))
A Yorvavs(((v1, v2,v3) < (u1,us2,u3)) A SCp(Vv)
— (Fz(v1(z) A ua(x) A —v2(z))
V3y(va(y) Aua(y) A —vr(y))))],

whereSCr(u) is
(Fz vy (z) V 3z ua(z) V Iz usz(x))
AYv1v203(((Fz v1(z) V 3z va(x) V Tz v3(2))
A(v1,v2,v3) < (u1,us,us))
— (Fz(v1(z) A ua(x) A —v2(z))
V3y(v2(y) Aua(y) A =i (y))))-

Remark: Proposition 3tells that each of the formulas Iy
2, 3are equivalent to each other.

4. First-Order Loop Formula for Sentence F' (Using

NFES) : LetY: = {p(2)},Y2 = {q(2)}, Y5 = {r(2)},
Y1 ={p(2),q(2)}. Set{Y1,Ys, Y3, Y,} is a complete set of
loops.

Under the assumptioh,
e FLF (Y1) is equivalent to the universal closure of
p(z) = ~Vay(lg(z) — p(z) Az # 2]
Alp(y) Ny # 2 = a(y)]
Al=r(z) — ple) Az # 2]).
>) Is equivalent to the universal closure of

q(z) = ~Vay(lg(z) Ax # z — p(z)]
Alp(y) = aly) Ay # 2]).
e FLF(Y3) is equivalent to the universal closure of
r(z) — L.
1) Is equivalent to the universal closure of
p(z) Na(2) —
“Vay([g(z) Nz # 2 — p(z) N # 2]
Ap(y) Ny # 2 = qly) Ny # 2]
Al=r(z) — p(x) Az # z]).

5. First-Order Loop Formula for Nondisjunctive Pro-
gram (Using FES): See Example 2.

o FLF (Y

o FLFp(Y,

6. First-Order Loop Formula when II is understood as
an extended program (UsingeFES) : Consider the same
Y; as before.

Under the assumptiofd,

e FLF(Y7) is equivalent to the universal closure of
p(z) — (Fz(g(z) A =(p(x) Az # 2))
V 3z(=r(z) A =(p(z) Az # 2))).
e FLF(Y3) is equivalent to the universal closure of
q(z) — Jy(p(y) A =(a(y) Ny # 2)).
e FLF(Y3) is equivalent to the universal closure of
r(z) — L.

e FLF(Y,) is equivalent to the universal closure of
(p(2) A q(2)) — (Fz((g(z) Az # 2) A= (p(z) A a # 2))
vV 3y((p(y) Ny # 2) A=(a(y) Ny # 2))

v 3z(=r(z) A (p@) Ax # 2))).

Remark: Proposition 7 tells that the sets of formulas in each
of 4, 5, 6 are equivalent to each other, under the assumption
F. In view of Proposition 5, each set conjoined withis
equivalent to each of the formulasin2, 3.



