
Handling Uncertainty in Answer Set Programming

Yi Wang and Joohyung Lee
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, USA
{ywang485, joolee}@asu.edu

Abstract
We present a probabilistic extension of logic programs un-
der the stable model semantics, inspired by the concept of
Markov Logic Networks. The proposed language takes ad-
vantage of both formalisms in a single framework, allowing
us to represent commonsense reasoning problems that require
both logical and probabilistic reasoning in an intuitive and
elaboration tolerant way.

Introduction
Answer Set Programming (ASP) is a successful logic pro-
gramming paradigm that takes advantage of nonmonotonic-
ity of the underlying semantics, the stable model semantics.
Many useful knowledge representation constructs and ef-
ficient solvers allow ASP to handle various commonsense
reasoning problems elegantly and efficiently. However, dif-
ficulty still remains when it comes to domains with uncer-
tainty. Imprecise and vague information cannot be handled
well since the stable model semantics is mainly restricted
to Boolean values. Further, probabilistic information cannot
be handled since the stable model semantics does not distin-
guish which stable models are more likely to be true.

To address the first aspect of the issue, several approaches
to incorporating fuzzy logic into ASP have been proposed,
such as (Lukasiewicz 2006). However, most of the work
is limited to simple rules. In our previous work (Lee and
Wang 2014), we proposed a stable model semantics for
fuzzy propositional formulas, which properly generalizes
both fuzzy logic and the Boolean stable model semantics,
as well as many existing approaches to combining them.
The resulting language combines the many-valued nature of
fuzzy logic and the nonmonotonicity of stable model seman-
tics, and consequently shows competence in commonsense
reasoning involving fuzzy values.

In this work, we focus on the other aspect of the is-
sue, namely handling probabilistic information in common-
sense reasoning. We adapt the idea of Markov Logic Net-
works (MLN) (Richardson and Domingos 2006), a well-
known approach to combining first-order logic and proba-
bilistic graphical models in a single framework, to the con-
text of logic programming. The resulting language LPMLN

combines the attractive features of each of the stable model
semantics and MLN.
Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Language LPMLN

Since a Markov Logic Network is based on the standard
first-order logic semantics, it “has the drawback that it can-
not express (non-ground) inductive definitions” (Fierens et
al. 2013). Consider the following domain description (“α”
denotes “hard weight”).

w1 : Edge(1, 2)
w2 : Edge(2, 3)
. . .
α : Path(x, y)← Edge(x, y)
α : Path(x, y)← Path(x, z), Path(z, y).

The above weighted rules are intended to describe proba-
bilistic reachability in a graph, which is induced by the prob-
abilities of the involved edges. The relation Path, describing
the reachability between two vertices, is supposed to be the
transitive closure of the relation Edge. However, under the
MLN semantics, this is not the case.

We propose the language LPMLN, which overcomes such
a limitation. The syntax of an LPMLN program is essentially
the same as that of an MLN instance, except that weighted
formulas are replaced by weighted rules.

Similar to MLN, the weight of each rule can be either
a real number, or the symbol α that marks a rule a “hard
rule.” The weight of each interpretation is obtained from the
weights of the rules that form the maximal subset of the pro-
gram for which the interpretation is a stable model.

More precisely, we assume a finite first-order signature σ
that contains no function constants of positive arity, so that
any non-ground LPMLN program can be identified with
its ground instance. Without loss of generality, we con-
sider ground (i.e., variable-free) LPMLN programs. For any
ground LPMLN program P of signature σ, consisting of a set
of weighted rules w : R, and any Herbrand interpretation I
of σ, we define PI to be the set of rules in P which are sat-
isfied by I . The weight of I , denoted by WP(I), is defined
as

WP(I) = exp

(∑
w:R ∈ P
R∈PI

w

)

if I is a stable model of PI ; otherwise WP(I) = 0. The
probability of I under P, denoted PrP[I], is defined as

PrP[I] = lim
α→∞

WP(I)∑
J∈PW WP(J)

Figure 1: The transition system with probabilistic effects,
defined by LPMLN semantics (a) and MLN semantics (b)

where PW is the set of all Herbrand interpretations of σ.
Inductive definitions are correctly handled in LPMLN

since it adopts the stable model semantics in place of the
standard first-order logic semantics in MLN. For instance,
the weighted rules given at the beginning of this section
yields the expected result under the LPMLN semantics.

Any logic program under the stable model semantics can
be embedded in LPMLN by assigning the hard weight to each
rule. MLN can also be embedded in LPMLN via choice for-
mulas which exempt atoms from minimization. LPMLN pro-
grams can be turned into MLN instances via the concept of
loop formulas (Ferraris, Lee, and Lifschitz 2006). This result
allows us to use an existing implementation of MLN, such as
Alchemy, to effectively compute “tight” LPMLN programs.

Probabilistic Transitions by LPMLN

LPMLN can be used to model transition systems where ac-
tions may have probabilistic effects. For example, the tran-
sition system shown in Figure 1(a) can be encoded as the
following LPMLN program.

ln(λ) : Auxi
ln(1− λ) : ← Auxi

α : ← Pi,NPi

α : ← not Pi, not NPi

α : Pi+1 ← Ai,Auxi

α : {Pi+1} ← Pi

α : {NPi+1} ← NPi

α : {Ai}
α : {P0}
α : {NP0}

Here i is a schematic variable ranging over
{0, . . . ,maxstep − 1}. The atom Auxi represents the
probabilistic choice for the success of action Ai. The 3rd
and 4th rules say that Pi and NPi are complementary.
The 5th rule defines the probabilistic effect of Ai. The
6th and 7th rules represent the commonsense law of
inertia, where we use {H} ← Body to denote the rule
H ← Body, not not H . The last three rules specify that the
execution of A at each step and the initial value of P are
arbitrary.

Under the MLN semantics, the same program specifies a
different probabilistic transition system (Figure 1(b)), which
is not aligned with the commonsense understanding of the
description. In this transition system, fluents can change ar-
bitrarily even when no relevant actions are executed.

As an application of the idea of using LPMLN to define
probabilistic transition systems, a probabilistic variant of the
Wolf, Sheep and Cabbage puzzle can be encoded in LPMLN.
We consider an elaboration in which with some probabil-
ity p, eating does not happen even when the farmer is not
present. While the minimal length plan for the original puz-
zle involves 17 actions of loading, moving and unloading,

the elaboration has a new minimal plan containing 11 ac-
tions only, including two steps in which the wolf does not
eat sheep when the farmer is not around. We formalized this
domain in LPMLN, and, based on the reduction of LPMLN

to MLN, used Alchemy to check that the probability of the
success of this plan is p × p and that of the original 17 step
plan is 1.

Discussion
LPMLN is related to many earlier work. Only a few of them
are mentioned here due to lack of space. It is not difficult
to embed ProbLog (Raedt, Kimmig, and Toivonen 2007) in
LPMLN. The language is also closely related to P-log (Baral,
Gelfond, and Rushton 2009). The LPMLN formalization of
probabilistic transition systems is related to PC+ (Eiter and
Lukasiewicz 2003), which extends action language C+ for
probabilistic reasoning about actions.

The work presented here calls for more future work.
One may design a native computation algorithm for LPMLN

which would be feasible to handle certain “non-tight” pro-
grams. We expect many results established in ASP may
carry over to MLN, and vice versa, which may provide a
new opportunity for probabilistic answer set programming.
Acknowledgements We are grateful to Chitta Baral,
Michael Bartholomew, Amelia Harrison, Vladimir Lifs-
chitz, Yunsong Meng, and the anonymous referees for their
useful comments. This work was partially supported by the
National Science Foundation under Grant IIS-1319794 and
by the South Korea IT R&D program MKE/KIAT 2010-TD-
300404-001, and the Brain Pool Korea program.

References
Baral, C.; Gelfond, M.; and Rushton, J. N. 2009. Probabilistic
reasoning with answer sets. TPLP 9(1):57–144.
Eiter, T., and Lukasiewicz, T. 2003. Probabilistic reasoning about
actions in nonmonotonic causal theories. In Proceedings Nine-
teenth Conference on Uncertainty in Artificial Intelligence (UAI-
2003), 192–199. Morgan Kaufmann Publishers.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2006. A generalization of
the Lin-Zhao theorem. Annals of Mathematics and Artificial Intel-
ligence 47:79–101.
Fierens, D.; Van den Broeck, G.; Renkens, J.; Shterionov, D.; Gut-
mann, B.; Thon, I.; Janssens, G.; and De Raedt, L. 2014. Infer-
ence and learning in probabilistic logic programs using weighted
boolean formulas. TPLP, 44 pages.
Lee, J., and Wang, Y. 2014. Stable models of fuzzy propositional
formulas. In Proceedings of European Conference on Logics in
Artificial Intelligence (JELIA), 326–339.
Lukasiewicz, T. 2006. Fuzzy description logic programs under the
answer set semantics for the semantic web. In Eiter, T.; Franconi,
E.; Hodgson, R.; and Stephens, S., eds., RuleML, 89–96. IEEE
Computer Society.
Raedt, L. D.; Kimmig, A.; and Toivonen, H. 2007. ProbLog: A
probabilistic Prolog and its application in link discovery. In IJCAI,
2462–2467.
Richardson, M., and Domingos, P. 2006. Markov logic networks.
Machine Learning 62(1-2):107–136.

