
A Probabilistic Extension of the Stable Model Semantics

Joohyung Lee and Yi Wang
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, USA
{joolee, ywang485}@asu.edu

Abstract

We present a probabilistic extension of logic programs under
the stable model semantics, inspired by the idea of Markov
Logic Networks. The proposed language, called LPMLN, is a
generalization of logic programs under the stable model se-
mantics, and as such, embraces the rich body of research in
knowledge representation. The language is also a generaliza-
tion of ProbLog, and is closely related to Markov Logic Net-
works, which implies that the computation can be carried out
by the techniques developed for them. LPMLN appears to be
a natural language for probabilistic answer set programming,
and as an example we show how an elaboration tolerant rep-
resentation of transition systems in answer set programs can
be naturally extended to the probabilistic setting.

Introduction
Logic programs under the stable model semantics (Gelfond
and Lifschitz 1988) is the language of Answer Set Program-
ming (ASP). Many useful knowledge representation con-
structs have been introduced in ASP, and several efficient
ASP solvers are available. However, like many other logical
approaches, ASP is not well suited for handling uncertainty.

A Markov Logic Network (MLN) (Richardson and
Domingos 2006) is a successful approach to combine first-
order logic and a probabilistic graphical model in a sin-
gle representation. There, each formula is associated with a
weight, and the probability distribution over possible worlds
is derived from the weights of the formulas that are satisfied
by the possible worlds. Like ASP, there are a few implemen-
tations of MLN. However, the logical component of MLN is
the standard first-order logic, which has difficulty in repre-
senting defaults, causal relations, inductive definitions, and
aggregates, that ASP handles well.

We introduce a simple approach to combine the two suc-
cessful formalisms—logic programs under the stable model
semantics and Markov Logic Networks—without sacrificing
each of their strengths in logical and probabilistic reasoning.
The proposed language, called LPMLN, is a generalization
of logic programs under the stable model semantics, and as
such, embraces the rich body of research in knowledge rep-
resentation developed in answer set programming.

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

MLN can be easily embedded in LPMLN, and the other di-
rection of embedding is also possible via the concept of loop
formulas, which is similar to the reduction of answer set pro-
grams to classical propositional logic (Lin and Zhao 2004;
Lee 2005). The reduction allows us to use an implementa-
tion of MLN to compute LPMLN under certain conditions,
similar to the way ASP programs can be computed by SAT
solvers.

LPMLN is also a kind of probabilistic logic programming
language. In particular, we show that LPMLN generalizes
ProbLog (Raedt, Kimmig, and Toivonen 2007; Fierens et al.
2013). While ProbLog semantics is based on well-founded
models, LPMLN handles stable model reasoning for more
general classes of programs.

LPMLN appears to be a natural basis for probabilistic an-
swer set programming, towards shifting the current logic-
based foundation of ASP to the novel foundation that em-
braces probabilistic reasoning. As an example we show how
elaboration tolerant representations of transition systems in
answer set programs can be naturally extended to the proba-
bilistic setting.

The paper is organized as follows. After reviewing the sta-
ble model semantics and Markov Logic Networks, we show
how they can be merged resulting in LPMLN. Then we show
how LPMLN is related to ASP, MLN, and ProbLog, and how
it can be applied to representing probabilistic transition sys-
tems.

Preliminaries
Throughout this paper, we assume a finite first-order signa-
ture σ that contains no function constants of positive arity.
There are finitely many Herbrand interpretations of σ, each
of which is finite as well.

Review: Stable Model Semantics
A rule over signature σ is of the form

A1; . . . ;Ak ← Ak+1, . . . Am, not Am+1, . . . , not An,
not not An+1, . . . , not not Ap

(1)
(0 ≤ k ≤ m ≤ n ≤ p) where all Ai are atoms of σ possi-
bly containing variables.1 We will often identify (1) with the

1Double negations are useful for encoding choice rules.

implication (written backward):

A1 ∨ · · · ∨Ak ← Ak+1 ∧ · · · ∧Am ∧ ¬Am+1 ∧ · · · ∧ ¬An
∧¬¬An+1 ∧ · · · ∧ ¬¬Ap .

(2)
A logic program is a finite set of rules. A logic program is

called ground if it contains no variables.
We say that an Herbrand interpretation I is a model

of a ground program Π if I satisfies all implications (2)
in Π. Such models can be divided into two groups: “sta-
ble” and “non-stable” models, which are distinguished as
follows. The reduct of Π relative to I , denoted ΠI , consists
of “A1∨· · ·∨Ak ← Ak+1∧· · ·∧Am” for all rules (2) in Π
such that I |= ¬Am+1∧· · ·∧¬An∧¬¬An+1∧· · ·∧¬¬Ap.
The Herbrand interpretation I is called a stable model of Π
(denoted by I |=SM Π) if I is a minimal Herbrand model of
ΠI .2 For example, for the program

p← q p← not r
q ← p r ← not p (3)

the stable models are {p, q} and {r}. The reduct rela-
tive to {p, q} is {p ← q. q ← p. p.}, for which
{p, q} is the minimal model; the reduct relative to {r} is
{p← q. q ← p. r.}, for which {r} is the minimal model.

The definition is extended to any non-ground program Π
by identifying it with grσ[Π], the ground program obtained
from Π by replacing every variable with every ground term
of σ.

Review: Markov Logic Networks
The following is a review of MLN from (Richardson and
Domingos 2006), slightly reformulated in order to facilitate
our discussion.

A Markov Logic Network (MLN) L of signature σ is a fi-
nite set of pairs 〈F,w〉 (also written as a “weighted formula”
w : F), where F is a first-order formula of σ and w is either
a real number or a symbol α denoting the “hard weight.” We
say that an MLN is ground if its formulas contain no vari-
ables.

We first define the semantics for ground MLNs. For any
ground MLN L of signature σ and any Herbrand interpreta-
tion I of σ, we define LI to be the set of formulas in L that
are satisfied by I . The weight of an interpretation I under L,
denoted WL(I), is defined as

WL(I) = exp

(∑
w:F ∈ L

F ∈ LI

w

)
.

The probability of I under L, denoted PrL [I], is defined as

PrL[I] = lim
α→∞

WL(I)∑
J∈PW WL(J)

,

where PW (“Possible Worlds”) is the set of all Herbrand
interpretations of σ. We say that I is a model of L if PrL[I] 6=
0.

2Minimality is in terms of set inclusion. We identify an Her-
brand interpretation with the set of atoms that are true in it.

The basic idea of MLN is to allow formulas to be soft
constrained, where a model does not have to satisfy all for-
mulas, but is associated with the weight that is contributed
by the satisfied formulas. For every interpretation (i.e., pos-
sible world) I , there is a unique maximal subset of formulas
in the MLN that I satisfies. Obviously, this subset is LI , and
the weight of I is obtained from the weights of those “con-
tributing” formulas in LI . An interpretation that does not
satisfy certain formulas receives “penalties” because such
formulas do not contribute to the weight of that interpreta-
tion.

The definition is extended to any non-ground MLN by
identifying it with its ground instance. Any MLN L of sig-
nature σ can be identified with the ground MLN, denoted
grσ[L], by turning each formula in L into a set of ground
formulas as described in (Richardson and Domingos 2006,
Table II). The weight of each ground formula in grσ[L] is
the same as the weight of the formula in L from which it is
obtained.

Language LPMLN

Syntax of LPMLN

The syntax of LPMLN defines a set of weighted rules, which
can be viewed as a special case of the syntax of MLN
by identifying rules with implications. More precisely, an
LPMLN program P is a finite set of pairs 〈R,w〉 (also written
as a weighted rule w : R), where R is a rule of the form (1)
and w is either a real number or a symbol α for the “hard
weight.”

We say that an LPMLN program is ground if its rules con-
tain no variables. We identify any LPMLN program P of sig-
nature σ with a ground LPMLN program grσ[P], whose rules
are obtained from the rules of P by replacing every variable
with every ground term of σ. The weight of a ground rule in
grσ[P] is the same as the weight of the rule in P from which
it is obtained.

We define ΠP to be the logic program obtained from P by
disregarding weights, i.e., ΠP = {R | w : R ∈ P}.

Semantics of LPMLN

For any ground LPMLN program P of signature σ and any
Herbrand interpretation I of σ, we define PI to be the set of
rules in P which are satisfied by I . As in MLN, the weight of
the interpretation is obtained from the weights of those “con-
tributing” formulas. The weight of I , denoted by WP(I), is
defined as

WP(I) = exp

(∑
w:R ∈ P

R ∈ PI

w

)

if I is a stable model of PI ; otherwise WP(I) = 0. The
probability of I under P, denoted PrP[I], is defined as

PrP[I] = lim
α→∞

WP(I)∑
J∈PW WP(J)

where PW is the set of all Herbrand interpretations of σ. We
say that I is a (probabilistic) stable model of P if PrP[I] 6= 0.

The intuition here is similar to that of MLN. For each pos-
sible world I , we try to find a maximal subset of ΠP for
which I is a stable model (under the standard stable model
semantics). In other words, the LPMLN semantics is similar
to the MLN semantics except that the possible worlds are
the stable models of some maximal subset of ΠP, and the
probability distribution is over these stable models. Unlike
MLN, such a subset may not necessarily exist, which means
that no subset can account for the stability of the model. In
that case, since we are interested in stable models only, the
weight of the interpretation is assigned 0. In the other case, it
does not seem obvious that there is a unique maximal subset
that accounts for the stability of I . Nevertheless, it follows
from the following proposition that this is indeed the case,
and the unique maximal subset is exactly PI .

Proposition 1 For any logic program Π and any subset Π′

of Π, if I is a stable model of Π′ and I satisfies Π, then I is
a stable model of Π as well.

The proposition tells us that if I is a stable model of a pro-
gram, adding more rules to this program does not affect that
I is a stable model of the resulting program as long as I sat-
isfies the rules added. On the other hand, it is clear that I is
no longer a stable model if I does not satisfy at least one of
the rules added.

Example 1 Consider an LPMLN program P:

1 : p← q (r1) 2 : p← not r (r3)
1 : q ← p (r2) 3 : r ← not p. (r4)

ΠP is the same as (3). The weight and the probability of
each interpretation are shown in the following table, where
Z1 is e2 + e6 + 2e7, and Z2 is e+ e2 + 3e6 + 3e7.

I PI PrP[I]
∅ {r1, r2} e2/Z1

{p} {r1, r3, r4} e6/Z1

{q} {r2} 0
{r} {r1, r2, r3, r4} e7/Z1

{p, q} {r1, r2, r3, r4} e7/Z1

{q, r} {r2, r3, r4} 0
{p, r} {r1, r3, r4} 0
{p, q, r} {r1, r2, r3, r4} 0

The stable models {p, q} and {r} of ΠP are the stable
models of P with the highest probability. In addition, P has
two other stable models, which do not satisfy some rules
in ΠP.

It is easy to observe the following facts.

Proposition 2 Let P be an LPMLN program.

• Every (probabilistic) stable model of P is an (MLN) model
of P.

• Every stable model of ΠP is a (probabilistic) stable model
of P.

In each bullet, the reverse direction does not hold as the ex-
ample above illustrates.

Example 2 Fierens et al. (2013) remark that “Markov
Logic has the drawback that it cannot express (non-ground)
inductive definitions.” This limitation does not apply to

LPMLN as it adopts the stable model semantics in place of
the standard first-order logic semantics as in MLN. For in-
stance, the following LPMLN program correctly describes
the probabilities of paths, which are induced by the proba-
bilities of the edges that participate in forming the paths.

w1 : Edge(1, 2)
w2 : Edge(2, 3)
. . .
α : Path(x, y)← Edge(x, y)
α : Path(x, y)← Path(x, z), Path(z, y).

Relation to ASP, MLN and ProbLog
Relation to ASP
Any logic program under the stable model semantics can
be turned into an LPMLN program by assigning the hard
weight to each rule. That is, for any logic program Π =
{R1, . . . , Rn}, we construct the corresponding LPMLN pro-
gram PΠ to be {α : R1, . . . , α : Rn}.

Theorem 1 For any logic program Π that has at least one
stable model, the stable models of Π and the (probabilistic)
stable models of LPMLN program PΠ coincide, and all sta-
ble models of PΠ have the same probability.

Theorem 1 does not hold when Π has no stable model.
For example, consider Π = {← not p}, which has no stable
model. On the other hand, PΠ is {α : ← not p}, and has
the stable model ∅ with the probability 1.

The idea of softening rules in LPMLN is similar to the
idea of “weak constraints” in ASP, which is used for cer-
tain optimization problems. A weak constraint has the form
“ :∼ Body [Weight : Level].” The answer sets of a pro-
gram Π plus a set of weak constraints are the answer sets
of Π which minimize the penalty calculated from Weight
and Level of violated weak constraints. However, weak con-
straints are more restricted than weighted rules in LPMLN,
and do not have a probabilistic semantics.

Relation to MLN: Embedding MLN in LPMLN

MLN can be easily embedded in LPMLN. More precisely,
any MLN L whose formulas have the form (2) can be turned
into an LPMLN program PL so that the models of L coincide
with the stable models of PL. We write {H}ch ← Body to
denote the rule H ← Body, not not H . This expression is
called a choice rule in ASP (Lee, Lifschitz, and Palla 2008).

LPMLN program PL is obtained from L by adding

w : {A}ch

for every ground atom A of σ and any weight w. The ef-
fect of adding such a rule is to exempt A from minimization
under the stable model semantics.

Theorem 2 For any MLN L whose formulas have the
form (2), L and PL have the same probability distribution
over all interpretations, and consequently, the models of L
and the stable models of PL coincide.

The rule form restriction imposed in Theorem 2 is not es-
sential. For any MLN L containing arbitrary formulas, one
can turn the formulas in clausal normal form as described
in (Richardson and Domingos 2006), and further turn that
into the rule form. For instance, p ∨ q ∨ ¬r is turned into
p ∨ q ← r.

In accordance with Theorem 2, in Example 1, the mod-
els of P and the stable models of P ∪ {w : {A}ch | A ∈
{p, q, r}} coincide.

Relation to MLN: Turning LPMLN into MLN
It is known that the stable models of a logic program co-
incide with the models of a logic program plus all its loop
formulas. This allows us to compute the stable models using
SAT solvers. The method can be extended to LPMLN so that
their stable models along with the probability distribution
can be computed using existing implementations of MLN,
such as Alchemy 3 and Tuffy. 4

Due to lack of space, we refer the reader to (Ferraris, Lee,
and Lifschitz 2006) for the definitions of a loop L and a
loop formula LFΠ(L) for program Π consisting of rules of
the form (1). The following theorem tells us how the sta-
ble model semantics can be reduced to the standard propo-
sitional logic semantics, via the concept of loop formulas.

Theorem 3 (Ferraris, Lee, and Lifschitz 2006) Let Π be a
ground logic program, and let X be a set of ground atoms.
A model X of Π is a stable model of Π iff, for every loop L
of Π, X satisfies LFΠ(L).

For instance, program (3) has loops {p}, {q}, {r}, {p, q},
and the corresponding disjunctive loop formulas are

p → q ∨ ¬r r → ¬p
q → p p ∧ q → ¬r. (4)

The stable models {p, q}, {r} of (3) are exactly the models
of (3) that satisfy (4).

We extend Theorem 3 to turn LPMLN programs P into
MLN instances. We define LP to be the union of P and {α :
LFΠP(L) | L is a loop of ΠP}.

Theorem 4 For any LPMLN program P such that

{R | α :R ∈ P} ∪ {LFΠP(L) | L is a loop of ΠP}

is satisfiable, P and LP have the same probability distribu-
tion over all interpretations, and consequently, the stable
models of P and the models of LP coincide.

Example 3 When P is the LPMLN program in Example 1,
LP is the union of P and the loop formulas (4) with the hard
weight. One can check that the probability distribution of the
models of LP under the MLN semantics coincides with the
probability distribution of the stable models of P under the
LPMLN semantics shown in Example 1.

3http://alchemy.cs.washington.edu
4http://http://i.stanford.edu/hazy/hazy/

tuffy

In general, it is known that the number of loop formu-
las blows up (Lifschitz and Razborov 2006). As LPMLN is
a generalization of logic programs under the stable model
semantics, this blow-up is unavoidable in the context of
LPMLN as well, as illustrated by Example 2. This calls for a
better computational method such as the incremental addi-
tion of loop formulas as in ASSAT (Lin and Zhao 2004).

In the special case when the program is tight (that is, its
dependency graph is acyclic (Lee 2005)), the size of loop
formulas is linear in the size of input programs. Later in this
paper, we formalize a few examples in tight LPMLN pro-
grams, and compute their probabilistic stable models using
Alchemy.

Relation to ProbLog
Interestingly, it turns out that LPMLN is a proper generaliza-
tion of ProbLog, a prominent approach in probabilistic logic
programming that is based on the distribution semantics by
Sato (1995).

Review: ProbLog The review follows (Fierens et al.
2013). As before, we identify a non-ground ProbLog pro-
gram with its ground instance. So for simplicity we restrict
attention to ground ProbLog programs only.

In ProbLog, ground atoms over σ are divided into two
groups: probabilistic atoms and derived atoms. A (ground)
ProbLog program P is a tuple 〈PF,Π〉, where

• PF is a set of ground probabilistic facts of the form
pr :: a, where pr is a real number in [0, 1], and a is a
probabilistic atom, and

• Π is a set of ground rules of the form (1) such that k = 1
and p = n, and the head does not contain a probabilistic
atom.

Probabilistic atoms act as random variables and are as-
sumed to be independent from each other. A total choice C
is any subset of the probabilistic atoms. Given a total choice
C = {a1, . . . , am}, the probability of a total choice C, de-
noted PrP[C], is defined as

PrP[C] = pr(a1)×· · ·×pr(am)×(1−pr(b1))×· · ·×(1−pr(bn))

where b1, . . . , bn are probabilistic atoms not belonging to C,
and each of pr(ai) and pr(bj) is the probability assigned to
ai and bj according to the set PF of ground probabilistic
atoms.

The ProbLog semantics is only well-defined for programs
P = 〈PF,Π〉 such that C ∪ Π has a “total” (two-valued)
well-founded model for each possible total choice C. Given
such P, for each interpretation I , PrP[I] is defined as PrP[C]
if there exists a total choice C such that I is the total well-
founded model of C ∪Π, and 0 otherwise.

Example 4 Consider the ProbLog program:

0.6 :: p r ← p
0.4 :: q r ← q

For each of the 4 total choices, the probability distribution
over ProbLog models is as follows.

Total choice ProbLog model Probability
∅ ∅ 0.24
{p} {p, r} 0.36
{q} {q, r} 0.16
{p, q} {p, q, r} 0.24

ProbLog as a Special Case of LPMLN Given a ProbLog
program P = 〈PF,Π〉, we construct the corresponding
LPMLN program P as follows:

• For each probabilistic fact pr :: a in P, LPMLN program
P contains ln(pr) : a and ln(1− pr) :← a;

• For each rule R ∈ Π, P contains α : R. In other words, R
is identified with a hard rule in P.

Theorem 5 Any well-defined ProbLog program P and its
LPMLN representation P have the same probability distribu-
tion over all interpretations.

Syntactically, LPMLN allows more general rules than
ProbLog, such as disjunctions in the head, as well as
the empty head and double negations in the body. Fur-
ther, LPMLN allows rules to be weighted as well as facts,
and do not distinguish between probabilistic facts and de-
rived atoms. Semantically, while the ProbLog semantics
is based on well-founded models, LPMLN handles stable
model reasoning for more general classes of programs. Un-
like ProbLog where it is only well-defined when each total
choice leads to a unique well-founded model, LPMLN can
handle multiple stable models in a flexible way similar to the
way MLN handles multiple models. These differences turn
out to be essential for the successful LPMLN representation
of probabilistic transition systems in the next section.

Representing Probabilistic Transitions
One of the successful applications of ASP is in conveniently
representing transition systems and reasoning about paths
in them. However, such a representation does not distin-
guish which path is more probable than others. We show
that by augmenting the known ASP representations of tran-
sition systems with weights, the LPMLN semantics gives an
intuitive encoding of the probabilistic transition systems.

Simple Transition
Consider the transition system shown in Figure 1, which
has one fluent P and one action A. P is inertial and exe-
cuting A causes P to be true by some chance. Let λ and
1 − λ represent the probabilities that the action is success-
ful/unsuccessful. The LPMLN representation is as follows.

Below i is a schematic variable ranging over integers
{0, . . . ,m − 1}. Pi and ∼ Pi are atoms representing the
(complementary) values of fluent P at time i.5 Ai is an atom
representing if A is executed between time i and i+ 1.

Atoms Pi and ∼Pi have complementary values:

α : ← Pi,∼Pi
α : ← not Pi, not ∼Pi . (5)

5Thus ∼ is part of a symbol, not a connective.

Figure 1: A transition system with probabilistic effects

The effect of A is probabilistic:

α : Pi+1 ← Ai, Auxi (6)

where Auxi is an auxiliary atom to represent the chance of
success, defined as

ln(λ) : Auxi ln(1− λ) :← Auxi . (7)

The commonsense law of inertia using choice rules:

α : {Pi+1}ch ← Pi α : {∼Pi+1}ch ←∼Pi (8)

The execution of A is arbitrary (half a chance to be exe-
cuted):

α : {Ai}ch . (9)
The initial value of P is arbitrary:

α : {P0}ch α : {∼P0}ch . (10)

We denote the program consisting of (5)–(10), parameter-
ized with m, by SDm.

Note that disregarding (7) and dropping Auxi from (6)
yields the standard ASP program representation of the tran-
sition system that is similar to Figure 1 where action A has
the deterministic effect. That ASP program is exactly the one
that is generated from the action language BC+ description
of the transition system (Babb and Lee 2015). So LPMLN

gives a natural choice for extending the ASP representation
of the transition system in the probabilistic setting.

The following proposition holds for SDm.

Proposition 3 • Let k(I) denote the number of Auxi (i =
0, . . . ,m−1) that are satisfied by I . For any stable model
I of SDm,

PrSDm
[I] = 0.5m+1 · λk(I) · (1− λ)m−k(I).

• For i = 0, . . . ,m − 1, (i) PrSDm
[pi+1 | ¬pi,¬ai] =

0. (ii) PrSDm
[pi+1 | ¬pi, ai] = λ. (iii) PrSDm

[pi+1 |
pi,¬ai] = 1. (iv) PrSDm

[pi+1 | pi, ai] = 1.

Using Proposition 3, probabilistic inferences can be per-
formed. For example,

1. Given that P is false at time 0, what is the probability that
P remains false at time 1?
(answer: PrSD1

[¬p1 | ¬p0] = 1− 0.5λ)
2. Given that P is false at time 1, what is the probability that
P was false at time 0?
(answer: PrSD1 [¬p0 | ¬p1] = 1)
Under the MLN semantics, this program specifies a dif-

ferent probabilistic transition system (shown in Figure 2),
which is different from the commonsense understanding of
the domain. For example, for Question 2, the MLN seman-
tics gives Pr[¬p0 | ¬p1] = 0.5, which means that even when

Figure 2: The transition system described by the MLN semantics

P is false, there is a high chance that P was true at the pre-
vious step, although there is no action that can cause P to
be false. This is because under the MLN semantics, the rule
“Pi+1 ← Ai, Auxi” does not express causal relations.

Note that the use of Auxi is similar to the idea of proba-
bilistic atoms in ProbLog. However, ProbLog does not ac-
cept rules such as (8)–(10).

Probabilistic Answer Set Planning: Wolf, Sheep,
Cabbage Puzzle
McCarthy presented about 20 elaborations of the Missionar-
ies and Cannibals puzzle to illustrate the concept of elabo-
ration tolerance (McCarthy 1998). Most of these challenges
involve logical reasoning only, but Elaboration #12 involves
probabilistic reasoning as well, in which a boat can be stolen
with the probability 1/10 when a cannibal is alone in the
boat. The original domain can be represented in LPMLN, by
taking advantages of features carried over from ASP. Fur-
ther, with the probabilistic reasoning capability added to
ASP, this elaboration can be handled in LPMLN.

For simplicity, we consider a variant of the Wolf, Sheep
and Cabbage puzzle, where the objects left by them-
selves without the farmer can be eaten in accordance with
the food chain. The domain can be formalized as fol-
lows. Let o, o1, o2 be schematic variables that range over
{Wolf , Sheep,Cabbage}, and let l, l1, l2 be schematic vari-
ables that range over {L1, L2}. The states are described by
the following rules:

α : ⊥ ← OnBoati(o1),OnBoati(o2) (o1 6= o2)
α : Loci(o, l)← OnBoati(o),LocBoati(l).

The effects of actions are represented by the following
LPMLN rules.

α : OnBoati+1(o) ← GetOnBoati(o)
α : ∼OnBoati+1(o) ← GetOffBoati(o)
α : LocBoati+1(l) ← MoveBoati(l).

The commonsense law of inertia for each fluent is speci-
fied by the following LPMLN rules.

α : {Loci+1(o, l)}ch ← Loci(o, l)
α : {LocBoati+1(l)}ch ← LocBoati(l)
α : {OnBoati+1(o)}ch ← OnBoati(o)
α : {∼OnBoati+1(o)}ch ← ∼OnBoati(o).

Now we consider an elaboration in which with probability
p, the wolf does not eat the sheep, and with probability q, the
sheep does not eat the cabbage even when the farmer is not
present. To handle this elaboration we introduce auxiliary
atoms Pi andQi for each step i, and specify the probabilities
as follows.
ln(p) : Pi ln(q) : Qi
ln(1− p) : ← Pi ln(1− q) : ← Qi.

The success of a plan is defined by

α : SheepEaten ← Loci(Wolf , l),Loci(Sheep, l),
not LocBoati(l), not Pi

α : CabbageEaten ← Loci(Sheep, l),Loci(Cabbage, l),
not LocBoati(l), not Qi

α : Success ← Locmaxstep(Wolf , L2),
Locmaxstep(Sheep, L2),Locmaxstep(Cabbage, L2),
not SheepEaten, not CabbageEaten.

In addition to these rules, we also need rules that specify ex-
ecutability of actions, rules that define the uniqueness and
existence of multi-valued fluents, rules that specify all ac-
tions as exogenous, and rules that define the initial states.
Due to lack of space, we skip these rules.

While the minimal length plan for the original puzzle in-
volves 17 actions of loading, moving and unloading, the
elaboration has 6 new minimal length plans involving 11 ac-
tions only, two of which with p × p probability of success,
two with q × q, and two with p × p × q × q. Since the pro-
gram is tight, we could check the result using Alchemy by
the method we introduced earlier.

Related Work
LPMLN is related to many earlier work. Only some of them
are mentioned here due to lack of space. We have already
shown that ProbLog can be viewed as a special case of
LPMLN. Other probabilistic logic programming languages
that are based on distribution semantics are PRISM (Sato
and Kameya 1997), ICL (Poole 1997) and LPADs (Ven-
nekens et al. 2004). LPMLN can embed a language with
the distribution semantics, but in general it does not distin-
guish between probabilistic atoms and derived atoms, and
the weights can be associated with arbitrary rules.

The logical component of LPMLN is the expressive stable
model semantics. In this sense, P-Log (Baral, Gelfond, and
Rushton 2009), another approach to extending the language
of ASP to handle probabilistic reasoning, is closely related.
The LPMLN formalization of probabilistic transition systems
is related to PC+ (Eiter and Lukasiewicz 2003), which ex-
tends C+ for probabilistic reasoning about actions. In com-
parison with other approaches to formalizing probabilistic
transitions, such as (Kersting, De Raedt, and Raiko 2006),
the LPMLN formalization is more elaboration tolerant and
rich in knowledge representation due to the way that LPMLN

combines nonmonotonic reasoning and probabilistic reason-
ing in a single framework.

Conclusion
We introduced the semantics of LPMLN, which combines
ASP and MLN in a single framework. The work presented
here calls for more future work. One may design a na-
tive computation algorithm for turning LPMLN to weighted
model counting, which would be feasible to handle certain
non-tight programs. We expect many results established in
answer set programming may carry over to Markov Logic
Networks, and vice versa, which may provide a new oppor-
tunity for probabilistic answer set programming.

Acknowledgements We are grateful to Michael
Bartholomew, Amelia Harrison, Yunsong Meng, and
the anonymous referees for their useful comments. This
work was partially supported by the National Science
Foundation under Grant IIS-1319794, South Korea IT R&D
program MKE/KIAT 2010-TD-300404-001, and ICT R&D
program of MSIP/IITP 10044494 (WiseKB).

References
Babb, J., and Lee, J. 2015. Action language BC+: Prelimi-
nary report. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence (AAAI). To appear.
Baral, C.; Gelfond, M.; and Rushton, J. N. 2009. Probabilis-
tic reasoning with answer sets. TPLP 9(1):57–144.
Eiter, T., and Lukasiewicz, T. 2003. Probabilistic reason-
ing about actions in nonmonotonic causal theories. In Pro-
ceedings Nineteenth Conference on Uncertainty in Artificial
Intelligence (UAI-2003), 192–199. Morgan Kaufmann Pub-
lishers.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2006. A generaliza-
tion of the Lin-Zhao theorem. Annals of Mathematics and
Artificial Intelligence 47:79–101.
Fierens, D.; Van den Broeck, G.; Renkens, J.; Shterionov,
D.; Gutmann, B.; Thon, I.; Janssens, G.; and De Raedt, L.
2013. Inference and learning in probabilistic logic programs
using weighted boolean formulas. Theory and Practice of
Logic Programming 1–44.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Kowalski, R., and
Bowen, K., eds., Proceedings of International Logic Pro-
gramming Conference and Symposium, 1070–1080. MIT
Press.
Kersting, K.; De Raedt, L.; and Raiko, T. 2006. Logical
hidden markov models. J. Artif. Intell. Res.(JAIR) 25:425–
456.
Lee, J.; Lifschitz, V.; and Palla, R. 2008. A reductive se-
mantics for counting and choice in answer set programming.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI), 472–479.
Lee, J. 2005. A model-theoretic counterpart of loop for-
mulas. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI), 503–508. Professional Book
Center.
Lifschitz, V., and Razborov, A. 2006. Why are there so many
loop formulas? ACM Transactions on Computational Logic
7:261–268.
Lin, F., and Zhao, Y. 2004. ASSAT: Computing answer sets
of a logic program by SAT solvers. Artificial Intelligence
157:115–137.
McCarthy, J. 1998. Elaboration tolerance6. In Working
Papers of the Fourth Symposium on Logical Formalizations
of Commonsense Reasoning.

6http://www-formal.stanford.edu/jmc/elaboration.html

Poole, D. 1997. The independent choice logic for mod-
elling multiple agents under uncertainty. Artificial Intelli-
gence 94:7–56.
Raedt, L. D.; Kimmig, A.; and Toivonen, H. 2007. ProbLog:
A probabilistic Prolog and its application in link discovery.
In Proceedings of International Joint Conference on Artifi-
cial Intelligence (IJCAI), 2462–2467.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine Learning 62(1-2):107–136.
Sato, T., and Kameya, Y. 1997. PRISM: a language for
symbolic-statistical modeling. In Proceedings of the 15th
International Joint Conference on Artificial Intelligence (IJ-
CAI), 1330–1335.
Sato, T. 1995. A statistical learning method for logic
programs with distribution semantics. In Proceedings of
the 12th International Conference on Logic Programming
(ICLP), 715–729.
Vennekens, J.; Verbaeten, S.; Bruynooghe, M.; and A, C.
2004. Logic programs with annotated disjunctions. In Pro-
ceedings of International Conference on Logic Program-
ming (ICLP), 431–445.

