
Weighted Rules under the Stable Model Semantics

Joohyung Lee and Yi Wang
School of Computing, Informatics and Decision Systems Engineering

Arizona State University, Tempe, USA
{joolee, ywang485}@asu.edu

Abstract

We introduce the concept of weighted rules under the stable
model semantics following the log-linear models of Markov
Logic. This provides versatile methods to overcome the de-
terministic nature of the stable model semantics, such as re-
solving inconsistencies in answer set programs, ranking sta-
ble models, associating probability to stable models, and
applying statistical inference to computing weighted stable
models. We also present formal comparisons with related
formalisms, such as answer set programs, Markov Logic,
ProbLog, and P-log.

1 Introduction
Logic programs under the stable model semantics (Gelfond
and Lifschitz 1988) is the language of Answer Set Program-
ming (ASP). Many extensions of the stable model seman-
tics have been proposed to incorporate various constructs
in knowledge representation. Some of them are related to
overcoming the “crisp” or deterministic nature of the sta-
ble model semantics by ranking stable models using weak
constraints (Buccafurri, Leone, and Rullo 2000), by resolv-
ing inconsistencies using Consistency Restoring rules (Bal-
duccini and Gelfond 2003) or possibilistic measure (Bauters
et al. 2010), and by assigning probability to stable mod-
els (Baral, Gelfond, and Rushton 2009; Nickles and Mileo
2014).

In this paper, we present an alternative approach by in-
troducing the notion of weights into the stable model se-
mantics following the log-linear models of Markov Logic
(Richardson and Domingos 2006), a successful approach to
combining first-order logic and probabilistic graphical mod-
els. Instead of the concept of classical models adopted in
Markov Logic, language LPMLN adopts stable models as
the logical component. The relationship between LPMLN

and Markov Logic is analogous to the known relationship
between ASP and SAT. Indeed, many technical results about
the relationship between SAT and ASP naturally carry over
between LPMLN and Markov Logic. In particular, an imple-
mentation of Markov Logic can be used to compute “tight”
LPMLN programs, similar to the way “tight” ASP programs
can be computed by SAT solvers.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

It is also interesting that the relationship between Markov
Logic and SAT is analogous to the relationship between
LPMLN and ASP: the way that Markov Logic extends SAT
in a probabilistic way is similar to the way that LPMLN ex-
tends ASP in a probabilistic way. This can be summarized
as in the following figure. (The parallel edges imply that
the ways that the extensions are defined are similar to each
other.)

ASP LPMLN

SAT MLN

Weighted rules of LPMLN provides a way to resolve in-
consistencies among ASP knowledge bases, possibly ob-
tained from different sources with different certainty levels.
For example, consider the simple ASP knowledge base KB1:

Bird(x) ← ResidentBird(x)
Bird(x) ← MigratoryBird(x)

← ResidentBird(x),MigratoryBird(x).

One data source KB2 (possibly acquired by some informa-
tion extraction module) says that Jo is a ResidentBird:

ResidentBird(Jo)

while another data source KB3 states that Jo is a
MigratoryBird:

MigratoryBird(Jo).

The data about Jo is actually inconsistent w.r.t. KB1, so un-
der the (deterministic) stable model semantics, the combined
knowledge base KB = KB1 ∪ KB2 ∪ KB3 is not so mean-
ingful. On the other hand, it is still intuitive to conclude
that Jo is likely a Bird, and may be a ResidentBird or a
MigratoryBird. Such reasoning is supported in LPMLN.

Under some reasonable assumption, normalized weights
of stable models can be understood as probabilities of the
stable models. We show that ProbLog (De Raedt, Kimmig,
and Toivonen 2007; Fierens et al. 2015) can be viewed as a
special case of LPMLN. Furthermore, we present a subset of
LPMLN where probability is naturally expressed and show
how it captures a meaningful fragment of P-log (Baral, Gel-
fond, and Rushton 2009). In combination of the result that

relates LPMLN to Markov Logic, the translation from P-log
to LPMLN yields an alternative, more scalable method for
computing the fragment of P-log using standard implemen-
tations of Markov Logic.

The paper is organized as follows. After reviewing the
deterministic stable model semantics, we define the lan-
guage LPMLN and demonstrate how it can be used for re-
solving inconsistencies. Then we relate LPMLN to each of
ASP, Markov Logic, and ProbLog, and define a fragment of
LPMLN language that allows probability to be represented in
a more natural way. Next we show how a fragment of P-log
can be turned into that fragment of LPMLN, and demonstrate
the effectiveness of the translation-based computation of the
P-log fragment over the existing implementation of P-log.

This paper is an extended version of (Lee and Wang 2015;
Lee, Meng, and Wang 2015). The proofs are available from
the longer version at http://reasoning.eas.asu.
edu/papers/lpmln-kr-long.pdf.

2 Review: Stable Model Semantics
We assume a first-order signature σ that contains no func-
tion constants of positive arity, which yields finitely many
Herbrand interpretations.

We say that a formula is negative if every occurrence of
every atom in this formula is in the scope of negation.

A rule is of the form
A← B ∧N (1)

where A is a disjunction of atoms, B is a conjunction of
atoms, and N is a negative formula constructed from atoms
using conjunction, disjunction and negation. We identify
rule (1) with formula B ∧ N → A. We often use comma
for conjunction, semi-colon for disjunction, not for nega-
tion, as widely used in the literature on logic programming.
For example, N could be

¬Bm+1∧. . .∧¬Bn∧¬¬Bn+1∧. . .∧¬¬Bp,
which can be also written as

not Bm+1, . . . , not Bn, not not Bn+1, . . . , not not Bp.
We write {A1}ch ← Body, whereA1 is an atom, to denote

the rule A1 ← Body ∧ ¬¬A1. This expression is called a
“choice rule” in ASP. If the head of a rule (A in (1)) is ⊥,
we often omit it and call such a rule constraint.

A logic program is a finite conjunction of rules. A logic
program is called ground if it contains no variables.

We say that an Herbrand interpretation I is a model of
a ground program Π if I satisfies all implications (1) in Π
(as in classical logic). Such models can be divided into two
groups: “stable” and “non-stable” models, which are distin-
guished as follows. The reduct of Π relative to I , denoted
ΠI , consists of “A ← B” for all rules (1) in Π such that
I |= N . The Herbrand interpretation I is called a (determin-
istic) stable model of Π if I is a minimal Herbrand model
of ΠI . (Minimality is understood in terms of set inclusion.
We identify an Herbrand interpretation with the set of atoms
that are true in it.)

The definition is extended to any non-ground program Π
by identifying it with grσ[Π], the ground program obtained
from Π by replacing every variable with every ground term
of σ.

3 Language LPMLN

Syntax of LPMLN

The syntax of LPMLN defines a set of weighted rules. More
precisely, an LPMLN program Π is a finite set of weighted
rules w : R, where R is a rule of the form (1) and w is
either a real number or the symbol α denoting the “infinite
weight.” We call rule w : R soft rule if w is a real number,
and hard rule if w is α.

We say that an LPMLN program is ground if its rules con-
tain no variables. We identify any LPMLN program Π of
signature σ with a ground LPMLN program grσ[Π], whose
rules are obtained from the rules of Π by replacing every
variable with every ground term of σ. The weight of a
ground rule in grσ[Π] is the same as the weight of the rule
in Π from which the ground rule is obtained. By Π we de-
note the unweighted logic program obtained from Π, i.e.,
Π = {R | w : R ∈ Π}.

Semantics of LPMLN

A model of a Markov Logic Network (MLN) does not have
to satisfy all formulas in the MLN. For each model, there is
a unique maximal subset of the formulas that are satisfied
by the model, and the weights of the formulas in that subset
determine the probability of the model.

Likewise, a stable model of an LPMLN program does not
have to be obtained from the whole program. Instead, each
stable model is obtained from some subset of the program,
and the weights of the rules in that subset determine the
probability of the stable model. Unlike MLNs, it may not
seem obvious if there is a unique maximal subset that de-
rives such a stable model. The following proposition tells us
that this is indeed the case, and furthermore that the subset
is exactly the set of all rules that are satisfied by I .

Proposition 1 For any (unweighted) logic program Π and
any subset Π′ of Π, if I is a stable model of Π′ and I satis-
fies Π, then I is a stable model of Π as well.

The proposition tells us that if I is a stable model of a
program, adding more rules to this program does not affect
that I is a stable model of the resulting program as long as I
satisfies the rules added. On the other hand, it is clear that I
is no longer a stable model if I does not satisfy at least one
of the rules added.

For any LPMLN program Π, by ΠI we denote the set of
rules w : R in Π such that I |= R, and by SM[Π] we denote
the set {I | I is a stable model of ΠI}. We define the un-
normalized weight of an interpretation I under Π, denoted
WΠ(I), as

WΠ(I) =

exp
(∑
w:R ∈ ΠI

w

)
if I ∈ SM[Π];

0 otherwise.

Notice that SM[Π] is never empty because it always con-
tains ∅. It is easy to check that ∅ always satisfies Π∅, and it
is the smallest set that satisfies the reduct (Π∅)∅.

The normalized weight of an interpretation I under Π, de-
noted PΠ(I), is defined as

PΠ(I) = lim
α→∞

WΠ(I)∑
J∈SM[Π]WΠ(J)

.

It is easy to check that normalized weights satisfy the Kol-
mogorov axioms of probability. So we also call them prob-
abilities.

We omit the subscript Π if the context is clear. We say
that I is a (probabilistic) stable model of Π if PΠ(I) 6= 0.

The intuition here is similar to that of Markov Logic.
For each interpretation I , we try to find a maximal subset
(possibly empty) of Π for which I is a stable model (un-
der the standard stable model semantics). In other words,
the LPMLN semantics is similar to the MLN semantics ex-
cept that the possible worlds are the stable models of some
maximal subset of Π, and the probability distribution is over
these stable models. Intuitively, PΠ(I) indicates how likely
to draw I as a stable model of some maximal subset of Π.

For any proposition A, PΠ(A) is defined as

PΠ(A) =
∑

I: I|=A

PΠ(I).

Conditional probability under Π is defined as usual. For
propositions A and B,

PΠ(A | B) =
PΠ(A ∧B)

PΠ(B)
.

Often we are interested in stable models that satisfy all
hard rules (hard rules encode definite knowledge), in which
case the probabilities of stable models can be computed from
the weights of the soft rules only, as described below.

For any LPMLN program Π, by Πsoft we denote the set
of all soft rules in Π, and by Πhard the set of all hard rules
in Π. Let SM′[Π] be the set

{I | I is a stable model of ΠI that satisfy Πhard },

and let

W ′
Π(I) =

exp
(∑
w:R ∈ (Πsoft)I

w

)
if I ∈ SM′[Π];

0 otherwise,

P ′
Π(I) =

W ′
Π(I)∑

J∈SM′[Π]W
′
Π(J)

.

Notice the absence of lim
α→∞

in the definition of P ′
Π[I]. Also,

unlike PΠ(I), SM′[Π] may be empty, in which case P ′
Π(I)

is not defined. Otherwise, the following proposition tells us
that the probability of an interpretation can be computed by
considering the weights of the soft rules only.

Proposition 2 If SM′[Π] is not empty, for every interpreta-
tion I , P ′

Π(I) coincides with PΠ(I).

It follows from this proposition that if SM′[Π] is not
empty, then every stable model of Π (with non-zero prob-
ability) should satisfy all hard rules in Π.

Examples
The weight scheme of LPMLN provides a simple but effec-
tive way to resolve certain inconsistencies in ASP programs.

Example 1 The example in the introduction can be repre-
sented in LPMLN as

KB1 α : Bird(x)← ResidentBird(x) (r1)
α : Bird(x)← MigratoryBird(x) (r2)
α : ← ResidentBird(x),MigratoryBird(x) (r3)

KB2 α : ResidentBird(Jo) (r4)

KB3 α : MigratoryBird(Jo) (r5)

Assuming that the Herbrand universe is {Jo}, the follow-
ing table shows the weight and the probability of each inter-
pretation.

I ΠI WΠ(I) PΠ(I)

∅ {r1, r2, r3} e3α 0

{R(Jo)} {r2, r3, r4} e3α 0

{M(Jo)} {r1, r3, r5} e3α 0

{B(Jo)} {r1, r2, r3} 0 0

{R(Jo), B(Jo)} {r1, r2, r3, r4} e4α 1/3

{M(Jo), B(Jo)} {r1, r2, r3, r5} e4α 1/3

{R(Jo),M(Jo)} {r4, r5} e2α 0

{R(Jo),M(Jo), B(Jo)} {r1, r2, r4, r5} e4α 1/3

(The weight of I = {Bird(Jo)} is 0 because I is not a stable
model of ΠI .) Thus we can check that

• P (Bird(Jo)) = 1/3 + 1/3 + 1/3 = 1.
• P (Bird(Jo) | ResidentBird(Jo)) = 1.
• P (ResidentBird(Jo) | Bird(Jo)) = 2/3.

Instead of α, one can assign different certainty levels to
the additional knowledge bases, such as

KB′
2 2 : ResidentBird(Jo) (r4′)

KB′
3 1 : MigratoryBird(Jo) (r5′)

Then the table changes as follows.

I ΠI WΠ(I) PΠ(I)

∅ {r1, r2, r3} e3α e0

e2+e1+e0

{R(Jo)} {r2, r3, r′4} e2α+2 0

{M(Jo)} {r1, r3, r′5} e2α+1 0

{B(Jo)} {r1, r2, r3} 0 0

{R(Jo), B(Jo)} {r1, r2, r3, r′4} e3α+2 e2

e2+e1+e0

{M(Jo), B(Jo)} {r1, r2, r3, r′5} e3α+1 e1

e2+e1+e0

{R(Jo),M(Jo)} {r′4, r
′
5} e3 0

{R(Jo),M(Jo), B(Jo)} {r1, r2, r′4, r
′
5} e2α+3 0

P (Bird(Jo)) = (e2 + e1)/(e2 + e1 + e0) = 0.67 + 0.24, so
it becomes less certain, though it is still a high chance that
we can conclude that Jo is a Bird.

Notice that the weight changes not only affect the prob-
ability, but also the stable models (having non-zero proba-
bilities) themselves: Instead of {R(Jo),M(Jo), B(Jo)}, the
empty set is a stable model of the new program.

Assigning a different certainty level to each rule affects
the probability associated with each stable model, represent-
ing how certain we can derive the stable model from the
knowledge base. This could be useful as more incoming
data reinforces the certainty levels of the information.

Remark. In some sense, the distinction between soft
rules and hard rules in LPMLN is similar to the distinc-
tion CR-Prolog (Balduccini and Gelfond 2003) makes be-
tween consistency-restoring rules (CR-rules) and standard
ASP rules: some CR-rules are added to the standard ASP
program part until the resulting program has a stable model.
On the other hand, CR-Prolog has little to say when the ASP
program has no stable models no matter what CR-rules are
added (c.f. Example 1).

Example 2 “Markov Logic has the drawback that it cannot
express (non-ground) inductive definitions” (Fierens et al.
2015) because it relies on classical models. This is not the
case with LPMLN. For instance, consider that x may influ-
ence y if x is a friend to y, and the influence relation is a
minimal relation that is closed under transitivity.

α : Friend(A,B)
α : Friend(B,C)
1 : Influence(x, y)← Friend(x, y)
α : Influence(x, y)← Influence(x, z), Influence(z, y).

Note that the third rule is soft: a person does not necessarily
influence his/her friend. The fourth rule says if x influences
z, and z influences y, we can say x influences y. On the other
hand, we do not want this relation to be vacuously true.

Assuming that there are only three people A, B, C in the
domain (thus there are 1+1+9+27 ground rules), there are
four stable models with non-zero probabilities. LetZ = e9+
2e8 + e7. (Fr abbreviates for Friend and Inf for Influence)

• I1 = {Fr(A,B),Fr(B,C), Inf (A,B), Inf (B,C),
Inf (A,C)} with probability e9/Z.

• I2 = {Fr(A,B),Fr(B,C), Inf (A,B)} with probability
e8/Z.

• I3 = {Fr(A,B),Fr(B,C), Inf (B,C)} with probability
e8/Z.

• I4 = {Fr(A,B),Fr(B,C)} with probability e7/Z.

Thus we get

• P (Inf (A,B)) = P (Inf (B,C)) = (e9+e8)/Z = 0.7311.
• P (Inf (A,C)) = e9/Z = 0.5344.

Increasing the weight of the third rule yields higher prob-
abilities for deriving Influence(A,B), Influence(B,C), and
Influence(A,C). Still, the first two have the same probabil-
ity, and the third has less probability than the first two.

4 Relating LPMLN to ASP
Any logic program under the stable model semantics can
be turned into an LPMLN program by assigning the infi-
nite weight to every rule. That is, for any logic program
Π = {R1, . . . , Rn}, the corresponding LPMLN program PΠ

is {α : R1, . . . , α : Rn}.
Theorem 1 For any logic program Π, the (deterministic)
stable models of Π are exactly the (probabilistic) stable
models of PΠ whose weight is ekα, where k is the number of
all (ground) rules in Π. If Π has at least one stable model,
then all stable models of PΠ have the same probability, and
are thus the stable models of Π as well.

Weak Constraints and LPMLN

The idea of softening rules in LPMLN is similar to the
idea of weak constraints in ASP, which is used for certain
optimization problems. A weak constraint has the form
“ :∼ Body [Weight : Level].” The stable models of a pro-
gram Π (whose rules have the form (1)) plus a set of weak
constraints are the stable models of Π with the minimum
penalty, where a penalty is calculated from Weight and Level
of violated weak constraints.

Since levels can be compiled into weights (Buccafurri,
Leone, and Rullo 2000), we consider weak constraints of
the form

:∼ Body [Weight] (2)
where Weight is a positive integer. We assume all weak con-
straints are grounded. The penalty of a stable model is de-
fined as the sum of the weights of all weak constraints whose
bodies are satisfied by the stable model.

Such a program can be turned into an LPMLN program as
follows. Each weak constraint (2) is turned into

−w : ⊥ ← ¬Body.

The standard ASP rules are identified with hard rules in
LPMLN. For example, the program with weak constraints

a ∨ b :∼ a [1]
c← b :∼ b [1]

:∼ c [1]

is turned into
α : a ∨ b −1 : ⊥ ← ¬a
α : c← b −1 : ⊥ ← ¬b

−1 : ⊥ ← ¬c.

The LPMLN program has two stable models: {a} with the
normalized weight e−1

e−1+e−2 and {b, c} with the normalized

weight e−2

e−1+e−2 . The former, with the larger normalized
weight, is the stable model of the original program contain-
ing the weak constraints.

Proposition 3 For any program with weak constraints that
has a stable model, its stable models are the same as the
stable models of the corresponding LPMLN program with
the highest normalized weight.

5 Relating LPMLN to MLNs
Embedding MLNs in LPMLN

Similar to the way that SAT can be embedded in ASP,
Markov Logic can be easily embedded in LPMLN. More
precisely, any MLN L can be turned into an LPMLN pro-
gram ΠL so that the models of L coincide with the stable
models of ΠL while retaining the same probability distribu-
tion.

LPMLN program ΠL is obtained from L by turning each
weighted formula w : F into weighted rule w : ⊥ ← ¬F
and adding

w : {A}ch

for every ground atom A of σ and any weight w. The effect
of adding the choice rules is to exemptA from minimization
under the stable model semantics.

Theorem 2 Any MLN L and its LPMLN representation ΠL
have the same probability distribution over all interpreta-
tions.

The embedding tells us that the exact inference in LPMLN

is at least as hard as the one in MLNs, which is #P-hard.
In fact, it is easy to see that when all rules in LPMLN are
non-disjunctive, counting the stable models of LPMLN is in
#P, which yields that the exact inference for non-disjunctive
LPMLN programs is #P-complete. Therefore, approxima-
tion algorithms, such as Gibbs sampling, may be desirable
for computing large LPMLN programs. The next section
tells us that we can apply the MLN approximation algo-
rithms to computing LPMLN based on the reduction of the
latter to the former.

Completion: Turning LPMLN to MLN
It is known that the stable models of a tight logic program
coincide with the models of the program’s completion (Er-
dem and Lifschitz 2003). This yielded a way to compute
stable models using SAT solvers. The method can be ex-
tended to LPMLN so that probability queries involving the
stable models can be computed using existing implemen-
tations of MLNs, such as Alchemy (http://alchemy.
cs.washington.edu).

We define the completion of Π, denoted Comp(Π), to be
the MLN which is the union of Π and the hard formula

α : A→
∨

w:A1∨···∨Ak←Body∈ Π

A∈{A1,...,Ak}

(
Body∧

∧
A′∈{A1,...,Ak}\{A}

¬A′
)

for each ground atom A.
This is a straightforward extension of the completion

from (Lee and Lifschitz 2003) by simply assigning the in-
finite weight α to the completion formulas. Likewise, we
say that LPMLN program Π is tight if Π is tight according to
(Lee and Lifschitz 2003), i.e., the positive dependency graph
of Π is acyclic.

Theorem 3 For any tight LPMLN program Π such that
SM′[Π] is not empty, Π (under the LPMLN semantics) and
Comp(Π) (under the MLN semantics) have the same proba-
bility distribution over all interpretations.

The theorem can be generalized to non-tight programs by
considering loop formulas (Lin and Zhao 2004), which we
skip here for brevity.

6 Relation to ProbLog
It turns out that LPMLN is a proper generalization of
ProbLog, a well-developed probabilistic logic programming
language that is based on the distribution semantics by
Sato (1995).

Review: ProbLog
The review follows (Fierens et al. 2015). As before, we
identify a non-ground ProbLog program with its ground in-
stance. So for simplicity we restrict attention to ground
ProbLog programs only.

In ProbLog, ground atoms over σ are divided into two
groups: probabilistic atoms and derived atoms. A (ground)
ProbLog program P is a tuple 〈PF,Π〉, where
• PF is a set of ground probabilistic facts of the form
pr :: a,

• Π is a set of ground rules of the following form
A← B1, . . . , Bm, not Bm+1, . . . , not Bn

where A, B1, . . . Bn are atoms from σ (0 ≤ m ≤ n), and
A is not a probabilistic atom.
Probabilistic atoms act as random variables and are as-

sumed to be independent from each other. A total choice TC
is any subset of the probabilistic atoms. Given a total choice
TC = {a1, . . . , am}, the probability of a total choice TC,
denoted PrP(TC), is defined as
pr(a1)×. . .×pr(am)×(1−pr(b1))×. . .×(1−pr(bn))

where b1, . . . , bn are probabilistic atoms not belonging
to TC, and each of pr(ai) and pr(bj) is the probability as-
signed to ai and bj according to the set PF of ground prob-
abilistic atoms.

The ProbLog semantics is only well-defined for programs
P = 〈PF,Π〉 such that Π ∪ TC has a “total” (two-valued)
well-founded model for each total choice TC. Given such
P, the probability of an interpretation I , denoted PP(I), is
defined as PrP(TC) if there exists a total choice TC such that
I is the total well-founded model of Π∪TC, and 0 otherwise.

ProbLog as a Special Case of LPMLN

Given a ProbLog program P = 〈PF,Π〉, we construct the
corresponding LPMLN program P′ as follows:
• For each probabilistic fact pr :: a in P, LPMLN program

P′ contains (i) ln(pr) : a and ln(1−pr) : ← a if 0 <
pr < 1; (ii) α : a if pr = 1; (iii) α : ← a if pr = 0.

• For each rule R ∈ Π, P′ contains α : R. In other words,
R is identified with a hard rule in P′.

Theorem 4 Any well-defined ProbLog program P and its
LPMLN representation P′ have the same probability distri-
bution over all interpretations.
Example 3 Consider the ProbLog program

0.6 :: p r ← p
0.3 :: q r ← q

which can be identified with the LPMLN program
ln(0.6) : p ln(0.3) : q α : r ← p
ln(0.4) : ← p ln(0.7) : ← q α : r ← q

Syntactically, LPMLN allows more general rules than
ProbLog, such as disjunctions in the head, as well as
the empty head and double negations in the body. Fur-
ther, LPMLN allows rules to be weighted as well as facts,
and do not distinguish between probabilistic facts and de-
rived atoms. Semantically, while the ProbLog semantics
is based on well-founded models, LPMLN handles stable
model reasoning for more general classes of programs. Un-
like ProbLog which is only well-defined when each total
choice leads to a unique well-founded model, LPMLN can
handle multiple stable models in a flexible way similar to
the way MLN handles multiple models.

7 Multi-Valued Probabilistic Programs
In this section we define a simple fragment of LPMLN that
allows us to represent probability in a more natural way.
For simplicity of the presentation, we will assume a propo-
sitional signature. An extension to first-order signatures is
straightforward.

We assume that the propositional signature σ is con-
structed from “constants” and their “values.” A constant c is
a symbol that is associated with a finite set Dom(c), called
the domain. The signature σ is constructed from a finite set
of constants, consisting of atoms c=v 1 for every constant c
and every element v in Dom(c). If the domain of c is {f, t}
then we say that c is Boolean, and abbreviate c= t as c and
c= f as ∼c.

We assume that constants are divided into probabilistic
constants and regular constants. A multi-valued probabilis-
tic program Π is a tuple 〈PF,Π〉, where
• PF contains probabilistic constant declarations of the fol-

lowing form:
p1 : c=v1 | · · · | pn : c=vn (3)

one for each probabilistic constant c, where
{v1, . . . , vn} = Dom(c), vi 6= vj , 0 ≤ p1, . . . , pn ≤ 1
and

∑n
i=1 pi = 1. We use MΠ(c = vi) to denote pi.

In other words, PF describes the probability distribution
over each “random variable” c.

• Π is a set of rules of the form (1) such that A contains no
probabilistic constants.
The semantics of such a program Π is defined as a short-

hand for LPMLN program T (Π) of the same signature as
follows.
• For each probabilistic constant declaration (3), T (Π) con-

tains, for each i = 1, . . . , n, (i) ln(pi) : c = vi if
0 < pi < 1; (ii) α : c=vi if pi = 1; (iii) α :← c=vi if
pi = 0.

• For each rule in Π of form (1), T (Π) contains
α : A← B,N.

• For each constant c, T (Π) contains the uniqueness of
value constraints

α : ⊥ ← c=v1 ∧ c = v2 (4)
for all v1, v2 ∈ Dom(c) such that v1 6= v2. For each
probabilistic constant c, T (Π) also contains the existence
of value constraint

α : ⊥ ← ¬
∨

v∈Dom(c)

c=v . (5)

This means that a regular constant may be undefined (i.e.,
have no values associated with it), while a probabilistic
constant is always associated with some value.

Example 4 The multi-valued probabilistic program
0.25 : Outcome=6 | 0.15 : Outcome=5
| 0.15 : Outcome=4 | 0.15 : Outcome=3
| 0.15 : Outcome=2 | 0.15 : Outcome=1

Win← Outcome=6.

1Note that here “=” is just a part of the symbol for propositional
atoms, and is not equality in first-order logic.

is understood as shorthand for the LPMLN program

ln(0.25) : Outcome=6
ln(0.15) : Outcome= i (i = 1, . . . , 5)

α : Win← Outcome=6
α : ⊥ ← Outcome= i ∧Outcome=j (i 6= j)
α : ⊥ ← ¬

∨
i=1,...6Outcome= i.

We say an interpretation of Π is consistent if it satisfies
the hard rules (4) for every constant and (5) for every
probabilistic constant. For any consistent interpreta-
tion I , we define the set TC(I) (“Total Choice”) to be
{c = v | c is a probabilistic constant such that c = v ∈ I}
and define

SM′′[Π] = {I | I is consistent
and is a stable model of Π ∪ TC(I)}.

For any interpretation I , we define

W ′′
Π(I) =


∏

c=v ∈ TC(I)

MΠ(c = v) if I ∈ SM′′[Π]

0 otherwise

and

P ′′
Π(I) =

W ′′
Π(I)∑

J∈SM ′′[Π]W
′′
Π(J)

.

The following proposition tells us that the probability of
an interpretation can be computed from the probabilities as-
signed to probabilistic atoms, similar to the way ProbLog is
defined.

Proposition 4 For any multi-valued probabilistic pro-
gram Π such that each pi in (3) is positive for every prob-
abilistic constant c, if SM′′[Π] is not empty, then for any
interpretation I , P ′′

Π(I) coincides with PT (Π)(I).

8 P-log and LPMLN

Simple P-log
In this section, we define a fragment of P-log, which we call
simple P-log.

Syntax Let σ be a multi-valued propositional signature as
in the previous section. A simple P-log program Π is a tuple

Π = 〈R,S, P,Obs,Act〉 (6)

where
• R is a set of normal rules of the form

A← B1, . . . , Bm, not Bm+1, . . . , not Bn. (7)

Here and after we assume A,B1, . . . , Bn are atoms
from σ (0 ≤ m ≤ n).

• S is a set of random selection rules of the form

[r] random(c)← B1, . . . , Bm, not Bm+1, . . . , not Bn
(8)

where r is an identifier and c is a constant.
• P is a set of probability atoms (pr-atoms) of the form

prr(c=v | B1, . . . , Bm, not Bm+1, . . . , not Bn) = p

where r is the identifier of some random selection rule
in S, c is a constant, and v ∈ Dom(c), and p ∈ [0, 1].

• Obs is a set of atomic facts of the form Obs(c=v) where
c is a constant and v ∈ Dom(c).

• Act is a set of atomic facts of the form Do(c= v) where
c is a constant and v ∈ Dom(c).

Example 5 We use the following simple P-log program as
our main example (d ∈ {D1, D2}, y ∈ {1, . . . 6}):

Owner(D1)=Mike
Owner(D2)=John

Even(d)← Roll(d)=y, y mod 2 = 0
∼Even(d)← not Even(d)
[r(d)] random(Roll(d))

pr(Roll(d)=6 | Owner(d)=Mike) = 1
4 .

Semantics Given a simple P-log program Π of the
form (6), a (standard) ASP program τ(Π) with the multi-
valued signature σ′ is constructed as follows:

• σ′ contains all atoms in σ, and atom Intervene(c)= t (ab-
breviated as Intervene(c)) for every constant c of σ; the
domain of Intervene(c) is {t}.

• τ(Π) contains all rules in R.
• For each random selection rule of the form (8) with

Dom(c) = {v1, . . . , vn}, τ(Π) contains the following
rules:
c=v1; . . . ; c=vn ←
B1, . . . , Bm, not Bm+1, . . . , not Bn, not Intervene(c).

• τ(Π) contains all atomic facts in Obs and Act.
• For every atom c=v in σ,

← Obs(c=v), not c=v.

• For every atom c=v in σ, τ(Π) contains

c=v ← Do(c=v)
Intervene(c)← Do(c=v).

Example 5 continued The following is τ(Π) for the sim-
ple P-log program Π in Example 5 (x ∈ {Mike, John},
b ∈ {t, f}):

Owner(D1)=Mike
Owner(D2)=John

Even(d)← Roll(d)=y, y mod 2 = 0
∼Even(d)← not Even(d)

Roll(d)=1; Roll(d)=2; Roll(d)=3; Roll(d)=4;
Roll(d)=5; Roll(d)=6← not Intervene(Roll(d))

← Obs(Owner(d)=x), not Owner(d)=x
← Obs(Even(d)=b), not Even(d)=b
← Obs(Roll(d)=y), not Roll(d)=y

Owner(d)=x← Do(Owner(d)=x)
Even(d)=b← Do(Even(d)=b)
Roll(d)=y ← Do(Roll(d)=y)

Intervene(Owner(d))← Do(Owner(d)=x)
Intervene(Even(d))← Do(Even(d)=b)
Intervene(Roll(d))← Do(Roll(d)=y).

The stable models of τ(Π) are called the possible worlds
of Π, and denoted by ω(Π). For an interpretation W and an

atom c=v, we say c=v is possible in W with respect to Π
if Π contains a random selection rule for c

[r] random(c)← B,

where B is a set of atoms possibly preceded with not, and
W satisfies B. We say r is applied in W if W |= B.

We say that a pr-atom prr(c=v | B) = p is applied in W
if W |= B and r is applied in W .

As in (Baral, Gelfond, and Rushton 2009), we assume that
simple P-log programs Π satisfy the following conditions:

• Unique random selection rule For any constant c, pro-
gram Π contains at most one random selection rule for c
that is applied in W .

• Unique probability assignment If Π contains a random
selection rule r for constant c that is applied in W , then,
for any two different probability atoms

prr(c=v1 | B′) = p1

prr(c=v2 | B′′) = p2

in Π that are applied in W , we have v1 6= v2 and
B′ = B′′.

Given a simple P-log program Π, a possible world W ∈
ω(Π) and a constant c for which c= v is possible in W , we
first define the following notations:

• Since c = v is possible in W , by the unique random se-
lection rule assumption, it follows that there is exactly one
random selection rule r for constant c that is applied inW .
Let rW,c denote this random selection rule. By the unique
probability assignment assumption, if there are pr-atoms
of the form prrW,c(c=v | B) that are applied in W , all B
in those pr-atoms should be the same. We denote this B
by BW,c. Define PRW (c) as

{prrW,c(c=v | BW,c) = p ∈ Π | v ∈ Dom(c)}.
if W 6|= Intervene(c) and ∅ otherwise.

• Define AVW (c) as{
v | prrW,c(c=v | BW,c) = p ∈ PRW (c)

}
.

• For each v ∈ AVW (c), define the assigned probability of
c=v w.r.t. W , denoted by apW (c=v), as the value p for
which prrW,c(c=v | BW,c) = p ∈ PRW (c).

• Define the default probability for c w.r.t. W , denoted by
dpW (c), as

dpW (c) =
1−

∑
v∈AVW (c) apW (c=v)

|Dom(c) \AVW (c)|
.

For every possible worldW ∈ ω(Π) and every atom c=v
possible in W , the causal probability P (W, c=v) is defined
as follows:

P (W, c=v) =

{
apW (c=v) if v ∈ AVW (c)

dpW (c) otherwise.

The unnormalized probability of a possible world W , de-
noted by µ̂Π(W), is defined as

µ̂Π(W) =
∏

c=v∈W and
c=v is possible inW

P (W, c=v).

Assuming Π has at least one possible world with nonzero
unnormalized probability, the normalized probability of W ,
denoted by µΠ(W), is defined as

µΠ(W) =
µ̂Π(W)∑

Wi∈ω(Π) µ̂Π(Wi)
.

Given a simple P-log program Π and a formula A, the
probability of A with respect to Π is defined as

PΠ(A) =
∑

W is a possible world of Π that satisfiesA

µΠ(W).

We say Π is consistent if Π has at least one possible world.
Example 5 continued Given the possible world W =
{Owner(D1) = Mike,Owner(D2) = John,Roll(D1) = 6,
Roll(D2)=3,Even(D1)}, the probability of Roll(D1)=6 is
P (W,Roll(D1) = 6) = 0.25, the probability of Roll(D2) =
3 is 1

6 . The unnormalized probability of W , i.e., µ̂(W) =

P (W,Roll(D1)=6) · P (W,Roll(D2)=3) = 1
24 .

The main differences between simple P-log and P-log are
as follows.
• The unique probability assignment assumption in P-log is

more general: it does not require the partB′ = B′′. How-
ever, all the examples in the P-log paper (Baral, Gelfond,
and Rushton 2009) satisfy our stronger unique probability
assignment assumption.

• P-log allows a more general random selection rule of the
form

[r] random(c : {x : P (x)})← B′.

Among the examples in (Baral, Gelfond, and Rushton
2009), only the “Monty Hall Problem” encoding and the
“Moving Robot Problem” encoding use “dynamic range
{x : P (x)}” in random selection rules and cannot be rep-
resented as simple P-log programs.

Turning Simple P-log into Multi-Valued
Probabilistic Programs
The main idea of the syntactic translation is to introduce
auxiliary probabilistic constants for encoding the assigned
probability and the default probability.

Given a simple P-log program Π, a constant c, a set of
literals B,2 and a random selection rule [r] random(c) ←
B′ in Π, we first introduce several notations, which resemble
the ones used for defining the P-log semantics.

• We define PRB,r(c) as

{prr(c=v | B) = p ∈ Π | v ∈ Dom(c)}

if Act in Π does not contain Do(c = v′) for any v′ ∈
Dom(c) and ∅ otherwise.

• We define AVB,r(c) as

{v | prr(c=v | B) = p ∈ PRB,r(c)} .

• For each v ∈ AVB,r(c), we define the assigned probabil-
ity of c = v w.r.t. B, r, denoted by apB,r(c = v), as the
value p for which prr(c=v | B) = p ∈ PRB,r(c).

2A literal is either an atom A or its negation not A.

• We define the default probability for c w.r.t. B and r,
denoted by dpB,r(c), as

dpB,r(c) =
1−

∑
v∈AVB,r(c) apB,r(c=v)

|Dom(c) \AVB,r(c)|
.

• For each c ∈ v, define its causal probability w.r.t. B and
r, denoted by P (B, r, c=v), as

P (B, r, c=v) =

{
apB,r(c=v) if v ∈ AVB,r(c)
dpB,r(c) otherwise.

Now we translate Π into the corresponding multi-valued
probabilistic program ΠLPMLN

as follows:

• The signature of ΠLPMLN

is

σ′ ∪ {pf cB,r=v | PRB,r(c) 6= ∅ and v ∈ Dom(c)}
∪ {pf c�,r=v | r is a random selection rule of Π for c

and v ∈ Dom(c)}
∪ {Assignedr= t | r is a random selection rule of Π}.

• ΠLPMLN

contains all rules in τ(Π).
• For any constant c, any random selection rule r for c, and

any set B of literals such that PRB,r(c) 6= ∅, include in
ΠLPMLN

:

– the probabilistic constant declaration:

P (B, r, c=v1) : pf cB,r=v1 | . . .
| P (B, r, c=vn) : pf cB,r=vn

for each probabilistic constant pf cB,r of the signature,
where {v1, . . . , vn} = Dom(c). The constant pf cB,r is
used for representing the probability distribution for c
when condition B holds in the experiment represented
by r.

– the rules

c=v ← B,B′, pf cB,r=v, not Intervene(c). (9)

for all v ∈ Dom(c), whereB′ is the body of the random
selection rule r. These rules assign v to c when the
assigned probability distribution applies to c=v.

– the rule

Assignedr ← B,B′, not Intervene(c)

where B′ is the body of the random selection rule r
(we abbreviate Assignedr= t as Assignedr). Assignedr
becomes true when any pr-atoms for c related to r is
applied.

• For any constant c and any random selection rule r for c,
include in ΠLPMLN

:

– the probabilistic constant declaration
1

|Dom(c)|
: pf c�,r=v1 | · · · |

1

|Dom(c)|
: pf c�,r=vn

for each probabilistic constant pf c�,r of the signature,
where {v1, . . . , vn} = Dom(c). The constant pf c�,r is
used for representing the default probability distribu-
tion for c when there is no applicable pr-atom.

Example Parameter plog1 plog2 Alchemy (default) Alchemy (maxstep=5000)
Ndice = 2 0.00s+ 0.00sa 0.00s+ 0.00sb 0.02s+ 0.21sc 0.02s+ 0.96s
Ndice = 7 1.93s+ 31.37s 0.00s+ 1.24s 0.13s+ 0.73s 0.12s+ 3.39s

dice Ndice = 8 12.66s+ 223.02s 0.00s+ 6.41s 0.16s+ 0.84s 0.16s+ 3.86s
Ndice = 9 timeout 0.00s+ 48.62s 0.19s+ 0.95s 0.19s+ 4.37s
Ndice = 10 timeout timeout 0.23s+ 1.06s 0.24s+ 4.88s
Ndice = 100 timeout timeout 19.64s+ 16.34s 19.55s+ 76.18s
maxstep = 5 0.00s+ 0.00s segment fault 2.34s+ 2.54s 2.3s+ 11.75s
maxstep = 10 0.37s+ 4.86s segment fault 4.78s+ 5.24s 4.74s+ 24.34s

robot maxstep = 12 3.65 + 51.76s segment fault 5.72s+ 6.34s 5.75s+ 29.46s
maxstep = 13 11.68s+ 168.15s segment fault 6.2s+ 6.89s 6.2s+ 31.96s
maxstep = 15 timeout segment fault 7.18s+ 7.99s 7.34s+ 37.67s
maxstep = 20 timeout segment fault 9.68s+ 10.78s 9.74s+ 50.04s

Table 1: Performance Comparison between Two Ways to Compute Simple P-log Programs

asmodels answer set finding time + probability computing time
bpartial grounding time + probability computing time
cmrf creating time + sampling time

– the rules

c=v ← B′, pf c�,r=v, not Assignedr.

for all v ∈ Dom(c), whereB′ is the body of the random
selection rule r. These rules assign v to c when the
uniform distribution applies to c=v.

Example 5 continued The simple P-log program Π in Ex-
ample 5 can be turned into the following multi-valued prob-
abilistic program. In addition to τ(Π) we have

0.25 : pf
Roll(d)

O(d)=M,r(d)=6 | 0.15 : pf
Roll(d)

O(d)=M,r(d)=5 |
0.15 : pf

Roll(d)

O(d)=M,r(d)=4 | 0.15 : pf
Roll(d)

O(d)=M,r(d)=3 |
0.15 : pf

Roll(d)

O(d)=M,r(d)=2 | 0.15 : pf
Roll(d)

O(d)=M,r(d)=1

1
6
: pf

Roll(d)

�,r(d) =6 | 1
6
: pf

Roll(d)

�,r(d) =5 | 1
6
: pf

Roll(d)

�,r(d) =4 |
1
6
: pf

Roll(d)

�,r(d) =3 | 1
6
: pf

Roll(d)

�,r(d) =2 | 1
6
: pf

Roll(d)

�,r(d) =1

Roll(d)=x← Owner(d)=Mike, pfRoll(d)

O(d)=M,r(d)=x,

not Intervene(Roll(d))
Assignedr(d) ← Owner(d)=Mike, not Intervene(Roll(d))

Roll(d)=x← pf
Roll(d)

�,r(d) =x, not Assignedr(d).

Theorem 5 For any consistent simple P-log program Π of
signature σ and any possible world W of Π, we construct a
formula FW as follows.

FW = (
∧
c=v∈W c=v)∧

(
∧

c, v :
c = v is possible inW ,

W |= c = v and PRW (c) 6= ∅

pf cBW,c,rW,c =v)

∧(
∧

c, v :
c = v is possible inW ,

W |= c = v and PRW (c) = ∅

pf c�,rW,c =v)

We have
µΠ(W) = PΠLPMLN (FW),

and, for any proposition A of signature σ,

PΠ(A) = PΠLPMLN (A).

Example 5 continued For the possible world

W = {Roll(D1)=6,Roll(D2)=3,Even(D1),∼Even(D2),
Owner(D1)=Mike,Owner(D2)=John},

FW is

Roll(D1)=6 ∧ Roll(D2)=3 ∧ Even(D1)∧ ∼Even(D2)
∧ Owner(D1)=Mike ∧ Owner(D2)=John
∧ pfRoll(D1)

O(D1)=M,r=6 ∧ pfRoll(D2)
�,r =3.

It can be seen that µ̂Π(W) = 1
4 ×

1
6 = PΠLPMLN (FW).

The embedding tells us that the exact inference in simple
P-log is no harder than the one in LPMLN.

Experiments
Following the translation described above, it is possible to
compute a tight P-log program by translating it to LPMLN,
and further turn that into the MLN instance following the
translation introduced in Section 5, and then compute it us-
ing an MLN solver.

Table 1 shows the performance comparison between
this method and the native P-log implementation on
some examples, which are modified from the ones
from (Baral, Gelfond, and Rushton 2009). P-log 1.0.0
(http://www.depts.ttu.edu/cs/research/
krlab/plog.php) implements two algorithms. The first
algorithm (plog1) translates a P-log program to an ASP
program and uses ASP solver SMODELS to find all possible
worlds of the P-log program. The second algorithm (plog2)
produces a partially ground P-log program relevant to the
query, and evaluates partial possible worlds to compute
the probability of formulas. ALCHEMY 2.0 implements
several algorithms for inference and learning. Here we use
MC-SAT for lazy probabilistic inference, which combines
MCMC with satisfiability testing. ALCHEMY first creates
Markov Random Field (MRF) and then perform MC-SAT
on the MRF created. The default setting of ALCHEMY
performs 1000 steps sampling. We also tested with 5000
steps sampling to produce probability that is very close to
the true probability. The experiments were performed on
an Intel Core2 Duo CPU E7600 3.06GH with 4GB RAM
running Ubuntu 13.10. The timeout was for 10 minutes.

The experiments showed the clear advantage of the trans-
lation method that uses ALCHEMY. It is more scalable, and
can be tuned to yield more precise probability with more

sampling or less precise but fast computation, by changing
sampling parameters. The P-log implementation of the sec-
ond algorithm led to segment faults in many cases.

9 Other Related Work
We observed that ProbLog can be viewed as a special case
of LPMLN. This result can be extended to embed Logic
Programs with Annotated Disjunctions (LPAD) in LPMLN

based on the fact that any LPAD program can be further
turned into a ProbLog program by eliminating disjunctions
in the heads (Gutmann 2011, Section 3.3).

It is known that LPAD is related to several other lan-
guages. In (Vennekens et al. 2004), it is shown that Poole’s
ICL (Poole 1997) can be viewed as LPAD, and that acyclic
LPAD programs can be turned into ICL. This indirectly tells
us how ICL is related to LPMLN.

CP-logic (Vennekens, Denecker, and Bruynooghe 2009)
is a probabilistic extension of FO(ID) (Denecker and Ter-
novska 2007) that is closely related to LPAD.

PrASP (Nickles and Mileo 2014) is another probabilistic
ASP language. Like P-log and LPMLN, probability distri-
bution is defined over stable models, but the weights there
directly represent probabilities.

Similar to LPMLN, log-linear description logics (Niepert,
Noessner, and Stuckenschmidt 2011) follow the weight
scheme of log-linear models in the context of description
logics.

10 Conclusion
Adopting the log-linear models of MLN, language LPMLN

provides a simple and intuitive way to incorporate the con-
cept of weights into the stable model semantics. While MLN
is an undirected approach, LPMLN is a directed approach,
where the directionality comes from the stable model se-
mantics. This makes LPMLN closer to P-log and ProbLog.
On the other hand, the weight scheme adopted in LPMLN

makes it amenable to apply the statistical inference meth-
ods developed for MLN computation. More work needs to
be done to find how the methods studied in machine learn-
ing will help us to compute weighted stable models. While a
fragment of LPMLN can be computed by existing implemen-
tations of and MLNs, one may design a native computation
method for the general case.

The way that we associate weights to stable models is or-
thogonal to the way the stable model semantics are extended
in a deterministic way. Thus it is rather straightforward to
extend LPMLN to allow other advanced features, such as ag-
gregates, intensional functions and generalized quantifiers.

Acknowledgements We are grateful to Michael Gelfond
for many useful discussions regarding the different ideas
behind P-log and LPMLN, and to Evgenii Balai, Michael
Bartholomew, Amelia Harrison, Yunsong Meng, and the
anonymous referees for their useful comments. This work
was partially supported by the National Science Foundation
under Grants IIS-1319794 and IIS-1526301, and ICT R&D
program of MSIP/IITP 10044494 (WiseKB).

References
Balduccini, M., and Gelfond, M. 2003. Logic programs with
consistency-restoring rules. In International Symposium on Log-
ical Formalization of Commonsense Reasoning, AAAI 2003 Spring
Symposium Series, 9–18.
Baral, C.; Gelfond, M.; and Rushton, J. N. 2009. Probabilistic
reasoning with answer sets. TPLP 9(1):57–144.
Bauters, K.; Schockaert, S.; De Cock, M.; and Vermeir, D. 2010.
Possibilistic answer set programming revisited. In 26th Conference
on Uncertainty in Artificial Intelligence (UAI 2010).
Buccafurri, F.; Leone, N.; and Rullo, P. 2000. Enhancing dis-
junctive datalog by constraints. Knowledge and Data Engineering,
IEEE Transactions on 12(5):845–860.
De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007. ProbLog: A
probabilistic prolog and its application in link discovery. In IJCAI,
volume 7, 2462–2467.
Denecker, M., and Ternovska, E. 2007. Inductive situation calcu-
lus. Artificial Intelligence 171(5-6):332–360.
Erdem, E., and Lifschitz, V. 2003. Tight logic programs. TPLP
3:499–518.
Fierens, D.; Van den Broeck, G.; Renkens, J.; Shterionov, D.; Gut-
mann, B.; Thon, I.; Janssens, G.; and De Raedt, L. 2015. Infer-
ence and learning in probabilistic logic programs using weighted
boolean formulas. TPLP 15(03):358–401.
Gelfond, M., and Lifschitz, V. 1988. The stable model semantics
for logic programming. In Kowalski, R., and Bowen, K., eds.,
Proceedings of International Logic Programming Conference and
Symposium, 1070–1080. MIT Press.
Gutmann, B. 2011. On Continuous Distributions and Parameter
Estimation in Probabilistic Logic Programs. Ph.D. Dissertation,
KU Leuven.
Lee, J., and Lifschitz, V. 2003. Loop formulas for disjunctive logic
programs. In Proceedings of International Conference on Logic
Programming (ICLP), 451–465.
Lee, J., and Wang, Y. 2015. A probabilistic extension of the stable
model semantics. In International Symposium on Logical Formal-
ization of Commonsense Reasoning, AAAI 2015 Spring Symposium
Series.
Lee, J.; Meng, Y.; and Wang, Y. 2015. Markov logic style weighted
rules under the stable model semantics. In Technical Communica-
tions of the 31st International Conference on Logic Programming.
Lin, F., and Zhao, Y. 2004. ASSAT: Computing answer sets of a
logic program by SAT solvers. Artificial Intelligence 157:115–137.
Nickles, M., and Mileo, A. 2014. Probabilistic inductive logic pro-
gramming based on answer set programming. In 15th International
Workshop on Non-Monotonic Reasoning (NMR 2014).
Niepert, M.; Noessner, J.; and Stuckenschmidt, H. 2011. Log-
linear description logics. In IJCAI, 2153–2158.
Poole, D. 1997. The independent choice logic for modelling mul-
tiple agents under uncertainty. Artificial Intelligence 94:7–56.
Richardson, M., and Domingos, P. 2006. Markov logic networks.
Machine Learning 62(1-2):107–136.
Sato, T. 1995. A statistical learning method for logic programs with
distribution semantics. In Proceedings of the 12th International
Conference on Logic Programming (ICLP), 715–729.
Vennekens, J.; Verbaeten, S.; Bruynooghe, M.; and A, C. 2004.
Logic programs with annotated disjunctions. In Proceedings of In-
ternational Conference on Logic Programming (ICLP), 431–445.
Vennekens, J.; Denecker, M.; and Bruynooghe, M. 2009. CP-logic:
A language of causal probabilistic events and its relation to logic
programming. TPLP 9(3):245–308.

