
LPMLN, Weak Constraints, and P-log

Joohyung Lee and Zhun Yang
School of Computing, Informatics and Decision Systems Engineering

Arizona State University, Tempe, USA
{joolee, zyang90}@asu.edu

Abstract

LPMLN is a recently introduced formalism that extends an-
swer set programs by adopting the log-linear weight scheme
of Markov Logic. This paper investigates the relationships
between LPMLN and two other extensions of answer set pro-
grams: weak constraints to express a quantitative preference
among answer sets, and P-log to incorporate probabilistic un-
certainty. We present a translation of LPMLN into programs
with weak constraints and a translation of P-log into LPMLN,
which complement the existing translations in the opposite
directions. The first translation allows us to compute the most
probable stable models (i.e., MAP estimates) of LPMLN pro-
grams using standard ASP solvers. This result can be ex-
tended to other formalisms, such as Markov Logic, ProbLog,
and Pearl’s Causal Models, that are shown to be translatable
into LPMLN. The second translation tells us how probabilis-
tic nonmonotonicity (the ability of the reasoner to change his
probabilistic model as a result of new information) of P-log
can be represented in LPMLN, which yields a way to compute
P-log using standard ASP solvers and MLN solvers.

Introduction
LPMLN (Lee and Wang 2016) is a recently introduced prob-
abilistic logic programming language that extends answer
set programs (Gelfond and Lifschitz 1988) with the con-
cept of weighted rules, whose weight scheme is adopted
from that of Markov Logic (Richardson and Domingos
2006). It is shown in (Lee and Wang 2016; Lee, Meng,
and Wang 2015) that LPMLN is expressive enough to em-
bed Markov Logic and several other probabilistic logic lan-
guages, such as ProbLog (De Raedt, Kimmig, and Toivonen
2007), Pearls’ Causal Models (Pearl 2000), and a fragment
of P-log (Baral, Gelfond, and Rushton 2009).

Among several extensions of answer set programs to over-
come the deterministic nature of the stable model semantics,
LPMLN is one of the few languages that incorporate the con-
cept of weights into the semantics. Another one is weak
constraints (Buccafurri, Leone, and Rullo 2000), which are
to assign a quantitative preference over the stable models of
non-weak constraint rules: weak constraints cannot be used
for deriving stable models. It is relatively a simple extension

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

of the stable model semantics but has turned out to be use-
ful in many practical applications. Weak constraints are part
of the ASP Core 2 language (Calimeri et al. 2013), and are
implemented in standard ASP solvers, such as CLINGO and
DLV.

P-log is a probabilistic extension of answer set programs.
In contrast to weak constraints, it is highly structured and has
quite a sophisticated semantics. One of its distinct features is
probabilistic nonmonotonicity (the ability of the reasoner to
change his probabilistic model as a result of new informa-
tion) whereas, in most other probabilistic logic languages,
new information can only cause the reasoner to abandon
some of his possible worlds, making the effect of an update
monotonic.

This paper reveals interesting relationships between
LPMLN and these two extensions of answer set programs.
It shows how different weight schemes of LPMLN and weak
constraints are related, and how the probabilistic reasoning
in P-log can be expressed in LPMLN. The result helps us
understand these languages better as well as other related
languages, and also provides new, effective computational
methods based on the translations.

It is shown in (Lee and Wang 2016) that programs with
weak constraints can be easily viewed as a special case of
LPMLN programs. In the first part of this paper, we show
that an inverse translation is also possible under certain con-
ditions, i.e., an LPMLN program can be turned into a usual
ASP program with weak constraints so that the most prob-
able stable models of the LPMLN program are exactly the
optimal stable models of the program with weak constraints.
The result allows for using ASP solvers for computing Max-
imum A Posteriori probability (MAP) estimates of LPMLN

programs. Interestingly, the translation is quite simple so it
can be easily applied in practice. Further, the result implies
that MAP inference in other probabilistic logic languages,
such as Markov Logic, ProbLog, and Pearl’s Causal Mod-
els, can be computed by standard ASP solvers because they
are known to be embeddable in LPMLN, thereby allowing us
to apply combinatorial optimization in standard ASP solvers
to MAP inference in these languages.

In the second part of the paper, we show how P-log can be
completely characterized in LPMLN. Unlike the translation
in (Lee and Wang 2016), which was limited to a subset of

P-log that does not allow dynamic default probability, our
translation applies to full P-log and complements the recent
translation from LPMLN into P-log in (Balai and Gelfond
2016). In conjunction with the embedding of LPMLN in an-
swer set programs with weak constraints, our work shows
how MAP estimates of P-log can be computed by standard
ASP solvers, which provides a highly efficient way to com-
pute P-log.

Preliminaries
Review: LPMLN

We review the definition of LPMLN from (Lee and Wang
2016). In fact, we consider a more general syntax of pro-
grams than the one from (Lee and Wang 2016), but this is not
an essential extension. We follow the view of (Ferraris, Lee,
and Lifschitz 2011) by identifying logic program rules as a
special case of first-order formulas under the stable model
semantics. For example, rule r(x)← p(x), not q(x) is iden-
tified with formula ∀x(p(x) ∧ ¬q(x) → r(x)). An LPMLN

program is a finite set of weighted first-order formulasw : F
where w is a real number (in which case the weighted for-
mula is called soft) or α for denoting the infinite weight (in
which case it is called hard). An LPMLN program is called
ground if its formulas contain no variables. We assume a fi-
nite Herbrand Universe. Any LPMLN program can be turned
into a ground program by replacing the quantifiers with mul-
tiple conjunctions and disjunctions over the Herbrand Uni-
verse. Each of the ground instances of a formula with free
variables receives the same weight as the original formula.

For any ground LPMLN program Π and any interpreta-
tion I , Π denotes the unweighted formula obtained from Π,
and ΠI denotes the set of w : F in Π such that I |= F , and
SM[Π] denotes the set {I | I is a stable model of ΠI} (We
refer the reader to the stable model semantics of first-order
formulas in (Ferraris, Lee, and Lifschitz 2011)). The un-
normalized weight of an interpretation I under Π is defined
as

WΠ(I) =

exp
(∑

w:F ∈ ΠI

w

)
if I ∈ SM[Π];

0 otherwise.

The normalized weight (a.k.a. probability) of an interpreta-
tion I under Π is defined as

PΠ(I) = lim
α→∞

WΠ(I)∑
J∈SM[Π]

WΠ(J)
.

I is called a (probabilistic) stable model of Π if PΠ(I) 6= 0.

Review: Weak Constraints
A weak constraint has the form

:∼ F [Weight @ Level].

where F is a ground formula, Weight is a real number and
Level is a nonnegative integer. Note that the syntax is more
general than the one from the literature (Buccafurri, Leone,

and Rullo 2000; Calimeri et al. 2013), where F was re-
stricted to conjunctions of literals.1 We will see the general-
ization is more convenient for stating our result, but will also
present translations that conform to the restrictions imposed
on the input language of ASP solvers.

Let Π be a program Π1 ∪Π2, where Π1 is a set of ground
formulas and Π2 is a set of weak constraints. We call I a
stable model of Π if it is a stable model of Π1 (in the sense of
(Ferraris, Lee, and Lifschitz 2011)). For every stable model
I of Π and any nonnegative integer l, the penalty of I at
level l, denoted by PenaltyΠ(I, l), is defined as∑

:∼ F [w@l]∈Π2,

I|=F

w.

For any two stable models I and I ′ of Π, we say I is domi-
nated by I ′ if
• there is some nonnegative integer l such that

PenaltyΠ(I ′, l) < PenaltyΠ(I, l) and
• for all integers k > l, PenaltyΠ(I ′, k) = PenaltyΠ(I, k).
A stable model of Π is called optimal if it is not dominated
by another stable model of Π.

Turning LPMLN into Programs with Weak
Constraints

General Translation
We define a translation that turns an LPMLN program into
a program with weak constraints. For any ground LPMLN

program Π, the translation lpmln2wc(Π) is simply defined
as follows. We turn each weighted formula w : F in Π
into {F}ch, where {F}ch is a choice formula, standing for
F ∨¬F (Ferraris, Lee, and Lifschitz 2011). Further, we add

:∼ F [−1@1] (1)

if w is α, and
:∼ F [−w@0] (2)

otherwise.
Intuitively, choice formula {F}ch allows F to be either

included or not in deriving a stable model.2 When F is in-
cluded, the stable model gets the (negative) penalty −1 at
level 1 or −w at level 0 depending on the weight of the for-
mula, which corresponds to the (positive) “reward” eα or ew

that it receives under the LPMLN semantics.
The following proposition tells us that choice formulas

can be used for generating the members of SM[Π].

Proposition 1 For any LPMLN program Π, the set SM[Π]
is exactly the set of the stable models of lpmln2wc(Π).

The following theorem follows from Proposition 1. As
the probability of a stable model of an LPMLN program Π
increases, the penalty of the corresponding stable model of
lpmln2wc(Π) decreases, and the distinction between hard
rules and soft rules can be simulated by the different levels
of weak constraints, and vice versa.

1A literal is either an atom p or its negation not p.
2This view of choice formulas was used in PrASP (Nickles and

Mileo 2014) in defining spanning programs.

Theorem 1 For any LPMLN program Π, the most probable
stable models (i.e., the stable models with the highest prob-
ability) of Π are precisely the optimal stable models of the
program with weak constraints lpmln2wc(Π).

Example 1 For program Π:

10 : p→ q 5 : p
1 : p→ r −20 : ¬r → ⊥ (3)

SM[Π] has 5 elements: ∅, {p}, {p, q}, {p, r}, {p, q, r}.
Among them, {p, q} is the most probable stable model,
whose weight is e15, while {p, q, r} is a probabilistic stable
model whose weight is e−4. The translation yields

{p→ q}ch :∼ p→ q [−10 @ 0]
{p→ r}ch :∼ p→ r [−1 @ 0]
{p}ch :∼ p [−5 @ 0]

{¬r → ⊥}ch :∼ ¬r → ⊥ [20 @ 0]

whose optimal stable model is {p, q}with the penalty at level
0 being−15, while {p, q, r} is a stable model whose penalty
at level 0 is 4.

The following example illustrates how the translation ac-
counts for the difference between hard rules and soft rules
by assigning different levels.

Example 2 Consider the LPMLN program Π in Example 1
from (Lee and Wang 2016).

α : Bird(Jo)← ResidentBird(Jo) (r1)
α : Bird(Jo)← MigratoryBird(Jo) (r2)
α : ⊥ ← ResidentBird(Jo),MigratoryBird(Jo) (r3)
2 : ResidentBird(Jo) (r4)
1 : MigratoryBird(Jo) (r5)

The translation lpmln2wc(Π) is 3

{Bird(Jo)← ResidentBird(Jo)}ch
{Bird(Jo)← MigratoryBird(Jo)}ch
{⊥ ← ResidentBird(Jo),MigratoryBird(Jo)}ch
{ResidentBird(Jo)}ch
{MigratoryBird(Jo)}ch

:∼ Bird(Jo)← ResidentBird(Jo) [−1@1]
:∼ Bird(Jo)← MigratoryBird(Jo) [−1@1]
:∼ ⊥ ← ResidentBird(Jo),MigratoryBird(Jo)} [−1@1]
:∼ ResidentBird(Jo) [−2@0]
:∼ MigratoryBird(Jo) [−1@0]

The three probabilistic stable models of
Π, ∅, {Bird(Jo),ResidentBird(Jo)}, and
{Bird(Jo),MigratoryBird(Jo)}, have the same penalty −3
at level 1. Among them, {Bird(Jo),ResidentBird(Jo)} has
the least penalty at level 0, and thus is an optimal stable
model of lpmln2wc(Π).

In some applications, one may not want any hard rules to
be violated assuming that hard rules encode definite knowl-
edge. For that, lpmln2wc(Π) can be modified by simply
turning hard rules into the usual ASP rules. Then the stable
models of lpmln2wc(Π) satisfy all hard rules. For example,

3Recall that we identify the rules with the corresponding first-
order formulas.

the program in Example 2 can be translated into programs
with weak constraints as follows.

Bird(Jo)← ResidentBird(Jo)
Bird(Jo)← MigratoryBird(Jo)
⊥ ← ResidentBird(Jo),MigratoryBird(Jo)
{ResidentBird(Jo)}ch
{MigratoryBird(Jo)}ch

:∼ ResidentBird(Jo) [−2@0]
:∼ MigratoryBird(Jo) [−1@0]

Also note that while the most probable stable models
of Π and the optimal stable models of lpmln2wc(Π) co-
incide, their weights and penalties are not proportional to
each other. The former is defined by an exponential func-
tion whose exponent is the sum of the weights of the satis-
fied formulas, while the latter simply adds up the penalties of
the satisfied formulas. On the other hand, they are monoton-
ically increasing/decreasing as more formulas are satisfied.

In view of Theorem 2 from (Lee and Wang 2016), which
tells us how to embed Markov Logic into LPMLN, it fol-
lows from Theorem 1 that MAP inference in MLN can also
be reduced to the optimal stable model finding of programs
with weak constraints. For any Markov Logic Network Π,
let mln2wc(Π) be the union of lpmln2wc(Π) plus choice
rules {A}ch for all atoms A.

Theorem 2 For any Markov Logic Network Π, the most
probable models of Π are precisely the optimal stable mod-
els of the program with weak constraints mln2wc(Π).

Similarly, MAP inference in ProbLog and Pearl’s Causal
Models can be reduced to finding an optimal stable model of
a program with weak constraints in view of the reduction of
ProbLog to LPMLN (Theorem 4 from (Lee and Wang 2016))
and the reduction of Causal Models to LPMLN (Theorem 4
from (Lee, Meng, and Wang 2015)) thereby allowing us to
apply combinatorial optimization methods in standard ASP
solvers to these languages.

Alternative Translations
Instead of aggregating the weights of satisfied formulas, we
may aggregate the weights of formulas that are not satisfied.
Let lpmln2wcpnt(Π) be a modification of lpmln2wc(Π) by
replacing (1) with

:∼ ¬F [1@1]

and (2) with
:∼ ¬F [w@0].

Intuitively, when F is not satisfied, the stable model gets
the penalty 1 at level 1, or w at level 0 depending on whether
F is a hard or soft formula.

Corollary 1 Theorem 1 remains true when lpmln2wc(Π) is
replaced by lpmln2wcpnt(Π).

This alternative view of assigning weights to stable mod-
els, in fact, originates from Probabilistic Soft Logic (PSL)
(Bach et al. 2015), where the probability density function of
an interpretation is obtained from the sum over the “penalty”
from the formulas that are “distant” from satisfaction. This

view will lead to a slight advantage when we further turn
the translation into the input language of ASP solvers (See
Footnote 6).

The current ASP solvers do not allow arbitrary formulas
to appear in weak constraints. For computation using the
ASP solvers, let lpmln2wcpnt,rule(Π) be the translation by
turning each weighted formula wi : Fi in Π into

¬Fi → unsat(i)
¬unsat(i) → Fi

:∼ unsat(i) [wi@l].

where unsat(i) is a new atom, and l = 1 if wi is α and l = 0
otherwise.

Corollary 2 Let Π be an LPMLN program. There is a 1-1
correspondence φ between the most probable stable models
of Π and the optimal stable models of lpmln2wcpnt,rule(Π),
where φ(I) = I ∪ {unsat(i) | wi : Fi ∈ Π, I 6|= Fi}.

The corollary allows us to compute the most probable sta-
ble models (MAP estimates) of the LPMLN program using
the combination of F2LP 4 and CLINGO 5 (assuming that
the weights are approximated to integers). System F2LP
turns this program with formulas into the input language of
CLINGO, so CLINGO can be used to compute the theory.

If the unweighted LPMLN program is already in the rule
form Head ← Body that is allowed in the input languages of
CLINGO and DLV, we may avoid the use of F2LP by slightly
modifying the translation lpmln2wcpnt,rule by turning each
weighted rule

wi : Headi ← Bodyi
instead into

unsat(i) ← Bodyi, not Headi
Headi ← Bodyi, not unsat(i)

:∼ unsat(i) [wi@l]

where l = 1 if wi is α and l = 0 otherwise.
In the case when Headi is ⊥, the translation can be fur-

ther simplified: we simply turn wi : ⊥ ← Bodyi into
:∼ Bodyi [wi@l].6

Example 1 continued: For program (3), the simplified
translation lpmln2wcpnt,rule yields

unsat(1)← p, not q q ← p, not unsat(1) :∼ unsat(1) [10@0]
unsat(2)← p, not r r ← p, not unsat(2) :∼ unsat(2) [1@0]
unsat(3)← not p p← not unsat(3) :∼ unsat(3) [5@0]

:∼ not r [−20@0]

Turning P-log into LPMLN

Review: P-log
Syntax A sort is a set of symbols. A constant c maps an
element in the domain s1 × · · · × sn to an element in the

4http://reasoning.eas.asu.edu/f2lp/
5http://potassco.sourceforge.net
6Alternatively, we may turn it into the “reward” way, i.e., turn-

ing it into :∼ not Bodyi[−wi], but the rule may not be in the input
language of CLINGO.

range s0 (denoted by Range(c)), where each of s0, . . . , sn
is a sort. A sorted propositional signature is a special case
of propositional signatures constructed from a set of con-
stants and their associated sorts, consisting of all proposi-
tional atoms c(~u) = v where c : s1 × · · · × sn → s0, and
~u ∈ s1 × · · · × sn, and v ∈ s0.7 Symbol c(~u) is called an
attribute and v is called its value. If the range s0 of c is {f, t}
then c is called Boolean, and c(~u) = t can be abbreviated as
c(~u) and c(~u)= f as ∼c(~u).

The signature of a P-log program is the union of two
propositional signatures σ1 and σ2, where σ1 is a sorted
propositional signature, and σ2 is a usual propositional sig-
nature consisting of atoms Do(c(~u)=v), Obs(c(~u)=v) and
Obs(c(~u) 6=v) for all atoms c(~u)=v in σ1.

A P-log program Π of signature σ1 ∪ σ2 is a tuple

Π = 〈R,S,P,Obs,Act〉 (4)

where the signature of each of R, S, and P is σ1 and the
signature of each of Obs and Act is σ2 such that
• R is a set of normal rules of the form

A← B1, . . . , Bm, not Bm+1, . . . , not Bn

where A,B1, . . . , Bn are atoms (0 ≤ m ≤ n).
• S is a set of random selection rules of the form

[r] random(c(~u) : {x : p(x)})← Body (5)

where r is a unique identifier, p is a boolean constant with
a unary argument, and Body is a set of literals. x is a
schematic variable ranging over the argument sort of p.
Rule (5) is called a random selection rule for c(~u). In-
tuitively, rule (5) says that if Body is true, the value of
c(~u) is selected at random from the set Range(c) ∩ {x :
p(x)} unless this value is fixed by a deliberate action, i.e.,
Do(c(~u)=v) for some value v.

• P is a set of so-called probability atoms (pr-atoms) of the
form

prr(c(~u)=v | C) = p (6)
where r is the identifier of some random selection rule for
c(~u) in S; c(~u) = v ∈ σ1; C is a set of literals; and p is
a real number in [0, 1]. We say pr-atom (6) is associated
with the random selection rule whose identifier is r.

• Obs is a set of atomic facts for representing “observa-
tion”: Obs(c(~u)=v) and Obs(c(~u) 6= v).

• Act is a set of atomic facts for representing a deliberate
action: Do(c(~u)=v).

Semantics Let Π be a P-log program (4) of signature σ1 ∪
σ2. The possible worlds of Π, denoted by ω(Π), are the
stable models of τ(Π), a (standard) ASP program with the
propositional signature

σ1∪σ2∪{Intervene(c(~u)) | c(~u) is an attribute occurring in S}
that accounts for the logical part of P-log. Due to lack of
space we refer the reader to (Baral, Gelfond, and Rushton
2009) for the definition of τ(Π).

7Note that here “=” is just a part of the symbol for propositional
atoms, and is not equality in first-order logic.

An atom c(~u) = v is called possible in a possible world
W due to a random selection rule (5) if Π contains (5) such
that W |= Body ∧ p(v) ∧ ¬Intervene(c(~u)).8 Pr-atom (6)
is applied in W if c(~u) = v is possible in W due to r and
W |= C.

As in (Baral, Gelfond, and Rushton 2009), we assume that
all P-log programs Π satisfy the following conditions:
• Condition 1 [Unique random selection rule]: If a P-log

program Π contains two random selection rules for c(~u):
[r1] random(c(~u) : {x : p1(x)})← Body1,

[r2] random(c(~u) : {x : p2(x)})← Body2,

then no possible world of Π satisfies both Body1 and
Body2.

• Condition 2 [Unique probability assignment]: If a P-
log program Π contains a random selection rule for c(~u):

[r] random(c(~u) : {x : p(x)})← Body
along with two different pr-atoms:

prr(c(~u)=v | C1) = p1,

prr(c(~u)=v | C2) = p2,

then no possible world of Π satisfies Body, C1, and C2

together.

Given a P-log program Π, a possible world W ∈ ω(Π),
and an atom c(~u) = v possible in W , by Condition 1, it
follows that there is exactly one random selection rule (5)
such that W |= Body. Let rW,c(~u) denote this random selec-
tion rule, and let AVW (c(~u)) = {v′ | there exists a pr-atom
prrW,c(~u)

(c(~u) = v′ | C) = p that is applied in W for some
C and p}. We then define the following notations:
• If v ∈ AVW (c(~u)), there exists a pr-atom
prrW,c(~u)

(c(~u)=v | C) = p in Π for some C and p

such that W |= C. By Condition 2, for any other
prrW,c(~u)

(c(~u) = v | C ′) = p′ in Π, it follows that
W 6|= C ′. So there is only one pr-atom that is applied in
W for c(~u)=v, and we define

PossWithAssPr(W, c(~u)=v) = p.

(“c(~u)=v is possible in W with assigned probability p.”)
• If v 6∈ AVW (c(~u)), we define

PossWithDefPr(W, c(~u)=v) = max
(
p, 0
)
,

where p is

1−
∑

v′∈AVW (c(~u)) PossWithAssPr(W, c(~u)=v′)

|{v′′ | c(~u)=v′′ is possible in W and v′′ 6∈ AVW (c(~u))}| .

(7)

(“c(~u)=v is possible inW with the default probability.”)
The max function is used to ensure that the default prob-
ability is nonnegative. 9

8Note that this is slightly different from the original definition
of P-log from (Baral, Gelfond, and Rushton 2009), according to
which, if Intervene(c(~u)) is true, the probability of c(~u) = v is
determined by the default probability, which is a bit unintuitive.

9In (Baral, Gelfond, and Rushton 2009), a stronger condition of
“unitariness” is imposed to prevent (7) from being negative.

For each possible world W ∈ ω(Π), and each atom
c(~u)=v possible inW , the probability of c(~u)=v to happen
in W is defined as:
P (W, c(~u)=v) ={

PossWithAssPr(W, c(~u)=v) if v ∈ AVW (c(~u));
PossWithDefPr(W, c(~u)=v) otherwise.

The unnormalized probability of a possible world W is
defined as

µ̂Π(W) =
∏

c(~u)=v∈W and
c(~u)=v is possible in W

P (W, c(~u)=v),

and, assuming Π has at least one possible world with
nonzero unnormalized probability, the normalized probabil-
ity of W is defined as

µΠ(W) =
µ̂Π(W)∑

Wi∈ω(Π) µ̂Π(Wi)
.

We say Π is consistent if Π has at least one possible world
with a non-zero probability.
Example 3 Consider a variant of the Monty Hall Problem
encoding in P-log from (Baral, Gelfond, and Rushton 2009)
to illustrate the probabilistic nonmonotonicity in the pres-
ence of assigned probabilities. There are four doors, be-
hind which are three goats and one car. The guest picks
door 1, and Monty, the show host who always opens one
of the doors with a goat, opens door 2. Further, while the
guest and Monty are unaware, the statistics is that in the
past, with 30% chance the prize was behind door 1, and with
20% chance, the prize was behind door 3. Is it still better to
switch to another door? This example can be formalized in
P-log program Π, using both assigned probability and de-
fault probability, as

∼CanOpen(d)← Selected =d. (d ∈ {1, 2, 3, 4}),
∼CanOpen(d)← Prize=d.
CanOpen(d)← not ∼CanOpen(d).
random(Prize). random(Selected).
random(Open : {x : CanOpen(x)}).
pr(Prize=1) = 0.3. pr(Prize=3) = 0.2.
Obs(Selected =1). Obs(Open=2). Obs(Prize 6= 2).

The possible worlds of Π are as follows:
• W1 = {Obs(Selected = 1),Obs(Open = 2),Obs(Prize 6=

2), Selected = 1,Open = 2,Prize = 1,CanOpen(1) =
f,CanOpen(2) = t,CanOpen(3) = t,CanOpen(4) = t}

• W2 = {Obs(Selected = 1),Obs(Open = 2),Obs(Prize 6=
2), Selected = 1,Open = 2,Prize = 3,CanOpen(1) =
f,CanOpen(2) = t,CanOpen(3) = f,CanOpen(4) = t}

• W3 = {Obs(Selected = 1),Obs(Open = 2),Obs(Prize 6=
2), Selected = 1,Open = 2,Prize = 4,CanOpen(1) =
f,CanOpen(2) = t,CanOpen(3) = t,CanOpen(4) = f}.
The probability of each atom to happen is
P (Wi, Selected =1) = PossWithDefPr(W, Selected =1) = 1/4

P (W1,Open=2) = PossWithDefPr(W1,Open=2) = 1/3
P (W2,Open=2) = PossWithDefPr(W2,Open=2) = 1/2
P (W3,Open=2) = PossWithDefPr(W3,Open=2) = 1/2

P (W1,Prize=1) = PossWithAssPr(W1,Prize=1) = 0.3
P (W2,Prize=3) = PossWithAssPr(W2,Prize=3) = 0.2
P (W3,Prize=4) = PossWithDefPr(W3,Prize=4) = 0.25

So,

• µ̂Π(W1) = 1/4× 1/3× 0.3 = 1/40

• µ̂Π(W2) = 1/4× 1/2× 0.2 = 1/40

• µ̂Π(W3) = 1/4× 1/2× 0.25 = 1/32.

Thus, in comparison with staying (W1), switching to door 3
(W2) does not affect the chance, but switching to door 4
(W3) increases the chance by 25%.

Turning P-log into LPMLN

We define translation plog2lpmln(Π) that turns a P-log pro-
gram Π into an LPMLN program in a modular way. First,
every rule R in τ(Π) (that is used in defining the pos-
sible worlds in P-log) is turned into a hard rule α : R
in plog2lpmln(Π). In addition, plog2lpmln(Π) contains
the following rules to associate probability to each possible
world of Π. Below x, y denote schematic variables, and W
is a possible world of Π.

Possible Atoms: For each random selection rule (5) for
c(~u) in S and for each v ∈ Range(c), plog2lpmln(Π) in-
cludes

Possr(c(~u) = v)← Body, p(v), not Intervene(c(~u)) (8)

Rule (8) expresses that c(~u) = v is possible in W due to r if
W � Body ∧ p(v) ∧ ¬Intervene(c(~u)).
Assigned Probability: For each pr-atom (6) in P,
plog2lpmln(Π) contains the following rules:

α : PossWithAssPrr,C(c(~u)=v)←
Possr(c(~u) = v), C (9)

α : AssPrr,C(c(~u)=v)←
c(~u)=v,PossWithAssPrr,C(c(~u)=v) (10)

ln(p) : ⊥ ← not AssPrr,C(c(~u)=v) (p > 0) (11)
α : ⊥ ← AssPrr,C(c(~u)=v) (p = 0)
α : PossWithAssPr(c(~u)=v)← PossWithAssPrr,C(c(~u)=v).

Rule (9) expresses the condition under which pr-atom (6) is
applied in a possible world W . Further, if c(~u) = v is true
in W as well, rules (10) and (11) contribute the assigned
probability eln(p) = p to the unnormalized probability of W
as a factor when p > 0.

Denominator for Default Probability: For each random
selection rule (5) for c(~u) in S and for each v ∈ Range(c),
plog2lpmln(Π) includes

α : PossWithDefPr(c(~u)=v)←
Possr(c(~u)=v), not PossWithAssPr(c(~u)=v)

(12)

α : NumDefPr(c(~u), x)←
c(~u)=v,PossWithDefPr(c(~u) = v),
x = #count{y : PossWithDefPr(c(~u)=y)}

(13)

ln(1
m

) : ⊥ ← not NumDefPr(c(~u),m)
(m = 2, . . . , |Range(c)|) (14)

Rule (12) asserts that c(~u) = v is possible in W with a de-
fault probability if it is possible in W and not possible with
an assigned probability. Rule (13) expresses, intuitively, that
NumDefPr(c(~u), x) is true if there are exactly x different
values v such that c(~u) = v is possible in W with a default
probability, and there is at least one of them that is also true

in W . This value x is the denominator of (7). Then rule (14)
contributes the factor 1/x to the unnormalized probability of
W as a factor.

Numerator for Default Probability:
• Consider each random selection rule [r] random(c(~u) :
{x : p(x)})← Body for c(~u) in S along with all pr-atoms
associated with it in P:

prr(c(~u)=v1 | C1) = p1

. . .
prr(c(~u)=vn | Cn) = pn

where n ≥ 1, and vi and vj (i 6= j) may be equal. For
each v ∈ Range(c), plog2lpmln(Π) contains the follow-
ing rules:10

α : RemPr(c(~u), 1−y)← Body
c(~u)=v,PossWithDefPr(c(~u)=v),

y = #sum{p1 : PossWithAssPrr,C1(c(~u)=v1);

. . . ; pn : PossWithAssPrr,Cn(c(~u)=vn)}.
(15)

α : TotalDefPr(c(~u), x)← RemPr(c(~u), x), x > 0 (16)
ln(x) : ⊥ ← not TotalDefPr(c(~u), x) (17)

α : ⊥ ← RemPr(c(~u), x), x ≤ 0. (18)

In rule (15), y is the sum of all assigned probabilities.
Rules (16) and (17) are to account for the numerator of (7)
when n > 0. The variable x stands for the numerator of
(7). Rule (18) is to avoid assigning a non-positive default
probability to a possible world.
Note that most rules in plog2lpmln(Π) are hard rules.

The soft rules (11), (14), (17) cannot be simplified as atomic
facts, e.g., ln(1

m) : NumDefPr(c(~u),m) in place of (14),
which is in contrast with the use of probabilistic choice
atoms in the distribution semantics based probabilistic logic
programming language, such as ProbLog. This is related
to the fact that the probability of each atom to happen in
a possible word in P-log is derived from assigned and de-
fault probabilities, and not from independent probabilistic
choices like the other probabilistic logic programming lan-
guages. In conjunction with the embedding of ProbLog in
LPMLN (Lee and Wang 2016), it is interesting to note that
both kinds of probabilities can be captured in LPMLN using
different kinds of rules.

Example 3 Continued For the program Π in Example 3,
plog2lpmln(Π) consists of the rules α : R for each rule R
in τ(Π) and the following rules.

Possible Atoms:
α : Poss(Prize = d)← not Intervene(Prize)
α : Poss(Selected = d)← not Intervene(Selected)
α : Poss(Open = d)← CanOpen(d), not Intervene(Open)

10The sum aggregate can be represented by ground first-order
formulas under the stable model semantics under the assumption
that the Herbrand Universe is finite (Ferraris 2011). In the gen-
eral case, it can be represented by generalized quantifiers (Lee and
Meng 2012) or infinitary propositional formulas (Harrison, Lifs-
chitz, and Yang 2014). In the input language of ASP solvers, which
does not allow real number arguments, pi can be approximated to
integers of some fixed interval.

Assigned Probability:

α : PossWithAssPr(Prize = 1)← Poss(Prize = 1)
α : AssPr(Prize = 1)← Prize = 1,PossWithAssPr(Prize = 1)
ln(0.3) : ⊥ ← not AssPr(Prize = 1)

α : PossWithAssPr(Prize = 3)← Poss(Prize = 3)
α : AssPr(Prize = 3)← Prize = 3,PossWithAssPr(Prize = 3)
ln(0.2) : ⊥ ← not AssPr(Prize = 3)

(We simplified slightly not to distinguish
PossWithAssPr(·) and PossWithAssPrr,C(·) because
there is only one random selection rule for Prize and both
pr-atoms for Prize has empty conditions.)

Denominator for Default Probability:

α : PossWithDefPr(Prize = d)←
Poss(Prize = d), not PossWithAssPr(Prize = d)

α : PossWithDefPr(Selected = d)←
Poss(Selected = d), not PossWithAssPr(Selected = d)

α : PossWithDefPr(Open = d)←
Poss(Open = d), not PossWithAssPr(Open = d)

α : NumDefPr(Prize, x)←
Prize = d,PossWithDefPr(Prize = d),
x = #count{y : PossWithDefPr(Prize = y)}

α : NumDefPr(Selected, x)←
Selected = d,PossWithDefPr(Selected = d),
x = #count{y : PossWithDefPr(Selected = y)}

α : NumDefPr(Open, x)←
Open = d,PossWithDefPr(Open = d),
x = #count{y : PossWithDefPr(Open = y)}

ln(1
m

) :← not NumDefPr(c,m)
(c ∈ {Prize, Selected,Open},m ∈ {2, 3, 4})

Numerator for Default Probability:

α : RemPr(Prize, 1−x)← Prize = d,PossWithDefPr(Prize = d),
x = #sum{0.3 : PossWithAssPr(Prize=1);

0.2 : PossWithAssPr(Prize=3)}
α : TotalDefPr(Prize, x)← RemPr(Prize, x), x > 0
ln(x) : ⊥ ← not TotalDefPr(Prize, x)
α : ⊥ ← RemDefPr(Prize, x), x ≤ 0

Clearly, the signature of plog2lpmln(Π) is a superset of
the signature of Π. Further, plog2lpmln(Π) is linear-time
constructible. The following theorem tells us that there is a
1-1 correspondence between the set of the possible worlds
with non-zero probabilities of Π and the set of the stable
models of plog2lpmln(Π) such that each stable model is an
extension of the possible world, and the probability of each
possible world of Π coincides with the probability of the
corresponding stable model of plog2lpmln(Π).

Theorem 3 Let Π be a consistent P-log program. There is a
1-1 correspondence φ between the set of the possible worlds
of Π with non-zero probabilities and the set of probabilistic
stable models of plog2lpmln(Π) such that

• For every possible world W of Π that has a non-zero
probability, φ(W) is a probabilistic stable model of
plog2lpmln(Π), and µΠ(W) = Pplog2lpmln(Π)(φ(W)).

• For every probabilistic stable model I of plog2lpmln(Π),
the restriction of I onto the signature of τ(Π), denoted
I|σ(τ(Π)), is a possible world of Π and µΠ(I|σ(τ(Π))) >
0.

Proof. (Sketch) We can check that the following mapping
φ is the 1-1 correspondence.

1. φ(W) |= Possr(c(~u) = v) iff c(~u) = v is possible in W
due to r.

2. For each pr-atom prr(c(~u)=v | C) = p in Π,
φ(W) |= PossWithAssPrr,C(c(~u) = v) iff this pr-atom is
applied in W .

3. For each pr-atom prr(c(~u)=v | C) = p in Π,
φ(W) |= AssPrr,C(c(~u) = v) iff this pr-atom is applied
in W , and W |= c(~u)=v.

4. φ(W) |= PossWithAssPr(c(~u)=v) iff v ∈ AVW (c(~u)).
5. φ(W) |= PossWithDefPr(c(~u) = v) iff c(~u) = v is possi-

ble in W and v 6∈ AVW (c(~u)).
6. φ(W) |= NumDefPr(c(~u),m) iff there exist exactly m

different values v such that c(~u) = v is possible in W ;
v 6∈ AVW (c(~u)); and, for one of such v, W |= c(~u)=v.

7. φ(W) |= RemPr(c(~u), k) iff there exists a value v such
that W |= c(~u) = v; c(~u) = v is possible in W ; v 6∈
AVW (c(~u)); and

k = 1−
∑

v∈AVW (c(~u))

PossWithAssPr(W, c(~u)=v).

8. φ(W) |= TotalDefPr(c(~u), k) iff φ(W) |=
RemPr(c(~u, k)) and k > 0.
To check that µΠ(W) = Pplog2lpmln(Π)(φ(W)), note first

that the weight of φ(W) is computed by multiplying e to
the power of the weights of rules (11), (14), (17) that are
satisfied by φ(W). Let’s call this product TW .

Consider a possible world W with a non-zero probability
of Π and c(~u)=v that is satisfied by W .

If c(~u) = v is possible in W and pr-atom prr(c(~u) = v |
C) = p is applied in W (i.e., v ∈ AVW (c(~u))), then the
assigned probability is applied: P (W, c(~u)=v) = p. On the
other hand, by condition 3, φ(W) |= AssPrr,C(c(~u)=v), so
that from (11), the same p is a factor of TW .

If c(~u) = v is possible in W and v 6∈ AVW (c(~u)), the
default probability is applied: P (W, c(~u) = v) = p is com-
puted by (7). By Condition 8, φ(W) |= TotalDefPr(c(~u), x)
where x = 1 −

∑
v′∈AVW (c(~u))

PossWithAssPr(W, c(~u) = v′).

Since φ(W) |= (17), it is a factor of TW , which is the
same as the numerator of (7). Furthermore, by Condition 6,
φ(W) |= NumDefPr(c(~u),m), where m is the denominator
of (7). Since φ(W) |= (14), 1

m is a factor of TW .

Example 3 Continued For the P-log program Π for the
Monty Hall problem, Π′ = plog2lpmln(Π) has three prob-
abilistic stable models I1, I2, and I3, each of which is an
extension of W1, W2, and W3 respectively, and satisfies
the following atoms: Poss(Prize = i) for i = 1, 2, 3, 4;
Poss(Selected = i) for i = 1, 2, 3, 4; PossWithAssPr(Prize=

i) for i = 1, 3; PossWithDefPr(Prize = i) for i =
2, 4; PossWithDefPr(Selected = i) for i = 1, 2, 3, 4;
NumDefPr(Selected, 4). In addition,
• I1 |= {AssPr(Prize=1),Poss(Open=2),

Poss(Open=3),Poss(Open=4),
PossWithDefPr(Open=2),PossWithDefPr(Open=3),
PossWithDefPr(Open=4),NumDefPr(Open, 3)}

• I2 |= {AssPr(Prize=3),Poss(Open=2),
Poss(Open=4),PossWithDefPr(Open=2),
PossWithDefPr(Open=4),NumDefPr(Open, 2)}

• I3 |= {Poss(Open=2),Poss(Open=3),
PossWithDefPr(Open=2),PossWithDefPr(Open=3),
NumDefPr(Open, 2),NumDefPr(Prize, 2),
RemPr(Prize, 0.5),TotalDefPr(Prize, 0.5)}.
The unnormalized weight WΠ′(Ii) of each probabilis-

tic stable model Ii is shown below. w(AssPrr,C(c(~u) =
v)) denotes the exponentiated weight of rule (11);
w(NumDefPr(c(~u),m)) denotes the exponentiated weight
of rule (14); w(TotalDefPr(c(~u), x)) denotes the exponenti-
ated weight of rule (17).
• WΠ′(I1) = w(NumDefPr(Selected, 4)) ×
w(AssPr(Prize = 1)) × w(NumDefPr(Open, 3)) =
1
4 ×

3
10 ×

1
3 = 1

40 .
• WΠ′(I2) = w(NumDefPr(Selected, 4)) ×
w(AssPr(Prize = 3)) × w(NumDefPr(Open, 2)) =
1
4 ×

2
10 ×

1
2 = 1

40 ;
• WΠ′(I3) = w(NumDefPr(Selected, 4)) ×
×w(NumDefPr(Open, 2))××w(NumDefPr(Prize, 2)×
w(TotalDefPr(Prize, 0.5) = 1

4 ×
1
2 ×

1
2 ×

5
10 = 1

32 .

Combining the translations plog2lpmln and lpmln2wc,
one can compute P-log MAP inference using standard ASP
solvers.

Conclusion
In this paper, we show how LPMLN is related to weak con-
straints and P-log. Weak constraints are a relatively sim-
ple extension to ASP programs, while P-log is highly struc-
tured but a more complex extension. LPMLN is shown to
be a good middle ground language that clarifies the relation-
ships. We expect the relationships will help us to apply the
mathematical and computational results developed for one
language to another language.

Acknowledgments We are grateful to Evgenii Balai, Yi
Wang and anonymous referees for their useful comments on
the draft of this paper. This work was partially supported by
the National Science Foundation under Grants IIS-1319794
and IIS-1526301.

References
Bach, S. H.; Broecheler, M.; Huang, B.; and Getoor, L.
2015. Hinge-loss markov random fields and probabilistic
soft logic. arXiv:1505.04406 [cs.LG].
Balai, E., and Gelfond, M. 2016. On the relationship be-
tween P-log and LPMLN. In Proceedings of International
Joint Conference on Artificial Intelligence (IJCAI).

Baral, C.; Gelfond, M.; and Rushton, J. N. 2009. Proba-
bilistic reasoning with answer sets. TPLP 9(1):57–144.
Buccafurri, F.; Leone, N.; and Rullo, P. 2000. Enhancing
disjunctive datalog by constraints. Knowledge and Data En-
gineering, IEEE Transactions on 12(5):845–860.
Calimeri, F.; Faber, W.; Gebser, M.; Ianni, G.; Kaminski,
R.; Krennwallner, T.; Leone, N.; Ricca, F.; and Schaub, T.
2013. ASP-Core-2 input language format.
De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007.
ProbLog: A probabilistic prolog and its application in link
discovery. In IJCAI, volume 7, 2462–2467.
Ferraris, P.; Lee, J.; and Lifschitz, V. 2011. Stable models
and circumscription. Artificial Intelligence 175:236–263.
Ferraris, P. 2011. Logic programs with propositional con-
nectives and aggregates. ACM Transactions on Computa-
tional Logic (TOCL) 12(4):25.
Gelfond, M., and Lifschitz, V. 1988. The stable model
semantics for logic programming. In Kowalski, R., and
Bowen, K., eds., Proceedings of International Logic Pro-
gramming Conference and Symposium, 1070–1080. MIT
Press.
Harrison, A. J.; Lifschitz, V.; and Yang, F. 2014. The
semantics of gringo and infinitary propositional formulas.
In Principles of Knowledge Representation and Reasoning:
Proceedings of the Fourteenth International Conference, KR
2014.
Lee, J., and Meng, Y. 2012. Stable models of formulas
with generalized quantifiers (preliminary report). In Tech-
nical Communications of the 28th International Conference
on Logic Programming, 61–71.
Lee, J., and Wang, Y. 2016. Weighted rules under the stable
model semantics. In Proceedings of International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR), 145–154.
Lee, J.; Meng, Y.; and Wang, Y. 2015. Markov logic style
weighted rules under the stable model semantics. In Tech-
nical Communications of the 31st International Conference
on Logic Programming.
Nickles, M., and Mileo, A. 2014. Probabilistic inductive
logic programming based on answer set programming. In
15th International Workshop on Non-Monotonic Reasoning
(NMR 2014).
Pearl, J. 2000. Causality: models, reasoning and inference,
volume 29. Cambridge Univ Press.
Richardson, M., and Domingos, P. 2006. Markov logic
networks. Machine Learning 62(1-2):107–136.

