
Under consideration for publication in Theory and Practice of Logic Programming 1

Module Theorem for
The General Theory of Stable Models

Joseph Babb and Joohyung Lee

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, AZ, USA

(e-mail: {Joseph.Babb, joolee}@asu.edu)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

The module theorem by Janhunen et al. demonstrates how to provide a modular structure
in answer set programming, where each module has a well-defined input/output interface
which can be used to establish the compositionality of answer sets. The theorem is useful
in the analysis of answer set programs, and is a basis of incremental grounding and re-
active answer set programming. We extend the module theorem to the general theory of
stable models by Ferraris et al. The generalization applies to non-ground logic programs
allowing useful constructs in answer set programming, such as choice rules, the count ag-
gregate, and nested expressions. Our extension is based on relating the module theorem
to the symmetric splitting theorem by Ferraris et al. Based on this result, we reformulate
and extend the theory of incremental answer set computation to a more general class of
programs.

KEYWORDS: answer set programming, module theorem, splitting theorem

1 Introduction

The module theorem (Oikarinen and Janhunen 2008; Janhunen et al. 2009) demon-

strates how to provide a modular structure for logic programs under the stable

model semantics, where each module has a well-defined input/output interface

which can be used to establish the compositionality of answer sets of different

modules. The theorem was shown to be useful in the analysis of answer set pro-

grams and was used as a basis of incremental grounding (Gebser et al. 2008) and

reactive answer set programming (Gebser et al. 2011), resulting in systems iclingo

and oclingo.

The module theorem was stated for normal logic programs and smodels pro-

grams in (Oikarinen and Janhunen 2008) and for disjunctive logic programs in (Jan-

hunen et al. 2009), but both papers considered ground programs only. In this paper

we extend the module theorem to non-ground programs, or more generally, to first-

order formulas under the stable model semantics proposed by Ferraris et al. (2011).

We derive the generalization by relating the module theorem to the symmetric

splitting theorem by Ferraris et al. (2009). This is expected in some sense as the

2 Joseph Babb and Joohyung Lee

symmetric splitting theorem looks close to the module theorem and is already appli-

cable to first-order formulas under the stable model semantics (Ferraris et al. 2011).

Since non-ground logic programs can be understood as a special class of first-order

formulas under the stable model semantics, the theorem can be applied to split

these programs. In addition, as the semantics of choice rules and the count aggre-

gate in answer set programming is understood as shorthand for some first-order

formulas (Lee et al. 2008), the splitting theorem can also be applied to non-ground

programs containing such constructs.

The precise relationship between the module theorem and the splitting theorem

has not been established, partly because there is some technical gap that needs

to be closed. While the splitting theorem is applicable to more general classes of

programs in most cases, there are some cases where the module theorem allows us

to split, but the splitting theorem does not.

In order to handle this issue, we first extend the splitting theorem to allow this

kind of generality. We then add modular structures to the splitting theorem, and

provide a mechanism of composing partial interpretations for each module. This

new theorem serves as the module theorem for the general theory of stable models.

The paper is organized as follows. In the next section, we review the stable

model semantics from (Ferraris et al. 2011), the splitting theorem, and the module

theorem. In Section 3 we provide a generalization of the splitting theorem, which

closes the gap between the module theorem and the splitting theorem. In Section 4

we present the module theorem for the general theory of stable models, which

extends both the previous splitting theorem and the previous module theorem.

We give an example of the generalized module theorem in Section 5 and show

how it serves as a foundation for extending the theory of incremental answer set

computation in Section 6.

2 Preliminaries

2.1 Review: General Theory of Stable Models

This review follows the definition by Ferraris et al. (2011). There, stable models

are defined in terms of the SM operator, which is similar to the circumscription

operator CIRC (Lifschitz 1994).

Let p be a list of distinct predicate constants p1, . . . , pn, and let u be a list of

distinct predicate variables u1, . . . , un. By u ≤ p we denote the conjunction of the

formulas ∀x(ui(x) → pi(x)) for all i = 1, . . . , n, where x is a list of distinct object

variables whose length is the same as the arity of pi. Expression u < p stands for

(u ≤ p) ∧ ¬(p ≤ u). For instance, if p and q are unary predicate constants then

(u, v) < (p, q) is

∀x(u(x)→ p(x)) ∧ ∀x(v(x)→ q(x)) ∧ ¬
(
∀x(p(x)→ u(x)) ∧ ∀x(q(x)→ v(x))

)
.

For any first-order formula F , SM[F ; p] is defined as

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

Module Theorem for the General Theory of Stable Models 3

where F ∗(u) is defined recursively as follows: 1

• pi(t)∗ = ui(t) for any list t of terms;

• F ∗ = F for any atomic formula F (including ⊥ and equality) that does not

contain members of p;

• (F ∧G)∗ = F ∗ ∧G∗;
• (F ∨G)∗ = F ∗ ∨G∗;
• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);

• (∀xF)∗ = ∀xF ∗;
• (∃xF)∗ = ∃xF ∗.

When F is a sentence, the models of SM[F ; p] are called the p-stable models

of F . Intuitively, they are the models of F that are “stable” on p. We will often

simply write SM[F] in place of SM[F ; p] when p is the list of all predicate con-

stants occurring in F , and often identify p with the corresponding set if there is no

confusion.

By an answer set of F that contains at least one object constant we understand an

Herbrand interpretation of σ(F) that satisfies SM[F], where σ(F) is the signature

consisting of the object, function and predicate constants occurring in F .

The answer sets of a logic program Π are defined as the answer sets of the FOL-

representation of Π (i.e., the conjunction of the universal closures of implications

corresponding to the rules). For example, the FOL-representation F of the program

p(a)

q(b)

r(x)← p(x),not q(x)

is

p(a) ∧ q(b) ∧ ∀x(p(x) ∧ ¬q(x)→ r(x)) (1)

and SM[F] is

p(a) ∧ q(b) ∧ ∀x(p(x) ∧ ¬q(x)→ r(x))

∧¬∃uvw(((u, v, w) < (p, q, r)) ∧ u(a) ∧ v(b)

∧∀x((u(x) ∧ (¬v(x) ∧ ¬q(x))→ w(x)) ∧ (p(x) ∧ ¬q(x)→ r(x)))),

which is equivalent to the first-order sentence

∀x(p(x)↔ x = a) ∧ ∀x(q(x)↔ x = b) ∧ ∀x(r(x)↔ (p(x) ∧ ¬q(x))) (2)

(Ferraris et al. 2007, Example 3). The stable models of F are any first-order models

of (2). The only answer set of F is the Herbrand model {p(a), q(b), r(a)}.
Ferraris et al. (2011) show that this definition of an answer set, when applied to

the syntax of logic programs, is equivalent to the traditional definition of an answer

set that is based on grounding and fixpoints (Gelfond and Lifschitz 1988).

1 We understand ¬F as shorthand for F → ⊥.

4 Joseph Babb and Joohyung Lee

2.2 Review: Symmetric Splitting Theorem

We say that an occurrence of a predicate constant, or any other subexpression, in

a formula F is positive if the number of implications containing that occurrence in

the antecedent is even (recall that we treat ¬G as shorthand for G → ⊥). We say

that the occurrence is strictly positive if the number of implications in F containing

that occurrence in the antecedent is 0. For example, in (1), both occurrences of q

are positive, but only the first one is strictly positive. A rule of F is an implication

that occurs strictly positively in F .

A formula F is called negative on a list p of predicate constants if members of p

have no strictly positive occurrences in F . For example, formula (1) is negative on

{s}, but is not negative on {p, q}. A formula of the form ¬F (shorthand for F → ⊥)

is negative on any list of predicate constants.

The following definition of a dependency graph is from (Lee and Palla 2012),

which is similar to the one from (Ferraris et al. 2009), but may contain less edges.

Definition 1 (Predicate Dependency Graph)

The predicate dependency graph of a first-order formula F relative to p, denoted

by DG[F ; p], is the directed graph that

• has all members of p as its vertices, and

• has an edge from p to q if, for some rule G→ H of F ,

— p has a strictly positive occurrence in H, and

— q has a positive occurrence in G that does not belong to any subformula

of G that is negative on p.

For example, DG[(1); p, q, r] has the vertices p, q, and r, and a single edge from r

to p.

Theorem 1 (Splitting Theorem, (Ferraris et al. 2009))

Let F , G be first-order sentences, and let p, q be finite disjoint lists of distinct

predicate constants. If

(a) each strongly connected component of the predicate dependency graph of

F ∧G relative to p, q is a subset of p or a subset of q,

(b) F is negative on q, and

(c) G is negative on p

then

SM[F ∧G; pq]↔ SM[F ; p] ∧ SM[G; q]

is logically valid.

Theorem 1 is slightly more generally applicable than the version of the split-

ting theorem from (Ferraris et al. 2009) as it refers to the refined definition of a

dependency graph above instead of the one considered in (Ferraris et al. 2009).

Example 1

Theorem 1 tells us that SM[(1)] is equivalent to

SM[p(a) ∧ q(b); p, q] ∧ SM[∀x(p(x) ∧ ¬q(x)→ r(x)); r].

Module Theorem for the General Theory of Stable Models 5

2.3 Review: DLP-Modules and Module Theorem

Janhunen et al. (2009) considered rules of the form

a1; . . . ; an ← b1, . . . , bm,not c1, . . . ,not ck (3)

where n,m, k ≥ 0 and a1, . . . , an, b1, . . . bm, c1, . . . , ck are propositional atoms. They

define a DLP-module as a quadruple (Π, I,O,H), where Π is a finite propositional

disjunctive logic program consisting of rules of the form (3), and I, O, and H are

finite sets of propositional atoms denoting the input, output, and hidden atoms,

respectively, such that (i) the sets of input, output, and hidden atoms are disjoint;

(ii) every atom occurring in Π is either an input, output, or hidden atom; (iii)

every rule in Π with a nonempty head contains at least one output or hidden atom.

A module’s hidden atoms can be viewed as a special case of its output atoms

which occur in no other modules. For simplicity, we consider only DLP-modules

with no hidden atoms (H = ∅), which we denote by a triple (Π, I,O).

Definition 2 (Module Answer Set, (Janhunen et al. 2009))

We say that a set X of atoms is a (module) answer set of a DLP-module (Π, I,O)

if X is an answer set of Π ∪ {p | p ∈ (I ∩X)}.

The role of input atoms can be simulated using choice rules. A choice rule

{p} ← Body is understood as shorthand for p; not p ← Body (Lee et al. 2008).

The following lemma shows how module answer sets can be alternatively charac-

terized in terms of choice rules.

Lemma 1

X is a module answer set of (Π, I,O) iff X is an answer set of Π ∪ {{p} ← | p ∈ I}.

Definition 3 (Dependency Graph of a DLP-Module)

The dependency graph of a DLP-module Π = (Π, I,O), denoted by DG[Π;O], is

the directed graph that

• has all members of O as its vertices, and

• has edges from each ai (1 ≤ i ≤ n) to each bj (1 ≤ j ≤ m) for each rule (3)

in Π.

It is clear that this definition is a special case of Definition 1.

Definition 4 (Joinability of DLP-modules)

Two DLP-modules Π1 = (Π1, I1,O1) and Π2 = (Π2, I2,O2) are called joinable if

• O1 ∩ O2 = ∅,
• each strongly connected component of DG[Π1 ∪Π2; O1O2] is either a subset

of O1 or a subset of O2,

• each rule in Π1 (Π2, respectively) whose head is not disjoint with O2 (O1,

respectively) occurs in Π2 (Π1, respectively).

6 Joseph Babb and Joohyung Lee

Definition 5 (Join of DLP-modules)

For any modules Π1 = (Π1, I1,O1) and Π2 = (Π2, I2,O2) that are joinable, the

join of Π1 and Π2, denoted by Π1 tΠ2, is defined to be the DLP-module

(Π1 ∪Π2, (I1 ∪ I2) \ (O1 ∪ O2), O1 ∪ O2) .

Informally, the join of two DLP-modules corresponds to the union of their pro-

grams, and defines all atoms that are defined by either module.

Given sets of atoms X1, X2, and A, we say that X1 and X2 are A-compatible

if X1 ∩A = X2 ∩A. As demonstrated by Janhunen et al. (2009), given a program

composed of a series of joinable DLP-modules, it is possible to consider each DLP-

module contained in a program separately, evaluate them, and compose the re-

sulting compatible answer sets in order to obtain the answer sets of the complete

program. This notion is presented in Theorem 2, which is a reformulation of the

main theorem (Theorem 5.7) from (Janhunen et al. 2009).

Theorem 2 (Module Theorem for DLPs)

Let Π1 = (Π1, I1,O1) and Π2 = (Π2, I2,O2) be DLP-modules that are joinable,

and let X1 and X2 be ((I1 ∪ O1) ∩ (I2 ∪ O2))-compatible sets of atoms. The set

X1 ∪ X2 is a module answer set of Π1 tΠ2 iff X1 is a module answer set of Π1

and X2 is a module answer set of Π2.

3 A Generalization of the Splitting Theorem by Ferraris et al.

The module theorem (Theorem 2) and the splitting theorem (Theorem 1) resemble

each other. When we restrict attention to propositional logic program F , the inten-

sional predicates p in SM[F ; p] correspond to output atoms in the corresponding

module. Though not explicit in the notation SM[F ; p], the predicates that are not

in p behave like input atoms in the corresponding module. Also, the joinability

condition in Definition 4 appears similar to the splitting condition in Theorem 1,

but with one exception: the last clause in the definition of joinability (Definition 4)

does not have a counterpart in the splitting theorem. The module theorem allows

us to join two DLP-modules Π1 = (Π1, I1,O1) and Π2 = (Π2, I2,O2) even when

Π1 has a rule whose head contains an output atom in O2 as long as that rule is

also in Π2.

Indeed, this difference yields the splitting theorem less generally applicable than

the module theorem in some cases. For example, the module theorem (Theorem 2)

allows us to join

Π1 = ({p ∨ q ← r. s← .}, {q, r}, {p, s}) and

Π2 = ({p ∨ q ← r. t← .}, {p, r}, {q, t})
(4)

into

Π = ({p ∨ q ← r. s← . t← .}, {r}, {p, q, s, t}).
On the other hand, the splitting theorem (Theorem 1), as presented in Section 2.2,

Module Theorem for the General Theory of Stable Models 7

is not as general in this regard. It does not allow us to justify that

SM[(r → p ∨ q) ∧ s; p, s] ∧ SM[(r → p ∨ q) ∧ t; q, t] (5)

is equivalent to

SM[(r → p ∨ q) ∧ s ∧ t; p, q, s, t] . (6)

because, for instance, r → p ∨ q in the first conjunctive term of (5) is not negative

on {q, t}.
In order to close the gap, we next extend the splitting theorem to allow a partial

split, which allows an overlapping sentence, such as r → p∨q in the above example,

in both component formulas.

Theorem 3 (Extension of the Splitting Theorem)
Let F , G, H be first-order sentences, and let p, q be finite lists of distinct predicate

constants. If

(a) each strongly connected component of DG[F ∧G∧H; pq] is a subset of p or

a subset of q,
(b) F is negative on q, and
(c) G is negative on p

then

SM[F ∧G ∧H; pq]↔ SM[F ∧H; p] ∧ SM[G ∧H; q]

is logically valid.

It is clear that Theorem 1 is a special case of Theorem 3 (take H to be >). Unlike

in (Ferraris et al. 2009) we do not require p and q to be disjoint from each other.

Getting back to the example above, according to the extended splitting theorem,

(6) is equivalent to (5) (Take H to be r → p ∨ q).

4 Module Theorem for General Theory of Stable Models

4.1 Statement of the Theorem

In this section, we present a new formulation of the module theorem that is appli-

cable to first-order formulas under the stable model semantics.

As a step towards this end, we first define the notion of a partial interpretation.

Given a signature σ and its subset c, by a c-partial interpretation of σ, we mean an

interpretation of σ restricted to c. Clearly, a σ-partial interpretation of σ is simply

an interpretation of σ. By an Herbrand c-partial interpretation of σ, we mean an

Herbrand interpretation of σ restricted to c.

We say that a c1-partial interpretation I1 and a c2-partial interpretation I2 of

the same signature σ are compatible if their universes are the same, and cI1 = cI2

for every common constant c in c1∩c2. For such compatible partial interpretations

I1 and I2, we define the union of I1 and I2, denoted by I1 ∪ I2, to be the (c1 ∪ c2)-

partial interpretation of σ such that (i) |I1 ∪ I2| = |I1| = |I2| 2, (ii) cI1∪I2 = cI1 for

every constant c in c1, and (iii) cI1∪I2 = cI2 for every constant c in c2.

2 |I| denotes the universe of the interpretation I.

8 Joseph Babb and Joohyung Lee

Next we introduce a first-order analog to DLP-modules, which we refer to as

first-order modules, and define a method of composing multiple such constructs

similar to the join operation for DLP-modules. By pr(F) we denote the set of all

predicate constants occurring in F . A (first-order) module F of a signature σ is a

triple (F, I,O), where F is a first-order sentence of σ, and I and O are disjoint lists

of distinct predicate constants of σ such that pr(F) ⊆ (I ∪ O). Intuitively, I and

O denote, respectively, the sets of non-intensional (input) and intensional (output)

predicates considered by F .

Definition 6 (Module Stable Model)

We say that an interpretation I is a (module) stable model of a module F = (F, I,O)

if I |= SM[F ;O]. We understand SM[F] as shorthand for SM[F ;O].

Definition 7 (Joinability of First-Order Modules)

Two first-order modules F1 = (F1 ∧ H, I1, O1) and F2 = (F2 ∧ H, I2, O2) are

called joinable if

• O1 ∩ O2 = ∅,
• each strongly connected component of DG[F1 ∧ F2 ∧H; O1 ∪ O2] is either a

subset of O1 or a subset of O2,

• F1 is negative on O2, and

• F2 is negative on O1.

Definition 8 (Join of First-Order modules)

For any modules F1 = (F1 ∧ H, I1, O1) and F2 = (F2 ∧ H, I2, O2) that are

joinable, the join of F1 and F2, denoted by F1 tF2, is defined to be the first-order

module

(F1 ∧ F2 ∧H, (I1 ∪ I2) \ (O1 ∪ O2), O1 ∪ O2) .

It is not difficult to check that this definition is a proper generalization of Defi-

nition 4.

As with DLP-modules, the join operation for first-order modules is both commu-

tative and associative.

Proposition 1 (Commutativity and Associativity of Join)

For any first-order modules F1, F2, and F3, the following properties hold:

• F1 t F2 is defined iff F2 t F1 is defined.

• SM[F1 t F2] is equivalent to SM[F2 t F1].

• (F1 t F2) t F3 is defined iff F1 t (F2 t F3) is defined.

• SM[(F1 t F2) t F3] is equivalent to SM[F1 t (F2 t F3)].

The following theorem is an extension of Theorem 2 to the general theory of

stable models. Given a first-order formula F , by c(F) we denote the set of all

object, function and predicate constants occurring in F .

Module Theorem for the General Theory of Stable Models 9

a

b

c

d

e

f

��

��

??
��

		 ����

__

jj //

55

Fig. 1. A Simple Graph

Theorem 4 (Module Theorem for General Theory of Stable Models)

Let F1 = (F1, I1,O1) and F2 = (F2, I2,O2) be first-order modules of a signature σ

that are joinable, and, for i = 1, 2, let ci be a subset of σ that contains c(Fi) ∪Oi,
and let Ii be a ci-partial interpretation of σ. If I1 and I2 are compatible with each

other, then

I1 ∪ I2 |= SM[F1 t F2] iff I1 |= SM[F1] and I2 |= SM[F2] .

It is clear that when σ = c1 = c2, Theorem 4 reduces to Theorem 3.

Also, it is not difficult to check that Theorem 4 reduces to Theorem 2 when F1

and F2 represent DLP-modules, c1 is I1 ∪ O1, and c2 is I2 ∪ O2.

5 Example: Analyzing RASPL-1 Programs Using Module Theorem

As an example of Theorem 4, consider the problem of locating non-singleton cliques

within a graph, such as the one shown in Figure 1, that are reachable from a pre-

specified node. This problem can be divided into three essential parts: (i) fixing the

graph, (ii) determining the reachable subgraph, and (iii) locating cliques within

that subgraph.

We can describe the graph shown in Figure 1 in the language of RASPL-1 (Lee

et al. 2008), which is essentially a fragment of the general theory of stable models

in logic programming syntax. We assume that σ is an underling signature. The

program below lists the vertices and the edges using predicates vertex and edge,

and assigns the starting vertex using at predicate.

vertex(a). vertex(b). vertex(c). vertex(d). vertex(e). vertex(f).

edge(a, a). edge(a, b). edge(b, c). edge(c, b). edge(c, c). edge(d, e).

edge(d, f). edge(e, d). edge(e, f). edge(f, d). edge(f, e). at(a).
(7)

The first-order module FG is (FG, ∅, {vertex, edge, at}), where FG is the FOL-

representation of program (7), which is the conjunction of all the atoms. Let IG be

the following Herbrand c(FG)-partial interpretation of σ that satisfies SM[FG].

10 Joseph Babb and Joohyung Lee

vertexIG = {a, b, c, d, e, f},
edgeIG = {(a, a), (a, b), (b, c), (c, b),

(c, c), (d, e), (d, f), (e, d), (e, f), (f, d), (f, e)}, and

atIG = {a}.

The following program describes the reachable vertices by the predicate reachable,

which is defined using edge and at.

reachable(X)← at(X).

reachable(Y)← reachable(X), edge(X,Y).
(8)

The first-order module FR is (FR, {edge, at}, {reachable}), where FR is the

FOL-representation of program (8). Let IR be the following Herbrand c(FR)-partial

interpretation of σ that satisfies SM[FG], which is compatible with IG.

edgeIR = {(a, a), (a, b), (b, c), (c, b),

(c, c), (d, e), (d, f), (e, d), (e, f), (f, d), (f, e)},
atIR = {a}, and

reachableIR = {a, b, c}.

Finally, the following program describes non-singleton cliques reachable from

vertex a by in clique, which is defined using edge and reachable:

{in clique(X)} ← reachable(X)

← in clique(X), in clique(Y), not edge(X,Y), X 6= Y

← not 2{X : in clique(X)}.
(9)

In RASPL-1, expression b{x : F (x)}, where b is a positive integer, x is a list

of object variables, and F (x) is a conjunction of literals, stands for the first-order

formula

∃x1 . . .xb

 ∧
1≤i≤b

F (xi) ∧
∧

1≤i<j≤b

¬(xi = xj)

 ,
where x1, . . . ,xb are lists of new object variables of the same length as x. For any

lists of variables x = (x1, . . . , xn) and y = (y1, . . . , yn) of the same length, x = y

stands for x1 = y1 ∧ · · · ∧ xn = yn.

The first-order module FC is (FC , {reachable, edge}, {in clique}), where FC
is the following FOL-representation of RASPL-1 program (9):

∀X(reachable(X)→ (in clique(X) ∨ ¬in clique(X)))

∧ ∀XY (in clique(X) ∧ in clique(Y) ∧ ¬edge(X,Y) ∧X 6= Y → ⊥)

∧ (¬∃XY (in clique(X) ∧ in clique(Y) ∧X 6= Y)→ ⊥) .

Let IC be the following Herbrand c(FC)-partial interpretation of σ that satisfies

Module Theorem for the General Theory of Stable Models 11

SM[FC], which is compatible with IG and IR.

edgeIC = {(a, a), (a, b), (b, c), (c, b),

(c, c), (d, e), (d, f), (e, d), (e, f), (f, d), (f, e)},
reachableIC = {a, b, c}, and

in cliqueIC = {b, c}.

Clearly, FG, FR, and FC are joinable. In accordance with Theorem 4, the union

of the partial interpretations IG∪IR∪IC is a partial interpretation of σ that satisfies

SM[FG t FR t FC].

6 Modules That Can Be Incrementally Assembled

6.1 Review: Incremental Modularity by Gebser et al.

In this section, we present a reformulation of the theory behind the system iclingo,

which was developed to allow for incremental grounding and solving of answer

set programs. We follow the enhancement given in (Gebser et al. 2011) with a

slight deviation. Most notably, we do not restrict attention to nondisjunctive logic

programs, but limit attention to offline programs for simplicity.

Given a disjunctive program Π of a signature σ, by Groundσ(Π) we denote the

ground program obtained from Π by replacing object variables with ground terms

in the Herbrand Universe of σ. If Π is ground, then the projection of Π onto a set

X of ground atoms, denoted by Π|X , is defined to be the program obtained from Π

by removing all rules (3) in Π that contain some bi not in X, and then removing all

occurrences of not cj such that cj is not in X from the remaining rules. By head(Π)

we denote the set of all atoms that occur in the head of a rule in Π.

Definition 9 (DLP-Module Instantiation)

Given a disjunctive program Π, and a set of ground atoms I, Gebser et al. (2011)

define the DLP-module instantiation of Π w.r.t. I, denoted by DM (Π, I), to be the

DLP-module (Groundσ(Π)|I∪O, I,O), whereO is head
(
Groundσ(Π)|I∪head(Groundσ(Π))

)
.

For example, Figure 2 shows a simple program and its DLP-module instantiation

w.r.t. {l, t}.
An incrementally parameterized program Π[t] is a program which may contain

atoms of the form af(t)(x), called incrementally parameterized atoms, where t is an

incremental step counter, and f(t) is some arithmetic function involving t. Given

such a program Π[t], its incremental instantiation at some nonnegative integer i,

which we denote by Π[i], is defined to be the program obtained by replacing all

occurrences of atoms af(t)(x) with an atom av(x), where v is the result of evaluating

n← t
p← q, t
q ← r,not s
r ← m

 7→
I={l,t}

(
n← t
p← q, t

, {l, t}, {n, p, q}
)

Fig. 2. DLP-module instantiation of a simple program

12 Joseph Babb and Joohyung Lee

f(i). For example, let Π = {pt+1(x)← pt(x),not q(x)}. The program Π[2] is then

{p3(x)← p2(x),not q(x)}.
Gebser et al. (2011) define an incremental logic program to be a triple 〈B,P [t], Q[t]〉,

where B is a disjunctive logic program, and P [t], Q[t] are incrementally parame-

terized disjunctive logic programs. Informally, B is the base program component,

which describes static knowledge; P [t] is the cumulative program component, which

contains information regarding every step t that should be accumulated during ex-

ecution; Q[t] is the volatile query program component, containing constraints or

information regarding the final step.

We assume a partial order ≺ on

{Groundσ(B),Groundσ(P [1]),Groundσ(P [2]), . . . ,

Groundσ(Q[1]),Groundσ(Q[2]), . . . } (10)

such that

• Groundσ(B) ≺ Groundσ(P [1]) ≺ Groundσ(P [2]) ≺ . . . ;
• Groundσ(P [i]) ≺ Groundσ(Q[i]) for i ≥ 1.

Given a DLP-module P = (Π, I,O), by Out(P) we denote O.

Definition 10 (Modular and Acyclic Logic Programs)

An incremental logic program 〈B,P [t], Q[t]〉 is modular if the following DLP-modules

are defined for every k ≥ 0:

P0 = DM (B, ∅),
Pi = Pi−1 t DM (P [i],Out(Pi−1)), (1 ≤ i ≤ k)

Rk = Pk t DM (Q[k],Out(Pk)),

and is acyclic if, for each pair of programs Π, Π′ in (10) such that Π ≺ Π′, we have

that Π contains no head atoms of Π′. 3

Gebser et al. (2011) demonstrated that given a modular and acyclic incremental

logic program 〈B,P [t], Q[t]〉 and some nonnegative integer k, we are able to evaluate

each component DLP-module individually, and compose the results in order to

obtain the answer sets of the complete module Rk. They define the k-expansion Rk
of the incremental logic program as

B ∪ P [1] ∪ · · · ∪ P [k] ∪Q[k] .

Proposition 2

(Gebser et al. 2011, Proposition 2) Let 〈B,P [t], Q[t]〉 be an incremental logic

program of a signature σ that is modular and acyclic, let k be a nonnegative integer,

and let X be a subset of the output atoms of Rk. Set X is an answer set of the

k-expansion Rk of 〈B,P [t], Q[t]〉 if and only if X is a (module) answer set of Rk.

3 The acyclicity condition corresponds to the special case of the “mutually revisable” condition
in (Gebser et al. 2011) when there is no online component.

Module Theorem for the General Theory of Stable Models 13

Proposition 2 tells us that the results of incrementally grounding and evaluating

an incremental logic program are identical to the results of evaluating the entire

k-expansion in the usual non-incremental fashion.

6.2 Incrementally Assembled First-Order Modules

In this section, we consider an extension of the theory supporting system iclingo

which allows for the consideration of first-order sentences by utilizing Theorem 4.

This extension may be useful in analyzing non-ground RASPL-1 programs that

describe dynamic domains.

Given a first-order sentence F , we define the projection of F onto a set p of

predicates, denoted by F |p, to be the first-order sentence obtained by replacing all

occurrences of atoms of the form q(t1, . . . , tn) in F such that q ∈ pr(F) \ p with ⊥
and performing the following syntactic transformations recursively until no further

transformations are possible:

¬⊥ 7→ > ¬> 7→ ⊥
⊥ ∧ F 7→ ⊥ F ∧ ⊥ 7→ ⊥ > ∧ F 7→ F F ∧ > 7→ F

⊥ ∨ F 7→ F F ∨ ⊥ 7→ F > ∨ F 7→ > F ∨ > 7→ >
⊥ → F 7→ > F → > 7→ > > → F 7→ F

∃x> 7→ > ∃x⊥ 7→ ⊥ ∀x> 7→ > ∀x⊥ 7→ ⊥

For example, consider the first-order sentence

∀x(p(x)→ q(x)) ∧ (q(a) ∧ ¬p(a)→ r) ∧ ∀x(¬q(x) ∧ t(x)→ s(x)) . (11)

The projection of (11) onto {q, r, s, t,m} is

(q(a)→ r) ∧ ∀x(¬q(x) ∧ t(x)→ s(x)) .

When we restrict attention to the case of propositional logic programs such that

p contains at least the predicates occurring strictly positively in F , this notion

coincides with the corresponding one in the previous section.

Similar to incrementally parameterized programs, we define an incrementally pa-

rameterized formula F [t] to be a first-order formula which may contain incremen-

tally parameterized atoms. For any nonnegative integer i, we define the incremental

instantiation of F at i, denoted by F [i], to be the result of replacing all occurrences

of incrementally parameterized atoms af(t)(x) in F [t] with an atom av(x), where v

is the result of evaluating f(i).

Definition 11 (First-Order Module Instantiation)

For any first-order sentence F and any set of (input) predicates I, formula F 0 is

defined as F , and F i+1 is defined as F i|I ∪ head(F i), where head(F i) denotes the set

of all predicates occurring strictly positively in F i. We define the first-order module

instantiation of F w.r.t. I, denoted by FM (F, I), to be the first-order module

(Fω, I, pr(F)\I),

where Fω is the least fixpoint of the sequence F 0, F 1,

14 Joseph Babb and Joohyung Lee

The idea of the simplification process is related to the fact that all predicates

other than the ones in I ∪ head(F i) have empty extents under the stable model

semantics, which are equivalent to ⊥ (Ferraris et al. 2011, Theorem 4). The process

is guaranteed to lead to a fixpoint in a finite number of steps since F is finite and

F i|I∪head(F i) is shorter than F i in all cases except for the terminating case. It is

not difficult to check that if F is the FOL-representation of a ground disjunctive

program Π, the first component Groundσ(Π)|I∪O in the definition of a DLP-module

instantiation corresponds to F 2.

Example 2

Consider the propositional formula

F = (p→ q) ∧ (q → r) ∧ (t ∧ ¬r → s) .

and I = {t,m}. The process of instantiation results in the following transformations

on F :

(p→ q) ∧ (q → r) ∧ (t ∧ ¬r → s). F 0(= F)

⇒ (q → r) ∧ (t ∧ ¬r → s). F 1

⇒ t ∧ ¬r → s. F 2

⇒ t→ s. F 3

⇒ t→ s. F 4

The resulting first-order module is then

FM (F, {t,m}) = (t→ s, {t,m}, {p, q, r, s}).

This definition of an instantiation is different from the one by Gebser et al. (2011)

even when we restrict attention to a finite propositional disjunctive program. First,

we maximize the simplification done on the initial formula F by repeatedly pro-

jecting it onto its head and input predicates, whereas Gebser et al. perform only

the first two projections (i.e., F 2). Second, the list of output atoms are different.

In our case all atoms occurring in F that are not input atoms are assumed to be

output atoms. The following example illustrates these differences.

Example 3

Recall the DLP-module instantiation in Figure 2. The first-order instantiation of

(the FOL-representation of) the program w.r.t {l, t} is (t→ n, {l, t}, {m,n, p, q, r, s}).

While the two notions of instantiation are syntactically different, it can be shown

that, given a propositional logic program Π and sets of propositional atoms I and

X, X is a module answer set of DM (Π, I) if and only if X is a module answer set

of FM (Π, I).

An incremental first-order theory is a triple 〈B,P [t], Q[t]〉 where B is a first-order

sentence, and P [t] and Q[t] are incrementally parameterized sentences.

The k-expansion of 〈B,P [t], Q[t]〉 is defined as

Rk = B ∧ P [1] ∧ · · · ∧ P [k] ∧Q[k].

Module Theorem for the General Theory of Stable Models 15

It is clear that this coincides with the notion of k-expansion for incremental logic

programs when we restrict attention to the common syntax.

We assume a partial order ≺ on

{B,P [1], P [2], . . . , Q[1], Q[2], . . . } (12)

as follows:

• B ≺ P [1] ≺ P [2] ≺ . . . ;
• P [i] ≺ Q[i] for i ≥ 1.

Definition 12 (Acyclic Incremental First-Order Theory)
We say that an incremental first-order theory 〈B,P [t], Q[t]〉 is acyclic if, for every

pair of formulas F,G in (12) such that F ≺ G, we have that G is negative on pr(F).

This definition of acyclicity mirrors that of Gebser et al.’s (2011) in that it pre-

vents predicates from occurring strictly positively in multiple sentences which are

instantiated from the incremental theory. However, as shown in Proposition 3, it is

unnecessary to check a condition similar to modularity for incremental first-order

theories, as it is ensured by acyclicity.

Given a first-order module F = (F, I,O), by Out(F) we denote O.

Proposition 3 (Modularity of Incremental Theory)
If an incremental first-order theory 〈B,P [t], Q[t]〉 is acyclic, then the following mod-

ules are defined for all k ≥ 0.

P0 = FM (B, ∅),
Pi = Pi−1 t FM (P [i],Out(Pi−1)), (1 ≤ i ≤ k)

Rk = Pk t FM (Q[k],Out(Pk)) .

By applying Theorem 4, we can evaluate each component module independently

and compose their results in order to obtain the stable models of Rk.

Proposition 4 (Compositionality for Incremental First-Order Theories)
Let 〈B,P [t], Q[t]〉 be an incremental first-order theory and let Rk be the module

as defined in the statement of Proposition 3. For any nonnegative integer k,

IB ∪ IP [1] ∪ · · · ∪ IP [k] ∪ IQ[k] |= SM[Rk]

iff IB |= SM[FM (B, ∅)]
and IP [1] |= SM[FM (P [1],Out(P0))]

and . . . (13)

and IP [k] |= SM[FM (P [k],Out(Pk−1))]

and IQ[k] |= SM[FM (Q[k],Out(Pk))] .

where IB (IP [1], . . . , IP [k], IQ[k], respectively) is a c(B)-partial interpretation (c(P [1]),

. . . , c(P [k]), c(Q[k])-partial interpretation, respectively) such that IB , IP [1], . . . , IP [k], IQ[k]

are pairwise compatible.

Given an acyclic incremental theory and a nonnegative integer k, the follow-

ing proposition states that evaluating the individual modules and composing their

results is equivalent to evaluating the k-expansion of the incremental theory.

16 Joseph Babb and Joohyung Lee

Proposition 5 (Correctness of Incremental Assembly)

Let 〈B,P [t], Q[t]〉 be an acyclic incremental theory, let k be a nonnegative integer,

let Rk be the k-expansion of the incremental theory, and let Rk be the module as

defined in Proposition 3. For any c-partial interpretation I such that c ⊇ c(Rk),

we have that

I |= SM[Rk] iff I |= SM[Rk].

7 Conclusion

Our extension of the module theorem to the general theory of stable models ap-

plies to non-ground logic programs containing choice rules, the count aggregate,

and nested expressions. The extension is based on the new findings about the rela-

tionship between the module theorem and the splitting theorem. The proof of our

module theorem4 uses the splitting theorem as a building block so that a further

generalization of the splitting theorem can be applied to generalize the module the-

orem as well. Indeed, the module theorem presented here can be extended to logic

programs with arbitrary (recursive) aggregates, based on the extension of the split-

ting theorem to formulas with generalized quantifiers, recently presented in (Lee

and Meng 2012). Based on the generalized module theorem, we reformulated and

extended the theory of incremental answer set computation to the general theory

of stable models, which can be useful in analyzing non-ground RASPL-1 programs

that describe dynamic domains.

Acknowledgements

We are grateful to Martin Gebser and Tomi Janhunen for useful discussions re-

lated to this paper. We are also grateful to the anonymous referees for their useful

comments. This work was partially supported by the National Science Foundation

under Grant IIS-0916116.

References

Ferraris, P., Lee, J., and Lifschitz, V. 2007. A new perspective on stable models. In
Proceedings of International Joint Conference on Artificial Intelligence (IJCAI). AAAI
Press, 372–379.

Ferraris, P., Lee, J., and Lifschitz, V. 2011. Stable models and circumscription.
Artificial Intelligence 175, 236–263.

Ferraris, P., Lee, J., Lifschitz, V., and Palla, R. 2009. Symmetric splitting in the
general theory of stable models. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI). AAAI Press, 797–803.

Gebser, M., Grote, T., Kaminski, R., and Schaub, T. 2011. Reactive answer set
programming. In Proceedings of International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR). Springer, 54–66.

4 Available in the online appendix.

Module Theorem for the General Theory of Stable Models 17

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., and Thiele,
S. 2008. Engineering an incremental ASP solver. In Proceedings of the Twenty-fourth
International Conference on Logic Programming (ICLP’08), M. Garcia de la Banda
and E. Pontelli, Eds. Lecture Notes in Computer Science, vol. 5366. Springer-Verlag,
190–205.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic program-
ming. In Proceedings of International Logic Programming Conference and Symposium,
R. Kowalski and K. Bowen, Eds. MIT Press, 1070–1080.

Janhunen, T., Oikarinen, E., Tompits, H., and Woltran, S. 2009. Modularity as-
pects of disjunctive stable models. Journal of Artificial Intelligence Research 35, 813–
857.

Lee, J., Lifschitz, V., and Palla, R. 2008. A reductive semantics for counting and
choice in answer set programming. In Proceedings of the AAAI Conference on Artificial
Intelligence (AAAI). AAAI Press, 472–479.

Lee, J. and Meng, Y. 2012. Stable models of formulas with generalized quanti-
fiers. In Proceedings of International Workshop on Nonmonotonic Reasoning (NMR).
http://peace.eas.asu.edu/joolee/papers/smgq-nmr.pdf.

Lee, J. and Palla, R. 2012. Reformulating the situation calculus and the event calculus
in the general theory of stable models and in answer set programming. Journal of
Artificial Inteligence Research (JAIR) 43, 571–620.

Lifschitz, V. 1994. Circumscription. In Handbook of Logic in AI and Logic Programming,
D. Gabbay, C. Hogger, and J. Robinson, Eds. Vol. 3. Oxford University Press, 298–352.

Oikarinen, E. and Janhunen, T. 2008. Achieving compositionality of the stable model
semantics for smodels programs. TPLP 8, 5-6, 717–761.

