
A Model-Theoretic Counterpart of Loop Formulas

Joohyung Lee
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712, USA
appsmurf@cs.utexas.edu

Abstract
In an important recent paper, Lin and Zhao intro-
duced the concept of a loop formula, and showed
that the answer sets for a logic program are exactly
the models of Clark’s completion of the program
that satisfy the loop formulas. Just as supported sets
are a model-theoretic account of completion, “ex-
ternally supported” sets, defined in this paper, are a
model-theoretic counterpart of loop formulas. This
reformulation of loop formulas shows that they are
related to assumption sets (Saccá and Zaniolo) and
to unfounded sets (Van Gelder, Ross and Schlipf;
Leone, Rullo and Scarcello), invented many years
earlier. Other contributions of this paper include a
simplification of the definition of a loop, extending
it to programs with classical negation and infinite
programs, and a generalization of the definition of
a loop formula.

1 Introduction
The completion semantics[Clark, 1978] and the answer set
semantics (also known as the stable model semantics)[Gel-
fond and Lifschitz, 1988] are two well-known proposals for
defining the meaning of negation as failure in logic pro-
grams.1 The former is attractive because it is simply a trans-
lation from logic programs to classical logic, but it sometimes
gives unintuitive results[Przymusinski, 1989, Section 4.1]. It
is well known that an answer set for a logic program is also a
model of its completion, while the converse, generally, does
not hold.

By adding so-called “loop formulas” to completion, Lin
and Zhao [2004] defined a set of formulas whose models are
exactly the answer sets. The idea comes from observing that
“loops” are related to the mismatch between the models of
the completion and the answer sets. Intuitively, every atom
in an answer set can be “derived” from a program in a finite
number of steps. The atoms in a loop that are not “supported
from outside” cannot be derived in a finite number of steps,
but they do not contradict the completion of the program.

1As the answer set semantics is usually defined for propositional
(grounded) logic programs only, in this paper we limit our atten-
tion to such programs, and refer to the propositional case ofClark’s
completion.

The Lin/Zhao theorem allows us to compute answer sets
using SAT solvers, which has led to the implementation of
SAT-based answer set solversASSAT2 [Lin and Zhao, 2004]
and CMODELS3 [Giunchiglia et al., 2004]. These systems
turn a logic program into a propositional theory and then call
SAT solvers, such asCHAFF, SATO and RELSAT, to find its
models, which in turn correspond to the answer sets. Thanks
to recent progress with SAT solvers, in several benchmark
examples they found answer sets faster than other answer set
solvers such asSMODELS4 andDLV 5.

A program that has no loops is called “tight,” and for tight
programs the completion semantics and the answer set se-
mantics are equivalent to each other. This fact was discov-
ered earlier by Fages[1994], and then was generalized and
extended by Erdem and Lifschitz[2003] to programs with
nested expressions (in the sense of[Lifschitz et al., 1999]) in
the bodies of rules.

Lee and Lifschitz [2003] showed that program completion,
loop formulas and the Lin/Zhao theorem can be extended to
disjunctive logic programs and, more generally, to arbitrary
programs with nested expressions. As a consequence, the
concept of a tight program and Fages’ theorem are extended
to disjunctive programs as well.

Yet the previous work on loop formulas has been limited
to finite programswithout classical negation. In this paper,
we lift these limitations. First, to account for programs that
allow classical negation, we propose a model-theoretic coun-
terpart of loop formulas—the concept of an “externally sup-
ported” set. It is similar to the model-theoretic counterpart
of Clark’s completion—the concept of a supported set in-
troduced in[Apt et al., 1988]. Interestingly, this reformu-
lation of loop formulas shows that they are related to assump-
tion sets[Saccá and Zaniolo, 1990] and to unfounded sets
[Van Gelderet al., 1991; Leoneet al., 1997] invented many
years earlier. Second, we extend the concept of a loop for-
mula to programs with nested expressions. Finally, we ex-
tend the notion of a loop and the theorem on loop formulas to
infinite programs.

In the next section we introduce the concept of an exter-

2http://assat.cs.ust.hk/ .
3http://www.cs.utexas.edu/users/tag/cmodels/ .
4http://www.tcs.hut.fi/Software/smodels/ .
5http://www.dbai.tuwien.ac.at/proj/dlv/ .

nally supported set, extend the notion of a loop to infinite
programs, state our main theorem, and discuss its relation to
Fages’ theorem about tight programs. In Section 3 we use the
main theorem to define two transformations turning a logic
program into an equivalent propositional theory. In Section 4,
we relate externally supported sets to assumption sets and to
unfounded sets, and compare our reformulation of loop for-
mulas with the original definition by Lin and Zhao. The main
theorem is generalized to arbitrary programs with nested ex-
pressions in Section 5.

2 Externally Supported Sets
2.1 Nondisjunctive Case
We begin with a review of the answer set semantics for
nondisjunctive programs given in[Gelfond and Lifschitz,
1991, Section 2]. 6 The wordsatomand literal are under-
stood here as in propositional logic; we call the negation sign: in negative literalsclassical negation, to distinguish it from
the symbol for negation as failure (not).

A nondisjunctive ruleis an expression of the forml1 l2; : : : ; lm; not lm+1; : : : ; not ln (1)

(1 � m � n) where allli are literals. We will often write (1)
in the form l1 B;F (2)

whereB is l2; : : : ; lm, andF is not lm+1; : : : ; not ln, and we
will sometimes identifyB with the setfl2; : : : ; lmg.

A nondisjunctive (logic) programis a set of rules of the
form (1).

We say that a setX of literals satisfiesthe bodyB;F of
rule (2) (symbolicallyX j= B;F) if l2; : : : ; lm 2 X , andlm+1; : : : ; ln =2 X . We say thatX satisfiesa nondisjunctive
program� (symbolicallyX j= �) if, for every rule (2) of
that program,l1 2 X wheneverX satisfiesB;F .

The reduct�X of a nondisjunctive program� with re-
spect to a setX of literals is obtained from� by deleting
each rule (2) such thatX 6j= F , and replacing each remaining
rule (2) byl1 B. A consistent setX of literals is anan-
swer setfor � if X is minimal among the sets of literals that
satisfy�X .

We say that a setY of literals issupportedby � w.r.t. a
setX of literals if there is a rule (2) in� such thatl1 2 Y ,
andX j= B;F . Informally, such a rule (2) characterizes a
source of support for the literall1 in Y .7

Now we make the notion of a supported set slightly
stronger. We will say that a setY of literals is externally
supportedby � w.r.t. X if there is a rule (2) in� such thatl1 2 Y , X j= B;F , andB \ Y = ;. Informally, the new,
third condition ensures that the support for the literall1 in Y
comes fromoutsideof Y .

6Here we do not allow inconsistent answer sets.
7One may notice that this definition is slightly different from the

usual definition of a supported set, which says that a setX of literals
is supported by� if, for every literal l1 2 X, there is a rule (2)
in � such thatX j= B;F [Apt et al., 1988]. Observe thatX is
supported by� under the usual definition iff every singleton subset
of X is supported by� w.r.t. X under the new definition.

p q r
Figure 1: The dependency graph of�2

For example, consider the following program�1:p q q p
Each of the setsfpg andfqg is externally supported (hence
also supported) by�1 w.r.t. fp; qg, while fp; qg is supported
but not externally supported by�1 w.r.t. fp; qg. On the other
hand, let�2 be the following program that adds two rules
to�1: p q q pp not r r notp:
Then every nonempty subset offp; qg is externally supported
by�2 w.r.t. fp; qg.

Thepositive dependency graphof � is the directed graph
such that� its vertices are the literals occurring in�, and� its edges go froml1 to l2; : : : lm for each rule (1) of�.

When� is finite, a nonempty setL of literals is called a
loopof � if, for every pairl1, l2 of literals inL, there exists a
path froml1 to l2 in the positive dependency graph of� such
that all vertices in this path belong toL.8 In other words, a
nonempty setL of literals is a loop of� iff the subgraph of
the positive dependency graph of� induced byL is strongly
connected. Note that, for every literall that occurs in�, the
singleton setflg is a loop, according to this definition.9

The positive dependency graph of�2, shown in Figure 1,
has four loops:fpg,fqg,frg,fp; qg.
Main Theorem for Finite Nondisjunctive Programs For
any finite nondisjunctive program� and any consistent setX
of literals, the following conditions are equivalent:(a) X is an answer set for�.(b) X satisfies�, and every set of literals that has a common

element withX is externally supported by� w.r.t. X .() X satisfies�, and every loop of� that is contained inX
is externally supported by� w.r.t.X .

Out of the three implications(a) to (b), (b) to (), () to(a), the second is obvious, because every loop that is con-
tained inX has a common element withX . Program�2
above has two answer sets:fp; qg andfrg. Since(a) implies(b), it follows that every set of atoms that has a common el-
ement withfp; qg is externally supported w.r.t.fp; qg, and
every set of atoms that has a common element withfrg is
externally supported w.r.t.frg. On the other hand, since()
implies(a), to show thatfp; qg is an answer set we only need
to check that every loop which is a subset offp; qg (that is,
each offpg, fqg, fp; qg) is externally supported w.r.t.fp; qg.
Similarly, to show thatfrg is an answer set, we only need to
check thatfrg is externally supported w.r.t.frg.

8Note that we do allow paths of length0.
9Thus our definition is slightly different from the definitionby

Lin and Zhao (See Section 4 for detail). The example of a singleton
loop shows that a loop of� does not necessarily correspond to a
loop (or cycle) of the positive dependency graph of� in the sense
of graph theory.

The equivalence between(a) and(b) is a generalization of
a theorem from[Saccá and Zaniolo, 1990] as we will discuss
in Section 4.1, and the equivalence between(a) and() is a
model-theoretic account of loop formulas as we will discuss
in Section 3.

2.2 Extension to Programs in Canonical Form
We will extend the main theorem to finite programs with
nested expressions[Lifschitz et al., 1999]. In this section, for
simplicity, instead of arbitrary rules with nested expressions,
we consider rules of the forml1; : : : ; lk lk+1; : : : ; lm; not lm+1; : : : ; not ln;

not notln+1; : : : ; not notlp (3)

(0 � k � m � n � p) where allli are literals.10 We will call
such rulescanonical, and will often write (3) in the formA B;F (4)

whereA is l1; : : : ; lk, B is lk+1; : : : ; lm, andF is

not lm+1; : : : ; not ln; not notln+1; : : : ; not notlp:
We will sometimes identifyA with the setfl1; : : : ; lkg andB
with the setflk+1; : : : ; lmg.

A canonical programis a set of rules of the form (3).
The definition of satisfaction given in Section 2.1 is ex-

tended to canonical programs as follows. We say that
a setX of literals satisfiesthe bodyB;F of rule (4) iflk+1; : : : ; lm 2 X , lm+1; : : : ; ln =2 X , andln+1; : : : ; lp 2 X .X satisfiesa program if, for every rule (4) of that program,
at least one of the literals inA belongs toX wheneverX
satisfiesB;F .

The reduct�X of a canonical program� with respect to a
setX of literals is obtained from� by deleting each rule (4)
such thatX 6j= F , and replacing each remaining rule (4) byA B. A consistent setX of literals is ananswer setfor �
if X is minimal among the sets of literals that satisfy�X .

Given a canonical program� and a setX of literals, we
will say that a setY of literals isexternally supportedby �
w.r.t. X if there is a rule (4) in� such thatA \ Y 6= ;,X j= B;F , B \ Y = ;, andX \ (A n Y) = ;. The last
condition is suggested by the extension of the definition of a
supported set to disjunctive programs proposed in[Baral and
Gelfond, 1994] and[Inoue and Sakama, 1998].

The definition of a positive dependency graph is extended
to the general case straightforwardly: for each rule (3) in�,
the edges of the graph go from each literalli (0 < i � k)
to each literallj (k < j � m). The definition of a loop from
Section 2.1 remains the same for arbitrary finite programs.

The theorem from Section 2.1 remains true if we replace
“nondisjunctive” in its statement with “canonical.”

For example, let�3 be the programp ; s q q p p ; r nots;
which has two answer sets:fp; qg andfrg. The comments
about these answer sets at the end of Section 2.2 apply to
program�3 as well.

10Any program with nested expressions can be turned into an
equivalent program whose rules have the form (3), or equivalentlyl1; : : : ; lk; not ln+1; : : : ; not lp lk+1; : : : ; lm; not lm+1; : : : ; not ln
[Lifschitz et al., 1999, Proposition 6(iii)]. In Section 5, the main
theorem is extended to arbitrary rules with nested expressions.

2.3 Extension to Infinite Programs
So far we restricted our attention to finite programs only. In-
deed, unless we modify the definition of a loop, the theorem
in Section 2.1 does not hold for infinite programs: conditions(a) and(b) are equivalent to each other even for infinite pro-
grams, but condition() turns out weaker than the others. For
example, consider the following infinite program�4:pi pi+1 (i > 0);
where eachpi is an atom. The program has no loops (in the
sense of Section 2.1) other than singletons. Besides;, which
is the only answer set for�4, there is one more set that satis-
fies condition(): fp1; p2; : : : g.

Looking at the example, we observe that condition() is
weaker than condition(b) in that it does not account for in-
finite paths in the positive dependency graph which do not
correspond to loops, while condition(b) tells us that the sets
that correspond to such infinite paths should also be exter-
nally supported. We propose to modify the definition of a
loop as follows.

Given a (possibly infinite) program� and a setL of liter-
als, we say thatL is unboundedif, for every literal l 2 L,
there exists an infinite path inL in the positive dependency
graph of� that starts froml and does not visit the same ver-
tex more than once. A nonempty setL of literals is called a
loopof � if L is unbounded, or for every pairl1, l2 of literals
in L, there exists a path froml1 to l2 in the positive depen-
dency graph of� such that all vertices in this path belong
toL. When� is finite, no set of literals that occur in� is un-
bounded, so that this definition of a loop reduces to the earlier
definition.

In program�4 above, every setfpi; pi+1; : : : g (i > 0) is
a loop according to this definition, since it is unbounded. But
it is not externally supported by�4 w.r.t. fp1; p2; : : : g.

The theorem from Section 2.1 remains true if we replace
“finite nondisjunctive” with “canonical”:

2.4 Tight Programs
The notion of a loop helps us simplify the definition of a
“tight” program[Erdem and Lifschitz, 2003]. Let � be any
canonical program. We will say that a loop of� is trivial if
the loop consists of a single literal such that the positive de-
pendency graph of� does not contain an edge from the literal
to itself. For example, in program�4 above, every singleton
loop is trivial, while every loopfpi; pi+1; : : : g (i > 0) is not.
We say that� is absolutely tightif every loop of� is trivial.
Let �X be the set of rules of� whose heads and bodies are
satisfied byX . Program� is tight ona setX of literals if the
subgraph of the positive dependency graph of�X induced
by X has no loops other than trivial ones. These definitions
are more general than the corresponding definitions in[Lee
and Lifschitz, 2003] in that they are applicable to infinite pro-
grams and to programs with classical negation as well. We
get the following corollaries to the main theorem, which gen-
eralize Propositions 2 and 4 from[Lee and Lifschitz, 2003].

Corollary 1 For any absolutely tight canonical program�
and any consistent setX of literals,X is an answer set for�
iff X satisfies� andX is supported by�.

Corollary 2 For any canonical program� and any consis-
tent setX of literals such that� is tight onX ,X is an answer
set for� iff X satisfies� andX is supported by�.

3 Translating Logic Programs into
Propositional Logic

In application to finite programs without classical negation,
conditions(b) and() of the main theorem suggest ways to
turn a program into an equivalent propositional theory. This
translation is closely related to the Lin/Zhao theorem on loop
formulas, as we will see in Section 4.

Consider a finite program� whose rules have the form (4)
where allli are atoms. For any setY of atoms, theexternal
support formulafor Y is the disjunction of the conjunctionsB ^ F ^ ^p2AnY :p (5)

for all rules (4) of� such thatA \ Y 6= ;, andB \ Y = ;.
We will denote the external support formula byES�;Y .

Condition (b) of the main theorem suggests the proposi-
tional theoryTb(�) which consists of(i) the implications11 B ^ F � A (6)

for all rules (4) in�, and(ii) the implications
Wp2Y p � ES�;Y for all setsY of

atoms that occur in�.
On the other hand, condition() of the main theorem sug-

gests the propositional theoryT(�), which consists of(i) the implications (6) for all rules (4) in�, and(ii) the implications p̂2L p � ES�;L (7)

for all loopsL of �.

Formula (7) is called theconjunctive loop formulaof L.

Corollary 3 For any finite program� without classical
negation and any setX of atoms,X is an answer set for� iffX is a model ofTb(�) iff X is a model ofT(�).

Note that the number of loops is exponential in the worst
case. But we cannot do much about this: Lifschitz and
Razborov [2004] showed that any equivalent translation from
logic programs to propositional formulas involves a signifi-
cant increase in size assuming a conjecture from the theory
of computational complexity which is widely believed to be
true.

4 Unfounded Sets and Disjunctive Loop
Formulas

Since conditions(b) and() in the statement of the main the-
orem are equivalent to each other, any intermediate condition
between the two also characterizes answer sets. In this sec-
tion, we study two such conditions related to some earlier
work.

11We identify ‘not’ with ‘ :’, ‘ ;’ with ‘ ^’, and ‘;’ with ‘ _’.

4.1 Relation to Unfounded Sets
The first condition is(d) X satisfies�, and every nonempty subset ofX is exter-

nally supported by� w.r.t. X .

Since (b) implies (d), (d) implies (), and (a),(b),() are
equivalent to each other, it is clear that all these conditions
are equivalent to each other.

In fact, the equivalence between conditions(a) and(d) was
established before for the special case when the rules of the
program have the form (3) withp = n. It is related to the no-
tion of an unfounded set originally introduced in[Van Gelder
et al., 1991] to characterize negative conclusions under the
well-founded semantics. Saccá and Zaniolo [1990] showed
that answer sets for a nondisjunctive program can be charac-
terized in terms of unfounded sets.12 Leoneet al. [1997]
extended the notion of an unfounded set and the theorem
by Saccá and Zaniolo to disjunctive programs.

Their definition can be further extended to programs with
rules of the form (4) as follows. A setY of literals isun-
foundedby a program� w.r.t. a setX of literals if, for each
rule (4) in� such thatA\Y 6= ;, at least one of the following
conditions holds:X 6j= B;F ,B\Y 6= ;, orX\(AnY) 6= ;.

It is easy to see thatY is not unfounded w.r.t.X iff Y is
externally supported w.r.t.X in the sense of Section 2.2.

A setX of literals is calledunfounded-freeif it does not
have any nonempty subset that is unfounded w.r.t.X . The
equivalence between conditions(a) and(d) stated above can
be reformulated as follows:X is an answer set for� iff X
satisfies� andX is unfounded-free. This is a generaliza-
tion of Corollary 2 from[Saccá and Zaniolo, 1990] and The-
orem 4.6 from[Leoneet al., 1997] to programs with rules of
the form (3).

For finite programs� without classical negation, condi-
tion (d) suggests the following translationTd into proposi-
tional logic, which consists of(i) the implications (6) for all rules (4) in�, and(ii) the implications (7) for all nonempty setsL of atoms that

occur in�.

Note thatTd(�) is a superset ofT(�). In (ii), L is not
empty. If it were, then the implication would be unsatisfiable.

Corollary 4 For any finite program without classical nega-
tion, a set of atoms is an answer set for� iff it is a model
of Td(�).
4.2 Relation to Disjunctive Loop Formulas
Here is another condition intermediate between(b) and():(e) X satisfies�, and, for every loopL � X , every set of

literals that has a common element withL is externally
supported by� w.r.t. X .

Given a finite program� whose rules have the form (4)
where allli are atoms, the propositional theoryTe(�) con-
sists of

12Their theorem refers to “assumption sets” rather than “un-
founded sets.” But as the authors noted, the two notions coincide
as far as the theorem is concerned.

(i) the implications (6) for all rules (4) in�, and(ii) the implications _p2L p � ES�;L (8)

for all loopsL of �.
Formula (8) is called thedisjunctive loop formulaof L.
Corollary 5 For any finite program� without classical
negation, a set of atoms is an answer set for� iff it is a model
of Te(�).

In fact, if � is nondisjunctive, (8) is essentially the loop
formula defined by Lin and Zhao [2004]. In the rest of this
section, we give a more precise description of the relationship
between this special case of Corollary 5 and the Lin/Zhao
theorem.

Note first that when� is nondisjunctive,Te(�) consists of(i) the implications B ^ F � l1 (9)
for all rules (2) in�, and(ii) the implications_p2L p � _l1 B;F 2 �l12L; B\L=;B ^ F: (10)

for all loopsL of �.
We now review the Lin/Zhao theorem. The completion of

the same program�, Comp(�), consists of the equivalencesl1 � _l1 B;F 2 �B ^ F
for all atomsl1 that occur in�.

By LF(�) we denote the set of the disjunctive loop formu-
las (10) for all non-trivial loopsL.
Theorem 1 [Lin and Zhao, 2004, Theorem 1] For any fi-
nite nondisjunctive program� without classical negation,
a set of atoms is an answer set for� iff it is a model of
Comp(�) [LF(�).

To see whyComp(�) [LF(�) is equivalent toTe(�), ob-
serve first thatComp(�) can be rewritten as the set of impli-
cations “right-to-left”� _l1 B;F 2 �B ^ F� � l1; (11)

and “left-to-right”l1 � _l1 B;F 2 �B ^ F: (12)

Implications (11) can be further broken into implications (9).
In implications (12), every singleton setfl1g is a loop. If the
loop is non-trivial, thenLF(�) contains the corresponding
implication (10), which is stronger than (12). Consequently,
in the presence ofLF(�), implications (12) for all non-trivial
loops fl1g can be dropped. On the other hand, iffl1g is
trivial, then l1 =2 B, so that (12) coincides with (10) (whereL = fl1g). To sum up,Comp(�)[LF(�) can be equivalently
rewritten as the set consisting of formulas (9), formulas (10)
for trivial loops, and formulas (10) for non-trivial loops (they
form LF(�)). This set is exactlyTe(�).

5 Loop Formulas for Programs with Nested
Expressions

Lifschitz et al.[1999] extended the answer set semantics to
programs with nested expressions. “Formulas” defined in that
paper allow negation as failure (not), conjunction (;) and dis-
junction (;) to be nested arbitrarily. A program with nested
expressions is a set of rules of which both heads and bodies
are formulas. The following program�5, for instance, is a
program with nested expressions which is not in canonical
form because the first rule has a disjunction in its body.p q ; not r q p r notp:

For the semantics of such programs, along with the def-
inition of satisfaction, we refer the reader to Section 2
of [Erdoğan and Lifschitz, 2004]. Recall that an occurrence
of a formulaF in a formulaG is singularif the symbol before
this occurrence is:; otherwise, the occurrence isregular[Lif-
schitzet al., 1999]. For any formulaG, by poslit(G) we de-
note the set of all literals having a regular occurrence inG
that is not in the scope of negation as failure. For instance,
poslit(p; not q; (not notr;:s)) = fp;:sg.

For a setY of literals, byF Y? we denote the formula ob-
tained from a formulaF by replacing all regular occurrences
of literals fromY that are not in the scope of negation as fail-
ure with?; by �Y? we denote the program obtained from a
program� by the same substitution. In application to canon-
ical programs, this operation is closely related to the concept
of external support:

Proposition 1 Let� be a canonical program, andX a set of
literals satisfying�. For any setY of literals,Y is externally
supported by� w.r.t. X iff X does not satisfy�Y?.

For example, for program�2 in Section 2.1 we checked
thatfp; qg is externally supported w.r.t.fp; qg. On the other

hand, the program(�2)fp;qg? is? ? ? not r r not p;
and we can check thatfp; qg does not satisfy the program, in
accordance with Proposition 1.

Proposition 1 shows that the main theorem in Section 2.3
can be stated without mentioning external support: in condi-
tions (b) and(), we can replace “Y is externally supported
by � w.r.t. X” with “ X does not satisfy�Y?.” This fact can
be used to generalize the main theorem to arbitrary programs.

First we need to generalize the definition of a positive de-
pendency graph to programs with nested expressions. The
positive dependency graphof a program� with nested ex-
pressions is the directed graphG such that� its vertices are the literals occurring in�, and� its edges go from each literal inposlit(Head) to each

literal in poslit(Body) for each ruleHead Bodyof �.

If � is canonical, this definition reduces to the earlier def-
inition. The positive dependency graph of�5 is the same as
the positive dependency graph of�2 as shown in Figure 1.

Once we define a positive dependency graph, the definition
of a loop given in Section 2.3 remains the same for programs
with nested expressions.

Main Theorem For any program� with nested expressions
and any consistent setX of literals, the following conditions
are equivalent:(a) X is an answer set for�.(b) X satisfies�, and, for every setY of literals that has a

common element withX , X does not satisfy�Y?.() X satisfies�, and, for every loopL of � that is con-
tained inX , X does not satisfy�L?.

The translationsTb through Te can be extended to fi-
nite programs� with nested expressions that do not con-
tain classical negation. For instance, the extended theoryTb(�) consists of(i) the implicationsBody � Head for
all rules Head Body in �, and (ii) the implicationsWp2Y p � :�Y? for all setsY of atoms that occur in�.

6 Conclusion
The following are the main contributions of this paper:� We reformulated the definition of a loop formula so that

loop formulas became a generalization of completion.� We generalized the definition of a loop formula and the
Lin/Zhao theorem to programs with nested expressions,
not necessarily finite.� We presented a model-theoretic account of loop
formulas—the concept of an externally supported set—
and showed that loop formulas are related to assumption
sets and to unfounded sets.

It is interesting to note that the computational methods used
in DLV and in SAT-based answer set solvers are related to
each other, in view of our main theorem:DLV uses condi-
tion (d) [Leoneet al., 1997, Theorem 4.6] for finding answer
sets for disjunctive programs, andASSAT andCMODELS use
condition(e) for nondisjunctive programs.

Acknowledgements
I am grateful to Vladimir Lifschitz and Fangzhen Lin for
many useful discussions. Vladimir helped me develop the
idea and improve the presentation significantly. I am also
grateful to anonymous referees for their comments. Wolf-
gang Faber suggested that there may be a relationship be-
tween loop formulas and unfounded sets. Nicola Leone gave
pointers to earlier work on unfounded sets and on assumption
sets. This work was partially supported by NSF under Grant
IIS-0412907.

References
[Apt et al., 1988] Krzysztof Apt, Howard Blair, and Adrian

Walker. Towards a theory of declarative knowledge. In
Jack Minker, editor,Foundations of Deductive Databases
and Logic Programming, pages 89–148. Morgan Kauf-
mann, San Mateo, CA, 1988.

[Baral and Gelfond, 1994] Chitta Baral and Michael Gel-
fond. Logic programming and knowledge representation.
Journal of Logic Programming, 19,20:73–148, 1994.

[Clark, 1978] Keith Clark. Negation as failure. In Herve
Gallaire and Jack Minker, editors,Logic and Data Bases,
pages 293–322. Plenum Press, New York, 1978.

[Erdem and Lifschitz, 2003] Esra Erdem and Vladimir Lif-
schitz. Tight logic programs.Theory and Practice of Logic
Programming, 3:499–518, 2003.

[Erdoğan and Lifschitz, 2004] Selim Erdoğan and Vladimir
Lifschitz. Definitions in answer set programming. InPro-
ceedings of International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR), pages 114–
126, 2004.

[Fages, 1994] François Fages. Consistency of Clark’s com-
pletion and existence of stable models.Journal of Methods
of Logic in Computer Science, 1:51–60, 1994.

[Gelfond and Lifschitz, 1988] Michael Gelfond and
Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert Kowalski and Kenneth
Bowen, editors,Proceedings of International Logic Pro-
gramming Conference and Symposium, pages 1070–1080,
1988.

[Gelfond and Lifschitz, 1991] Michael Gelfond and
Vladimir Lifschitz. Classical negation in logic pro-
grams and disjunctive databases. New Generation
Computing, 9:365–385, 1991.

[Giunchigliaet al., 2004] Enrico Giunchiglia, Yuliya Lier-
ler, and Marco Maratea. SAT-based answer set program-
ming. InProc. AAAI-04, pages 61–66, 2004.

[Inoue and Sakama, 1998] Katsumi Inoue and Chiaki
Sakama. Negation as failure in the head.Journal of Logic
Programming, 35:39–78, 1998.

[Lee and Lifschitz, 2003] Joohyung Lee and Vladimir Lif-
schitz. Loop formulas for disjunctive logic programs. In
Proc. ICLP-03, pages 451–465, 2003.

[Leoneet al., 1997] Nicola Leone, Pasquale Rullo, and
Francesco Scarcello. Disjunctive stable models: Un-
founded sets, fixpoint semantics, and computation.Infor-
mation and Computation, 135(2):69–112, 1997.

[Lifschitz and Razborov, 2004] Vladimir Lifschitz and
Alexander Razborov. Why are there so many loop
formulas? ACM Transactions on Computational Logic,
2004. To appear.

[Lifschitz et al., 1999] Vladimir Lifschitz, Lappoon R. Tang,
and Hudson Turner. Nested expressions in logic programs.
Annals of Mathematics and Artificial Intelligence, 25:369–
389, 1999.

[Lin and Zhao, 2004] Fangzhen Lin and Yuting Zhao. AS-
SAT: Computing answer sets of a logic program by SAT
solvers.Artificial Intelligence, 157:115–137, 2004.

[Przymusinski, 1989] Teodor Przymusinski. On the declara-
tive and procedural semantics of logic programs.Journal
of Automated Reasoning, 5:167–205, 1989.

[Saccá and Zaniolo, 1990] Domenico Saccá and Carlo Zan-
iolo. Stable models and non-determinism in logic pro-
grams with negation. InProceedings of Symposium on
Principles of Database Systems (PODS), pages 205–217,
1990.

[Van Gelderet al., 1991] Allen Van Gelder, Kenneth Ross,
and John Schlipf. The well-founded semantics for general
logic programs.Journal of ACM, 38(3):620–650, 1991.

