1

The completion semantid€lark, 1978 and the answer set

A Model-Theoretic Counterpart of Loop Formulas

Joohyung Lee
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712, USA
appsnurf @s. ut exas. edu

Abstract

In an important recent paper, Lin and Zhao intro-
duced the concept of a loop formula, and showed
that the answer sets for a logic program are exactly
the models of Clark's completion of the program
that satisfy the loop formulas. Just as supported sets
are a model-theoretic account of completion, “ex-
ternally supported” sets, defined in this paper, are a
model-theoretic counterpart of loop formulas. This
reformulation of loop formulas shows that they are
related to assumption sets (Sacca and Zaniolo) and
to unfounded sets (Van Gelder, Ross and Schlipf;
Leone, Rullo and Scarcello), invented many years
earlier. Other contributions of this paper include a
simplification of the definition of a loop, extending

it to programs with classical negation and infinite
programs, and a generalization of the definition of
a loop formula.

Introduction

semantics (also known as the stable model semari@si)

fond and Lifschitz, 198Bare two well-known proposals for

The Lin/Zhao theorem allows us to compute answer sets
using SAT solvers, which has led to the implementation of
SAT-based answer set solverssAT? [Lin and Zhao, 2004
and cMoDELS® [Giunchigliaet al, 2004. These systems
turn a logic program into a propositional theory and theh cal
SAT solvers, such asHAFF, SATO and RELSAT, to find its
models, which in turn correspond to the answer sets. Thanks
to recent progress with SAT solvers, in several benchmark
examples they found answer sets faster than other answer set
solvers such asMoDELS* andDLV®.

A program that has no loops is called “tight,” and for tight
programs the completion semantics and the answer set se-
mantics are equivalent to each other. This fact was discov-
ered earlier by Fagdd4994, and then was generalized and
extended by Erdem and Lifschif2003 to programs with
nested expressions (in the sensélafischitz et al., 1999) in
the bodies of rules.

Lee and Lifschitz [2003] showed that program completion,
loop formulas and the Lin/Zhao theorem can be extended to
disjunctive logic programs and, more generally, to arbjtra
programs with nested expressions. As a consequence, the
concept of a tight program and Fages’ theorem are extended
to disjunctive programs as well.

Yet the previous work on loop formulas has been limited

defining the meaning of negation as failure in logic pro-to finite programswithout classical negationin this paper,
grams: The former is attractive because it is simply a trans-we lift these limitations. First, to account for programatth
lation from logic programs to classical logic, but it somatis
gives unintuitive resultEPrzymusinski, 1989, Section 4.1t

allow classical negation, we propose a model-theoretia€ou
terpart of loop formulas—the concept of an “externally sup-

is well known that an answer set for a logic program is also gorted” set. It is similar to the model-theoretic countetpa
model of its completion, while the converse, generally,sdoe of Clark’s completion—the concept of a supported set in-
not hold. troduced in[Apt et al, 1989. Interestingly, this reformu-

By adding so-called “loop formulas” to completion, Lin |ation of loop formulas shows that they are related to assump
and Zhao [2004] defined a set of formulas whose models argon sets[Sacca and Zaniolo, 199@nd to unfounded sets
exactly the answer sets. The idea comes from observing th@f/an Gelderet al, 1991; Leoneet al., 1997 invented many
“loops” are related to the mismatch between the models ofears earlier. Second, we extend the concept of a loop for-
the completion and the answer sets. Intuitively, every atomnula to programs with nested expressions. Finally, we ex-
in an answer set can be “derived” from a program in a finitetend the notion of a loop and the theorem on loop formulas to
number of steps. The atoms in a loop that are not “supporteghfinite programs.

from outside” cannot be derived in a finite number of steps, | the next section we introduce the concept of an exter-
but they do not contradict the completion of the program.

2 .
As the answer set semantics is usually defined for propasitio http://assat.cs.ust.hk/ .

(grounded) logic programs only, in this paper we limit oulenat
tion to such programs, and refer to the propositional casglark’s
completion.

Shttp://www.cs.utexas.edu/users/tag/cmodels/ .
http://www.tcs.hut.fi/Software/smodels/ .
Shttp://www.dbai.tuwien.ac.at/proj/div/ .

nally supported set, extend the notion of a loop to infinite

P 4

programs, state our main theorem, and discuss its relation t

Fages’ theorem about tight programs. In Section 3 we use the

Figure 1: The dependency graphldf

main theorem to define two transformations turning a logic

program into an equivalent propositional theory. In Sectip

we relate externally supported sets to assumption setsoand t
unfounded sets, and compare our reformulation of loop for
mulas with the original definition by Lin and Zhao. The main
theorem is generalized to arbitrary programs with nested e

pressions in Section 5.

2 Externally Supported Sets
2.1 Nondisjunctive Case

toll;:

For example, consider the following progrdin:

P q q<p
Each of the set§p} and{q} is externally supported (hence

>€Iso supported) bii; w.r.t. {p, ¢}, while {p, ¢} is supported

ut not externally supported By, w.r.t. {p, ¢}. On the other
hand, letll; be the following program that adds two rules

q<p
r < notp.

P q
p < notr

Then every nonempty subset{a, ¢} is externally supported

We begin with a review of the answer set semantics fotpy 11, w.r.t. {p, q}.

nondisjunctive programs given ifGelfond and Lifschitz,
1991, Section R ® The wordsatomand literal are under-

stood here as in propositional logic; we call the negatign si

—in negative literalglassical negatigno distinguish it from
the symbol for negation as failurady).
A nondisjunctive rulés an expression of the form

.,hotl,

1)

(1 < m < n) where alll; are literals. We will often write (1)
in the form
(2)

whereB isls,. .., l,, andF isnotl,, 41, ..., notl,, and we
will sometimes identifyB with the sef{l,, ..., [,,}.

A nondisjunctive (logic) prograns a set of rules of the
form (1).

We say that a seX of literals satisfiesthe bodyB, F' of
rule (2) (symbolicalyX = B, F) if lo,...,l, € X, and
lnt1, .-, 0, ¢ X. We say thatX' satisfiesa nondisjunctive
programlIl (symbolically X = II) if, for every rule (2) of
that programj; € X whenevetX satisfiesB, F'.

The reductlI® of a nondisjunctive prograrfl with re-
spect to a seX of literals is obtained fronil by deleting

l1 < 12, . .,lm, nOtlm+1, ..

I (—B,F

each rule (2) such th& (= F, and replacing each remaining

rule (2) byl; < B. A consistent seX of literals is anan-

swer sefor 11 if X is minimal among the sets of literals that

satisfyITX .
We say that a seY” of literals is supportechy 1T w.r.t. a
set X of literals if there is a rule (2) idl such that; € Y,

The positive dependency grapfi 11 is the directed graph
such that

e its vertices are the literals occurringlih and
e its edges go frony to s, .. .1, for each rule (1) ofl.

Whenll is finite, a nonempty sek of literals is called a
loopof 11 if, for every pairl,, I of literals in L, there exists a
path froml; to [, in the positive dependency graphldfsuch
that all vertices in this path belong @8 In other words, a
nonempty sef. of literals is a loop ofT iff the subgraph of
the positive dependency graphldfinduced byL is strongly
connected. Note that, for every litefathat occurs ifl, the
singleton se{/} is a loop, according to this definitich.

The positive dependency graphldf, shown in Figure 1,
has four loops{p}.{q}.{r}.{p, ¢}-

Main Theorem for Finite Nondisjunctive Programs For
any finite nondisjunctive prograifh and any consistent st
of literals, the following conditions are equivalent:

(a) X is an answer set fdi.

(b) X satisfiedI, and every set of literals that has a common
element withX is externally supported by w.r.t. X .

(¢) X satisfiedI, and every loop ofl that is contained iX
is externally supported b§ w.r.t. X.

Out of the three implicationéa) to (b), (b) to (c), (c) to
(a), the second is obvious, because every loop that is con-
tained in X has a common element with. Programll,
above has two answer sefgs, ¢} and{r}. Since(a) implies

andX = B, F. Informally, such a rule (2) characterizes a (b), it follows that every set of atoms that has a common el-

source of support for the literél in Y.’

ement with{p, ¢} is externally supported w.r.t{p, ¢}, and

Now we make the notion of a supported set slightlyevery set of atoms that has a common element Withis

stronger. We will say that a sét of literals is externally
supportedby 11 w.r.t. X if there is a rule (2) inlI such that
Iy €Y, X = B,F,andBnY = (. Informally, the new,
third condition ensures that the support for the litérdh YV
comes fromoutsideof Y.

®Here we do not allow inconsistent answer sets.

"One may notice that this definition is slightly differentrinche
usual definition of a supported set, which says that &set literals
is supported by if, for every literall; € X, there is a rule (2)
in II such thatX = B, F [Apt et al, 1984. Observe thatX is

externally supported w.r.§r}. On the other hand, sinde)
implies(a), to show thafp, ¢} is an answer set we only need
to check that every loop which is a subsef{of ¢} (that is,
each of{p}, {¢}, {p, q¢}) is externally supported w.r.{p, ¢}.
Similarly, to show tha{r} is an answer set, we only need to
check that{r} is externally supported w.r.{r}.

8Note that we do allow paths of length

9Thus our definition is slightly different from the definitidoy
Lin and Zhao (See Section 4 for detail). The example of a stogl
loop shows that a loop dfl does not necessarily correspond to a

supported byIT under the usual definition iff every singleton subset loop (or cycle) of the positive dependency grapHbin the sense

of X is supported byI w.r.t. X under the new definition.

of graph theory.

The equivalence betwegn) and(b) is a generalizationof 2.3 Extension to Infinite Programs
a theorem froniSacca and Zaniolo, 19%as we will discuss go far we restricted our attention to finite programs only. In
in Section 4.1, and the equivalence betweehand(c) isa geed, unless we modify the definition of a loop, the theorem
model-theoretic account of loop formulas as we will discussp section 2.1 does not hold for infinite programs: condion
in Section 3. (a) and(b) are equivalent to each other even for infinite pro-

2.2 Extension to Programs in Canonical Form grams, but conditiofic) turns out weaker than the others. For

. . - ... example, consider the following infinite progrdig:
We will extend the main theorem to finite programs with P 9 progrdi
nested expressiofikifschitz et al, 1999. In this section, for Di < Dit1 (1 > 0),
simplicity, instead of arbitrary rules with nested express,

we consider rules of the form where eachp; is an atom. The program has no loops (in the

sense of Section 2.1) other than singletons. Bedidasich

bioeile & bigs oo Loy MOt -, MOt (3) s the only answer set fdi4, there is one more set that satis-
not notl,, 11, ..., not notl, fi o :
ies condition(c): {p1,p2,--- }.
(0 < k <m < n < p)where alll; are literals'® We will call Looking at the example, we observe that conditiohis
such rulescanonicaland will often write (3) in the form weaker than conditiof®) in that it does not account for in-
A+ B, F (4) finite pathz in Ithe positrivle depgnze)ncy”graphhwhiﬁh do not
: : : correspond to loops, while conditidh) tells us that the sets
whereAisly, ...y, BiSlyt1, - lm, @NAFTIs that C(E)rrespond to such infinite paths should also be exter-
NOtlym 41, -, NOtln, NOLNOL, 41, ..., NOL NOLL,,. nally supported. We propose to modify the definition of a
We will sometimes identifyd with the set{l;,...,Il;} andB loop as follows.
with the set{lg+1,- .-, L }- Given a (possibly infinite) prograii and a sef. of liter-
A canonical prograns a set of rules of the form (3). als, we say thal. is unboundedf, for every literall € L,

The definition of satisfaction given in Section 2.1 is ex- there exists an infinite path ih in the positive dependency
tended to canonical programs as follows. We say thatraph ofIl that starts fromi and does not visit the same ver-
a setX of literals satisfiesthe body B, F' of rule (4) if tex more than once. A nonempty seif literals is called a
let1y e olm € X bg1,y .-y ln € X, @andlpgq,...,0, € X loopof 1T if L is unbounded, or for every pdit, I; of literals
X satisfiesa program if, for every rule (4) of that program, in L, there exists a path from to I, in the positive depen-
at least one of the literals id belongs toX wheneverX dency graph ofll such that all vertices in this path belong
satisfiesB, F'. to L. Whenll is finite, no set of literals that occur i is un-

The reductI® of a canonical prograffi with respecttoa bounded, so that this definition of a loop reduces to theezarli
setX of literals is obtained fronil by deleting each rule (4) definition.
such thatX [~ F', and replacing each remaining rule (4) by In programll, above, every sefp;, pit1,-..} (i > 0) is
A < B. Aconsistent seX of literals is ananswer sefor I a loop according to this definition, since it is unboundedt Bu
if X is minimal among the sets of literals that satisF . it is not externally supported b, w.r.t. {p1, po, ... }.

Given a canonical prograii and a setX of literals, we The theorem from Section 2.1 remains true if we replace
will say that a set” of literals is externally supportety T1 “finite nondisjunctive” with “canonical”:

w.r.t. X if there is a rule (4) inll such thatA N'Y # 0,)

X EB,F,BNY =0,andXN(A\Y) = 0. Thelast 2.4 Tight Programs

condition is suggested by the extension of the definition of arhe notion of a loop helps us simplify the definition of a
supported set to disjunctive programs proposddaral and “tight” program[Erdem and Lifschitz, 2043 LetII be any
Gelfond, 1994 and[Inoue and Sakama, 19p8 canonical program. We will say that a loop kifis trivial if

The definition of a positive dependency graph is extendeghe loop consists of a single literal such that the positise d
to the general case straightforwardly: for each rule (Jlin pendency graph dil does not contain an edge from the literal
the edges of the graph go from each liteia(0 < 7 < k) to itself. For example, in prograifi; above, every singleton
to each literal; (k < j < m). The definition of a loop from |oop is trivial, while every loogp;, pis1,- .-} (i > 0) is not.
Section 2.1 remains the same for arbitrary finite programs. We say thail is absolutely tighif every loop ofIl is trivial.

The theorem from Section 2.1 remains true if we replace_et I1x be the set of rules dfl whose heads and bodies are

“nondisjunctive” in its statement with “canonical.” satisfied byX . Progranl is tight ona setX of literals if the
For example, letl; be the program subgraph of the positive dependency grapHlaf induced
P sq g p p; T < Nots, by X has no loops other than trivial ones. These definitions

which has two answer set§p, ¢} and{r}. The comments are more general than the corresponding definitior{$. @e

about these answer sets at the end of Section 2.2 apply ﬂpd LifSCh(;ti’ 200Bin that tr_'tfly ?re appllicablet_to infinite ﬁro\-N
programil; as well. grams and to programs with classical negation as well. We

get the following corollaries to the main theorem, which-gen
Any program with nested expressions can be turned into areralize Propositions 2 and 4 frofbhee and Lifschitz, 20013

equivalent program whose rules have the form (3), or eqenigl . .
L3 k3 NOthng ;- iNOtLy = Lkt -« s by MOttt - - - s NOLn Corollary 1 For any absolutely tight canonical prograii

[Lifschitz et al, 1999, Proposition iii)]. In Section 5, the main a@nd any consistent séf of literals, X is an answer set foll
theorem is extended to arbitrary rules with nested expassi iff X satisfied] and X is supported byl.

Corollary 2 For any canonical progranil and any consis- 4.1 Relation to Unfounded Sets
tent setX of literals such thatl is tight on X, X isananswer Tne first condition is
set forll iff X satisfied] and X is supported byI. L)
(d) X satisfiedI, and every nonempty subset &fis exter-

3 Translating Logic Programs into nally supported byT w.r.t. X.

Propositional Logic Since (b) implies (d), (d) implies (c), and (a),(b),(c) are
equivalent to each other, it is clear that all these conatitio
are equivalent to each other.

In fact, the equivalence between conditidasand(d) was
established before for the special case when the rules of the
program have the form (3) with = n. It is related to the no-
tion of an unfounded set originally introducedMan Gelder
et al, 1991 to characterize negative conclusions under the
well-founded semantics. Sacca and Zaniolo [1990] showed
that answer sets for a nondisjunctive program can be charac-
BAFA /\ —p (5) terized in terms of unfounded séfs.Leoneet al. [1997]

extended the notion of an unfounded set and the theorem

In application to finite programs without classical negatio
conditions(b) and (c) of the main theorem suggest ways to
turn a program into an equivalent propositional theory.sThi
translation is closely related to the Lin/Zhao theorem aplo
formulas, as we will see in Section 4.

Consider a finite prograii whose rules have the form (4)
where alll; are atoms. For any sét of atoms, theexternal
support formuldor Y is the disjunction of the conjunctions

peaNy by Sacca and Zaniolo to disjunctive programs.
for all rules (4) offT such thatd N Y # 0, andBNY = 0. Their definition can be further extended to programs with
We will denote the external support formula B, y . _rules of the form (4) as follows. A séf of literals is un-

_ Condition (b) of the main theorem suggests the proposi-fo;ndedby a progranil w.r.t. a setX of literals if, for each
tional theoryT (IT) which consists of rule (4) inII such thatANY # 0, at least one of the following
(i) the implications™ conditions holdsX [~ B, F, BNY # 0,orXN(A\Y) # 0.

BAFHOA (6) It is easy to see thdt is not unfounded w.r.tX iff Y is
i externally supported w.r.&X in the sense of Section 2.2.
for all rules (4) inl, and A set X of literals is calledunfounded-fredf it does not
(11) the implicationsvpeyp D ESpy for all setsY of have any nonempty subset that is unfounded wXt. The
atoms that occur iffl. equivalence between conditiofis) and(d) stated above can

be reformulated as followsX is an answer set faf iff X
satisfiesIT and X is unfounded-free. This is a generaliza-
tion of Corollary 2 from[Sacca and Zaniolo, 199and The-

On the other hand, conditiga) of the main theorem sug-
gests the propositional theo¥(I1), which consists of

() the implications (6) for all rules (4) i, and orem 4.6 from{Leoneet al,, 1997 to programs with rules of
(¢¢) the implications the form (3).
For finite programdI without classical negation, condi-
/\ p D ESis (™) tion (d) suggests the following translatich; into proposi-
pEL tional logic, which consists of

for all loops L of II. (2) the implications (6) for all rules (4) ifi, and

Formula (7)is called th_e_onjunctlve loop fqrmula:fL.) (7¢) the implications (7) for all nonempty sefsof atoms that
Corollary 3 For any finite programIl without classical occur inIl.

negation and any set of atoms X is an answer set foll iff Note thatT}(T1) is a superset of,(I1). In (ii), L is not

X is amodel off} (II) iff X is a mo_del OTC(H)'_) empty. If it were, then the implication would be unsatisfeabl
Note that the number of loops is exponential in the worst

case. But we cannot do much about this: Lifschitz andCorollary 4 For any finite program without classical nega-
Razborov [2004] showed that any equivalent translatiomfro tion, a set of atoms is an answer set fériff it is a model
logic programs to propositional formulas involves a signifi of T(I1).

cant increase in size assuming a conjecture from the theo

r . - .
of computational complexity which is widely believed to be X'Z Relation to Disjunctive Loop Formulas

true. Here is another condition intermediate betwégrand(c):
. . (e) X satisfiedl, and, for every loo. C X, every set of
4 Unfounded Sets and Disjunctive Loop literals that has a common element wittis externally
Formulas supported byl w.r.t. X.

Since conditiongb) and(c) in the statement of the main the- Given a finite progranil whose rules have the form (4)
orem are equivalent to each other, any intermediate comditi where alll; are atoms, the propositional thedfy(IT) con-
between the two also characterizes answer sets. In this sesists of

tion, we study two such conditions related to some earlie

o .
work 2Their theorem refers to “assumption sets” rather than “un-

- - founded sets.” But as the authors noted, the two notionscizign
e identify ‘not with * =", * " with * A’, and ;" with * v'. as far as the theorem is concerned.

(2) the implications (6) for all rules (4) ifl, and
(17) the implications
\/ » > ESi.
peEL
for all loopsL of TI.
Formula (8) is called thdisjunctive loop formulaf L.

Corollary 5 For any finite programIIl without classical
negation, a set of atoms is an answer sefifaff it is a model
of T, (11).

In fact, if IT is nondisjunctive, (8) is essentially the loop
formula defined by Lin and Zhao [2004]. In the rest of this
section, we give a more precise description of the relakigns

(8)

5 Loop Formulas for Programs with Nested
Expressions

Lifschitz et al[1999] extended the answer set semantics to
programs with nested expressions. “Formulas” defined in tha
paper allow negation as failuredt), conjunction () and dis-

junction () to be nested arbitrarily. A program with nested

expressions is a set of rules of which both heads and bodies
are formulas. The following prograifis, for instance, is a
program with nested expressions which is not in canonical
form because the first rule has a disjunction in its body.

p 4 q; notr Q< p r < Notp.

For the semantics of such programs, along with the def-

between this special case of Corollary 5 and the Lin/Zhaadnition of satisfaction, we refer the reader to Section 2

theorem.
Note first that whedl is nondisjunctive?, (II) consists of

(1) the implications

BANF DO (9)
for all rules (2) inII, and
(4¢) the implications
Vrp> '/ BAFE (10)

peL I1+B,F €11

lieL, BNL=0
for all loopsL of TI.

of [Erdogan and Lifschitz, 2004 Recall that an occurrence
of a formulaF' in a formulad is singulaiif the symbol before
this occurrence is:; otherwise, the occurrencerisgular Lif-
schitzet al,, 1999. For any formulai, by poslit(G) we de-
note the set of all literals having a regular occurrencé&’in
that is not in the scope of negation as failure. For instance,
poslit(p, not g, (not notr; —s)) = {p, —s}.

For a setY of literals, by 'Y we denote the formula ob-
tained from a formuld’ by replacing all regular occurrences
of literals fromY that are not in the scope of negation as fail-
ure with L; by ITY we denote the program obtained from a

We now review the Lin/Zhao theorem. The completion Of_programH by the same substitution. In application to canon-

the same prograri, ComgII), consists of the equivalences

\/ BAF

l1+B,F €1l

for all atoms!; that occur intI.

By LF(II) we denote the set of the disjunctive loop formu-
las (10) for all non-trivial loopd..
Theorem 1 [Lin and Zhao, 2004, Theoren] For any fi-
nite nondisjunctive progranil without classical negation,
a set of atoms is an answer set fdriff it is a model of
ComgII) U LF(II).

To see whyComgTI) U LF(IT) is equivalent tdl'. (1), ob-
serve first thaComgIl) can be rewritten as the set of impli-
cations “right-to-left”

(\V B/\F) oy,

Ih+B,Fell
and “left-to-right”
1D

llE

(11)

\/ BAF

I1+B,Fell
Implications (11) can be further broken into implicatio83. (
In implications (12), every singleton sk } is a loop. If the
loop is non-trivial, thenLF(TI) contains the corresponding
implication (10), which is stronger than (12). Consequgntl
in the presence dfF (1), implications (12) for all non-trivial
loops {/;} can be dropped. On the other hand{if} is
trivial, thenl; ¢ B, so that (12) coincides with (10) (where
L = {l;}). Tosum upComgII)ULF(II) can be equivalently
rewritten as the set consisting of formulas (9), formula® (1
for trivial loops, and formulas (10) for non-trivial loopthéy
form LF(II)). This set is exactl{, (II).

(12)

ical programs, this operation is closely related to the ephc
of external support:

Proposition 1 LetII be a canonical program, and a set of
literals satisfyingll. For any sefy” of literals, Y is externally
supported byl w.r.t. X iff X does not satisfy1? .

For example, for prograri, in Section 2.1 we checked
that{p, ¢} is externally supported w.r.{p, ¢}. On the other

hand, the prograrfil,) "% is

1+ 1 1 < notr T < notp,

and we can check thdp, ¢} does not satisfy the program, in
accordance with Proposition 1.

Proposition 1 shows that the main theorem in Section 2.3
can be stated without mentioning external support: in condi
tions (b) and(c), we can replaceY is externally supported
by IT w.r.t. X” with “ X does not satisfyiT¥ ." This fact can
be used to generalize the main theorem to arbitrary programs

First we need to generalize the definition of a positive de-
pendency graph to programs with nested expressions. The
positive dependency grapli a programlil with nested ex-
pressions is the directed graghsuch that

e its vertices are the literals occurringlih and

e its edges go from each literal iposlittHead) to each
literal in poslit(Body) for each ruleHead + Bodyof II.

If TI is canonical, this definition reduces to the earlier def-
inition. The positive dependency graphldf is the same as
the positive dependency graphléf as shown in Figure 1.

Once we define a positive dependency graph, the definition
of aloop given in Section 2.3 remains the same for programs
with nested expressions.

Main Theorem For any progranil with nested expressions [Clark, 1978 Keith Clark. Negation as failure. In Herve
and any consistent s&t of literals, the following conditions Gallaire and Jack Minker, editorkpgic and Data Bases
are equivalent: pages 293—-322. Plenum Press, New York, 1978.
[Erdem and Lifschitz, 20d3Esra Erdem and Vladimir Lif-
schitz. Tightlogic program&-heory and Practice of Logic
(b) X satisfiedlI, and, for every seY’ of literals that has a Programming 3:499-518, 2003.
common element witiX', X does not satisfyI? . [Erd_o@an and Li_fs_c_hitz, _2004Selim Erdogan and_ Vladimir
(¢) X satisfiesll, and, for every loopL of II that is con- Llfsch|tz. Def|n|t|0ns_|n answer set programming.Rro-
tained inX, X does not satisfyl” ceedings of International Conference on Logic Program-
1 L' . . -
)) ming and Nonmonotonic Reasoning (LPNMs3dges 114—
The translationsl;, throughT, can be extended to fi- 126, 2004.
nite programsll with nested expressions that do not con-[Fages, 1994 Francois Fages. Consistency of Clark’s com-
tain classical negation. For instance, the extended theory pletion and existence of stable modelsurnal of Methods

(a) X is an answer set fdi.

Ty(IT) consists of(i) the implicationsBody > Head for of Logic in Computer Scienc#:51—60, 1994.
all rules Head « Bodyin II, and (i7) the implications [Gelfond and Lifschitz, 1998Michael ~ Gelfond and
Vyey p D —IIY for all setsY” of atoms that occur ifil. Vladimir Lifschitz. The stable model semantics for
logic programming. In Robert Kowalski and Kenneth
6 Conclusion Bowen, editorsProceedings of International Logic Pro-
)) o i gramming Conference and Symposjyages 1070-1080,
The following are the main contributions of this paper: 1988.
o We reformulated the definition of a loop formula so that [Gelfond and Lifschitz, 1991Michael ~ Gelfond and

loop formulas became a generalization of completion. ~ Vladimir Lifschitz. ~ Classical negation in logic pro-

e We generalized the definition of a loop formula and the %rg\rrnnsuﬁ]ngdg:ggétirggglelg%itébases. New Generation

Lin/Zhao theorem to programs with nested expressiongjynchigliaet al, 2004 Enrico Giunchiglia, Yuliya Lier-
not necessarily finite. ler, and Marco Maratea. SAT-based answer set program-

e We presented a model-theoretic account of loop ming. InProc. AAAI-04 pages 61-66, 2004.
formulas—the concept of an externally supported set—{Inoue and Sakama, 19p&atsumi Inoue and Chiaki
and showed that loop formulas are related to assumption Sakama. Negation as failure in the heddurnal of Logic
sets and to unfounded sets. Programming 35:39-78, 1998.

[Lee and Lifschitz, 20013 Joohyung Lee and Vladimir Lif-

schitz. Loop formulas for disjunctive logic programs. In

Proc. ICLP-03 pages 451-465, 2003.

[Leoneet al, 1997 Nicola Leone, Pasquale Rullo, and
Francesco Scarcello. Disjunctive stable models: Un-
founded sets, fixpoint semantics, and computatiafor-
mation and Computatiqri35(2):69-112, 1997.

[Lifschitz and Razborov, 20@4Vladimir Lifschitz and

Acknowledgements Alexander Razborov. Why are there so many loop

| am grateful to Vladimir Lifschitz and Fangzhen Lin for fzog&u":’ll_z?a I;Arfe:';/'r Transactions on Computational Logic

many useful discussions. Vladimir helped me develop the . B . L .

idea and improve the presentation significantly. | am alsgL'fSCQ'tZ%tal“ 1999 Vlad|m|(er|fsch|tz,_ Lap.polon.R.Tang,

grateful to anonymous referees for their comments. Wolf- &ndHudson Turner. Nested expressions in logic programs.

gang Faber suggested that there may be a relationship be- ?ggallsgggMathematics and Artificial Intelligencs:369-
tween loop formulas and unfounded sets. Nicola Leone gavg . ’d 7h ' 200k F hen Li d Yuting Zh AS
pointers to earlier work on unfounded sets and on assumptiort'l N0 £hao, angznen Lin and Yuting Zhao. AS-

; ; SAT: Computing answer sets of a logic program by SAT
ﬁesz;c—sddlggov;(.)rk was partially supported by NSF under Grant solvers.Atrtificial Intelligence 157:115-137, 2004.

[Przymusinski, 1980 Teodor Przymusinski. On the declara-
tive and procedural semantics of logic programdsurnal

References of Automated Reasonin§:167—205, 1989.

[Aptetal, 198§ Krzysztof Apt, Howard Blair, and Adrian [Sacca and Zaniolo, 199@omenico Sacca and Carlo Zan-
Walker. Towards a theory of declarative knowledge. In i0lo. Stable models and non-determinism in logic pro-
Jack Minker, editorFoundations of Deductive Databases ~ grams with negation. IProceedings of Symposium on
and Logic Programmingpages 89-148. Morgan Kauf- Principles of Database Systems (PODjges 205-217,
mann, San Mateo, CA, 1988. 1990.

[Baral and Gelfond, 1994Chitta Baral and Michael Gel- [Van Geldertal, 1991 Allen Van Gelder, Kenneth Ross,
fond. Logic programming and know|edge representation' and John SChIlpf The well-founded semantics for general
Journal of Logic Programmingl9,20:73-148, 1994. logic programs.Journal of ACM 38(3):620-650, 1991.

Itis interesting to note that the computational methodsluse
in bLv and in SAT-based answer set solvers are related to
each other, in view of our main theoreroLv uses condi-
tion (d) [Leoneet al, 1997, Theorem 4]dor finding answer
sets for disjunctive programs, andSAT andCMODELS use
condition(e) for nondisjunctive programs.

