
NeurASP: Embracing Neural Networks into Answer Set Programming

Zhun Yang1 , Adam Ishay1 and Joohyung Lee1 2 ∗

1 Arizona State University, Tempe, AZ, USA
2 Samsung Research, Seoul, South Korea
{zyang90,aishay,joolee}@asu.edu

Abstract
We present NeurASP, a simple extension of an-
swer set programs by embracing neural networks.
By treating the neural network output as the prob-
ability distribution over atomic facts in answer set
programs, NeurASP provides a simple and effec-
tive way to integrate sub-symbolic and symbolic
computation. We demonstrate how NeurASP can
make use of a pre-trained neural network in sym-
bolic computation and how it can improve the neu-
ral network’s perception result by applying sym-
bolic reasoning in answer set programming. Also,
NeurASP can be used to train a neural network
better by training with ASP rules so that a neural
network not only learns from implicit correlations
from the data but also from the explicit complex
semantic constraints expressed by the rules.

1 Introduction
The integration of low-level perception with high-level rea-
soning is one of the oldest problems in Artificial Intelli-
gence. Today, the topic is revisited with the recent rise of
deep neural networks. Several proposals were made to imple-
ment the reasoning process in complex neural network archi-
tectures, e.g., [Cohen et al., 2018; Rocktäschel and Riedel,
2017; Donadello et al., 2017; Kazemi and Poole, 2018;
Šourek et al., 2015; Palm et al., 2018; Lin et al., 2019].
However, it is still not clear how complex and high-level
reasoning, such as default reasoning [Reiter, 1980], ontol-
ogy reasoning [Baader et al., 2003], and causal reasoning
[Pearl, 2000], can be successfully computed by these ap-
proaches. The latter subject has been well-studied in the area
of knowledge representation (KR), but many KR formalisms,
including answer set programming (ASP) [Lifschitz, 2008;
Brewka et al., 2011], are logic-oriented and do not incor-
porate high-dimensional vector space and pre-trained models
for perception tasks as handled in deep learning, which limits
the applicability of KR in many practical applications involv-
ing data and uncertainty.

In this paper, we present a simple extension of answer set
programs by embracing neural networks. Following the idea
∗Contact Author

of DeepProbLog [Manhaeve et al., 2018], by treating the neu-
ral network output as the probability distribution over atomic
facts in answer set programs, the proposed NeurASP pro-
vides a simple and effective way to integrate sub-symbolic
and symbolic computation.

We demonstrate how NeurASP can be useful for some
tasks where both perception and reasoning are required. Rea-
soning can help identify perception mistakes that violate se-
mantic constraints, which in turn can make perception more
robust. For example, a neural network for object detection
may return a bounding box and its classification “car,” but it
may not be clear whether it is a real car or a toy car. The
distinction can be made by applying reasoning about the re-
lations with the surrounding objects and using commonsense
knowledge. Or when it is unclear whether a round object at-
tached to the car is a wheel or a doughnut, the reasoner could
conclude that it is more likely to be a wheel by applying com-
monsense knowledge. In the case of a neural network that
recognizes digits in a given Sudoku board, the neural network
may get confused if a digit next to 1 in the same row is 1 or 2,
but the reasoner can conclude that it cannot be 1 by applying
the constraints for Sudoku.

Another benefit of this hybrid approach is that it alleviates
the burden of neural networks when the constraints/knowl-
edge are already given. Instead of building a large end-to-end
neural network that learns to solve a Sudoku puzzle given as
an image, we can let a neural network only do digit recogni-
tion and use ASP to find the solution of the recognized board.
This makes the design of the neural network simpler and the
required training dataset much smaller. Also, when we need
to solve some variation of Sudoku, such as Anti-knight or
Offset Sudoku, the modification is simpler than training an-
other large neural network from scratch to solve the new puz-
zle.

NeurASP can also be used to train a neural network to-
gether with rules so that a neural network not only learns
from implicit correlations from the data but also from explicit
complex semantic constraints expressed by ASP rules. The
semantic loss [Xu et al., 2018] obtained from the reasoning
module can be backpropagated into the rule layer and then
further into neural networks via neural atoms. This some-
times makes a neural network learn better even with fewer
data.

Compared to DeepProbLog, NeurASP supports a rich set

of KR constructs supported by answer set programming that
allows for convenient representation of complex knowledge.
It utilizes an ASP solver in computation instead of construct-
ing circuits as in DeepProbLog.

The paper is organized as follows. Section 2 introduces
the syntax and the semantics of NeurASP. Section 3 illus-
trates how reasoning in NeurASP can enhance the percep-
tion result by considering relations among objects perceived
by pre-trained neural networks. Section 4 presents learning
in NeurASP where ASP rules work as a semantic regular-
izer for training neural networks so that neural networks are
trained not only from data but also from rules. Section 5 ex-
amines related works and Section 6 concludes.

The implementation of NeurASP, as well as codes used
for the experiments, is publicly available online at

https://github.com/azreasoners/NeurASP.

2 NeurASP
We present the syntax and the semantics of NeurASP.

2.1 Syntax
We assume that neural network M allows an arbitrary tensor
as input whereas the output is a matrix in Re×n, where e is the
number of random events predicted by the neural network and
n is the number of possible outcomes for each random event.
Each row of the matrix represents the probability distribution
of the outcomes of each event. For example, if M is a neural
network for MNIST digit classification, then the input is a
tensor representation of a digit image, e is 1, and n is 10.
If M is a neural network that outputs a Boolean value for
each edge in a graph, then e is the number of edges and n is
2. Given an input tensor t, by M(t), we denote the output
matrix of M . The value M(t)[i, j] (where i ∈ {1, . . . , e},
j ∈ {1, . . . , n}) is the probability of the j-th outcome of the
i-th event upon the input t.

In NeurASP, the neural network M above can be repre-
sented by a neural atom of the form

nn(m(e, t), [v1, . . . , vn]), (1)

where (i) nn is a reserved keyword to denote a neural atom;
(ii) m is an identifier (symbolic name) of the neural network
M ; (iii) t is a list of terms that serves as a “pointer” to an
input data; related to it, there is a mapping D (implemented
by an external Python code) that turns t into an input tensor;
(iv) v1, . . . , vn represent all n possible outcomes of each of
the e random events.

Each neural atom (1) introduces propositional atoms of
the form c = v, where c ∈ {m1(t), . . . ,me(t)} and v ∈
{v1, . . . , vn}. The output of the neural network provides the
probabilities of the introduced atoms (defined in Section 2.2).

Example 1 Let Mdigit be a neural network that classifies an
MNIST digit image. The input of Mdigit is (a tensor repre-
sentation of) an image and the output is a matrix in R1×10.
The neural network can be represented by the neural atom

nn(digit(1, d), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),

which introduces propositional atoms digit1(d) = 0,
digit1(d)=1, . . . , digit1(d)=9.

Example 2 Let Msp be another neural network for finding
the shortest path in a graph with 24 edges. The input is a
tensor encoding the graph and the start/end nodes of the path,
and the output is a matrix in R24×2. This neural network can
be represented by the neural atom

nn(sp(24, g), [TRUE, FALSE]).

A NeurASP program Π is the union of Πasp and Πnn,
where Πasp is a set of propositional rules (standard rules as
in ASP-Core 2 [Calimeri et al., 2020]) and Πnn is a set of
neural atoms. Let σnn be the set of all atoms mi(t)=vj that
is obtained from the neural atoms in Πnn as described above.
We require that, in each rule Head ← Body in Πasp, no atoms
in σnn appear in Head.

We could allow schematic variables into Π, which are un-
derstood in terms of grounding as in standard answer set pro-
grams. We find it convenient to use rules of the form

nn(m(e, t), [v1, . . . , vn])← Body (2)

where Body is either identified by > or ⊥ during ground-
ing so that (2) can be viewed as an abbreviation of multiple
(variable-free) neural atoms (1).

Example 3 An example NeurASP program Πdigit is as fol-
lows, where d1 and d2 are terms representing two images.
Each image is classified by neural network Mdigit as one of
the values in {0, . . . , 9}. The addition of two digit-images is
the sum of their values.

img(d1).
img(d2).

nn(digit(1, X), [0, 1, 2, 3, 4, 5, 6, 7, 8, 9])← img(X).

addition(A,B,N)← digit1(A)=N1, digit1(B)=N2,
N = N1 +N2.

(3)
The neural network Mdigit outputs 10 probabilities for each
image. The addition is applied once the digits are recognized
and its probability is induced from the perception as we ex-
plain in the next section.

2.2 Semantics
For any NeurASP program Π, we first obtain its ASP coun-
terpart Π′ where each neural atom (1) is replaced with the set
of rules

{mi(t)=v1; . . . ;mi(t)=vn} = 1 for i ∈ {1, . . . e}.

The above rule (in the language of CLINGO) means to choose
exactly one atom in between the set braces.1 We define the
stable models of Π as the stable models of Π′.

To define the probability of a stable model, we first define
the probability of an atom mi(t) = vj in σnn. Recall that
there is an external mapping D that turns t into a specific
input tensor of M . The probability of each atom mi(t) = vj
is defined as M(D(t))[i, j]:

PΠ(mi(t)=vj) = M(D(t))[i, j].

1In practice, each atom mi(t) = v is written as m(i, t, v).

For instance, recall that the output matrix of Mdigit(D(d))
in Example 3 is in R1×10. The probability of atom
digit1(d) = k is Mdigit(D(d))[1, k+1].

Given an interpretation I , by I|σnn , we denote the projec-
tion of I onto σnn. By Num(I|σnn ,Π), we denote the number
of stable models of Π that agree with I|σnn on σnn.

The probability of a stable model I of Π is defined as the
product of the probability of each atom c = v in I|σnn , di-
vided by the number of stable models of Π that agree with
I|σnn on σnn. That is, for any interpretation I ,

PΠ(I) =

∏

c=v∈I|σnn
PΠ(c=v)

Num(I|σnn ,Π)
if I is a stable model of Π;

0 otherwise.

An observation is a set of ASP constraints (i.e., rules of
the form ⊥ ← Body). The probability of an observation O is
defined as

PΠ(O) =
∑
I|=O

PΠ(I)

(I |= O denotes that I satisfies O).
The probability of the set O = {O1, . . . , Oo} of observa-

tions is defined as the product of the probability of each Oi:

PΠ(O) =
∏
Oi∈O

PΠ(Oi).

Example 3 Continued The ASP program Π′digit, which is
the ASP counterpart of Πdigit, is obtained from (3) by re-
placing the third rule with

{digit1(d1)=0; . . . ; digit1(d1)=9} = 1.
{digit1(d2)=0; . . . ; digit1(d2)=9} = 1.

The following are the stable models of Πdigit, i.e., the stable
models of Π′digit.

I1 = {digit1(d1)=0, digit1(d2)=0, addition(d1, d2, 0), . . . },
I2 = {digit1(d1)=0, digit1(d2)=1, addition(d1, d2, 1), . . . },
I3 = {digit1(d1)=1, digit1(d2)=0, addition(d1, d2, 1), . . . },
. . . ,
I100 = {digit1(d1)=9, digit1(d2)=9, addition(d1, d2, 18), . . . }.

Their probabilities are as follows:

PΠ(I1) = Mdigit(D(d1))[1, 1]×Mdigit(D(d2))[1, 1],
. . . ,
PΠ(I100) = Mdigit(D(d1))[1, 10]×Mdigit(D(d2))[1, 10].

The probability of O = {← not addition(d1, d2, 1)} is

PΠ(O) = PΠ(I2) + PΠ(I3).

3 Inference with NeurASP
We implemented NeurASP by integrating PyTorch [Adam et
al., 2017] and CLINGO [Gebser et al., 2011]. PyTorch takes
care of neural network processing including data loading and
mapping D that maps pointer terms in neural atoms to input
tensors. Computing the probability of a stable model is done
by calling CLINGO and post-processing in Python. This sec-
tion illustrates how this integration can be useful in reasoning
about relations among objects recognized by neural networks.

3.1 Commonsense Reasoning about Image
Suppose we have a neural network Mlabel that outputs
classes of objects in the bounding boxes that are already
detected. The following rule asserts that the neural net-
work Mlabel classifies the bounding box B into one of
{car, cat, person, truck, other}, where B is at location
(X1, Y1, X2, Y2) in image I:

nn(label(1, I, B), [car, cat, person, truck, other])←
box(I,B,X1, Y1, X2, Y2).

Figure 1: Reasoning about relations among perceived objects

Consider the two images i1 and i2 in Figure 1. The bound-
ing boxes can be represented by the following facts.

box(i1, b1, 100, 0, 450, 350).
box(i1, b2, 300, 300, 500, 400).
...

The first rule says that there is a bounding box b1 (i.e., the
red box with a child) in image i1, and the coordinates of its
left-top and right-bottom corners are (100, 0) and (450, 350).

Below we describe rules that allow for reasoning about the
recognized objects. The following rules describe the general
size relation between objects.

smaller(cat, person).
smaller(person, car).
smaller(person, truck).
smaller(X,Y)← smaller(X,Z), smaller(Z, Y).

Next is the rule asserting that by default we conclude the
same size relationship as above.

smaller(I,B1, B2)← not ∼smaller(I,B1, B2),
label1(I,B1)=L1, label1(I,B2)=L2, smaller(L1, L2).

(The ∼ symbol stands for strong negation in ASP, which as-
serts explicit falsity.)

On the other hand, there are some exceptions, for instance,

∼smaller(I,B2, B1)← box(I,B1, X1, Y1, X2, Y2),
box(I,B2, X

′
1, Y

′
1 , X

′
2, Y

′
2), Y2 ≥ Y ′2 ,

|X1 −X2| × |Y1 − Y2| < |X ′1 −X ′2| × |Y ′1 − Y ′2 |.

smaller(I,B1, B2)←∼smaller(I,B2, B1).

toy(I,B1)← label1(I,B1) = L1, label1(I,B2) = L2,
smaller(I,B1, B2), smaller(L2, L1).

The first rule says that “B2 is not smaller than B1 if (i) B1

and B2 are objects in image I , (ii) B1 is closer to the camera
(i.e., B1’s bottom boundary is closer to the bottom of I), and
(iii) the box in the image for B1 is smaller than B2.” 2

2We assume that the camera is at the same height as the objects.

The neural network model Mlabel outputs that the red
boxes are persons, the yellow boxes are cars, and the green
box is a truck. Upon this input and the rules above, NeurASP
allows us to derive that the two cars in image i1 are toy
cars, whereas the two cars in image i2 are not: although they
are surrounded by smaller boxes than those of humans, their
boxes are not closer to the camera.

3.2 Example: Solving Sudoku Puzzle in Image
Consider the task of solving a Sudoku puzzle given as an im-
age. In NeurASP, we could use a neural network to recog-
nize the digits in the given puzzle and use an ASP solver to
compute the solution instead of having a single network that
accounts for both perception and solving.

We use the following NeurASP program Πsudoku to first
identify the digits in each grid cell on the board and then find
the solution by assigning digits to all empty grid cells. 3

% identify the number in each of the 81 positions
nn(identify(81, img), [empty,1,2,3,4,5,6,7,8,9]).

% assign one number N to each position (R,C)
a(R,C,N) :- identify(Pos,img,N), R=Pos/9, C=Pos\9,

N!=empty.
{a(R,C,N): N=1..9}=1 :- identify(Pos, img, empty),

R=Pos/9, C=Pos\9.

% no number repeats in the same row
:- a(R,C1,N), a(R,C2,N), C1!=C2.

% no number repeats in the same column
:- a(R1,C,N), a(R2,C,N), R1!=R2.

% no number repeats in the same 3*3 box
:- a(R,C,N), a(R1,C1,N), R!=R1, C!=C1,

((R/3)*3 + C/3) = ((R1/3)*3 + C1/3).

The neural network model Midentify is rather simple. It
is composed of 5 convolutional layers with dropout, a max
pooling layer, and a 1 × 1 convolutional layer followed by
softmax. Given a Sudoku board image (.png file), neural
network Midentify outputs a matrix in R81×10, which rep-
resents the probabilities of the values (empty, 1, . . . , 9) in
each of the 81 grid cells. The network Midentify is pre-
trained using 〈image, label〉 pairs, where each image is a Su-
doku board image generated by OpenSky Sudoku Generator
(http://www.opensky.ca/∼jdhildeb/software/sudokugen/) and
each label is a vector of length 81 in which 0 is used to rep-
resent an empty cell at that position.

Let Accidentify denote the accuracy of identifying all
empty cells and the digits on the board given as an image
without making a single mistake in a grid cell. Let Accsol
denote the accuracy of solving a given Sudoku board without
making a single mistake in a grid cell. Let r be the following
rule in Πsudoku :

{a(R,C,N): N=1..9}=1 :- identify(Pos, img, empty),
R=Pos/9, C=Pos\9.

3The expression {a(R,C,N) : N = 1..9} = 1 is a shorthand
for {a(R,C, 1); . . . ; a(R,C, 9)} = 1 in the language of CLINGO.

Table 1 comparesAccidentify of each ofMidentify , NeurASP
program Πsudoku \ r with Midentify , NeurASP program
Πsudoku with Midentify , as well as Accsol of Πsudoku with
Midentify .

Table 1: Sudoku: Accuracy on Test Data
Num of Accidentify of Accidentify of Accidentify of Accsol of

Train Data Midentify NeurASP w/ NeurASP w/ NeurASP w/
Πsudoku \r Πsudoku Πsudoku

15 15% 49% 71% 71%
17 31% 62% 80% 80%
19 72% 90% 95% 95%
21 85% 95% 98% 98%
23 93% 99% 100% 100%
25 100% 100% 100% 100%

Intuitively, Πsudoku \r only checks whether the identified
numbers (by neural network Midentify) satisfy the three con-
straints (the last three rules of Πsudoku), while Πsudoku fur-
ther checks whether there exists a solution given the iden-
tified numbers. As shown in Table 1, the use of reason-
ing in NeurASP program Πsudoku \ r improves the accu-
racy Accidentify of the neural network Midentify as explained
in the introduction. The accuracy Accidentify is further im-
proved by trying to solve Sudoku completely using Πsudoku .
Note that the solution accuracy Accsol of Πsudoku is equal
to the perception accuracy Accidentify of Πsudoku since the
ASP yields a 100% correct solution once the board is cor-
rectly identified.

Palm et al. [2018] use a Graph Neural Network to solve
Sudoku but the work restricts attention to textual input of the
Sudoku board, not images as we do. Their work achieves
96.6% accuracy after training with 216,000 examples. In
comparison, even with the more challenging task of accepting
images as input, the number of training examples we used is
15 – 25, which is much less than the number of training exam-
ples used in [Palm et al., 2018]. Our work takes advantage of
the fact that in a problem like Sudoku, where the constraints
are explicitly given, a neural network only needs to focus on
perception tasks, which is simpler than learning the percep-
tion and reasoning together.

Furthermore, using the same trained perception neural net-
work Midentify , we can solve some elaborations of Sudoku
problems by adding the following rules:

[Anti-knight Sudoku] No number repeats at a knight move

:- a(R1,C1,N), a(R2,C2,N), |R1-R2|+|C1-C2|=3.

[Sudoku-X] No number repeats at the diagonals

:- a(R1,C1,N), a(R2,C2,N), R1=C1, R2=C2, R1!=R2.
:- a(R1,C1,N), a(R2,C2,N), R1+C1=8, R2+C2=8, R1!=R2.

With neural network only approach, since the neural net-
work needs to learn both perception and reasoning, each of
the above variations would require training a complex and
different model with a big dataset. However, with NeurASP,
the neural network only needs to recognize digits on the
board. Thus solving each Sudoku variation above uses the
same pre-trained model for the image input and we only need
to add the aforementioned rules to Πsudoku .

Some Sudoku variations, such as Offset Sudoku, are in col-
ored images. In this case, we need to increase the number of

channels of Midentify from 1 to 3, and need to retrain the
neural network with the colored images. Although not com-
pletely elaboration tolerant, compared to the pure neural net-
work approach, this is significantly simpler. For instance, the
number of training data needed to get 100% perception ac-
curacy for Offset Sudoku (Accidentify) is 70, which is still
much smaller than what the end-to-end Sudoku solver would
require. Using the new network trained, we only need to add
the following rule to Πsudoku .

[Offset Sudoku] No number repeats at the same relative po-
sition in 3*3 boxes

:- a(R1,C1,N), a(R2,C2,N), R1\3 = R2\3,
C1\3 = C2\3, R1 != R2, C1 != C2.

4 Learning in NeurASP
We show how the semantic constraints expressed in
NeurASP can be used to train neural networks better.

4.1 Gradient Ascent with NeurASP

In this section, we denote a NeurASP program by Π(θ)
where θ is the set of the parameters in the neural network
models associated with Π. Assume a NeurASP program
Π(θ) and a set O of observations such that PΠ(θ)(O) > 0

for each O ∈ O. The task is to find θ̂ that maximizes the
log-likelihood of observations O under program Π(θ), i.e.,

θ̂ ∈ argmax
θ

log(PΠ(θ)(O)),

which is equivalent to

θ̂ ∈ argmax
θ

∑
O∈O

log(PΠ(θ)(O)).

Let p denote the probabilities of the atoms in σnn. Since p
is indeed the outputs of the neural networks in Π(θ), we can
compute the gradient of p w.r.t. θ through backpropagation.
Then the gradient of

∑
O∈O

log(PΠ(θ)(O)) w.r.t. θ is

∂
∑
O∈O

log(PΠ(θ)(O))

∂θ =
∑
O∈O

∂log(PΠ(θ)(O))

∂p × ∂p
∂θ

where ∂p
∂θ can be computed through the usual neural network

backpropagation, while ∂log(PΠ(θ)(O))

∂p for each p ∈ p can be
computed as follows.

Proposition 1 Let Π(θ) be a NeurASP program and let O
be an observation such that PΠ(θ)(O) > 0. Let p denote
the probability of an atom c = v in σnn, i.e., p denotes
PΠ(θ)(c = v). We have that4

∂log(PΠ(θ)(O))

∂p
=

∑
I: I|=O
I|=c=v

PΠ(θ)(I)

PΠ(θ)(c=v) −
∑

I,v′: I|=O
I|=c=v′,v 6=v′

PΠ(θ)(I)

PΠ(θ)(c=v′)∑
I: I|=O

PΠ(θ)(I)
.

4 PΠ(θ)(I)

PΠ(θ)(c=v)
and

PΠ(θ)(I)

PΠ(θ)(c=v′) are still well-defined since the de-

nominators have common factors in PΠ(θ)(I).

Figure 2: NeurASP Gradient Propagation

Intuitively, the proposition tells us that each interpretation
I that satisfiesO tends to increase the value of p if I |= c = v,
and decrease the value of p if I |= c = v′ such that v′ 6= v.
NeurASP internally calls CLINGO to find all stable models I
of Π(θ) that satisfy O and uses PyTorch to obtain the proba-
bility of each atom c = v in σnn.

4.2 Experiment 1: Learning Digit Classification
from Addition

All experiments in Section 4 were done on Ubuntu 18.04.2
LTS with two 10-cores CPU Intel(R) Xeon(R) CPU E5-2640
v4 @ 2.40GHz and four GP104 [GeForce GTX 1080].

The digit addition problem is a simple example used
in [Manhaeve et al., 2018] to illustrate DeepProbLog’s abil-
ity for both logical reasoning and deep learning. The task is,
given a pair of digit images (MNIST) and their sum as the
label, to let a neural network learn the digit classification of
the input images.

The problem can be represented by NeurASP program
Πdigit in Example 3. For comparison, we use the same
dataset and the same structure of the neural network model
used in [Manhaeve et al., 2018] to train the digit classifier
Mdigit in Πdigit. For each pair of images denoted by d1

and d2 and their sum n, we construct the ASP constraint
← not addition(d1, d2, n) as the observation O. The train-

ing target is to maximize log(PΠdigit(O)).
Figure 2 shows how the forward and the backward propa-

gations are done for NeurASP program Πdigit in Example 3.
The left-to-right direction is the forward computation of the
neural network extended with the rule layer, whose output is
the probability of the observation O. The right-to-left direc-
tion shows how the gradient from the rule layer is backpropa-
gated further into the neural network by the chain rule to up-
date all neural network parameters so as to find the parameter
values that maximize the probability of the given observation.

Figure 3 shows the accuracy on the test data after each
training iteration. The method CNN denotes the baseline used
in [Manhaeve et al., 2018] where a convolutional neural net-
work (with more parameters) is trained to classify the con-
catenation of the two images into the 19 possible sums. As we
can see, the neural networks trained by NeurASP and Deep-
ProbLog converge much faster than CNN and have almost the
same accuracy at each iteration. However, NeurASP spends
much less time on training compared to DeepProbLog. The
time reported is for one epoch (30,000 iterations in gradi-
ent descent). This is because DeepProbLog constructs an
SDD (Sequential Decision Diagram) at each iteration for each
training instance (i.e., each pair of images). This example

Figure 3: NeurASP v.s. DeepProbLog

illustrates that generating many SDDs could be more time-
consuming than enumerating stable models in NeurASP
computation. In general, there is a trade-off between the two
methods and other examples may show the opposite behav-
ior.

4.3 Experiment 2: Learning How to Solve Sudoku
In section 3.2, we used a neural network Midentify to identify
the numbers on a Sudoku board and used ASP rules to solve
the Sudoku problem. In this section, we use a neural network
to learn to solve Sudoku problems. The task is, given the
textual representation of an unsolved Sudoku board (in the
form of a 9× 9 matrix where an empty cell is represented by
0), to let a neural network learn to predict the solution of the
Sudoku board.

We use the neural network Msol from [Park, 2018] as the
baseline. Msol is composed of 9 convolutional layers and
a 1x1 convolution layer followed by softmax. Park trained
Msol using 1 million examples and achieved 70% accuracy
using an “inference trick”: instead of predicting digits for all
empty cells at once, which leads to a poor accuracy, the most
probable grid-cell value was predicted one by one.

Since the current NeurASP implementation is not as scal-
able as neural network training, training on 1 million exam-
ples takes too long. Thus, we construct a dataset of 63,000
+ 1000 〈config, label〉 pairs for training and testing. Using
Park’s method on this relatively small dataset, we observe that
Msol’s highest whole-board accuracy Accsol 5 is only 29.1%
and Msol’s highest grid-cell accuracy6 is only 89.3% after 63
epochs of training.

We get a better result by training Msol with the NeurASP
program Πsol. The program is almost the same as Πidentify

in Section 3.2 except that it uses Msol in place of Midentify

and the first three rules of Πidentify are replaced with
nn(sol(81, img), [1,2,3,4,5,6,7,8,9]).
a(R,C,N) :- identify(sol, img, N), R=Pos/9, C=Pos\9.

because we do not have to assign the value empty in solving
Sudoku.

We trained Msol using NeurASP where the training target
is to maximize the probability of all stable models that sat-
isfy the observation. On the same test data, after 63 epochs

5The percentage of Sudoku examples that are correctly solved.
6The percentage of grid cells having correct digits regardless

whether the Sudoku solution is correct.

of training, the highest whole-board accuracy of Msol trained
this way is 66.5% and the highest grid-cell accuracy is 96.9%
(In other words, we use rules only during training and not
during testing). This indicates that including such structured
knowledge sometimes helps the training of the neural net-
work significantly.

4.4 Experiment 3: Learning Shortest Path (SP)
The experiment is about, given a graph and two points, find-
ing the shortest path between them. We use the dataset from
[Xu et al., 2018], which was used to demonstrate the effec-
tiveness of semantic constraints for enhanced neural network
learning. Each example is a 4 by 4 grid G = (V,E), where
|V | = 16, |E| = 24. The source and the destination nodes
are randomly picked up, as well as 8 edges are randomly re-
moved to increase the difficulty. The dataset is divided into
60/20/20 train/validation/test examples.

The following NeurASP program 7

nn(sp(24, g), [true, false]).
sp(0,1) :- sp(1,g,true).
...
sp(X,Y) :- sp(Y,X).

together with the union of the following 4 constraints defines
the shortest path.

% [nr] 1. No removed edges should be predicted
:- sp(X,g,true), removed(X).

% [p] 2. Prediction must form a simple path, i.e.,
% the degree of each node must be either 0 or 2
:- X=0..15, #count{Y: sp(X,Y)} = 1.
:- X=0..15, #count{Y: sp(X,Y)} >= 3.

% [r] 3. Every 2 nodes in the prediction must be
% reachable
reachable(X,Y) :- sp(X,Y).
reachable(X,Y) :- reachable(X,Z), sp(Z,Y).
:- sp(X,A), sp(Y,B), not reachable(X,Y).

% [o] 4. Predicted path should contain least edges
:∼ sp(X,g,true). [1, X]

In this experiment, we trained the same neural network
model Msp as in [Xu et al., 2018], a 5-layer Multi-Layer Per-
ceptron (MLP), but with 4 different settings: (i) MLP only;
(ii) together with NeurASP with the simple-path constraint
(p) (which is the only constraint used in [Xu et al., 2018]);
8 (iii) together with NeurASP with simple-path, reachability,
and optimization constraints (p-r-o); and (iv) together with
NeurASP with all 4 constraints (p-r-o-nr). 9

Table 2 shows, after 500 epochs of training, the percentage
of the predictions on the test data that satisfy each of the con-
straints p, r, and nr, the path constraint (i.e., p-r), the short-

7sp(X, g, true) means edge X is in the shortest path. sp(X,Y)
means there is a path between nodes X and Y in the shortest path.

8A path is simple if every node in the path other than the source
and the destination has only 1 incoming edge and only 1 outgoing
edge.

9Other combinations are either meaningless (e.g., o) or having
similar results (e.g. p-r is similar to p).

est path constraint (i.e., p-r-o-nr), and the accuracy w.r.t. the
ground truth.

The accuracies for the first experiment (MLP Only) show
that Msp was not trained well only by minimizing the cross-
entropy loss of its prediction: 100-28.3 = 71.7% of the pre-
dictions are not even a simple-path.

In the remaining experiments (MLP (x)), instead of mini-
mizing the cross-entropy loss, our training target is changed
to maximizing the probability of all stable models under cer-
tain constraints. The accuracies under the 2nd and 3rd experi-
ments (MLP (p) and MLP (p-r-o) columns) are increased sig-
nificantly, showing that (i) including such structured knowl-
edge helps the training of the neural network and (ii) the more
structured knowledge included, the better Msp is trained un-
der NeurASP. Compared to the results from [Xu et al.,
2018], Msp trained by NeurASP with the simple-path con-
straint p (in the 2nd experiment MLP (p) column) obtains a
similar accuracy on predicting the label (28.9% v.s. 28.5%)
but a higher accuracy on predicting a simple-path (96.6% v.s.
69.9%).

In the 4th experiment (MLP (p-r-o-nr) column) where we
added the constraint nr saying that “no removed edges can
be predicted”, the accuracies go down. This is because the
new constraint nr is about randomly removed edges, chang-
ing from one example to another, which is hard to be gener-
alized.

Table 2: Shortest Path: Accuracy on Test Data: columns de-
note MLPs trained with different rules; each row represents
the percentage of predictions that satisfy the constraints

Predictions MLP Only MLP MLP MLP
satisfying (p) (p-r-o) (p-r-o-nr)

p 28.3% 96.6% 100% 30.1%
r 88.5% 100% 100% 87.3%

nr 32.9% 36.3% 45.7% 70.5%
p-r 28.3% 96.6% 100% 30.1%

p-r-o-nr 23.0% 33.2% 45.7% 24.2%
label (ground truth) 22.4% 28.9% 40.1% 22.7%

5 Related Work
Recent years have observed the rising interests of combin-
ing perception and reasoning. As mentioned, the work on
DeepProbLog [Manhaeve et al., 2018] is closest to our work.
Some differences are: (i) The computation of DeepProbLog
relies on constructing circuits such as sequential decision di-
agrams (SDD) whereas we use an ASP solver internally. (ii)
NeurASP employs expressive reasoning originating from an-
swer set programming, such as defaults, aggregates, and opti-
mization rules. This not only gives more expressive reasoning
but also allows the more semantic-rich constructs as guide to
learning. (iii) DeepProbLog requires each training data to be
a single atom, while NeurASP allows each training data to
be arbitrary propositional formulas.

Also related is using the semantic constraints to train neural
networks better [Xu et al., 2018], but the constraints used
in that work are simple propositional formulas whereas we
use answer set programming language, in which it is more

convenient to encode complex KR constraints. Logic Tensor
Network [Donadello et al., 2017] is also related in that it uses
neural networks to provide fuzzy values to atoms.

Another approach is to embed logic rules in neural net-
works by representing logical connectives by mathemati-
cal operations and allowing the value of an atom to be a
real number. For example, Neural Theorem Prover (NTP)
[Rocktäschel and Riedel, 2017] adopts the idea of dynamic
neural module networks [Andreas et al., 2016] to embed
logic conjunction and disjunction in and/or-module networks.
A proof-tree like end-to-end differentiable neural network is
then constructed using Prolog’s backward chaining algorithm
with these modules. Another method that also constructs a
proof-tree like neural network is TensorLog [Cohen et al.,
2018], which uses matrix multiplication to simulate belief
propagation that is tractable under the restriction that each
rule is negation-free and can be transformed into a polytree.

Graph neural network (GNN) [Kipf and Welling, 2017] is a
neural network model that is gaining more attention recently.
Since a graph can encode objects and relations between ob-
jects, by learning message functions between the nodes, one
can perform certain relational reasoning over the objects. For
example, in [Palm et al., 2018], it is shown that GNN can do
well on Sudoku, but the input there is not an image but a tex-
tual representation. However, this is still restrictive compared
to the more complex reasoning that KR formalisms provide.

Neuro-Symbolic Concept Learner [Mao et al., 2019] sepa-
rates between visual perception and symbolic reasoning. It
shows the data-efficiency by using only 10% of the train-
ing data and achieving the state-of-the-art 98% accuracy on
CLEVR dataset. Our results are similar in the sense that us-
ing symbolic reasoning, we could use fewer data to achieve a
high accuracy.

NeurASP is similar to LPMLN [Lee and Wang, 2016] in
the sense that they are both probabilistic extensions of ASP
and their semantics are defined by translations into ASP [Lee
and Yang, 2017]. LPMLN allows any rules to be weighted,
whereas NeurASP uses standard ASP rules.

6 Conclusion
We showed that NeurASP can improve the neural network’s
perception result by applying reasoning over perceived ob-
jects and also can help neural network learn better by com-
pensating the small size data with knowledge and constraints.
Since NeurASP is a simple integration of ASP with neural
networks, it retains each of ASP and neural networks in indi-
vidual forms, and can directly utilize the advances in each of
them.

The current implementation is a prototype and not highly
scalable due to a naive computation of enumerating stable
models. The future work includes how to make learning
faster, and also analyzing the effects of the semantic con-
straints more systematically.

Acknowledgments
We are grateful to the anonymous referees for their useful
comments. This work was partially supported by the National
Science Foundation under Grant IIS-1815337.

References
[Adam et al., 2017] Paszke Adam, Gross Sam, Chintala

Soumith, Chanan Gregory, Yang Edward, D Zachary, Lin
Zeming, Desmaison Alban, Antiga Luca, and Lerer Adam.
Automatic differentiation in PyTorch. In Proceedings of
Neural Information Processing Systems, 2017.

[Andreas et al., 2016] Jacob Andreas, Marcus Rohrbach,
Trevor Darrell, and Dan Klein. Learning to compose neu-
ral networks for question answering. In Proceedings of the
2016 Annual Conference of the North American Chapter
of the Association for Computational Linguistics: Human
Language Technologies, pages 1545–1554, 2016.

[Baader et al., 2003] Franz Baader, Diego Calvanese, Deb-
orah L. McGuinness, Daniele Nardi, and Peter F. Patel-
Schneider, editors. The Description Logic Handbook:
Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[Brewka et al., 2011] Gerhard Brewka, Ilkka Niemelä, and
Miroslaw Truszczynski. Answer set programming at a
glance. Communications of the ACM, 54(12):92–103,
2011.

[Calimeri et al., 2020] Francesco Calimeri, Wolfgang Faber,
Martin Gebser, Giovambattista Ianni, Roland Kaminski,
Thomas Krennwallner, Nicola Leone, Marco Maratea,
Francesco Ricca, and Torsten Schaub. ASP-Core-2 input
language format. Theory and Practice of Logic Program-
ming, 20(2):294–309, 2020.

[Cohen et al., 2018] William W Cohen, Fan Yang, and
Kathryn Rivard Mazaitis. Tensorlog: Deep learning meets
probabilistic databases. Journal of Artificial Intelligence
Research, 1:1–15, 2018.

[Donadello et al., 2017] Ivan Donadello, Luciano Serafini,
and Artur D’Avila Garcez. Logic tensor networks for se-
mantic image interpretation. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence,
pages 1596–1602. AAAI Press, 2017.

[Gebser et al., 2011] Martin Gebser, Benjamin Kaufmann,
Roland Kaminski, Max Ostrowski, Torsten Schaub, and
Marius Schneider. Potassco: The potsdam answer set solv-
ing collection. AI Communications, 24(2):107–124, 2011.

[Kazemi and Poole, 2018] Seyed Mehran Kazemi and David
Poole. Relnn: A deep neural model for relational learning.
In Proceedings of the 32nd AAAI Conference on Artificial
Intelligence, 2018.

[Kipf and Welling, 2017] Thomas N. Kipf and Max Welling.
Semi-supervised classification with graph convolutional
networks. In Proceedings of the 5th International Con-
ference on Learning Representations, ICLR 2017, 2017.

[Lee and Wang, 2016] Joohyung Lee and Yi Wang.
Weighted rules under the stable model semantics. In
Proceedings of International Conference on Principles of
Knowledge Representation and Reasoning (KR), pages
145–154, 2016.

[Lee and Yang, 2017] Joohyung Lee and Zhun Yang.
LPMLN, weak constraints, and P-log. In Proceedings of

the AAAI Conference on Artificial Intelligence (AAAI),
pages 1170–1177, 2017.

[Lifschitz, 2008] Vladimir Lifschitz. What is answer set pro-
gramming? In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, pages 1594–1597. MIT Press, 2008.

[Lin et al., 2019] Bill Yuchen Lin, Xinyue Chen, Jamin
Chen, and Xiang Ren. Kagnet: Knowledge-aware graph
networks for commonsense reasoning. In Proceedings
of the 2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International Joint
Conference on Natural Language Processing (EMNLP-
IJCNLP), pages 2822–2832, 2019.

[Manhaeve et al., 2018] Robin Manhaeve, Sebastijan Du-
mancic, Angelika Kimmig, Thomas Demeester, and Luc
De Raedt. Deepproblog: Neural probabilistic logic pro-
gramming. In Proceedings of Advances in Neural Infor-
mation Processing Systems, pages 3749–3759, 2018.

[Mao et al., 2019] Jiayuan Mao, Chuang Gan, Pushmeet
Kohli, Joshua B. Tenenbaum, and Jiajun Wu. The neuro-
symbolic concept learner: interpreting scenes, words, and
sentences from natural supervision. In Proceedings of
International Conference on Learning Representations,
2019.

[Palm et al., 2018] Rasmus Palm, Ulrich Paquet, and Ole
Winther. Recurrent relational networks. In Proceedings
of Advances in Neural Information Processing Systems,
pages 3368–3378, 2018.

[Park, 2018] Kyubyong Park. Can convolutional neural
networks crack sudoku puzzles? https://github.com/
Kyubyong/sudoku, 2018.

[Pearl, 2000] Judea Pearl. Causality: models, reasoning and
inference, volume 29. Cambridge Univ Press, 2000.

[Reiter, 1980] Raymond Reiter. A logic for default reason-
ing. Artificial Intelligence, 13:81–132, 1980.

[Rocktäschel and Riedel, 2017] Tim Rocktäschel and Sebas-
tian Riedel. End-to-end differentiable proving. In Pro-
ceedings of Advances in Neural Information Processing
Systems, pages 3788–3800, 2017.

[Šourek et al., 2015] Gustav Šourek, Vojtech Aschenbren-
ner, Filip Železny, and Ondřej Kuželka. Lifted relational
neural networks. In Proceedings of the 2015th Interna-
tional Conference on Cognitive Computation: Integrating
Neural and Symbolic Approaches-Volume 1583, pages 52–
60. CEUR-WS. org, 2015.

[Xu et al., 2018] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao
Liang, and Guy Van den Broeck. A semantic loss func-
tion for deep learning with symbolic knowledge. In Pro-
ceedings of the 35th International Conference on Machine
Learning (ICML), July 2018.

