1

Two widely used definitions of the semantics of logic

A New Perspective on Stable Models

Paolo Ferrarist, Joohyung Leé and Vladimir Lifschitz !

!Department of Computer Sciences
University of Texas at Austin
1 University Station C0500
Austin, TX 78705
{otto,vl} @cs.utexas.edu

Abstract

The definition of a stable model has provided a
declarative semantics for Prolog programs with
negation as failure and has led to the development
of answer set programming. In this paper we pro-
pose a new definition of that concept, which covers
many constructs used in answer set programming
(including disjunctive rules, choice rules and con-
ditional literals) and, unlike the original definition,
refers neither to grounding nor to fixpoints. Rather,
it is based on a syntactic transformation, which
turns a logic program into a formula of second-
order logic that is similar to the formula familiar
from the definition of circumscription.

Introduction

programs—in terms of program completi¢@lark, 1978

and in terms of stable modelgGelfond and Lifschitz,
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are considered “stable models”; it turns out that the ordy st
ble model of (3) is

{p(a), q(b), r(a)}. (4)

In spite of this difference between the two definitions, ¢her
is often a close relationship between the completion of a pro
gram and its stable models. For instance, in every model
of (2) (in the sense of first-order logic) that satisfies thigue
names assumptian= b, the elements of set (4) are true, and
all other ground atoms are false.

Practical needs of answer set programming (ASP) have
led to the invention of several declarative programming-con
structs that are not used in Prolog. Clark’s completion sema
tics is not applicable to these constructs, at least diredr
instance, the last rule of the program

p(a),
p(b), (5)
{q(z) : p(x)}

is a “choice rule” containing a “conditional literalSimons
et al, 2004. Intuitively, this rule says: for any such that

1988_—I00k very different from eac_h other. The_z formertre_atsp(a;), choose arbitrarily whether or not to inclugler) in the
a logic program as shorthand for its completion, which is astable model. The semantics of programs with choice rules,
first-order formula. For instance, the program

p(a),
q(b), (1)
r(z) < p(z),notq(x)

is shorthand for

On the other hand, according to the stable model seman-
tics, (1) is shorthand for the set of the ground instances of

Va(p(z) < = a) AVx(q(z) <z =10) o)
AVz(r(z) < (p(z) A —q(x))).

its rules:

The definition of a stable model describes a fixpoint construc
tion that determines which sets of atomic formulas from (3)

a) « pla), notq(a), ®)

7(b) < p(b), notq(b).

like the original stable model semantics, is defined in tesfms
grounding and a fixpoint condition. For instance, grounding
turns the last line of (5) into the ground choice rule

{a(a), q(b)}.

As it turns out, program (5) has 4 stable models:

{p(a), p(b)},

{p(a), p(b), q(a)}, ()
{p(a), p(b), q(b)},

{p(a), p(b), q(a), q(b)}.

In this paper we propose a new definition of a stable model,
which covers many constructs used in ASP (including dis-
junctive rules, choice rules, cardinality constraints aoddi-
tional literals) and refers neither to grounding nor to fikps.
Rather, like the definition of program completion, the new
definition of a stable model is based on a transformation that
turns the given logic program into a formula of classicaldog

To be precise, the result of this transformation isewond-
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iar from the definition of circumscriptiotMcCarthy, 1980;
1984 in the form adopted ifiLifschitz, 1994.



The new definition and examples of its use are discussedrder sentences of special kintls.
in Section 2 below. In Section 3 we relate our definition To rewrite a “traditional” program, such as (1), as a first-
to a theorem fronjLin, 1991, to the encoding of proposi- order sentence, we
tional logic programs by quantified Boolean formulas due to
. replace every comma by and everynotby —,
Pearce, Tompits and Woltran [20044nd to recent research ° ep y by _ ooy )
on first-order equilibrium logi¢Pearce and Valverde, 2004;  © turn every ruleHead — Bodyinto a formula by rewrit-
2005. A theorem about strong equivalence, illustrating the ~ Ing it as the implicatiorBody — Head and
nature of the ongoing work on reformulating the theory of e form the conjunction of the universal closures of these
stable models on the basis of the new definition, is stated in  formulas.
Section 4. Finally, in Section 5 we propose a way to genereq, instance, we think of (1) as alternative notation for the
alize the concept of program completion that is similar ® th
- sentence
new definition of a stable model.

Our treatment of stable models may be of interest for three p(a) A q(db) AVz((p(z) A ~q(x)) — r(z)). (7)

reasons. First, it provides a new perspective on the place )
of stable models within the field of nonmonotonic reason-"/€ are going to treat /" as shorthand foF' — L, so that the

ing. We can distinguish between “translational” nonmono-ast conjunctive term can be further expanded into

tonic formalisms, such as program completion and circum- Ya((p(z) A (q(z) — L)) — r(z)).
scription, and “fixpoint” formalisms—default logilReiter,
19802 and autoepistemic logiMoore, 1985%. In the past, In the spirit of[Ferraris and Lifschitz, 2003p(5) is under-

stable models were seen as part of the “fixpoint tradition."stood as

In fact, the invention of stable models was an outgrowth of

earlier work on the relationship between logic programming p(a) Ap(b) AVa(p(z) — (q(2) V ~q())). (8)
and autoepistemic logi¢Gelfond, 1987, the first journal pa-  Since the last conjunctive term is logically valid, the slas
per on answer sefSelfond and Lifschitz, 199lemphasized  of models of formula (8) would not change if we dropped
their relation to default logic. The remarkable similaf§-  that term; but the class of ittablemodels, as defined below,
tween the new definition of a stable model and the def|n|t|0rW0u|d be affected. In this sense, the last Conjunctive tsrm i
of circumscription is rather curious from this point of view  gggential.

Second, we expect that the new definition of stable mod- Finally, here is an example of turning a cardinality con-
els will provide a unified framework for useful answer set straint[Simonset al., 2009 into a first-order formula. The
programming constructs defined and implemented by sewyle
eral different research groups, such as choice rules,ragrdi p«— 10{q(x) : r(z)} 20
ity constraints and conditional literals (Helsinki Unigéy of
Technology), disjunctive rules and aggregdteaberet al.,
2004 (Vienna University of Technology and University of (Broz(q(z) Ar(z)) A —~TFoiz(q(x) Ar(z)) —=p,  (9)
Calabria), and ASET-Prolog constru¢@Gelfond, 2002, Sec- ) o
tion 5.7 (Texas Tech University). where3d,,z F'(z) is understood as an abbreviation for

Finally, we hope that this definition of a stable model will
serve as a basis for a new approach to proving program cor-
rectness in ASP, which will be more straightforward than oy /\ Fi) A /\ Ti # T
the one based on grounding and fixpoint definitifferraris 1sisn lsi<jsn
and Lifschitz, 2005a, Sections 3.3-3.5,]3.These correct-
ness proofs will use equivalent transformations of forraula
of classical logic as the main tool.

corresponds to the sentence

2.2 Review of Circumscription

Since the new definition of a stable model looks similar to
the definition of circumscription, we will begin with a brief
review of the latter, for the special case when all predicate

2 Definition and Examples constants occurring in the formula are circumscribed in par
) ) allel [Lifschitz, 1994, Section 7]1
2.1 Logic Programs as First-Order Formulas Both definitions use the following notation. pfandq are

_predicate constants of the same arity then- ¢ stands for

The concept of a stable model will be defined here for first
the formula

order sentences (formulas without free variables); logge p v
grams are viewed in this paper as alternative notation ft fir x(p(x) < q(x)),

- %In the propositional case, this approach to the syntax of iSSP

!The fact that circumscription is related to program coniptet  not new. The possibility of interpreting choice rules andghiecon-
has been known for a long timReiter, 1982; Lifschitz, 1995  straints in terms of nested conjunctions, disjunctions reghtions
The relationship between circumscription and the Peaoreplts-  was demonstrated ifFerraris and Lifschitz, 2005b, Section 4.1
Woltran transformation is discussed [iRerrariset al, 2006, Ap-  General aggregates can be described in terms of nestecatiptis
pendix B. [Ferraris, 2005, Sectior] 4Including second (“strong,” “classical,”

2The translational definition of default logic, proposed if- or “true”) negation without introducing an additional camwtive is
schitz, 1990, is rather complicated: it usehird-ordervariables. discussed ifiFerraris and Lifschitz, 2005a, Section 3.9



andp < ¢ stands for o (F—G)=(F*—G)N(F — G);

vx(p(x) — q(x)), o (QzF)* = QzF™*, whereQ € {V,3}.

Note that the operataF" — F*(u) replaces each predicate

constant with the corresponding predicate variable, aatd th

it commutes with all propositional connectives except impl

cation and with both quantifiers. If, in the definition of this

PL=q1 N APn = qn, operator, we drop the second conjunctive term in the clause
for implication, thenF*(u) will turn into the formulaF (u)

wherex is a tuple of distinct object variables. gfandq are
tuplesps, ...,p, andq, ..., q, of predicate constants then
P = q stands for the conjunction

andp < q for referred to in the definition of circumscription. That con-
L@ A Apn < (n- junctive term is the only difference between the definitions
inall : bbreviation f of CIRC and SM.

Finally, p < q is an abbreviationfop < qA—~(p =q). A model of F is stableif it satisfies SMF].

In second-order logic, we will apply the same notation to
tuples of predicate variables. Example 1 If F'is (10) thenF™*(u, v) is

Given a first-order sentende, by CIRC F] we denote the
second-order sentence u(a) AVz((u(z) — v(@)) A (p(z) — q(2)))

F A—=3u((u < p) A F(u)), and SMF]is

wherep stands for the list of all predicate constants occur- p(a) A Va(p(z) — q(x))
ring in ', u is a list of distinct predicate variables of the same ~ A—=3uv(((u,v) < (p,q)) Au(a) AVa((u(z) — v(x))
length, and”(u) is the formula obtained frorf by substitut- Ap(z) — q(2)))).
ing the variables for the constantp. Intuitively, the second
conjunctive term of CIR(F| expresses that the extents of the
predicatep are minimal subject to conditioA.

For example, iff" is

It is clear that this formula is equivalent to (11), and cense
quently to (12).
In logic programming notation, (10) can be written as

pla) AVz(p(z) — g(x)) (10) 28%— p(x).
thezn)CzRv’CFf ]('S) ") The completion of this program
i /\—Elug(((uw)q< (p,q)) Au(a) AVz(u(z) — v(z))). Vr(p(z) < x = a) AVz(q(z) < p(x))

(11)
Using methods for eliminating second-order quantifiers dis
cussed irfLifschitz, 1994 and[Dohertyet al, 1997, we can
simplify (11) and convert it into

is equivalent to (12) as well. In this example, all three
transformations—SM, CIRC and completion—produce es-
sentially the same result.

(12) Example 2 If F'is (13) then, as in the previous example, it is
clear that SNIF] is equivalent to CIR{F]. Consequently, the
There are cases when CIRG is not equivalent to any stable models of (13) can be characterized by the condition

Ve(p(x) < x = a) ANVz(q(z) < x = a).

first-order formula, as, for instance, whéhs stated at the end of the previous sectipris represented by
the set of the values of the termsf (a), f(f(a)), . . ..
p(a) ANV (p(z) — p(f(2))). (13) In logic programming notation, (13) can be written as
In this example, a model of CIRE] is any interpreta- (a)
tion that representp as the set of the values of the terms e (14)
p(f(x)) < p(x).

a, f(a), f(f(a)),. ...

2.3 Stable Models

Given a first-order sentencE, by SM[F] we denote the Va(p(z) < (z =aVIy(z = f(y) Ap(y)))
second-order sentence

The completion of this program

is weaker than SiF]: some (non-Herbrarfiimodels of the
FA—=3u((u < p)AF*(u)), completion of (14) are not stable.

where p stands for the list of all predicate constants Itis easy to see that the operator SM produces essentially
p1,...,Pn OCCUrTing inF, U is a list of n distinct predicate the same result as CIRC whenever it is applied to a for-

variablesuy, . .., u,, andF*(u) is defined recursively: mula corresponding to a set of Horn rules, as in the examples
o pilty,- . tm)” = ity tm); 4An Herbrand interpretatioof a signaturer containing at least
o (t1=t2)* = (t1=t2); one object constant is an interpretation such that (i) iteause is the

o |*— |- set of all ground terms of, and (ii) every ground term represents
o itself. Clearly, an Herbrand interpretation can be chamxtd by
o (FOG)" =F*06G*, whereo € {A,V}; the set of ground atoms to which it assigns the vatue



above? But if negation in the bodies of rules is allowed then convert this formula into the completion (2) of program (1).

this may be no longer the case, as we will see Section 2.4. We conclude that in this case the stable models of the program
What we can say, on the other hand, about this more gerare identical to the models of its completion.

eral case is that stabléerbrandmodels of the corresponding ~ We can further conclude that there is a unique Herbrand

formula exactly correspond to the stable models of the prostable model in this case, and that it corresponds to thd}set (

gram in the sense of the original definition fr¢@elfond and  of ground atoms. This fact follows also from Proposition 1.

LIfSChIt.Z’_ 1988: . o Example 4 If F'is formula (8), corresponding to logic pro-
Proposition 1 Let ¢ be a signature containing at least one gram (5), then a similar calculation converts §\linto
object constant, antl a finite set of rules of the form

p(a) Ap(b) AVa(p(z) — (q(x) vV —q(x)))

Ag— Ay, ..., Ap,NOt A, 11,...,NOtA,, (15) A=Fuo(((u,v) < (p, q)) Aula) Au(b)
where A, ..., A,, are atomic formulas of not containing AVz(u(x) — (v(x) V =q(x)))).
equality. For any seX" of ground terms oé, the following  after the elimination of second-order quantifiers, thisiolia
conditions are equivalent: becomes
e X is a stable model dfl in the sense of the 1988 defini-

tion- Ve(p(x) < (r=aVz=0"»))
’ AVz(q(x) — (x =aVx =D)).
e the Herbrand interpretation af that makes the elements ) )
of X true and all other ground atoms false is a stable The stable models of (5) can be characterized as the interpre
model of the formula corresponding fa tations that (i) represemptby the set of values af andb, and
. _ (i) represent; by a subset of that set. Consequently, (8) has 4
This theorem shows that the new definition of a stableyehrand stable models, and they correspond to sets (6).
model, restricted to the “traditional” syntax, is a genizal We call a formulanegativeif every occurrence of every
tion of the 1988 definition to non-Herbrand models. In Sec+, o qicate constant in this formula belongs to the antededen

tion 3.1 we will see that our definition generalizes also theys 5 implication. Clearly any formula of the formF is

definition proposed ifiFerraris, 200band used ifFerraris  egative, because this expression is shorthandfors |
and Lifschitz, 2005a; Ferraret al, 2004. (Section 2.1). Proposition 2 can be generalized to arkitrar

2.4 Further Examples negative formulas.

Proposition 2 below allows us to simplify the application of : :
the operator SM to formulas containing negation. In itsestat 3 Relation to Earlier Work

ment,p is the list of predicate constants occurringipandu 3.1 Propositional Case
is a list of distinct predicate variables of the same length.a | the propositional case, the operator SM turns into the
Proposition 2 If a formula F’ begins with- then the formula  encoding of formulas of equilibrium logic by quantified
. Boolean formulas proposed [Rearceet al, 2001 and re-
u<p— (F(u) < F) viewed in[Ferrariset al., 2006, Appendix B In view of the
is logically valid. Pearce-Tompits-Woltran theorem, as restated in thatwegitie
follows that in the propositional case our definition of dga
Examp|e 3 Let F be formula (7)’ Corresponding to |Ogic modelis equivalentto the definition OfaStable model (amSWe
program (1). Then SIF] is set) proposed ifiFerraris, 200band reviewed ifFerrariset
al., 2006, Appendix A

p(a) A q(b) AVx((p(z) A =g(x)) — 7(x)) _ _
A=Fuvw(((u, v, w) < (p,q,7)) ANula) Av(b) 3.2 Lin’s Transformation
AV (((u(z) A (—g(2))*) — w(z)) Theorem 5 fron{Lin, 1991 relates stable models of “tradi-
M(p(x) A —q(2)) — r(x))))- tional programs” (as in Proposition 1 above) to circumscrip

Itis clear that the implication in the last line can be draghpe fion. It involves a syntactic transformation that can be de-
Furthermore, since the subformula v, w) < (p, g, ) con- scribed as a sequence of three steps. First, each rule &iturn

tains the conjunctive term < ¢, from Proposition 2 we can INfo a formula that may contain new predicate constants—
conclude that—¢(z))* can be equivalently replaced here by “doubles’s’ of the predicate constanisoccurring in the rule.

—q(z). Consequently, SIF] can be rewritten as Second, the new predicate constants are circumscribed-in pa
allel. Third, the result is conjoined with the equivalences
p(a) A q(b) AVa((p(z) A —q(z)) — r(z)) p’ = p. We will show that this idea is applicable to arbitrary
A=Fuvw(((u, v, w) < (p,q,7)) Au(a) Av(b) first-order sentences, and that the result of this transftiom
AVz((u(x) A =q(r)) — w(x))). is closely related to the operator SM.

Using the methods for eliminating second-order quantifiers To do this, we need parallel circumscription of a slightly

described at the end étifschitz, 1994, Section 3]3we can  more general kind than defined in Section 2.2. In the defi-
' ' nition of circumscription, there is no need to assume that

SThis assertion remains true if we allow the heads of ruleseto b Stands for the list ofll predicate constants occurring Iy
disjunctions of atomic formulas. p may include only some of these constants. The result of



circumscribing the predicate constapts a first-order sen-
tenceF’ will be denoted by CIR{F'; p]. For instance, ifF’
is (10) then CIRCF'; ¢ is

p(a) AVz(p(z) — q(z))
A=Fv((v < q) Ap(a) AV (p(z) — v(x))),
which is equivalent to
p(a) AVz(p(z) < q(x)).

Let I be a first-order sentence, and febe the list of all
predicate constants occurringin Take a listp’ of distinct
predicate constants that do not occufinof the same length
asp. By L[F; p’] we denote the formula

CIRC[F*(p');P'] A (P’ = D).

This formula turns out to be equivalent to $W) conjoined
with explicit definitions of the new predicate constapts

Proposition 3 L[F'; p’] is equivalent t&SM[F] A (p’ = p).

Tt =t if t! =’

I} 1

I'EFAGIfI E Fandl E G;similarly for v;
e IEF—GIif

() I Forl kG, and

iy (I,IY) = F — G;

e [ = VaF(x) if, for each¢ from the universe off/,
I | F(¢*); similarly for 3.

(In (ii) we understand satisfaction as in classical logic.)
An HT-interpretation of the fornd/, .J, .J) is anequilibrium
modelof F if

e (I,J,J)E F,and
o for any proper subset’ of J, (I, J', J) [~ F.

This definition provides a precise model-theoretic counter
part of the operator SM:

This is immediate from the definitions of L and SM, using the Proposition 4 An interpretation(/, J) is a stable model of a

fact thatF*(p) is equivalent taF.

It follows that SMF] is equivalent to [F; p’] with the
predicate constantp’ replaced by existentially quantified
predicate variables:

Corollary 1 SM[F] is equivalent tadu L[F; u].

3.3 Equilibrium Logic
The definition of first-order equilibrium logic below is silzui
to the one proposed [Pearce and Valverde, 2005, Sectidn 7

sentencd" iff (I, .J, J) is an equilibrium model of".

4 Strong Equivalence

To turn the definition of a stable model proposed in this pa-
per into a tool that can help us in the design of provably
correct ASP programs, we need to find appropriate counter-
parts of the theorems that are used in correctness proofs to-
day® The “traditional” theorems about stable models will
roughly correspond to the special cases of these new theo-

except that ground terms are not identified here with their va rems in which the formulas involved are propositional combi

ues; as aresult, different ground terms are allowed to Heve t nations of ground atoms, perhaps of a special syntactic,form
same value. Our definition describes essentially Kripke-modand our attention is restricted to Herbrand models.

els with two worlds (*here” and “there”) that have the same  1q give an example illustrating this general point, we state

universe, interpret all function constants in the same amag,
satisfy the minimality condition introduced [Rearce, 1997

If I is an interpretation of a signatute(in the sense of
classical logic) then by’ we denote the extension efob-
tained by adding pairwise distinct symbgls callednames
for all elementg of the universe of as object constants. We
will identify I with its extension ter! defined byr (%) = €.
The value thatl assigns to a ground termof signatures’
will be denoted by’ .

By o we denote the part of consisting of its function

here a counterpart of the characterization of strong eguiva

lence[Lifschitz et al,, 2001 due to Fangzhen Lin [2002].
About first-order sentenceE and G we say thatF' is

strongly equivalento G if, for every sentencéd (possibly

of a larger signature)f’ A H has the same stable models

asG A H (or, to put it differently, if, for everyd, SM{F' A H|

is equivalent to SNGZ A HJ). In the following theoremp

is the list of predicate constants occurring in at least dne o

the sentenceB’, GG, andp’ is a list of new, distinct predicate

constants of the same lengthpas

constants (including object constants, which are viewed as - ] ] )
function constants of arity 0). We will represent an inter- Proposition 5 F'is strongly equivalent t6 iff the formula

pretation/ of o as the paif!I|,s,I’), wherel’ is the set of
all atomic formulas, formed using predicate constants fsom
and nameg*, which are satisfied by.

An HT-interpretatiorof o is a triple(I/, I", I'), where

e I/ is an interpretation of s, and

e I, I* are sets of atomic formulas formed using predi-

cate constants from and object constants for arbi-
trary elements of the universe of f, such that” C I*.

The satisfaction relation between an HT-interpretation

I = (If,I" It} and a sentenc& of the signaturer(/"+1")
is defined recursively:

o TEp(ty, ... to)if p(t1) ... (t1))) e I

P <p— (F'(p) < G"(p))
is logically valid.

Using this theorem we can show, for instance, that
—VzF(x) is strongly equivalent t8z—F'(z). (This is a pred-
icate logic counterpart of the fact thatF' A G) is strongly
equivalentto-F'V —@G.) Indeed, in view of Proposition 2, the
implications

P <p— ((VoF(z))" < —VaF(z)),
p' <p— (Gz-F(2)" < Ja=F(z));

bSee, for instancdFerraris and Lifschitz, 2005a, Sections 2.1—
2.4,2.6-3.1



are logically valid; the right-hand sides of the two equiva-Proposition 6 FormulaPSM F] is equivalent to
lences are classically equivalent to each other. i i i
For our proof of the “only if” part of Proposition 5 it is not EA /\ ~3x (pi(x) A Gi(x)),
essential that the definition of strong equivalence alldves t o Isisn
signature off to be larger than the signature BfandG. It  whereG;(x") stands for
follows that £ is strongly equivalent téx wheneverF A H F* W (s (V) A vE .
has the same stable modelsGas\ H for all sentenced! of (P, Pty A (Pi(y") Y ?EX )’p.ZH’ <o Pn)
the same signature @andG. andx?, y* are disjoint tuples of distinct variables.
Relations between logic programs with variables, some- Forinstance, it is p(a) A p(b) thenF* (u) is u(a) A u(b),
what similar to strong equivalence as defined above but mor80 thatF™* (Ay(p(y) Ay # x)) is
limited in scope, are discussedPearce and Valverde, 2005, pla) Na #x Apb) Nb# x,
Section T and[Eiteret al,, 2004. and PSMF] is

5 A New Perspective on Program Completion ~ P(@) Ap(b) A =3x(p(x) Apla) Aa 7 x Ap(b) Ab # ).
51 Pointwise Stable Models This formula can be simplified:

As observed in[Lee and Lin, 200F program comple- ,p(a) Ap(b) A ﬂx(p,(x) A @ #TAb #_x)'

tion is similar in some ways to the concept of pointwise [N this example, PSW] is obviously equivalent to the
circumscription—the modification of McCarthy's original completion ofF™:

definition that was proposed itifschitz, 1984. Accord- Va(p(x) < (x = aVx =Db)).

ing to either definition, circumscribing a predicate consfa  Ths fact is an instance of the general theorem stated below.
makes the extent gf “minimal,” but minimality is under-

stood in different versions differently. Accordingto thégy- 5.2 Relation to Program Completion

nal definition of circumscription, to make the extentof agsre  |loyd and Topor [1984] noted that the process of completing

icate smaller means to replace it by a proper subset. In thg program can be extended in an obvious way to rules of a

pointwise version, to make the extent of a predicate smallefore general form than allowed [€lark, 197§. Itis essen-

means to decrement it by a single point. The pointwise mintial that the head of a rule be an atom, but the body can be an

imality condition is, generally, weaker than minimality-ac arbitrary first-order formula.

cording to McCarthy; similarly, program completion is gen-  Proposition 7 below refers to completion in this more gen-

erally weaker than the stability condition. eral sense, but it does introduce a restriction on the sjotac
In this section, we define a weakened, “pointwise” versionform of the bodies of rules. The rules we consider in this

of the operator SM that can be viewed as a generalization dfection have the form

program completion to arbitrary first-order formulas. Po(t%) — pr(t)) A - A p(t™) AN, (16)

If p andq are predicate constants of the same akithen , , )
wheret’ are tuples of terms anl is a negative formula (see

1
p < g stands for the formula Section 2.4). For instance, every rule of form (15) has also
Ix(q(x) Ay (p(y) < (a(y) Ax #y))), form (16): takeN to be~Ayi1 A - - A=Ay,
L - . . A rule of form (16) isacyclicif for eachi = 1,...,m such
where x, y are disjoint tuples of distinct object variables :
X thatp; is po, the formula

T1,..., Tk, Y1, -, Yk, aNdx # y is shorthand for 0 .

N —t° £t

- =y A--- A = . . . . . .
, (@1 =y Tk = Yk) : is logically valid. For instance, each of the rules (1) is iebv
This formula expresses that the extentpotan be obtained  gysly acyclic—its body doesn’t contain the predicate camist
from the extent of; by removing one element. ffandq are  occurring in the head. Any rule of form (16) can be made

tuplesps, ..., p, andq, ..., g, of predicate constants then acyclic by a strongly equivalent transformation: conjdie t
p é q stands for the disjunction body with th.eformulads0 #t'forall i =1,...,msuchthat
p; IS pg. For instance, the second rule of (14) can be rewritten
\/ ( 1 ) A /\ ( ) as the acyclic rule
: < e ,
A AT p(7(@)) = p(a), f(x) # .
<i<n 1<j<n, j#i . . .
. . . For this reason, the requirement in the statement of the the-
and similarly for tuples of predicate variables. orem below that each of the given rules be acyclic is not an

Given a first-order sentende, by PSMF| we denote the  ogsential limitation.

second-order sentence Proposition 7 For any finite setr" of acyclic rules, the com-

FA-3u((u < p) A F*(u)), pletion of F' is equivalent td®SMF].
wherep, u and F*(u) are as in the definition of SM (Sec- N view of this fact, PSNIF| can be viewed as an extension
tion 2.3). A model ofF is pointwise stabldf it satisfies of the concept of program completion to arbitrary first-arde
PSMF]. Clearly, every stable model is pointwise stable. formulas.

Unlike SM[F], the weaker formula PSM'| can be always ’On the use of\-notation in first-order logic, sefLifschitz,
rewritten without second-order quantifiers: 1994, Section 3]1



5.3 Tight Formulas 6 Conclusion

Francois Fages [1991] showed that if a logic program sesisfi The definition of a stable model proposed in this paper is ap-

a certain syntactic condition, which is now called “tighgag  plicable both to rules covered by the original 1988 defimitio

then its stable models can be characterized as the models afd to rules of several more general kinds used in answer set

its completion. This theorem and its generalizations [Bee ~ programming. Instead of grounding and fixpoints, it refers t

dem and Lifschitz, 2003 play an important role in answer a translation into classical logic, and is in this senseectos

set programming. the definitions of program completion and circumscription.
Consider, for instance, logic programs consisting of rules The relationship between the original definition of a stable

of form (16). According to the definition of a tight program, model and the definition proposed here can be compared with

to decide whether such a program is tight we should look athe relationship between two definitions of a causal theory—

its “predicate dependency graph.” The vertices of this lyrap the original definition introduced idMcCain and Turner,

are the predicate constants occurring in the program, and ifL997 and its generalization proposed [hifschitz, 1997.

edges lead frompg to py,. .., p,, for the rules (16) that the The original definition uses a fixpoint construction; the-gen

program consists of. The program is called tight if its predi eralization is based on a translation into classical logic.

cate dependency graph is acyclic. Another definition of a stable model for first-order order
Proposition 8 below extends Fages’s theorem to the generaentences is given independently by Lin and Zhou [2007]. It

framework introduced in this note. To define the predicate derefers to grounding, but in other ways it is similar to ours.

pendency graph for an arbitrary first-order sentence, wd nee Extending main results of the theory of stable models to the

a few auxiliary definitions. general framework described above is a topic of future work.
Recall that an occurrence of a subformula or a predicate

constant in a formuld” is positiveif the number of impli- ~ Acknowledgements
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