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Abstract

”Answer Set Programming Modulo Theories (ASPMT)” is a recently
proposed framework which tightly integrates answer set programming
(ASP) and satisfiability modulo theories (SMT). Its mathematical
foundation is the functional stable model semantics, an enhancement of
the traditional stable model semantics to allow defaults involving functions
as well as predicates. This talk will discuss how ASPMT can provide a way
to overcome limitations of the propositional setting of ASP, how action
language C+ can be reformulated in terms of ASPMT, and how it can be
implemented based on the reformulation.
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Introduction
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Answer Set Programming (ASP)

Declarative programming paradigm. Suitable for knowledge intensive
and combinatorial search problems.

Theoretical basis: answer set semantics (Gelfond & Lifschitz, 1988).

Expressive representation language: defaults, recursive definitions,
aggregates, preferences, etc.

ASP solvers:

smodels (Helsinki University of Technology, 1996)
dlv (Vienna University of Technology, 1997)
cmodels (University of Texas at Austin, 2002)
pbmodels (University of Kentucky, 2005)
clasp (University of Potsdam, 2006) – winning first places at
ASP’07/09/11/12, PB’09/11/12, and SAT’09/11/12
dlv-hex computing HEX programs.
oClingo for reactive answer set programming.

4



Declarative Problem Solving using ASP

The basic idea is

to represent the given problem by a set of rules,

to find answer sets for the program using an ASP solver, and

to extract the solutions from the answer sets.
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N-Queens Puzzle in the Language of clingo

number(1..n).

#domain number(I).

#domain number(I1).

#domain number(J).

#domain number(J1).

% Each column has exactly one queen

1{q(K,J) : number(K)}1.

% Two queens cannot stay on the same row

:- q(I,J), q(I,J1), J<J1.

% Two queens cannot stay on the same diagonal

:- q(I,J), q(I1,J1), J<J1, #abs(I1-I)==J1-J.
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Finding All Solutions for the 8-Queens Problem

With the command line

% clingo queens -c n=8 0

clingo computes and shows all 92 valid queen arrangements. For
instance, the last one is

Answer: 92

q(5,8) q(7,7) q(2,6) q(6,5) q(3,4) q(1,3) q(8,2) q(4,1)

SATISFIABLE

Models : 92

Time : 0.010

Prepare : 0.000

Prepro. : 0.000

Solving : 0.010
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Applications of ASP in AI

planning ([Lif02], [DEF+03], [SPS09], [TSGM11], [GKS12])

theory update/revision ([IS95], [FGP07], [OC07], [EW08], [ZCRO10],
[Del10])

preferences ([SW01], [Bre07], [BNT08a])

diagnosis ([EFLP99], [BG03], [EBDT+09])

learning ([Sak01], [Sak05], [SI09], [CSIR11])

robotics ([CHO+09], [EHP+11], [AEEP11], [EHPU12], [APE12])

description logics and semantic web ([EGRH06], [CEO09], [Sim09],
[PHE10], [SW11], [EKSX12])

data integration and question answering ([AFL10], [LGI+05])

multi-agent systems ([VCP+05], [SPS09], [SS09], [BGSP10], [Sak11],
[PSBG12])

multi-context systems ([EBDT+09], [BEF11], [EFS11], [BEFW11], [DFS12])

natural language processing/understanding ([BDS08], [BGG12], [LS12])

argumentation ([EGW08], [WCG09], [EGW10], [Gag10])
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Applications of ASP in Other Areas

product configuration ([SN98], [TSNS03]) used by Variantum Oy

Linux package configuration ([Syr00], [GKS11])

wire routing ([ELW00], [ET01])

combinatorial auctions ([BU01])

game theory ([VV02], [VV04])

decision support systems ([NBG+01]): used by United Space Alliance

logic puzzles ([FMT02], [BD12])

bioinformatics ([BCD+08], [EY09], [EEB10], [EEEO11])

phylogenetics ([ELR06], [BEE+07], [Erd09], [EEEF09], [CEE11], [Erd11])

haplotype inference ([EET09], [TE08])

systems biology ([TB04], [GGI+10], [ST09], [TAL+10], [GSTV11])

automatic music composition ([BBVF09],[BBVF11])

assisted living ([MMB08], [MMB09], [MSMB11])

team building ([RGA+12]): used by Gioia Tauro seaport

software engineering ([EIO+11])

bounded model checking ([HN03], [TT07])

verification of cryptographic protocols ([DGH09])

e-tourism ([RDG+10])
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What Led to the Success of ASP?

A simple, mathematically elegant semantics, based on the concept of
a stable model

Intelligent grounding—the process that replaces first-order variables
with corresponding ground instances

Efficient search methods that originated from propositional
satisfiability solvers (SAT solvers).
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Various Extensions

Starting from the Prolog syntax, the language of ASP has evolved:

Strong negation [GLR91]

Choice rules [SNS02]

Aggregates [SNS02, FLP04, Fer05, PDB07, LM09, FL10], . . .

Preferences [BNT08b]

Integration with CSP [Bal09, GOS09]

Integration with SMT [JLN11]

Integration with Description Logics [EIL+08, LP11]

Probabilistic answer sets [BGR09]

. . .
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Language Extension: Constraint Answer Set Programs
(CASP)

Grounding is often the bottleneck. Solving is not applied until grounding is
finished.

To alleviate the grounding bottleneck, integration of ASP with CSP/SMT
solvers has been considered.

Clingcon [GOS09]: Clasp + CSP solver Gecode

1 ≤ amt(T ) ≤ 3← pour(T )
amt(T ) = 0← not pour(T )
vol(T + 1) = vol(T ) + amt(T )

EZCSP [Bal11]: Gringo + constraint solver SICStus Prolog or
BProlog

Dingo [JLN11]: Gringo + SMT solver Barcelogic

12



Fundamental Limitation Due to Lack of General Functions

ASP lacks general functions.

Functional fluents in ASP are represented by predicates:

WaterLevel(t+1, tank, l)←
WaterLevel(t, tank, l), not ∼WaterLevel(t+1, tank, l).

Grounding generates a large number of instances as the domain gets
larger.

Using functions (e.g., WaterLevel(t, tank) = l) instead does not work
because

Answer sets are Herbrand models:
WaterLevel(t+1, tank) = WaterLevel(t, tank) is always false.

Nonmonotonicity of ASP has to do with minimizing the predicates but
has nothing to do with functions.
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Fundamental Limitation Due to Lack of General Functions

Even the constraint answer set sovers don’t help. In clingcon this
rule does not affect stable models.

WaterLevel(t+1, tank) =$ l ←
WaterLevel(t, tank) =$ l , not WaterLevel(t+1, tank) 6=$ l .

The lack of general functions in ASP is not only a disadvantage in
comparison with other KR formalisms, but also a hurdle to cross over in
integrating ASP with other declarative paradigms where functions are
primitive constructs.
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From Wikipedia Article on SMT

By comparison, answer set programming is also based on predicates (more
precisely, on atomic sentences created from atomic formula). Unlike SMT,
answer-set programs do not have quantifiers, and cannot easily express
constraints such as linear arithmetic or difference logic–ASP is at best
suitable for boolean problems that reduce to the free theory of
uninterpreted functions.
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ASP vs. SMT

ASP is a successful nonmonotonic declarative programming paradigm,
but is limited in handling first-order reasoning involving functions due
to its propositional setting.

SMT is a successful approach to solving some specialized first-order
reasoning, but is limited in handling expressive nonmonotonic
reasoning.
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Answer Set Programming Modulo Theories (ASPMT)

ASPMT tightly integrates ASP and SMT:

Monotonic Nonmonotonic

FOL Functional Stable Model Semantics [BL12]

SMT ASP Modulo Theories [BL13]

SAT Traditional ASP

ASP = SAT + Loop formulas

The syntax of ASPMT is the same as that of SMT. The semantics is
defined as a special case of FSM [BL12].

WaterLevel(t+1, tank) = l ←
WaterLevel(t, tank) = l , not WaterLevel(t+1, tank) 6= l

works under ASPMT.
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My View

The stable model semantics was successfully extended to the
first-order level.

Its computation can be carried out by compilation to declarative
solvers, such as ASP solvers, CSP solvers, SMT solvers, ontology
reasoners, or their combinations.

Like SMT, we need to restrict to certain classes of first-order
reasoning. ASP modulo theories will enjoy the expressiveness of the
ASP modeling language while leveraging efficient constraint / theory
solving methods available in SMT and other related computing
paradigms.
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This Talk is About

First-order stable model semantics (FOSM).

Extending FOSM to allow intensional functions

ASPMT

Reformulating C+ in ASPMT

19



First-Order Stable Model Semantics

20



First-Order Stable Model Semantics [FLL07, FLL11]

Generalizes Gelfond and Lifschitz’s 1988 definition of a stable model to
first order sentences.

Does not refer to grounding; not restricted to Herbrand models.

Does not refer to reduct.

Defined by a translation into second-order classical logic.

The stable models of F are defined as the models of F (in the sense of
classical logic) that satisfy the “stability condition.”
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First-Order Stable Model Semantics

Idea 1: Treat logic programs as alternative notation for first-order formulas.

Logic program FOL-representation

p(X )← not q(X ), r(X ) ∀X (¬q(X ) ∧ r(X )→p(X ))
q(a) ∧q(a)
r(b) ∧r(b)

Idea 2: Define the stable models of F as the models of

SM[F ;p] = F ∧ (2nd-order formula that enforces p to be stable)

Similar to circumscription. (c.f. stability vs. minimality)
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Translation vs. Fixpoint Traditions in Nonmonotonic
Reasoning
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Circumscription

The models of CIRC[F ;p] are the models of F that are minimal on p.
Formally,

CIRC[F ;p] = F ∧ ¬∃u(u < p ∧ F (u))

u: a list of distinct predicate variables similar to p;

u < p: a formula that expresses that u is strictly stronger than p:

u ≤ p is defined as ∀x(u(x)→ p(x))
u = p is defined as ∀x(u(x)↔ p(x))
u < p is defined as (u ≤ p) ∧ ¬(u = p)

F (u) is obtained from F by replacing all occurrences of p with u.
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First-Order Stable Model Semantics

The stable models of a first-order sentence F relative to a list p of
(intensional) predicate constants are the models of

SM[F ;p] = F ∧ ¬∃u(u < p ∧ F ∗(u))

F ∗(u) is defined as:

pi (t)
∗ = ui (t) if pi ∈ p

for other atomic formula F , F ∗ = F

(¬G )∗ = ¬G ∗∧¬G ;

(G � H)∗ = (G ∗ � H∗)∧(G � H) (� ∈ {∧,∨,→})
(QxG )∗ = QxG ∗∧QxG (Q ∈ {∀,∃})

If we drop the red parts, F ∗(u) becomes the same as F (u), so SM
becomes exactly the definition of CIRC.

Observe that u < p ∧ F ∗(u)→ F is logically valid.
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First-Order Stable Model Semantics
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First-Order Stable Model Semantics

The stable models of a first-order sentence F relative to a list p of
(intensional) predicate constants are the models of the second-order
formula

SM[F ;p] = F ∧ ¬∃u(u < p ∧ F ∗(u))

F ∗(u) can be simplified as:

pi (t)
∗ = ui (t) if pi ∈ p

for other atomic formula F , F ∗ = F
(¬G )∗ = ¬G
(G � H)∗ = (G ∗ � H∗) (� ∈ {∧,∨})
(G → H)∗ = (G ∗ → H∗)∧(G → H)
(QxG )∗ = QxG ∗ (Q ∈ {∀, ∃})

∧, ∨, ∀, ∃ are monotone
(e.g., u < p ∧ (F ∗(u)∧G ∗(u))→ (F∧G ))

¬ is anti-monotone
(e.g., u < p ∧ ¬F → ¬F ∗(u))

→ is neither monotone nor anti-monotone
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Example

SM[F ;p] = F ∧ ¬∃u(u < p ∧ F ∗(u))

F = p(a) ∧ ∀x(p(x) ∧ ¬r(x)→ q(x))

F ∗(u, v ,w) = u(a) ∧ ∀x(u(x) ∧ ¬r(x)→ v(x)) ∧ (p(x) ∧ ¬r(x)→ q(x))

SM[F ; p, q, r ] is equivalent to

F ∧ ¬∃uvw((u, v ,w) < (p, q, r) ∧ u(a) ∧ ∀x(u(x) ∧ ¬r(x)→ v(x))

which can be written in FOL

∀x(p(x)↔ x = a) ∧ ∀x(q(x)↔ p(x) ∧ ¬r(x)) ∧ ∀x(r(x)↔ ⊥)

c.f. CIRC[F ; p, q, r ] is equivalent to

F ∧ ¬∃uvw((u, v ,w) < (p, q, r) ∧ u(a) ∧ ∀x(u(x) ∧ ¬w(x)→ v(x))
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Relating SM to Traditional ASP

Theorem

The stable models of a logic program Π according to the 1988 definition
are precisely the Herbrand models of SM[Π; pr(Π)].

Example

{p(a), q(a)} is the unique

stable model of

{
p(a)

q(x) ← p(x), not r(x)
under the 1988 definition

Herbrand model of SM[p(a) ∧ ∀x(p(x) ∧ ¬r(x) → q(x)); p, q, r ].
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System f2lp [LP09] for Computing Herbrand Stable
Models of First-Order Formulas

The input languages of ASP solvers do not allow complex formulas.

f2lp is a front-end to ASP solvers that turns first-order formulas into
logic program syntax.

f2lp [input-program] | clingo

The f2lp rule

t(X) <- v(X) & not ?[Y]:e(X,Y)

describes the set t of terminal vertices (the symbol ? represents the
existential quantifier).
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Stable Models and Circumscription

Theorem

The stable model semantics and circumscription coincide on the class of
canonical formulas [LP12b].

In other words, minimal models and stable models coincide on canonical
formulas.

The theorem allows us to reformulate the Event Calculus, the Situation
Calculus, and Temporal Action Logics in ASP, and use ASP solvers to
compute them

Event Calculus in ASP [KLP09, LP12b]

Situation Calculus in ASP [LP10, LP12b]

Integrating rules and ontologies in FOSM [LP11]

Temporal Action Logics in ASP [LP12a]
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Event Calculus in Terms of ASP

Theorem

CIRC[Σ; Initiates,Terminates,Releases] ∧ CIRC[∆;Happens] ∧ F
⇐⇒ {By the theorem on canonical formulas}

SM[Σ; Initiates,Terminates,Releases] ∧ SM[∆;Happens] ∧ F
⇐⇒ {By the splitting theorem}

SM[Σ ∧∆ ∧ F ; Initiates,Terminates,Releases,Happens]

f2lp turns Σ∧∆∧F into the input language of ASP solvers.
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ecasp vs. dec reasoner by E. Mueller

http://reasoning.eas.asu.edu/ecasp

http://decreasoner.sourceforge.net/csr/ecas/
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ASP-based vs. SAT-based Approach

dec reasoner is based on the reduction of circumscription to
completion. Able to solve 11 out of 14 benchmark problems.

ecasp can handle the full version of the event calculus (modulo
grounding). Able to solve all 14 problems.

For example, the following axiom cannot be handled by the dec
reasoner, but can be done by the ASP approach.

HoldsAt(HasBananas, t)
∧Initiates(e,At(Monkey , l), t)→ Initiates(e,At(Bananas, l), t)

ecasp computes faster.
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Experiments

Problem dec ecasp w/ ecasp w/ ecasp w/
(max. time) reasoner lparse + cmodels gringo + clasp clingo

Falling w/ 270.2 0.74 0.10 0.08
AntiTraj (15) (269.3+0.9) (0.66+0.08) (0.08+0.02)

A:416/C:3056 A:5757/R:10480/C:0 A:4121/R:7820
Falling w/ 107.70 34.77 2.90 2.32
Events (25) (107.50+0.20) (30.99+3.78) (2.01+0.89)

A:1092/C:12351 A:1197/R:390319/C:1393 A:139995/R:208282
HotAir 61.10 0.19 0.04 0.03
Balloon (15) (61.10+0.00) (0.16+0.03) (0.03+0.01)

A:288/C:1163 A:489/R:2958/C:678 A:1137/R:1909
Telephone1 18.00 1.70 0.31 0.25
(40) (17.50+0.50) (1.51+0.19) (0.26+0.05)

A:5419/C:41750 A:23978/R:30005/C:0 A:21333/R:27201
A: number of atoms, C: number of clauses, R: number of ground rules

dec reasoner and cmodels used the same SAT solver relsat.
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Temporal Action Logics in ASP

CIRC[Γocc ; Occurs] ∧ CIRC[Γdepc ∧ Γacs ; Occlude] ∧ Γrest

⇐⇒ {By the theorem on canonical formulas}
SM[Γocc ; Occurs] ∧ SM[Γdepc ∧ Γacs ; Occlude] ∧ Γrest

⇐⇒ {By the symmetric splitting theorem}
SM[Γocc ∧ Γdepc ∧ Γacs ∧ Γrest ; Occurs,Occlude] .

System f2lp turns the formula Γocc ∧ Γdepc ∧ Γacs ∧ Γrest into the input
language of ASP solvers.
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Integrating TAL with Ontologies

Integrating TAL with description logics is straightforward as they are both
based on classical logic (c.f. integrating rules and ontologies).

Example

A patient is suffering from gastritis and complains of abdominal pain.
Is aspirin recommended?

In OWL ontology (e.g., National Drug File):
- Aspirin may treat pain
- Gastrointestinal bleeding is a contraindication for administering
aspirin.

In TAL: Gastritis causes gastrointestinal bleeding.

Answer: No, since gastrointestinal bleeding is a contraindication.
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Representing the Example in TAL (Part)

Gastritis usually causes gastrointestinal bleeding:

dep1 ∀t([t] Cond(Gastritis) ∧ ¬Ab2(Gastritis)→
R([t + 1] Cond(GastrointestinalBleeding))).

Domain rules for drug recommendation:

acs1 [t1, t2] Administer(d)→(
[t1] Cond(c) ∧ ¬Ab1(d , c) ∧ (MAY TREAT(d , c) ∨ MAY PREVENT(d , c))∧
¬∃c1, t

(
t1 ≤ t ≤ t2 ∧ [t] Cond(c1) ∧ CONTRAINDICATION(d , c1)

)
→ I ((t1, t2] ¬Cond(c))

)
.

acs2 [t1, t2] Administer(d)→
∀t
(
t1 ≤ t ≤ t2 ∧ [t]∃c(Cond(c) ∧ CONTRAINDICATION(d , c))

→ I ([t, t2] SideEffect(d))
)
.

MAY TREAT(Aspirin,Pain) and
CONTRAINDICATION(Aspirin,GastrointestinalBleeding) can be obtained
from NDF ontology by using the dlvhex rdf plugin.
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Reductive Semantics [LLP08]

A simple, alternative approach to understanding the meaning of
counting and choice in answer set programming by reducing them to
first order formulas.

{q(x)} ← p(x) ⇒ ∀x(p(x)→ (q(x) ∨ ¬q(x)))

r ← #count{x : p(x)} ≥ 2

⇒ (∃xy(p(x) ∧ p(y) ∧ ¬(x = y)))→ r
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Generalized Quantifiers

The approach doesn’t cover other extensions of the stable model
semantics

Arbitrary aggregates

(Abstract) constraints

External atoms

Description logic atoms

A common issue is how to incorporate “complex atoms.”

∀ and ∃ are just two instances of a much more general concept of
quantifiers [Mos57]. A generalized quantifier (GQ) can represent any
relation over relations.

We extended FOSM to allow generalized quantifiers and showed that all
the extensions above can be viewed in terms of generalized quantifiers
under FOSM [LM12a, LM12b, LM12c].
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Stable Models of Formulas with
Intensional Functions
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Leaking Container Example

Describe a water tank that has a leak but that
can be refilled to the maximum amount, say
10, with the action FillUp.
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Functional Stable Model Semantics (FSM) [Bartholomew
and Lee, 2012]

Allows for assigning default values to non-Herbrand functions, which is
useful for expressing inertia and default behaviors of systems.
Leaking Container Example

{Amount1 =x} ← Amount0 =x+1
Amount1 =10 ← FillUp .

{F} is a choice rule standing for F ∨ ¬F

I1 = {FillUp =f,Amount0 =6,Amount1 =5}:
I1 is a stable model of F (relative to Amount1) as well as a model.
I2 = {FillUp =f,Amount0 =6,Amount1 =8}:
I2 is a model of F but not a stable model.
I3 = {FillUp =t,Amount0 =6,Amount1 =10}:
I3 is a model of F as well as a stable model of F .
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Infinitary Ground Formula w.r.t. an Interpretation

Since the universe may be infinite, grounding a first-order sentence F
relative to an interpretation I (denoted grI [F ]) may introduce infinite
conjunctions and disjunctions.

Leaking Container Example. grI [F ] is

{Amount1 =0} ← Amount0 =0+1
{Amount1 =1} ← Amount0 =1+1

. . .
Amount1 =10 ← FillUp
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Reduct-based Definition of FSM

For any two interpretations I , J of the same signature and any list c of
distinct predicate and function constants, we write J <c I if

J and I have the same universe and agree on all constants not in c;

pJ ⊆ pI for all predicate constants p in c; and

J and I do not agree on c.

The reduct F I of an infinitary ground formula F relative to an
interpretation I is the formula obtained from F by replacing every maximal
subformula that is not satisfied by I with ⊥.

I is a stable model of F relative to c if

I satisfies F , and

every interpretation J such that J <c I does not satisfy (grI [F ])I .
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Leaking Container Example

I1 = {FillUp =f,Amount0 =6,Amount1 =5} |= SM[F ; Amount1]

grI1(F ) : Amount1 =0 ∨ ¬(Amount1 =0) ← Amount0 =0+1
. . .

Amount1 =5 ∨ ¬(Amount1 =5) ← Amount0 =5+1
. . .

Amount1 =10 ← FillUp

(grI1 [F ])I1 : ⊥ ∨ ¬⊥ ← ⊥
. . .

Amount1 =5 ∨ ⊥ ← Amount0 =5+1
. . .

⊥ ← ⊥

No J such that J <Amount1 I1 satisfies the reduct.
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Leaking Container Example

I2 = {FillUp =f,Amount0 =6,Amount1 =8} 6|= SM[F ; Amount1]

grI2(F ) : Amount1 =0 ∨ ¬(Amount1 =0) ← Amount0 =0+1
. . .

Amount1 =5 ∨ ¬(Amount1 =5) ← Amount0 =5+1
. . .

Amount1 =10 ← FillUp

(grI2 [F ])I2 : ⊥ ∨ ¬⊥ ← ⊥
. . .

⊥ ∨ ¬⊥ ← Amount0 =5+1
. . .

⊥ ← ⊥

I2 satisfies the reduct, but there are also other interpretations J such that
J <Amount1 I2 that satisfy the reduct.
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Leaking Container Example

I3 = {FillUp =t,Amount0 =6,Amount1 =10} |= SM[F ; Amount1]

grI3(F ) : Amount1 =0 ∨ ¬(Amount1 =0) ← Amount0 =0+1
. . .

Amount1 =5 ∨ ¬(Amount1 =5) ← Amount0 =5+1
. . .

Amount1 =10 ← FillUp

(grI3 [F ])I3 : ⊥ ∨ ¬⊥ ← ⊥
. . .

⊥ ∨ ¬⊥ ← Amount0 =5+1
. . .

Amount1 =10 ← FillUp

No J such that J <Amount1 I3 satisfies the reduct.
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FSM in Terms of SOL

c is a list of predicate and function constants called intensional.

u is a list of predicate and function variables corresponding to c.

SM[F ; c] is defined as

F ∧ ¬∃u(u < c ∧ F ∗(u))

For predicate symbols (variables or constants) u and c

u ≤ c is defined as ∀x(u(x)→ c(x))
u = c is defined as ∀x(u(x)↔ c(x))

For function symbols u and c ,

u = c is defined as ∀x(u(x) = c(x))

u < c is defined as (upred ≤ cpred) ∧ ¬(u = c)
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FSM in Terms of SOL

The stable models of a first-order sentence F relative to a list of distinct
predicate and function constants c are the models of the second-order
formula

SM[F ; c] = F ∧ ¬∃u(u < c ∧ F ∗(u))

where F ∗(u) is defined as:

when F is an atomic formula, F ∗ is F (u) ∧ F ;

(G ∧ H)∗ = G ∗ ∧ H∗; (G ∨ H)∗ = G ∗ ∨ H∗;
(G → H)∗ = (G ∗ → H∗) ∧ (G → H);

(∀xG )∗ = ∀xG ∗; (∃xF )∗ = ∃xF ∗.
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Blocks World in FSM

⊥ ← Loc(b1, t)=b ∧ Loc(b2, t)=b ∧ (b1 6= b2)
Loc(b, t+1)= l ← Move(b, l , t)

⊥ ← Move(b, l , t) ∧ Loc(b1, t)=b
⊥ ← Move(b, b1, t) ∧Move(b1, l , t)

{Loc(b, 0)= l}
{Move(b, l , t)}

{Loc(b, t+1)= l} ← Loc(b, t)= l .

The last rule is a default formula that describes the commonsense law of
inertia.
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Blocks World : Eliminating Function Loc

For the class of c-plain formulas, intensional functions can be eliminated in
favor of intensional predicates.

⊥ ← Loc(b1, b, t) ∧ Loc(b2, b, t) ∧ ¬(b1 = b2)
Loc(b, l , t + 1) ← Move(b, l , t)

⊥ ← Move(b, l , t) ∧ Loc(b1, b, t)
⊥ ← Move(b, b1, t) ∧Move(b1, l , t)

{Loc(b, l , 0)}
{Move(b, l , t)}
{Loc(b, l , t + 1)} ← Loc(b, l , t)

⊥ ← Loc(b, l , t) ∧ Loc(b, l1, t) ∧ ¬(l = l1)
⊥ ← ¬∃l Loc(b, l , t)
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Blocks World: In the Language of ASP Solvers

% every block is a location

location(B) :- block(B).

% the table is a location

location(table).

:- 2{loc(BB,B,ST): block(BB)}.

loc(B,L,T+1) :- move(B,L,T).

% preconditions

:- move(B,L,T), loc(B1,B,T).

:- move(B,B1,T), move(B1,L,T).

{loc(B,L,0)}.

{move(B,L,T)}.

{loc(B,L,T+1)} :- loc(B,L,T).

% uniqueness constraint

:- 2{loc(B,LL,ST): location(LL)}.

% existence constraint

:- {loc(B,LL,ST): location(LL)}0.
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Answer Set Programming Modulo
Theories
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Answer Set Programming Modulo Theories (ASPMT)

Defined as FSM with the fixed interpretation for the background
signature.

Let σbg be the (many-sorted) signature of a background theory bg ,
and let Jbg be the (fixed) interpretation of σbg . Let σ be a signature
that is disjoint from the background signature σbg .

An interpretation I of σ is a model of an SMT sentence F w.r.t. the
background theory bg , denoted by I |=bg F , if I ∪ Jbg satisfies F .

I is a stable model of F relative to c (w.r.t. background theory σbg ) if
I |=bg SM[F ; c].
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Completion : Turning ASPMT to SMT

Theorem

For any sentence F in Clark normal form that is tight on c, an
interpretation I that satisfies ∃xy(x 6= y) is a stable model F iff I is a
model of the completion of F .

Leaking Container Example, Continued.

{Amount1 =x} ← Amount0 =x+1
Amount1 =10 ← FillUp .

can be rewritten as

Amount1 =x ← (¬¬(Amount1 =x) ∧ Amount0 =x+1) ∨ (x =10 ∧ FillUp)

and completion turns it into

Amount1 =x ↔ (¬¬(Amount1 =x) ∧ Amount0 =x+1) ∨ (x =10 ∧ FillUp).

The formula can be written without mentioning the variable x :(
(Amount0 =Amount1+1)∨(Amount1 =10∧FillUp)

)
∧(FillUp → Amount1 = 10) .
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In the language of SMT solver iSAT, this formula can be represented as

(Amt’ + 1 = Amt) or (Amt’ = 10 and FillUp);

FillUp -> Amt’ = 10;

In the language of SMT solver Z3, this formula can be represented as

(assert (or (= (+ Amt1 1) Amt0) (and (= Amt1 10) FillUp)))

(assert (=> FillUp0 (= Amt1 10)))
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Gears World Example

M1Speed t =x ← M1Speed t−1 =x−1 ∧ IncreaseM1 t−1

M1Speed t =x ← M1Speed t−1 =x ∧ ¬¬(M1Speed t =x)
. . .

Gear1Speed t = x ← Higher t =x ∧ Connected t .

Instance Size ASP (Gringo+Clasp) Execution iSAT Execution z3 Execution
Run Time (Grounding + Solving) Atoms Run Time Variables Run time Memory

5 .02s (.02s + 0s) 3174 .03s 331 .03s 2.79
10 .3s (.3s + 0s) 10161 .19s 596 .09s 4.91
20 9.46s (4.02s + 5.11s) 36695 .79s 1126 .2s 8.65
30 42.56s (22.32s + 20.24s) 77627 2.05s 1656 .36s 12.22
50 923.74s (297.26 + 626.48s) 207706 14.35s 2716 1.09s 20.35

100 out of memory 494.77s 5366 5.52s 43.86
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Comparison with Constraint Answer Set Solving

clingcon programs [GOS09] can be viewed as a special case of
ASPMT instances, which allows non-Herbrand functions, but does
not allow them to be intensional.

ASP(LC) programs by [LJN12] can be viewed similarly.

In fact, they can be viewed even as a special case of the language
from [FLL11], which FSM properly generalizes.
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Reformulating C+ in ASPMT
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Language C+ [GLL+04]

C+ is a formal model of parts of natural language for representing
and reasoning about transition systems.

Can represent actions with conditional and indirect effects,
nondeterministic actions, and concurrently executed actions.

Can represent multi-valued fluents, defined fluents, additive fluents,
and rigid constants.

Can represent defeasible causal laws and action attributes.

Implemented in systems CCalc, Cplus2ASP, coala.
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Reformulating C+ in ASPMT

Language C+ is an expressive action description language but its
semantics was defined in terms of propositional causal theories, which
limits the language to express discrete changes only.

By reformulating C+ in terms of ASPMT, we can apply C+ for
reasoning about continuous changes as well, and use SMT solvers to
compute the language.

causal laws In ASPMT

caused F if G ¬¬ i :G → i :F

caused F if G after H ¬¬ (i+1):G ∧ i :H → (i+1):F
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Representing Continuous Changes in Enhanced C+

We distinguish between steps and real clock times. We assume the Theory
of Reals as the background theory, and introduce

Time: a simple fluent constant with value sort R≥0 (clock time);

Dur : an action constant with value sort R≥0, which denotes the time
elapsed between the two consecutive states.

We postulate:

caused Time = t if Time = t
caused Dur = t if Dur = t
caused ⊥ if ¬(Time = t + t ′) after Time = t ∧ Dur = t ′

Continuous changes can be described as a function of duration using
fluent dynamic laws

caused c = f (x, x′, t) if c′=x′ after (c=x) ∧ (Dur = t) ∧ G
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Planning with Continuous Time

Example: give a formal representation of the domain to generate a plan
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Car Example in Enhanced C+

Notation: d , v , v ′, t, t ′ are variables of sort R≥0; A, MS are real numbers.

Simple fluent constants: Domains:
Speed , Distance, Time R≥0

Action constants: Domains:
Accelerate, Decelerate Boolean
Dur R≥0

Causal laws:
caused Speed =v+A×t after Accelerate ∧ Speed =v ∧ Dur = t
caused Speed =v−A×t after Decelerate ∧ Speed =v ∧ Dur = t
caused Distance =d+0.5×(v+v ′)×t if Speed =v ′

after Distance =d ∧ Speed =v ∧ Dur = t
constraint Time = t+t ′ after Time = t ∧ Dur = t ′

constraint Speed ≤ MS

inertial Speed
exogenous Time
exogenous c for every action constant c
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Turning C+ into ASPMT and SMT

C+
semantics−−−−−−→ ASPMT

completion−−−−−−→ SMT
eliminating variables−−−−−−−−−−−−→ SMT solvers

In C+:
caused Speed=v+A×t after Accelerate ∧ Speed=v ∧ Dur= t
caused Speed=v−A×t after Decelerate ∧ Speed=v ∧ Dur= t
caused Speed=v ifSpeed=v after Speed=v

In ASPMT:
i+1:Speed=x ← (x = v+A×t) ∧ i : (Accelerate ∧ Speed=v ∧ Dur= t)
i+1:Speed=x ← (x = v−A×t) ∧ i : (Decelerate ∧ Speed=v ∧ Dur= t)
i+1:Speed=x ← ¬¬(i+1:Speed=x) ∧ i :Speed=x

In SMT: The completion on i+1:Speed yields a formula that is equivalent to

i+1:Speed=x ↔
(
x = (i :Speed+A×i :Dur) ∧ i :Accelerate

)
∨

(
x = (i :Speed−A×i :Dur) ∧ i :Decelerate

)
∨

(
i+1:Speed=x ∧ i :Speed=x

)
.
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In the language of SMT Solvers

Variable x in the formula can be eliminated by equivalent transformations
using equality:

i :Accelerate → i+1:Speed =(i :Speed +A×i :Dur)

i :Decelerate → i+1:Speed =(i :Speed−A×i :Dur)

(i+1 : Speed = (i :Speed +A×i :Dur) ∧ i :Accelerate)
∨ (i+1 : Speed = (i :Speed−A×i :Dur) ∧ i :Decelerate)
∨ (i :Speed = i+1:Speed) .

The shortest step plan found by SMT solver iSAT:
(http://isat.gforge.avacs.org)
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Reasoning about Indirect Effects

Indirect effects can be represented in static causal laws in C+:

For example, Accelerating and decelerating not only affect the speed
and the distance of the car, but also indirectly affect the speed and
the distance of the bag in the car.

caused Speed(Bag)= x if Speed =x ∧ In(Bag ,Car)
caused Distance(Bag)=x if Distance =x ∧ In(Bag ,Car) .
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Reasoning about Additive Fluents

Describe the cumulative effects of firing multiple jets:

In the language of CCalc:
Fire(j) increments Vel(ax) by n/Mass if Force(j , ax)=n
limited to integer arithmetic.

In enhanced C+:
Fire(j) increments Vel(ax) by n/Mass×t if Force(j , ax)=n∧Dur = t.
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Even for integer domains, computing C+ using SMT solvers was more
effective than CCalc (which uses SAT solvers) and cplus2asp (which
uses ASP solvers).
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Reasoning about Processes

The enhanced C+ is flexible enough to represent the start-process-end
model, where instantaneous actions may initiate or terminate processes.

Example: Two Taps Water Tank with Leak
TurnOn(x) causes On(x) ∧ Dur =0
TurnOff (x) causes On(x)=f ∧ Dur =0

On(x) increments Level by W(x)×t if Dur = t
Leaking increments Level by −(V×t) if Dur = t

constraint (Low≤Level) ∧ (Level≤High)
inertial On(x), Leaking
exogenous c for every action constant c

exogenous Time
constraint Time = t + t ′ after Time = t ∧ Dur = t ′
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Conclusion

ASPMT is a natural formalism that combines the advantages of ASP
and SMT. Enhancements in ASP and SMT can be carried over to
ASPMT.

We expect that many results known between ASP and SAT can be
carried over to the relationship between ASPMT and SMT.
Completion is one such example.

The enhanced C+, defined by a reduction to ASPMT, allows us to
handle reasoning about hybrid systems, where discrete state changes
and continuous changes coexist.

See Related Presentations at IJCAI.

Functional Stable Model Semantics and Answer Set Programming
Modulo Theories.

Answer Set Programming Modulo Theories and Reasoning about
Continuous Changes.

Action Language BC: Preliminary Report.
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