
Online Action Language oBC+

Joseph Babb and Joohyung Lee

School of Computing, Informatics, and Decision Systems Engineering
Arizona State University, Tempe, USA
{Joseph.Babb, joolee}@asu.edu

Abstract. We present an online action language called oBC+, which extends ac-
tion language BC+ to handle external events arriving online. This is done by first
extending the concept of online answer set solving to arbitrary propositional for-
mulas, and then defining the semantics of oBC+ based on this extension, similar
to the way the offline BC+ is defined. The design of oBC+ ensures that any ac-
tion description in oBC+ satisfies the syntactic conditions required for the correct
computation of online answer set solving, thereby alleviates the user’s burden for
checking the sophisticated conditions.

1 Introduction

While Answer Set Programming (ASP) is being widely applied to many challenging
problems, most ASP applications are limited to offline usages. Continuous grounding
and solving in view of possible yet unknown future events, such as the one required
for the emerging applications in stream reasoning [1], is one of the main challenges in
applying ASP to real-time dynamic systems.

Recently, there emerged the concept of reactive answer set programming [2], which
is to incrementally ground and compose program slices taking into account external
knowledge acquired asynchronously, thereby avoiding multiple unnecessary restarts of
the grounding and solving process for each arrival of external inputs. For this, an online
ASP program consists of multiple subprograms of different roles, and certain syntactic
restrictions originating from the module theorem [3] are imposed to ensure the compo-
sitionality of their answer sets. The work led to an implementation OCLINGO,1 which
extends ASP grounder GRINGO and ASP solver CLASP in a monolithic way to handle
external modules provided at runtime by a controller. However, checking the syntactic
requirement for sound execution of online answer set solving is quite a complex task
for the user, which significantly limits the usability of online answer set programming.

We address this challenge by introducing an online extension of high level action
language BC+ [4], which we call oBC+. BC+ is a recently proposed action language
whose semantics is defined in terms of propositional formulas under the stable model
semantics. It is shown in [4] that BC+ is expressive enough to embed other action lan-
guages, such as B, C, C+ [5] and BC [6]. Thus oBC+ can be viewed as online extensions
of these languages as well.

Since the semantics of BC+ is based on propositional formulas under the stable
model semantics, we first generalize the result on online answer set solving to arbitrary

1 http://www.cs.uni-potsdam.de/wv/oclingo/

2 Joseph Babb and Joohyung Lee

propositional formulas, and define oBC+ based on it. We demonstrate that oBC+ pro-
vides a structured input language for online answer set solving, and thereby alleviates
the user’s burden for checking sophisticated conditions imposed on the input programs.

The paper is organized as follows. Section 2 reviews language BC+ from [4] and the
module theorem from [7]. Section 3 extends the concept of online answer set solving to
propositional theories, based on which Section 4 defines the online extension of BC+,
and asserts that the design of the language ensures the syntactic conditions for applying
online answer set solving.

2 Preliminaries
2.1 Review: Stable Models of Propositional Formulas

According to [8], stable models of a propositional formula are defined as follows. The
reduct FX of a propositional formula F relative to a set X of atoms is the formula ob-
tained from F by replacing every maximal subformula that is not satisfied byX with⊥.
Set X is called a stable model of F if it is a minimal set of atoms satisfying FX . It is
known that propositional logic programs can be identified with propositional formulas
under the stable model semantics in the form of conjunctions of implications.

Throughout this paper, we consider propositional formulas whose signature σ con-
sists of atoms of the form c= v, 2 where c is called a constant and is associated with
a finite set Dom(c) of cardinality ≥ 2, called the domain, and v is an element of its
domain. If the domain of c is {f, t} then we say that c is Boolean, and abbreviate c= t
as c and c= f as ∼c.

2.2 Review: BC+

Syntax Language BC+ includes two kinds of constants, fluent constants and action
constants. Fluent constants are further divided into regular and statically determined. 3

A fluent formula is a formula such that all constants occurring in it are fluent con-
stants. An action formula is a formula that contains at least one action constant and no
fluent constants.

A static law is an expression of the form

caused F if G (1)

where F and G are fluent formulas. An action dynamic law is an expression of the
form (1) in which F is an action formula and G is a formula. A fluent dynamic law is
an expression of the form

caused F if G after H (2)

where F and G are fluent formulas and H is a formula, provided that F does not
contain statically determined constants. Static laws can be used to talk about causal
dependencies between fluents in the same state. Action dynamic laws can be used to

2 So c=v is an atom in the propositional signature, and not an equality in first-order logic.
3 Statically determined fluents are fluents whose values are completely determined by fluents in

the same state, and not by direct effects of actions [5, Section 5.5].

Online Action Language oBC+ 3

express causal dependencies between concurrently executed actions. A more common
use of action dynamic laws is to express the assumption of an action being “exogenous”
(the cause of the action is outside the domain description). Fluent dynamic laws can be
used for describing direct effects of actions.

A causal law is a static law, an action dynamic law, or a fluent dynamic law. An
action description is a finite set of causal laws.

The formula F in a causal law (1) or (2) is called the head, and G and H are called
the bodies.

Semantics of BC+ The semantics of BC+ can be understood in terms of a “transition
system”—a directed graph whose vertices are states of the world and edges represent
transitions between states. For any action description D with a set σfl of fluent con-
stants and a set σact of action constants, we define a sequence of propositional formulas
PF0(D),PF1(D), . . . so that the stable models of PFm(D) represent paths of length
m in the transition system corresponding to D. The signature of PFm(D) consists of
atoms of the form i :c=v such that

– for each fluent constant c of D, i ∈ {0, . . . ,m} and v ∈ Dom(c), and
– for each action constant c of D, i ∈ {0, . . . ,m−1} and v ∈ Dom(c).

By i : F we denote the result of inserting i : in front of every occurrence of every
constant in formula F .

For any set c of symbols from σfl and σact, by UECc we denote the conjunction of∧
v 6=w | v,w∈Dom(c)

¬(c = v ∧ c = w) ∧ ¬¬
∨

v∈Dom(c)

c = v , (3)

for all c ∈ c, which represents the uniqueness and existence of values for the constants
in c.

For any atom c= v, “choice rule” {c= v}ch stands for c= v ∨ ¬(c= v), which, in
the presence of (3), means that by default c is mapped to v [9].

The translation PFm(D) is the conjunction of

j :F ← j :G for each static law (1) in D
i :F ← i :G for each action dynamic law (1) in D
(i+1):F ← (i+1):G ∧ i :H for each fluent dynamic law (2) in D

{0:c=v}ch for each regular fluent c and every v ∈ Dom(c)

j :UECσfl i :UECσact

(i = 0, . . . ,m−1, j = 0, . . .m).

We identify an interpretation I with the set of atoms that are satisfied by this inter-
pretation. This allows us to represent any interpretation of the signature of PFm(D) in
the form

(0 : s0) ∪ (0 : e0) ∪ (1 : s1) ∪ (1 : e1) ∪ · · · ∪ (m : sm)

where s0, . . . , sm are interpretations of σfl and e0, . . . , em−1 are interpretations of σact.
States and transitions are defined in terms of stable models of PF0(D) and PF1(D)

as follows.

4 Joseph Babb and Joohyung Lee

Definition 1 (States and Transitions). For any action description D of signature σ, a
state of D is an interpretation s of σfl such that 0 : s is a stable model of PF0(D). A
transition of D is a triple 〈s, e, s′〉 where s and s′ are interpretations of σfl and e is an
interpretation of σact such that 0:s ∪ 0:e ∪ 1:s′ is a stable model of PF1(D).

In view of the uniqueness and existence of value constraints for every state s and
every fluent constant c, there exists exactly one v such that c=v belongs to s; this v is
considered the value of c in state s.

Given these definitions, we define the transition system T (D) represented by an
action description D as follows.

Definition 2 (Transition System). A transition system T (D) represented by an action
description D is a labeled directed graph such that the vertices are the states of D,
and the edges are obtained from the transitions of D as follows: for every transition
〈s, e, s′〉 of D, an edge labeled e goes from s to s′.

Since the vertices and the edges of a transition system T (D) are identified with
the states and the transitions of D, we simply apply the definitions of a state and a
transition to transition systems: A state of T (D) is a state of D. A transition of T (D)
is a transition of D.

The stable models of PFm(D) represent the paths of length m in the transition
system represented by D [4, Theorem 2].

2.3 Review: Module Theorem

We review the module theorem from [7] limited to the propositional case.
For any propositional formula F , by At(F) we denote the set of all atoms occurring

in F . The head atoms of F are defined to be the atoms that has an occurrence in F that
is not in the antecedent of any implication (we understand ¬F as an abbreviation of
F → ⊥). By Head(F) we denote the set of all head atoms of F .

A module F is a triple (F, I,O), where F is a propositional formula, and I and O
are disjoint sets of atoms such that At(F) ⊆ (I ∪ O).

Definition 3 (Module Stable Model). We say that an interpretation I is a (module)
stable model of a module F = (F, I,O) if I is a stable model of F ∧

∧
A∈I{A}ch.

We refer the reader to [10] for the definition of a dependency graph of a proposi-
tional formula F relative to a set A of atoms, which we denote by DG[F ; A].

Definition 4 (Joinability of Modules). Two modules F1 = (F1 ∧ H, I1, O1) and
F2 = (F2 ∧H, I2, O2) are called joinable if

– O1 ∩ O2 = ∅,
– each strongly connected component of DG[F1∧F2∧H; O1∪O2] is either a subset

of O1 or a subset of O2,
– Head(F1) ∩ O2 = ∅, and Head(F2) ∩ O1 = ∅.

Definition 5 (Join of Modules). For any modules F1 = (F1 ∧H, I1, O1) and F2 =
(F2∧H, I2, O2) that are joinable, the join of F1 and F2, denoted by F1tF2, is defined
to be the module (F1 ∧ F2 ∧H, (I1 ∪ I2) \ (O1 ∪ O2), O1 ∪ O2).

Online Action Language oBC+ 5

Given sets of atoms I1, I2, I3, we say that I1 and I2 are I3-compatible if I1 ∩ I3 =
I2 ∩ I3.

Theorem 1 (Module Theorem [7]) Let F1 = (F1, I1,O1) and F2 = (F2, I2,O2) be
modules that are joinable, and let Ii (i = 1, 2) be a subset of (Ii ∪Oi) such that I1 and
I2 are (I1 ∪O1)∩ (I2 ∪O2)-compatible. Then I1 ∪ I2 is a stable model of F1 t F2 iff
I1 is a stable model of F1 and I2 is a stable model of F2.

3 Online Propositional Theories

We generalize the concept of online answer set solving to arbitrary propositional for-
mulas as follows. This section inevitably has many notions, all of which are generalized
from those in [2]. The generalization will be used in the next section in order to extend
BC+ to the online setting.

A step-parametrized formula F [t] is a propositional formula which may contain
step-parameterized atoms of the form g(t) : a, where t is a variable for nonnegative
integers denoting a step counter, and g(t) is some meta-level nonnegative integer val-
ued arithmetic function whose only free variable is t. Given such a formula F [t] and
a nonnegative integer k, the step-instantiated formula F [t/k] (or simply F [k]) is de-
fined to be the propositional formula which is obtained from F [t] by replacing every
occurrence of every step-parametrized atom g(t) : a with a standard atom v : a, where
v is the value of g(k). (Thus, v : a is assumed to be in the underlying propositional
signature.)

We define an incremental theory to be a triple 〈B,P [t], Q[t]〉 such thatB is a propo-
sitional formula, and P [t], Q[t] are step-parametrized formulas. Informally, B is the
base component, which describes static knowledge; P [t] is the cumulative component,
which contains information regarding every step that should be accumulated during ex-
ecution; Q[t] is the volatile component, which contains constraints or other information
regarding the final step.

By an online progression 〈E,F 〉we denote some sequence of pairs of step-instantiated
formulas (Ei[ei], Fi[fi]) for i ≥ 1 with associated nonnegative integers ei, fi such that
ei ≤ fi. Intuitively, eachEi[ei] and Fi[fi] corresponds to stable and volatile knowledge
acquired during execution, respectively. For each (Ei[ei], Fi[fi]), ei and fi denote the
step for which they are relevant allowing knowledge to be acquired out of order. For
example, E4[3] is the fourth piece of online input and contains information relevant to
step 3.

Given an incremental theory 〈B,P [t], Q[t]〉, an online progression 〈E,F 〉, and non-
negative integers j, k such that e1, . . . , ej , fj ≤ k, the incremental components are

{B,P [t/1], P [t/2], . . . , P [t/k], Q[t/k], E1[e1], E2[e2], . . . , Ej [ej], Fj [fj]}. (4)

As in [2], we define the k-expanded propositional formula Rj,k of 〈B,P [t], Q[t]〉 w.r.t.
〈E,F 〉 to be the conjunction of all formulas in (4).

Generalizing the notion of the simplification in [2], given a propositional formula F ,
we define the simplification of F onto a set A of atoms (denoted Simplify(F,A)) to be
the formula obtained from F by replacing all occurrences of atoms p in F such that

6 Joseph Babb and Joohyung Lee

p 6∈ (Head(F) ∪ A) with ⊥ and performing the following syntactic transformations
recursively until no further transformations are possible:4

¬⊥ 7→ > ¬> 7→ ⊥
⊥ ∧ F 7→ ⊥ F ∧ ⊥ 7→ ⊥ > ∧ F 7→ F F ∧ > 7→ F
⊥ ∨ F 7→ F F ∨ ⊥ 7→ F > ∨ F 7→ > F ∨ > 7→ >
⊥ → F 7→ > F → > 7→ > > → F 7→ F

We define the modular instantiation of F with respect to A, denoted PM (F,A), to
be the module (Simplify(F,A), A, At(Simplify(F,A))\A).5

The idea of the simplification is to reduce the size of the input formulas by exploit-
ing the fact that some atoms are known not to belong to any stable model. However,
unlike the offline solving, the values of external atoms in the online incremental com-
putation are unknown at the time of simplifying the current module containing them.
Thus, following [2], we associate each formula F in (4) with some designated set of
external atoms I(F) such that Head(F) ∩ I(F) = ∅. Such atoms represent possible
external inputs that may be introduced later by an online progression, and thus should
be exempted from the current program simplification.

Given a module F = 〈F, I,O〉, Out(F) refers to O.

Definition 6 (Modular Incremental Theories and Online Progression). We say that
an incremental theory 〈B,P [t], Q[t]〉 and an online progression 〈E,F 〉 are modular
if the following modules are well-defined for any nonnegative integers j, k such that
e1, . . . , ej , fj ≤ k.6

P0 = PM (B, I(B)), E0 = F0 = 〈>, ∅, ∅〉,
Pi = Pi−1 t PM (P [t/i], Out(Pi−1) ∪ I(P [t/i])), (i = 1, . . . , k)

Qi = PM (Q[t/i], Out(Pi) ∪ I(Q[t/i])), (i = 0, . . . , k)

Ei = Ei−1 t PM (Ei[ei], Out(Pei) ∪ Out(Ei−1) ∪ I(Ei[ei])) (i = 1, . . . , j)

Fi = PM (Fi[fi], Out(Pfi) ∪ Out(Ei) ∪ I(Fi[fi])) (i = 1, . . . , j)

Rj,k = Pk tQk t Ej t Fj .

We refer to Rj,k as the incremental composition of the incremental theory 〈B,P [t], Q[t]〉
w.r.t. the online progression 〈E,F 〉. Unlike the k-expanded propositional formulaRj,k,
each component in the incrementally composed module Rj,k is simplified before being
joined.

Given an incremental theory 〈B,P [t], Q[t]〉 and an online progression 〈E,F 〉, we
assume the precedence relation ≺∗ on the set

{B,P [t/1], P [t/2], . . . , P [t/k], E1[e1], E2[e2], . . . , Ej [ej],
Q[t/0], Q[t/1], . . . , Q[t/k], F1[f1], F2[f2], . . . , Fj [fj]}

(5)

4 In [2], this process stops only at the second iteration.
5 In practice when F is non-ground, we assume F is grounded first by substituting every variable

with every element in the Herbrand universe.
6 For notational simplicity, we define E0[e0] and F0[f0] to be >, e0, f0 to be 0, and I(E0[e0])

and I(F0[f0]) to be ∅.

Online Action Language oBC+ 7

as the transitive closure of the following relation ≺:

B ≺ P [t/1] ≺ · · · ≺ P [t/k], B ≺ Q[t/0], P [t/i] ≺ Q[t/i] (i ≥ 1)

E1[e1] ≺ · · · ≺ Ej [ej], Ei[ei] ≺ Fi[fi] (i ≥ 1)

P [t/ei] ≺ Ei[ei], P [t/fi] ≺ Fi[fi] (i ≥ 1).

Additionally, we say that two formulas F and G in (5) coexist if they belong to (4)
for some nonnegative integers j, k. Intuitively, F and G coexist if they are eventually
composed together into some Rj,k. For example, P [t/1] and Q[t/3] coexist as they are
both present in R0,3, whereas Q[t/1] and Q[t/3] do not. In Figure 1 the shaded blocks
denote coexisting formulas for j = 1, k = 2.

Fig. 1. Precedence Graph of Component Formulas

Definition 7. We say that an incremental theory 〈B,P [t], Q[t]〉 and an online progres-
sion 〈E,F 〉 are mutually revisable if, for any distinct coexisting formulas G and H
in (5), we have that G ≺∗ H whenever Head(G) ∩ (At(H) \ I(H)) 6= ∅.

Theorem 2 (Correctness of Incremental Composition) Given an incremental theory
〈B,P [t], Q[t]〉 and an online progression 〈E,F 〉 which are modular and mutually re-
visable, and nonnegative integers j, k such that e1, . . . , ej , fj ≤ k, let Rj,k be the
k-expanded propositional formula w.r.t. 〈E,F 〉, and let Rj,k = (H, I,O) be the in-
cremental composition of 〈B,P [t], Q[t]〉 w.r.t. 〈E,F 〉. Then the stable models of Rj,k
coincide with the stable models of H , the formula of Rj,k.

It turns out that in the event that all explicit inputs (all I(F) for F ∈ (4)) are empty,
i.e., in the offline case, mutual revisability is a stronger condition than modularity. This
means that in the offline case it is sufficient to just check that an incremental theory is
mutually revisable.

Using Theorem 2, it is possible to incrementally ground, simplify, and solve a tra-
ditional ASP incremental theory in order to find the minimum k such that Rj,k has
an answer set without repeating previous work performed. In practice, this allows for
a significant speedup when performing an iterative deepening search, such as when
searching for a minimum length plan to accomplish a goal. In addition, the system is
able to account for specific forms of online input in an equally efficient manner by
allowing external information to be asserted in the online progression during execution.

8 Joseph Babb and Joohyung Lee

Example 1 (Online ASP Solving) Given an incremental theory

〈B,P [t], Q[t]〉 = 〈>, ¬((t−1) :q) ∧ ¬((t−1) :p)→ t :p, ¬(t :p)→ ⊥〉

such that I(B) = ∅, I(P [t/i]) = {(i−1) : q}, and I(Q[t/i]) = ∅ and an online
progression 〈E,F 〉.

Initially, R0,0 is constructed such that

P0 = 〈>, ∅, ∅〉,
Q0 = PM (Q[t/0],Out(P0) ∪ I(Q[t/0])) = 〈> → ⊥, ∅, ∅〉,

R0,0 = P0 tQ0 = 〈> → ⊥, ∅, ∅〉.

Clearly, > → ⊥ has no stable models. As a result, R0,1 is attempted as follows:

P1 = P0 t PM (P [t/1],Out(P0) ∪ I(P [t/1])) = P0 t 〈¬(0 :q)→ 1:p, {0:q}, {1:p}〉
= 〈¬(0 :q)→ 1:p, {0:q}, {1:p}〉,

Q1 = PM (Q[t/1],Out(P1) ∪ I(Q[t/1])) = 〈¬(1 :p)→ ⊥, {1:p}, ∅〉,
R0,1 = P1 tQ1 = 〈(¬(0 :q)→ 1:p) ∧ (¬(1 :p)→ ⊥), {0:q}, {1:p}〉.

Solving is then halted as the formula in R0,1 has one stable model {1:p}. However, with
the arrival of the external event E1[0] = 0 : q, and F1[0] = > such that I(E1[0]) =
I(F1[0]) = ∅, we then must consider the construction of R1,k, rather than R0,k. R1,1

is constructed such that

E1 = 〈>, ∅, ∅〉 t PM (E1[e1],Out(Pe1) ∪ Out(E0) ∪ I(E1[e1])) (e1 is 0)

= 〈>, ∅, ∅〉 t 〈0:q, ∅, {0:q}〉 = 〈0:q, ∅, {0:q}〉,
F1 = PM (F1[f1],Out(Pf1) ∪ Out(E1) ∪ I(F1[f1])) (f1 is 0)

= 〈>, {0:q}, ∅〉,
R1,1 = P1 tQ1 t E1 t F1 = 〈(¬(0 :q)→ 1:p) ∧ 0:q ∧ (¬(1 :p)→ ⊥), ∅, {0:q, 1:p}〉.

Once again, the formula of R1,1 has no stable models, so the search is deepened to
R1,2 as follows:

P2 = P1 t PM (P [t/2],Out(P1) ∪ I(P [t/2]))

= P1 t 〈¬(1 :q) ∧ ¬(1 :p)→ 2:p, {1:q, 1:p}, {2:p}〉
= 〈(¬(0 :q)→ 1:p) ∧ (¬(1 :q) ∧ ¬(1 :p)→ 2:p), {0:q, 1:q}, {1:p, 2:p}〉,

Q2 = PM (Q[t/2],Out(P2) ∪ I(Q[t/2])) = 〈¬(2 :p)→ ⊥, {1:p, 2:p}, ∅〉,
R1,2 = P2 tQ2 t E1 t F1

= 〈(¬(0 :q)→ 1:p) ∧ (¬(1 :q) ∧ ¬(1 :p)→ 2:p) ∧ 0:q ∧ (¬(2 :p)→ ⊥),
{1:q}, {0:q, 1:p, 2:p}〉.

The formula of R1,2 has a single stable model {0:q, 2:p}.

4 Online Execution of oBC+

Based on the concept of online propositional theories in the previous section, we de-
fine an online extension of BC+, which provides a structured input language for online
answer set solving that ensures the syntactic conditions of modularity and mutual revis-
ability.

Online Action Language oBC+ 9

4.1 Syntax

The signature hierarchy of oBC+ is extended from that of (offline) BC+ by adding new
sets of symbols called external fluent constants (denoted σef) and external action con-
stants (denoted σea) such that σef ⊆ σfl and σea ⊆ σact. We assume that the domain
of each external fluent and action constant contains a special element u, which repre-
sents an unknown value. The syntax of causal laws is defined the same as in Section 2.2
except that external constants are allowed in the bodies but not in the heads.

Fig. 2. Hierarchy of oBC+ signature

An observation is an expres-
sion of the form

observed c=v at m (6)

where c=v is an atom such that
c is an external constant, v is a
value other than u, and m is a nonnegative integer. An observational constraint is an
expression of the form

constraint F at m (7)

where F is a propositional formula containing no external constants andm is a nonneg-
ative integer. We say that an observation (6) or observational constraint (7) is dynamic
if it contains some action constant, otherwise we say it is static.

An observation stream, denoted On,m̂, is a list O1, . . . On such that

– for each 1 ≤ i ≤ n, Oi is a finite set of observations (6) and observational con-
straints (7), and mi is the maximum of each m among the static observations and
constraints and m+ 1 among the dynamic observations and constraints;

– m̂ is the maximum of each mi (1 ≤ i ≤ n);
– for each external constant c and each m in {1, . . . , m̂}, there is at most one obser-

vation (6) in O1 ∪ · · · ∪On.

4.2 Semantics

Since any future external constants can take any values arbitrarily, the transition system
in the presence of external constants can be defined straightforwardly by assigning ar-
bitrary values to the external constants. That is, given an oBC+ description and length
m, we extend the propositional formula PFm(D) in Section 2.2 by adding the formulas
{i :c=v}ch for every external constant c, every v ∈ Dom(c), and every i ∈ {0, . . . ,m}
if c is a fluent constant, and i ∈ {0, . . . ,m−1} if c is an action constant.

On the other hand, it is more meaningful to assume that the external input is “abnor-
mal” to the system dynamics, and we want to “minimize” their effects. In other words,
rather than arbitrary histories, we are interested in histories which are “normal” with
respect to On,m̂. Intuitively, in a normal history, the external constants are mapped to
an unknown value unless the external observation asserts otherwise.

Formally, a history Hk of a transition system of length k is a sequence
〈s0, e0, s1, . . . , ek−1, sk〉 such that each 〈si, ei, si+1〉 (0 ≤ i ≤ k − 1) is a transition.
We say thatHk satisfies i : F where F is a fluent formula (action formula, respectively)
if si |= F (ei |= F , respectively). Given an observation stream On,m̂ and history Hk
such that k ≥ m̂, we say thatHk observes On,m̂ if,

10 Joseph Babb and Joohyung Lee

– for each observation (6) in On,m̂, historyHk satisfies m :c=v, and
– for each observational constraint (7) in On,m̂, historyHk satisfies m :F .

We say that Hk is normal with respect to On,m̂, if it observes On,m̂, and, for each
external fluent constant (action constant, respectively) c and each i ∈ {0, . . . , k} (i ∈
{0, . . . , k − 1}, respectively), Hk satisfies i : c= u when there is no observation (6) in
On,m̂ such that m = i.

Intuitively, observations are non-monotonic observations the agent has made regard-
ing the defined external actions and fluents. Meanwhile, the observational constraints
serve to further limit past histories according to what the agent knows, such as what
actions the agent has executed.

Named Sets: Value:
Status {on, off}
Boolean {t, f}
ExtBoolean {t, f, u}

Notation: s ranges over elements in Status; v ranges over elements in Boolean.

Constants: Type: Domain:
Sw regular fluent Status
Light statically determined fluent Status
Flip action Boolean

Fault regular fluent ExtBoolean
ExtFault external fluent ExtBoolean
ReplaceBulb action Boolean

Causal laws:
inertial Sw inertial Fault after ReplaceBulb=f

exogenous Flip exogenous ReplaceBulb

Flip causes Sw=on if Sw=off nonexecutable ReplaceBulb if Flip=t

Flip causes Sw=off if Sw=on caused Fault=v if ExtFault=v
default Light=s if Sw=s caused Light=off if Fault=t

default Fault=u after ReplaceBulb

Fig. 3. Online Faulty Switch Elaboration in oBC+.

Example 2 Consider a light switch problem where the light bulb may be burnt out.
In the event this is the case, the light will not turn on until the bulb is replaced. This
problem can be formalized in oBC+ as shown in Figure 3.7 Intuitively, Fault is the
agent’s internal model of whether the light is burnt out, while ExtFault represents the
agent’s external observations.

Normally, Fault is governed by inertia. However, in the event the agent gains ad-
ditional information (i.e. observes whether there has been a fault) Fault is updated to
reflect this. Performing ReplaceBulb will then reset the agent’s internal model and the
agent once again assumes that the fault has been fixed.

7 It uses several abbreviations of causal laws as defined in [4].

Online Action Language oBC+ 11

Fig. 4. A Partial Transition System of DoBC+
switch

Consider the transition system corresponding to the toggle switch elaboration. The
minimum length history from

S0 = {Switch=off, Light=off, Fault=u, ExtFault=u}

to a state S such that S |= Light=on are 〈S0, E0,S1〉, and 〈S0, E0,S2〉 where

E0 = {Flip=t, ReplaceBulb=f},
S1 = {Switch=on, Light=on, Fault=u, ExtFault=u}, and
S2 = {Switch=on, Light=on, Fault=f, ExtFault=f}.

Intuitively, the difference between S1 and S2 is that in S1 the agent has no knowledge
as to whether a fault has occurred (i.e. the bulb has burnt out) whereas in S2 the agent
knows that the light is fine. Of the two, only 〈S0, E0,S1〉 is normal with respect to the
online progression O0,0 = [].

If, following the execution of Flip, the agent observes that a fault did occur, the
knowledge can be added to the online progression producing

O1,1 = [{observed ExtFault=t at 1, constraint Flip=t at 0}].

(The addition of the constraint enforces that the agent has executed Flip = t and pre-
vents that action from being revised.) The new minimum length history from S0 to a
state S such that S |= Light=on and is normal w.r.t. O1,1 is 〈S0, E0,S3, E1,S1〉 where

S3 = {Switch=on,Light=off,Fault=t,ExtFault=t}, and
E1 = {Flip=f,ReplaceBulb=t}.

This history essentially prescribes that the agent should replace the light bulb in order
to attempt to fix the fault.

A partial specification of the transition system is shown in Figure 4. The dashed
edges depend on the assertion of an external constant and are not considered for tran-
sitions in normal histories.

12 Joseph Babb and Joohyung Lee

Given an oBC+ action description D, an observation stream On,m̂, and some incre-
mentally parametrized formula Q[t], we define the corresponding incremental theory
〈B,P [t], Q[t]〉D,Q[t] and the online progression 〈E,F 〉On,m̂ as follows.

B =
∧

0:F ← 0:G for each static law (1) in D

0:{f=v}ch for each regular fluent f and each v ∈ Dom(f)

0 :{f=u}ch for each external fluent f
0:UECσfl

P [t] =
∧

t :F ← t :G for each static law (1) in D
(t−1) :F ← (t−1) :G for each action dynamic law (1) in D
t :F ← t :G ∧ (t−1) :H for each fluent dynamic law (2) in D

t :{f=u}ch for each external fluent f
(t−1) :{a=u}ch for each external action a
t :UECσfl

(t−1) :UECσact

Q[t] = ¬¬Q[t]

Ei[mi] =
∧{

mi :c=v for each observation (6) ∈ Oi
¬¬mi :F for each observational constraint (7) ∈ Oi

Fi[mi] = >

The stable models of their incremental composition represent histories that are nor-
mal w.r.t. the observation.

Given a oBC+ signature σ we define At(σ) to be the set of atoms c=v where c ∈ σ
and v ∈ Dom(c). Furthermore, we define Atu(σ) to be the set of all such atoms such
that v 6= u.

We define the sets of explicit external inputs as follows:
– I(B) = Atu(0 :σef),
– I(P [t/i]) = Atu(i :σef ∪ (i−1) :σea),
– I(Q[t/i]) = Atu(

⋃
0≤j<i(j :σ

ef ∪ j :σea) ∪ i :σef), and
– I(Ei) = I(Fi) = ∅.

The following proposition asserts that the translation of an oBC+ description into
propositional formulas ensures modularity and mutual revisability.

Theorem 3 (Modular and Mutually Revisable Construction) Given an oBC+ action
description D and an observation stream On,m̂, and a step-parameterized formula
Q[t], the corresponding incremental theory 〈B,P [t], Q[t]〉D,Q[t] and the corresponding
online progression 〈E,F 〉On,m̂ are modular and mutually revisable.

The next theorem asserts that the stable models of the incremental assembly rep-
resents the histories in the transition system that are normal with respect to the online
stream.

Theorem 4 (Correctness of Incremental Assembly) Given an oBC+ action descrip-
tion D, an observation stream On,m̂, a step-parameterized Q[t], and some k ≥ m̂,
let Rm̂,k = 〈H, I,O〉 be the incremental composition of 〈B,P [t], Q[t]〉D,Q[t] w.r.t.
〈E,F 〉On,m̂ . The stable models of H represents the histories of length k in the tran-
sition system described by D which (i) observe On,m̂, (ii) are normal with respect to
On,m̂, and (iii) satisfy Q[t/k].

Online Action Language oBC+ 13

5 Conclusion

We extended the concept of online answer set solving to propositional formulas under
the stable model semantics, and based on this, designed a high level online action lan-
guage oBC+, whose structure ensures the syntactic conditions that are required for the
correctness of online answer set solving.

Another high level language for OCLINGO ensuring the modularity condition of
OCLINGO is Online Agent Logic Programming language from [11]. However, this is
based on Agent Logic Programs, instead of action languages, and lacks negation.

oBC+ is implemented in Version 3 of CPLUS2ASP. In addition to the static and
the incremental mode already available in Version 2, which invoke CLINGO v3.0.5 and
ICLINGO v3.0.5, respectively, newly introduced is the reactive mode, which invokes
OCLINGO v3.0.92. The “reactive bridge” is a new software component, and acts as an
intermediary between OCLINGO and a user-provided agent controller system. It allows
the agent controller system to provide an oBC+ observation stream during execution and
receive updated solutions in the form of transition system histories. We refer the reader
to the system homepage (http://reasoning.eas.asu.edu/cplus2asp) for more details and
experiment results.
Acknowledgements: We are grateful to Michael Bartholomew, Yi Wang, and the
anonymous referees for their useful comments on the draft. This work was partially
supported by the National Science Foundation under Grant IIS-1319794 and South Ko-
rea IT R&D program MKE/KIAT 2010-TD-300404-001.

References
1. Valle, E.D., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world! reasoning upon

rapidly changing information. IEEE Intelligent Systems 24(6) (2009) 83–89
2. Gebser, M., Grote, T., Kaminski, R., Schaub, T.: Reactive answer set programming. In:

Proceedings of LPNMR, Springer (2011) 54–66
3. Janhunen, T., Oikarinen, E., Tompits, H., Woltran, S.: Modularity aspects of disjunctive

stable models. Journal of Artificial Intelligence Research 35 (2009) 813–857
4. Babb, J., Lee, J.: Action language BC+: Preliminary report. In: Proceedings of the AAAI

Conference on Artificial Intelligence (AAAI). (2015)
5. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.

Artificial Intelligence 153(1–2) (2004) 49–104
6. Lee, J., Lifschitz, V., Yang, F.: Action language BC: Preliminary report. In: Proceedings of

International Joint Conference on Artificial Intelligence (IJCAI). (2013)
7. Babb, J., Lee, J.: Module theorem for the general theory of stable models. TPLP 12(4-5)

(2012) 719–735
8. Ferraris, P.: Answer sets for propositional theories. In: Proceedings of LPNMR. (2005)

119–131
9. Bartholomew, M., Lee, J.: Stable models of multi-valued formulas: Partial vs. total functions.

In: Proceedings of International Conference on Principles of Knowledge Representation and
Reasoning (KR). (2014) 583–586

10. Ferraris, P., Lee, J., Lifschitz, V., Palla, R.: Symmetric splitting in the general theory of stable
models. In: Proceedings of International Joint Conference on Artificial Intelligence (IJCAI),
AAAI Press (2009) 797–803

11. Cerexhe, T., Gebser, M., Thielscher, M.: Online agent logic programming with oclingo. In:
PRICAI 2014: Trends in Artificial Intelligence. Springer (2014) 945–957

