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Appendix A Completion and the Cabalar Semantics

The following definitions are from (Bartholomew and Lee 2013).
We say that a formula F is in Clark normal form (relative to a list c of intensional constants)

if it is a conjunction of sentences of the form

∀x(G→ p(x)) (A1)

and

∀xy(G→ f(x)=y) (A2)

one for each intensional predicate p and each intensional function f , where x is a list of distinct
object variables, y is an object variable, and G is an arbitrary formula that has no free variables
other than those in x and y.

The completion of a formula F in Clark normal form (relative to c) is obtained from F by
replacing each conjunctive term (A1) with

∀x(p(x)↔ G)

and each conjunctive term (A2) with

∀xy(f(x)=y ↔ G).

An occurrence of a symbol or a subformula in a formula F is called strictly positive in F if
that occurrence is not in the antecedent of any implication in F . The dependency graph of F
(relative to c) is the directed graph that

• has all members of c as its vertices, and
• has an edge from c to d if, for some strictly positive occurrence of G→ H in F ,

— c has a strictly positive occurrence in H , and
— d has a strictly positive occurrence in G.

We say that F is tight (on c) if the dependency graph of F (relative to c) is acyclic.
The following theorem relates the Cabalar semantics to completion, which follows immedi-

ately from Theorem 12 from (Bartholomew and Lee 2013) and Theorem 6.
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Theorem 11
For any sentence F in Clark normal form that is tight on c and any total interpretation I , if
I |= ∃xy(x 6= y), then I |=

p
CBL[F ; c] iff I |= SM[F ; c] iff I is a model of the completion of F

relative to c.

Appendix B Review of the Balduccini Semantics

The following is a review of the Balduccini semantics. Let us restrict a signature σ to be com-
prised of a set of intensional function and predicate constants denoted c as well as a set of
non-intensional object constants σ \ c.

Balduccini considered terms to have the form f(c1, . . . , ck) where f is an intensional function
constant (in c), and each ci is a non-intensional object constant (in σ \c). He considered an atom
to be an expression p(c1, . . . , ck) where p is an intensional predicate constant, and each ci is a
non-intensional object constant; a t-atom is an expression of the form f = g where f is a term
and g is either a term or a non-intensional object constant; a seed t-atom is a t-atom of the form
f = c where c is a non-intensional object constant. A t-literal is a t-atom f = g or ∼(f = g),
where ∼ denotes strong negation. A seed literal is an atom a, or ∼a, or a seed t-atom. A literal
is an atom a, or ∼a, or a t-literal. An ASP{f} program consists of rules of the form

h← l1, . . . , lm, not lm+1, . . . , not ln , (B1)

where h is a seed literal or ⊥, and each li is a literal. An ASP{f} program is a finite set of rules.
We identify rule (B1) with an implication

l1 ∧ · · · ∧ lm ∧ ¬lm+1 ∧ · · · ∧ ¬ln → h ,

and an ASP{f} program as the conjunction of all rules in it. Note that ASP{f} programs do not
contain variables, and can be viewed as a special case of head-c-plain formulas.

A set I of seed literals is said to be consistent if it contains no pair of an atom a and its strong
negation ∼a; and contains no pair of seed t-atoms t = c1 and t = c2 such that c1 6= c2. It is clear
that any subset of a consistent set of seed literals is consistent as well.

The notion of satisfaction between a consistent set I of seed literals and literals, denoted by
|=
b
, is defined as follows.

• For a seed literal l, I |=
b
l if l ∈ I;

• For a non-seed literal f =g, I |=
b
f =g if I contains both f = c and g= c for some object

constant c;
• For a non-seed literal ∼(f = g), I |=

b
∼(f = g) if I contains both f = c1 and g = c2 for

some object constants c1 and c2 such that c1 6= c2.

This notion of satisfaction is extended to formulas allowing ∧, ¬ and← as in classical logic.
The reduct of an ASP{f} program Π relative to a consistent set I of seed literals is denoted ΠI

and is defined as

ΠI = {h← l1 . . . , lm | (B1) ∈ Π and I |= ¬lm+1 ∧ · · · ∧ ¬ln} .

I is called a Balduccini answer set of Π if

• I |=
b

ΠI , and,
• for every proper subset J of I , we have J 6|=

b
ΠI .
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Appendix C Proofs

C.1 Proof of Theorem 1

We will often use the following notation. Let σ be a first-order signature, let c be a set of constants
that is a subset of σ, and let d be a set of constants not belonging to σ and is similar to c.1 Jc

d

denotes the interpretation of signature (σ \ c) ∪ d obtained from J by replacing every constant
from c with the corresponding constant from d. For two interpretations I and J of σ that agree
on all constants in σ \ c, we define Jc

d ∪ I to be the interpretation from the extended signature
σ ∪ d such that

• Jc
d ∪ I agrees with I on all constants in c;

• Jc
d ∪ I agrees with Jc

d on all constants in d;
• Jc

d ∪ I agrees with both I and J on all constants in σ \ c.

Lemma 1
For any sentence F of signature σ and any interpretations I and J of σ,

(a) if Jc
d ∪ I |= F ∗(d), then I |= F ;

(b) if 〈J, I〉 |=
fht
F , then 〈I, I〉 |=

fht
F .

Proof. By induction on F .

Lemma 2
Let F be a sentence of signature σ, and let I and J be interpretations of σ such that J <c I . We
have Jc

d ∪ I |= F ∗(d) iff J |= grI [F ]I .

Proof. By induction on F .

Case 1: F is an atomic sentence. Then F ∗(d) is F (d) ∧ F , where F (d) is obtained from F

by replacing the members of c with the corresponding members of d. Consider the following
subcases:

• Subcase 1: I 6|= F . Then Jc
d ∪ I 6|= F ∗(d). Further, grI [F ]I = ⊥, so J 6|= grI [F ]I .

• Subcase 2: I |= F . Then Jc
d∪I |= F ∗(d) iff Jc

d |= F (d) iff J |= F . Further, grI [F ]I = F ,
so J |= grI [F ]I iff J |= F .

Case 2: F is G ∧H or G ∨H . The claim follows immediately from I.H. on G and H .

Case 3: F is G → H . Then F ∗(d) = (G∗(d) → H∗(d)) ∧ (G → H). Consider the following
subcases:

• Subcase 1: I 6|= G→ H . Then Jc
d ∪ I 6|= F ∗(d). Further, grI [F ]I = ⊥, which J does not

satisfy.
• Subcase 2: I |= G → H . Then Jc

d ∪ I |= F ∗(d) iff Jc
d ∪ I |= G∗(d) → H∗(d). On the

other hand, grI [F ]I = grI [G]I → grI [H]I so this case holds by I.H. on G and H .

Case 4: F is ∃xG(x). By I.H., Jc
d ∪ I |= G(ξ�)∗(d) iff J |= grI [G(ξ�)]I for each ξ ∈ |I|. The

claim follows immediately.

Case 5: F is ∀xG(x). Similar to Case 4.

1 That is to say, d and c have the same length and the corresponding members are either predicate constants of the same
arity or function constants of the same arity.
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Lemma 3
For any interpretations I and J of signature σ, we have Jc

d ∪ I |= d < c iff J <c I .

Proof. Recall that by definition, d < c is

(dpred ≤ cpred) ∧ ¬(d = c),

and by definition, J <c I is

• J and I have the same universe and agree on all constants not in c;
• pJ ⊆ pI for all predicate constants p in c; and
• J and I do not agree on c.

First, by the definition of Jc
d ∪ I , J and I have the same universe and agree on all constants

in σ \ c.
Second, by definition, Jc

d ∪ I |= dpred ≤ cpred iff, for every predicate constant p in c,

Jc
d ∪ I |= ∀x(p(x)cd → p(x)), 2

which is equivalent to saying that (pcd)J
c
d∪I ⊆ pJ

c
d∪I . Since I does not interpret any constant

from d, and Jc
d does not interpret any constant from c, this is equivalent to (pcd)J

c
d ⊆ pI and

further to pJ ⊆ pI .
Third, since I does not interpret any constant from d and Jc

d does not interpret any constant
from c, Jc

d ∪ I |= ¬(d = c) is equivalent to saying that J and I do not agree on c.

Theorem 1 Let F be a first-order sentence of signature σ and c be a list of intensional constants.
For any interpretation I of σ, I |= SM[F ; c] iff

• I satisfies F , and
• every interpretation J such that J <c I does not satisfy (grI [F ])I .

Proof. I |= SM[F ; c] is by definition

I |= F ∧ ¬∃ĉ(ĉ < c ∧ F ∗(ĉ)). (C1)

The first item, “I satisfies F ”, is equivalent to the first conjunctive term of (C1).
By Lemma 2 and Lemma 3, the second item, “no interpretation J of σ such that J <c I

satisfies grI [F ]I ”, is equivalent to the second conjunctive term in (C1).

C.2 Proofs of Theorem 2 and Theorem 3

Recall the definition: J �c I if

• J and I have the same universe and agree on all constants not in c;
• pJ ⊆ pI for all predicate constants in c; and
• fJ(ξ) = u or fJ(ξ) = f I(ξ) for all function constants in c and all lists ξ of elements in

the universe.

As before, let d be a list of constants that is similar to c and is disjoint from σ. The notion of
Jc
d ∪ I is straightforwardly extended to the case when J and I are partial interpretations.

2 p(x)cd denotes the atom that is obtained from p(x) by replacing p with the corresponding member of d if p ∈ c, and
no change otherwise.



5

Lemma 4
For any partial interpretations I and J of signature σ, we have J �c I iff Jc

d ∪ I |=p d � c.

Proof. By the definition of Jc
d ∪ I , J and I have the same universe and agree on all constants

in σ \ c, which is the first condition of J �c I .
Recall the definition: d � c is

(dpred ≤ cpred) ∧ (dfunc ≤ cfunc).

Jc
d ∪ I |=p dpred ≤ cpred iff, for every predicate constant p in c,

Jc
d ∪ I |=p ∀x(p(x)cd → p(x)),

which is equivalent to saying that (pcd)J
c
d∪I ⊆ pJ

c
d∪I . Since I does not interpret any constant

from d and Jc
d does not interpret any constant from c, this is equivalent to (pcd)J

c
d ⊆ pI and

further to pJ ⊆ pI , which is the second condition of J �c I .
Jc
d ∪ I |=p (dfunc ≤ cfunc) iff, for every function constant f in c,

Jc
d ∪ I |=p ∀x((f(x)cd 6= f(x)cd) ∨ (f(x)cd = f(x))),

which is equivalent to saying that fJ(ξ) = u or fJ(ξ) = f I(ξ) for all ξ, the third condition of
J �c I .

Lemma 5
For any partial interpretations I and J of signature σ, we have J ≺c I iff Jc

d ∪ I |=p d ≺ c.

Proof. Immediate from Lemma 4 since

• J ≺c I iff J �c I and not I �c J , and
• Jc

d ∪ I |=p d ≺ c iff Jc
d ∪ I |=p d � c and Jc

d ∪ I 6|=p c � d.

Lemma 6
For any sentence F of signature σ and any partial interpretations I and J of σ such that J �c I ,

(a) if Jc
d ∪ I |=p F †(d), then I |=

p
F ;

(b) if 〈J, I〉 |=
pht

F , then 〈I, I〉 |=
pht

F .

Proof. Each of (a) and (b) can be proved by induction on F .
We will show only the case when F is an atomic sentence. The other cases are straightforward:

Part (a): Let F be an atomic sentence. Assume Jc
d ∪ I |=p F †(d), i.e., J |=

p
F .

• Subcase 1: F is of the form p(t). Since J �c I , it follows that I |=
p
F .

• Subcase 2: F is of the form t1 = t2. Since Jc
d ∪ I |=p F (d), tJ1 = tJ2 6= u. From J �c I , it

follows that tI1 = tI2 6= u, i.e., I |=
p
F .

Part (b): Let F be an atomic sentence. Assume 〈J, I〉 |=
pht

F , i.e., 〈J, I〉, h |=
pht

F

• Subcase 1: F is of the form p(t). Since J �c I , it follows that 〈J, I〉, t |=
pht

F .
• Subcase 2: F is of the form t1 = t2. Since 〈J, I〉, h |=

pht
F , tJ1 = tJ2 6= u. From J �c I , it

follows that tI1 = tI2 6= u, i.e., 〈J, I〉, t |=
pht

F .
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Lemma 7
Let F be a sentence of signature σ, and let I and J be partial interpretations of σ such that
J �c I . We have J |=

p
grI [F ]I iff 〈J, I〉 |=

pht
F .

Proof. By induction on F .

Case 1: F is an atomic sentence. Clearly, grI [F ] is F .

• Subcase 1: I 6|=
p
F . Then grI [F ]I is ⊥, and J 6|=

p
⊥. Further, since 〈I, I〉 6|=

pht
F , by

Lemma 6 (b), it follows that 〈J, I〉 6|=
pht

F .
• Subcase 2: I |=

p
F . Then grI [F ]I is F . It is clear that J |=

p
F iff 〈J, I〉 |=

pht
F .

Case 2: F is G ∧H or G ∨H . The claim follows immediately from I.H. on G and H .

Case 3: F is G→ H . Consider the following subcases:

• Subcase 1: I 6|=
p
G→ H . grI [G→ H]I is ⊥, and J 6|=

p
⊥. Further, 〈I, I〉 6|=

p
G→ H . By

Lemma 6 (b), 〈J, I〉 6|=
p
G→ H .

• Subcase 2: I |=
p
G → H . grI [G → H]I is equivalent to grI [G]I → grI [H]I . Further,

〈J, I〉 |=
pht

G→ H is equivalent to saying that 〈J, I〉 6|=
pht

G or 〈J, I〉 |=
pht

H . Then the claim
follows from I.H. on G and H .

Case 4: F is ∀xG(x), or ∃xG(x). By induction on G(ξ�) for each ξ in the universe.

Theorem 2 Let F be a first-order sentence of signature σ and let c be a list of intensional
constants. For any partial interpretation I of σ, 〈I, I〉 is a partial equilibrium model of F iff

• I |=
p
F , and

• for every partial interpretation J of σ such that J ≺c I , we have J 6|=
p
grI [F ]I .

Proof. Clearly, I |=
p
F iff 〈I, I〉 |=

pht
F . By Lemma 7, for every partial interpretation J of σ

such that J ≺c I , J 6|=
p
grI [F ]I iff 〈J, I〉 6|=

pht
F .

Lemma 8
Let F be a sentence of signature σ, and let I and J be partial interpretations of σ. We have
Jc
d ∪ I |=p F †(d) iff 〈J, I〉 |=

pht
F .

Proof. By induction on F .

Case 1: F is an atomic sentence. F †(d) is F (d). Jc
d ∪ I |=p F (d) iff J |=

p
F iff 〈J, I〉, h |=

pht
F

iff 〈J, I〉 |=
pht

F .

Case 2: F is G ∧H or G ∨H . Follows by I.H. on G and H .

Case 3: F is G→ H . Consider the following subcases:

• Subcase 1: I 6|=
p
G→ H . Clearly, Jc

d ∪ I 6|=p G→ H and 〈J, I〉 6|=
pht

G→ H .
• Subcase 2: I |=

p
G → H . Then Jc

d ∪ I |=p (G → H)†(d) iff Jc
d ∪ I |=p G†(d) → H†(d).

Further, 〈J, I〉 |=
pht

G→ H is equivalent to saying that 〈J, I〉 6|=
pht

G or 〈J, I〉 |=
pht

H . Then
the claim follows from I.H. on G and H .
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Case 4: F is ∀xG(x), or ∃xG(x). By induction on G(ξ�) for each ξ in the universe.

Theorem 3 For any sentence F , a PHT-interpretation 〈I, I〉 is a partial equilibrium model of F
relative to c iff I |=

p
CBL[F ; c].

Proof. By definition, CBL[F ; c] is

F ∧ ¬∃ĉ(ĉ≺c ∧ F †(ĉ)).

Clearly, I |=
p
F iff 〈I, I〉 |=

pht
F . From Lemma 5 and Lemma 8, it follows that I |=

p
¬∃ĉ(ĉ ≺

c ∧ F †(ĉ)) iff there is no interpretation J of σ such that J ≺c I and 〈J, I〉 |=
pht

F .

C.3 Proof of Theorem 4

Lemma 9
Let F be a sentence of signature σ and let I and J be interpretations of σ such that J <c I . We
have J |= grI [F ]I iff 〈J, I〉 |=

fht
F .

Proof. By induction on F .

Case 1: F is an atomic sentence. grI [F ] is F .

• Subcase 1: I 6|= F . Then grI [F ]I is⊥, which J does not satisfy. Further, since 〈J, I〉, t 6|=
fht

F , 〈J, I〉 6|=
fht
F .

• Subcase 2: I |= F . Then grI [F ]I is F , and 〈J, I〉, t |=
fht

F . It is clear that J |= F iff
〈J, I〉, h |=

fht
F .

Case 2: F is G ∧H or G ∨H . The claim follows immediately from I.H. on G and H .

Case 3: F is G→ H . Consider the following subcases:

• Subcase 1: I 6|= G → H . Then grI [G → H]I is ⊥, which J does not satisfy. Further,
〈I, I〉 6|=

fht
G→ H . By Lemma 1 (b), 〈J, I〉 6|=

fht
G→ H .

• Subcase 2: I |= G → H . Then grI [G → H]I is equivalent to grI [G]I → grI [H]I .
Further, 〈J, I〉 |=

fht
G→ H is equivalent to saying that 〈J, I〉 6|=

fht
G or 〈J, I〉 |=

fht
H . Then

the claim follows from I.H. on G and H .

Case 4: F is ∀xG(x), or ∃xG(x). By induction on G(ξ�) for each ξ in the universe.

Theorem 4 Let F be a first-order sentence of signature σ and c be a list of predicate and function
constants. For any interpretation I of σ, I |= SM[F ; c] iff

• 〈I, I〉 |=
fht
F , and

• for every interpretation J of σ such that J <c I , we have 〈J, I〉 6|=
fht
F .

Proof. We use Theorem 1 to refer to the reduct-based reformulation and instead show

• I satisfies F , and
• every interpretation J such that J <c I does not satisfy (grI [F ])I

iff
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• 〈I, I〉 |=
fht
F , and

• for every interpretation J of σ such that J <c I , we have 〈J, I〉 6|=
fht
F .

Clearly, I |= F iff 〈I, I〉 |=
fht
F . By Lemma 9, for every interpretation J such that J <c I , we

have J 6|= (grI [F ])I iff 〈J, I〉 6|=
fht
F .

C.4 Proof of Theorem 5

Lemma 10
Let F be a c-plain sentence of signature σ, let I , K be total interpretations of σ, and let J be a
partial interpretation of σ such that

• J ≺c I and K <c I;
• pJ = pK for every predicate constant;
• fJ(ξ) = u iff fK(ξ) 6= f I(ξ) for every function constant f and every ξ ∈ |I|n where n

is the arity of f .

We have K |= grI [F ]I iff J |=
p
grI [F ]I .

Proof.

Case 1: F is an atomic sentence of the form p(t). Since F is c-plain, t contains no constants
from c, and by the assumption J ≺c I and K <c I , we have tJ = tK = tI . Since J and K
agree on p, the claim holds.

Case 2: F is an atomic sentence of the form f(t) = t1.

• Subcase 1: I 6|= f(t) = t1. Then grI [F ]I is ⊥, so the claim holds.
• Subcase 2: I |= f(t) = t1. Then grI [F ]I is f(t) = t1. Further, from the assumption that
F is c-plain, t and t1 contain no constants from c, and by the assumptions that J ≺c I ,
K <c I and that I is total, we have tJ = tK = tI 6= u and tJ1 = tK1 = tI1 6= u.
Either f(t)J 6= u or f(t)J = u. In the first case, since J ≺c I , we have f(t)J = f(t)I .
Also, by the assumption on K, f(t)K = f(t)I . Consequently, J |=

p
f(t) = t1 and

K |= f(t) = t1.
In the second case, J 6|=

p
f(t) = t1. Also, by the assumption on K, f(t)K 6= f(t)I =

tI1 = tK1 , so K 6|= f(t) = t1.

The other cases are straightforward.

Recall the definitions: for two classical interpretations I , K of the same signature σ with the
same universe and a list c of distinct predicate and function constants, we write K <c I if

K and I agree on all constants in σ \ c, (C2)

pK ⊆ pI for all predicates p in c, and (C3)

K and I do not agree on c. (C4)

Similarly, for two partial interpretations J and I of the same signature σ over the same universe
|I|, and a set of constants c, J ≺c I is equivalent to

J and I agree on all constants in σ \ c, (C5)

pJ ⊆ pI for all predicates p in c, and (C6)

J and I do not agree on c (C7)
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with the additional requirement that

for every function constant f ∈ c, and every ξ ∈ |I|n where n
is the arity of f , f I(ξ) = fJ(ξ) or fJ(ξ) = u.

(C8)

If we drop (C7), this is equivalent to J �c I .

Lemma 11
Let F be a c-plain sentence of signature σ, and let I be total interpretation of σ that satisfies
∃xy(x 6= y). There is a partial interpretation J such that J ≺c I and J |=

p
grI [F ]I iff there is a

total interpretation K such that K <c I and K |= grI [F ]I .

Proof. Left-to-right: Let J be a partial interpretation such that J ≺c I and J |=
p
grI [F ]I . We

construct the total interpretation K as follows. For each constant d not in c, dK = dJ = dI . For
each predicate constant p in c and each ξ ∈ |I|n where n is the arity of p,

pK(ξ) = pJ(ξ) ,

and, for each function constant f in c and each ξ ∈ |I|n where n is the arity of f ,

fK(ξ) =

{
f I(ξ) if fJ(ξ) 6= u;

m(f I(ξ)) otherwise

wherem is a mappingm : |I| → |I| such that ∀x(m(x) 6= x) (note that such a mapping requires
I |= ∃xy(x 6= y)).

We now show thatK <c I . It is immediate from the assumption J ≺c I and by definition that
(C2) and (C3) hold. Consider the following cases.

• Case 1: For every function constant f ∈ c and every ξ ∈ |I|n where n is the arity of f ,
fJ(ξ) = f I(ξ) (note that since I is total, these cannot be u). From (C7), it follows that
there is at least one predicate constant p in c such that pJ ⊂ pI . However, by the definition
of K, pK ⊂ pI and so (C4) holds.
• Case 2: There is some function constant f ∈ c and some ξ ∈ |I|n where n is the arity of f

such that fJ(ξ) 6= f I(ξ). From (C8), it follows that fJ(ξ) = u and thus by the definition
of K, fK(ξ) = m(f I(ξ)) 6= f I(ξ) and so (C4) holds.

By Lemma 10, the fact K |= grI [F ]I follows from the assumption J |=
p
grI [F ]I .

Right-to-left: Let K be a total interpretation such that K <c I and K |= grI [F ]I . We construct
the partial interpretation J as follows. For each constant d not in c, dK = dJ = dI . For each
predicate constant p in c and each ξ ∈ |I|n where n is the arity of p,

pJ(ξ) = pK(ξ) ,

and, for each function constant f in c and each ξ ∈ |I|n where n is the arity of f ,

fJ(ξ) =

{
f I(ξ) if fK(ξ) = f I(ξ);

u otherwise.

We now show that J ≺c I . It is immediate from the assumption that K <c I and by definition
that (C5) and (C6) hold. Consider the following cases.

• Case 1: For every function constant f ∈ c and every ξ ∈ |I|n where n is the arity of f ,
fK(ξ) = f I(ξ). By the definition of J , fJ(ξ) = f I(ξ) and so (C8) holds. Now since
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(C4) holds, there is at least one predicate constant p such that pK ⊂ pI . However, by the
definition of J , pJ ⊂ pI and so (C7) holds.

• Case 2: There is some function constant f ∈ c and some ξ ∈ |I|n where n is the arity of
f such that fK(ξ) 6= f I(ξ). For such a function f , by the definition of J , it must be that
fJ(ξ) = u. For other functions f ′ ∈ c such that (f ′)K(ξ′) = (f ′)I(ξ′) for every ξ′, as in
Case 1, we conclude (f ′)J(ξ) = (f ′)I(ξ). Consequently, (C8) and (C7) both hold.

By Lemma 10, the fact J |=
p
grI [F ]I follows from the assumption K |= grI [F ]I .

Theorem 5 For any c-plain sentence F of signature σ, any list c of intensional constants, and
any total interpretation I of σ satisfying ∃xy(x 6= y), I |= SM[F ; c] iff I |=

p
CBL[F ; c].

Proof. We use Theorem 1 and Theorem 2 to refer to the grounding and reduct based definitions
rather than the second-order logic based definitions. The claim follows from Lemma 11.

C.5 Proof of Theorem 7 and Corollary 1

Lemma 12
For any partial interpretation I and any atomic sentence p(t1, . . . , tk) and f(t1, . . . , tk−1) = tk,

(a) I |=
p
p(t1, . . . , tk) iff

I |=
p
∃xn1 . . . xnj (p(t1, . . . , tk)′′ ∧ tn1 = xn1 ∧ · · · ∧ tnj = xnj )

where {n1, . . . , nj} ⊆ {1, . . . , k} and p(t1, . . . , tk)′′ is obtained from p(t1, . . . , tk) by
replacing each tni

in p(t1, . . . , tk) with xni
.

(b) I |=
p
f(t1, . . . , tk−1) = tk iff

I |=
p
∃xn1

. . . xnj
((f(t1, . . . , tk−1) = tk)′′ ∧ tn1

= xn1
∧ · · · ∧ tnj

= xnj
)

where {n1, . . . , nj} ⊆ {1, . . . , k} and (f(t1, . . . , tk−1) = tk)′′ is obtained from f(t1, . . . , tk−1) = tk
by replacing each tni

in f(t1, . . . , tk−1) = tk with xni
.

Proof. Consider the following cases.

Case 1: tIi = u for some i ∈ {n1, . . . , nj}. Clearly, I 6|=
p
p(t1, . . . , tk) and I 6|=

p
f(t1, . . . , tk−1) =

tk. It is also the case that I 6|=
p
ti = ξ� for any ξ ∈ |I| so we have

I 6|=
p
∃xn1

. . . xnj
(p(t1, . . . , tk)′′ ∧ tn1

= xn1
∧ · · · ∧ tnj

= xnj
) (C9)

and

I 6|=
p
∃xn1

. . . xnj
((f(t1, . . . , tk−1) = tk)′′ ∧ tn1

= xn1
∧ · · · ∧ tnj

= xnj
) . (C10)

Case 2: tIi = u for some i ∈ {1, . . . , k} \ {n1, . . . , nj}. Clearly, I 6|=
p
p(t1, . . . , tk) and I 6|=

p

f(t1, . . . , tk−1) = tk. Also, since ti remains in p(t1, . . . , tk)′′ and (f(t1, . . . , tk) = t)′′, we have
I 6|=

p
p(t1, . . . , tk)′′ and I 6|=

p
(f(t1, . . . , tk) = t)′′, from which (C9) and (C10) follow.

Case 3: tIi 6= u for all i ∈ {1, . . . , k}. Condition (a) clearly holds because it coincides with
classical equivalence. For Condition (b), consider two subcases:

• Subcase 1: f(t1, . . . , tk−1)I 6= u. Clearly, Condition (b) coincides with classical equiva-
lence.



11

• Subcase 2: f(t1, . . . , tk−1)I = u. Clearly, I 6|=
p
f(t1, . . . , tk−1) = tk. Now in

∃xn1
. . . xnj

((f(t1, . . . , tk−1) = tk)′′ ∧ tn1
= xn1

∧ · · · ∧ tnj
= xnj

),

there is only one set of values for xn1
. . . xnj

that satisfies the last j conjunctive terms—
when xni

is mapped to tIni
. However, for this set of values, ((f(t1, . . . , tk−1))′′)I =

f(t1, . . . , tk−1)I = u (where (f(t1, . . . , tk−1))′′ is obtained from f(t1, . . . , tk−1) by re-
placing each tni with xni ) so (C10) holds.

Lemma 13
Given a sentence F , a set of constants c, and a partial interpretation I , we have I |=

p
F iff

I |=
p

UFc(F ).

Proof. The proof is by induction on the number of unfolding that needs to be done. More
precisely, for any formula F , we define NUc(F ) (“Needed Unfolding”) as follows.

• NUc(p(t1, . . . , tk)) ={
0 if p(t1, . . . , tk) is c-plain;
max(NUc(t1 = x), . . . ,NUc(tk = x)) + 1 otherwise.

• NUc(f(t1, . . . , tk−1) = tk) ={
0 if f(t1, . . . , tk−1) = tk is c-plain;
max(NUc(t1 = x), . . . ,NUc(tk = x)) + 1 otherwise.

• NUc(G�H) = max(NUc(G),NUc(H)) + 1, where � ∈ {∧,∨,→}.
• NUc(QxG) = NUc(G) + 1, where Q ∈ {∀,∃}.

Case 1: F is a c-plain atomic sentence. F is identical to UFc(F ) so the claim holds.

Case 2: F is p(t) where t contains at least one constant from c. Let tn1
. . . tnj

be the j terms
in t containing at least one constant from c. Now UFc(F ) is ∃xn1

. . . xnj
(p(t1, . . . , tk)′′ ∧

UFc(tn1
= xn1

)∧· · ·∧UFc(tnj
= xnj

)) where p(t1, . . . , tk)′′ is obtained from p(t1, . . . , tk) by
replacing each tni in p(t1, . . . , tk) with xni . Since NUc(F ) > NUc(tni = ξ�) for each ξ ∈ |I|
and each i ∈ {1, . . . , j}, by I.H. on tni

= ξ�, UFc(tni
= xni

) can be replaced by tni
= xni

so that I |=
p

UFc(F ) iff I |=
p
∃xn1 . . . xnj (p(t1, . . . , tk)′′ ∧ tn1 = xn1 ∧ · · · ∧ tnj = xnj ). By

Lemma 12 the latter is equivalent to I |=
p
F .

Case 3: F is f(t) = t1 where at least one of t and t1 contain at least one constant from c. Let
tn1 . . . tnj be the j terms in t and t1 containing at least one constant from c. Now UFc(F ) is
∃xn1

. . . xnj
((f(t) = t1)′′ ∧ UFc(tn1

= xn1
) ∧ · · · ∧ UFc(tnj

= xnj
)), where (f(t) = t1)′′

is obtained from f(t) = t1 by replacing each tni
in f(t) = t1 with xni

. Since NUc(F ) >

NUc(tni
= ξ�) for each ξ ∈ |I| and each i ∈ {1, . . . , j}, by I.H. on tni

= ξ�, UFc(tni
= xni

)

can be replaced by tni
= xni

so that I |=
p

UFc(F ) iff I |=
p
∃xn1

. . . xnj
((f(t) = t1)′′ ∧ tn1

=

xn1 ∧ · · · ∧ tnj = xnj ). By Lemma 12 the latter is equivalent to I |=
p
F .

Case 4: F is G�H for � ∈ {∧,∨,→}. By I.H. on G and H .

Case 5: F is QxF (x) for Q ∈ {∀,∃}. By I.H. on F (ξ�) for each ξ ∈ |I|.

Theorem 7 For any sentence F , any list c of constants, and any partial interpretation I , we have
I |=

p
CBL[F ; c] iff I |=

p
CBL[UFc(F ); c].
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Proof. By definition, CBL[F ; c] is

F ∧ ¬∃ĉ(ĉ≺c ∧ F †(ĉ))

and CBL[UFc(F ); c] is by definition

UFc(F ) ∧ ¬∃ĉ(ĉ≺c ∧ (UFc(F ))†(ĉ)).

Now, for any partial interpretation I of signature σ ⊇ c, by Lemma 13, I |=
p
F iff I |=

p
UFc(F ).

It is sufficient to show that, for any partial interpretation J , Jc
d ∪ I |=p d ≺ c ∧ F †(d) iff

Jc
d ∪ I |=p d ≺ c ∧ (UFc(F ))†(d).

Case 1: F is an atomic sentence. F †(d) is F (d), and UFc(F )†(d) is UFc(F )(d). Jc
d∪I |=p F (d)

iff J |=
p
F . Similarly, Jc

d ∪ I |=p UFc(F )(d) iff J |=
p

UFc(F ). By Lemma 12, J |=
p
F iff

J |=
p

UFc(F ), so the claim follows.

Case 2: F is G�H for � ∈ {∧,∨}. By induction on G and H .

Case 3: F is G → H . F †(d) is (G†(d) → H†(d)) ∧ (G → H) and (UFc(F ))†(d) is
(UFc(G))†(d)→ (UFc(H))†(d)) ∧ (UFc(G)→ UFc(H)). The equivalence between the first
conjunctive terms (under partial satisfaction) is by I.H. onG andH , and the equivalence between
the second conjunctive terms (under partial satisfaction) is by Lemma 13.

Case 4: F is QxG(x) for Q ∈ {∀,∃}. By I.H. on G(ξ�) for each ξ ∈ |I|.

Corollary 1 For any sentence F , any list c of constants, and any total interpretation I satisfying
∃xy(x 6= y), we have I |=

p
CBL[F ; c] iff I |=

p
CBL[UFc(F ); c] iff I |= SM[UFc(F ); c].

Proof. The equivalence between the first and the second conditions is by Theorem 7. The equiv-
alence between the second and the third conditions is by Theorem 5 since UFc(F ) is c-plain.

C.6 Proof of Theorem 6

Theorem 6 For any head-c-plain sentence F of signature σ that is tight on c, and any total
interpretation I of σ satisfying ∃xy(x 6= y), I |= SM[F ; c] iff I |=

p
CBL[F ; c].

Proof. We first note that since F is head-c-plain and tight on c, we can transform this into Clark
normal form that is still tight on c, so we can assume that F is already turned into this form.

By Corollary 1, I |=
p

CBL[F ; c] iff I |= SM[UFc(F ); c], so it remains to check that I |=
SM[UFc(F ); c] iff I |= SM[F ; c].

It is easy to check that the completion of UFc(F ) relative to c is equivalent to the comple-
tion of F relative to c. By Theorem 2 from (Bartholomew and Lee 2013), we conclude that
SM[UFc(F ); c] is equivalent to SM[F ; c].

C.7 Proof of Theorem 8 , Corollary 2 , and Corollary 3

Theorem 8 For any f -plain sentence F and any partial interpretation I , if

I |=
p
∀xy(p(x, y)↔ f(x) = y) (C11)
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then I |=
p

CBL[F ; f, c] iff I |=
p

CBL[F f
p ; p, c].

Proof. For any partial interpretation I of signature σ ⊇ {f, p, c} satisfying (C11), it is clear
that I |=

p
F iff I |=

p
F f
p since F f

p is simply the result of replacing all f(x) = y with p(x, y).
Thus it is sufficient to show that

I |=
p
∃f̂ ĉ

(
(f̂ , ĉ)≺(f, c) ∧ F †(f̂ , ĉ)

)
iff I |=

p
∃p̂ĉ
(

(p̂, ĉ)≺(p, c) ∧ (F f
p )†(p̂, ĉ)

)
.

Left-to-right: Assume I |=
p
∃f̂ ĉ((f̂ , ĉ)≺(f, c)∧F †(f̂ , ĉ)). We wish to show that I |=

p
∃p̂ĉ((p̂, ĉ)≺

(p, c) ∧ (F f
p )†(p̂, ĉ)). That is, take any function g of the same arity as f and any list of predi-

cate and function constants d that is similar to c. For any partial interpretation J of signature σ,
J
(f,c)
(g,d) ∪ I is an interpretation of the extended signature σ′ = σ ∪ {g, q,d}. We assume

J
(f,c)
(g,d) ∪ I |=p (g,d)≺(f, c) ∧ F †(g,d)

and wish to show that there is a predicate q of the same arity as p such that

J
(f,c)
(g,d) ∪ I |=p (q,d)≺(p, c) ∧ (F f

p )†(q,d).

We define the new predicate q in terms of g as follows:

q
J

(f,c)

(g,d)
∪I

(ξ, ξ′) =

{
TRUE if gJ

(f,c)

(g,d)
∪I

(ξ) = ξ′ ;

FALSE otherwise.

We first show if J (f,c)
(g,d) ∪ I |=p (g,d)≺(f, c) then J (f,c)

(g,d) ∪ I |=p (q,d)≺(p, c).

Case 1: J (f,c)
(g,d) ∪ I 6|=p g≺f . Since we assume J (f,c)

(g,d) ∪ I |=p (g,d)≺(f, c), it follows that

J
(f,c)
(g,d) ∪ I |=p g = f , (C12)

and J (f,c)
(g,d) ∪ I |=p d ≺ c. From (C11), (C12), and the definition of q, it follows that J (f,c)

(g,d) ∪ I |=p
q = p. Consequently, J (f,c)

(g,d) ∪ I |=p (q,d)≺(p, c).

Case 2: J (f,c)
(g,d) ∪ I |=p g ≺ f . From (C11), J (f,c)

(g,d) ∪ I |=p g ≺ f , and the definition of q, it

follows that J (f,c)
(g,d) ∪ I |=p q≺ p. Since we assume J (f,c)

(g,d) ∪ I |=p (g,d)≺ (f, c), it follows that

J
(f,c)
(g,d) ∪ I |=p d�c. Consequently, J (f,c)

(g,d) ∪ I |=p (q,d)≺(p, c).

We now show that J (f,c)
(g,d)∪I |=p (F f

p )†(q,d) by proving J (f,c)
(g,d)∪I |=p F

†(g,d) iff J (f,c)
(g,d)∪I |=p

(F f
p )†(q,d).

Case 1: F is an f -plain atomic sentence of the form p(t), or t1 = t2 such that t1 does not contain
f . The claim is obvious since F f

p is exactly F and so (F f
p )†(q,d) is exactly F †(g,d).

Case 2: F is an f -plain atomic sentence of the form f(t) = t1. Then F †(g,d) is g(t′) = t′1,
where t′ and t′1 are obtained from t and t1 by replacing the members of c with the corresponding
members of d. F f

p is p(t, t1), and (F f
p )†(q,d) is q(t′, t′1). From the definition of q, it follows

that J (f,c)
(g,d) ∪ I |=p g(t′) = t′1 ↔ q(t′, t′1).

Case 3: F is G�H where � ∈ {∧,∨,→}. By I.H. on G and H .

Case 4: F is QxG(x) where Q ∈ {∀,∃}. By I.H. on G(ξ�) for each ξ ∈ |I|.
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Right-to-left: Assume I |=
p
∃p̂ĉ((p̂, ĉ) ≺ (p, c) ∧ (F f

p )†(p̂, ĉ)). We wish to show that I |=
p

∃(f̂ , ĉ)((f̂ , ĉ)≺ (f, c) ∧ F †(f̂ , ĉ)) . That is, take any predicate q of the same arity as p and any
list of predicates and functions d that is similar to c. As before, let J be a partial interpretation
of σ, and J (f,c)

(g,d) ∪ I is an interpretation of the extended signature σ′ = σ ∪ {g, q,d}. We assume

J
(f,c)
(g,d) ∪ I |=p (q,d)≺(p, c) ∧ (F f

p )†(q,d)

and wish to show that there is a function g of the same arity as f such that

J
(f,c)
(g,d) ∪ I |=p (g,d)≺(f, c) ∧ F †(g,d).

We define gJ
(f,c)

(g,d)
∪I in terms of q as follows:

g
J

(f,c)

(g,d)
∪I

(ξ) =

{
f
J

(f,c)

(g,d)
∪I

(ξ) if qJ
(f,c)

(g,d)
∪I

(ξ, f
J

(f,c)

(g,d)
∪I

(ξ)) = TRUE ;

u otherwise.

We first show that if J (f,c)
(g,d) ∪ I |=p (q,d)≺(p, c) then J (f,c)

(g,d) ∪ I |=p (g,d)≺(f, c).

Case 1: J (f,c)
(g,d) ∪ I |=p q = p. Since we assume J (f,c)

(g,d) ∪ I |=p (q,d) ≺ (p, c), it follows that

J
(f,c)
(g,d) ∪ I |=p d ≺ c. From (C11), J (f,c)

(g,d) ∪ I |=p q = p, and by the definition of g, it follows that

J
(f,c)
(g,d) ∪ I |=p g = f . Consequently, J (f,c)

(g,d) ∪ I |=p (g,d)≺(f, c).

Case 2: J (f,c)
(g,d) ∪ I |=p ¬(q = p). Since we assume J (f,c)

(g,d) ∪ I |=p (q,d)≺ (p, c), it follows that

J
(f,c)
(g,d) ∪ I |=p q�p and so we have

J
(f,c)
(g,d) ∪ I |=p q ≺ p . (C13)

From (C11), (C13), and the definition of g, it follows that J (f,c)
(g,d) ∪ I |=p g ≺ f . Also from the

assumption that J (f,c)
(g,d) ∪ I |=p (q,d)≺ (p, c), it follows that J (f,c)

(g,d) ∪ I |=p d� c. Consequently,

J
(f,c)
(g,d) ∪ I |=p (g,d)≺(f, c).

We show that J (f,c)
(g,d) ∪ I |=p F

†(g,d) by proving that J (f,c)
(g,d) ∪ I |=p F

†(g,d) iff J (f,c)
(g,d) ∪ I |=p

(F f
p )†(q,d). The proof is similar to the one above, and is omitted.

Corollary 2 Let F be an f -plain sentence. (a) For any partial interpretation I of the signature of
F , I |=

p
CBL[F ; f, c] iff Ifp |=p CBL[F f

p ∧UCp; p, c]. (b) For any partial interpretation J of the
signature of F f

p , J |=
p

CBL[F f
p ∧ UCp; p, c] iff J = Ifp for some partial interpretation I such

that I |=
p

CBL[F ; f, c].

Proof. For two partial interpretations I of signature σ1 and J of signature σ2 with the same
universe, by I ∪ J we denote the partial interpretation of signature σ1 ∪ σ2 that interprets all
constants occurring only in σ1 in the same way as I does and similarly for σ2 and J . For constants
appearing in both σ1 and σ2, I must interpret these the same as J does, in which case I ∪ J also
interprets the constants in this way.

Part (a), Left-to-right: Assume I |=
p

CBL[F ; f, c]. By the definition of Ifp , I∪Ifp |=p (C11). Thus
by Theorem 8, I∪Ifp |=p CBL[F ; f, c]↔ CBL[F f

p ; p, c]. Since we assume I |=
p

CBL[F ; f, c], it
is the case that I∪Ifp |=p CBL[F ; f, c] and thus it must be the case that I∪Ifp |=p CBL[F f

p ; p, c].
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Further, (C11) entails UCp, so I ∪ Ifp |=p UCp. Since the signature of I does not contain p,
we conclude Ifp |=p CBL[F f

p ; p, c] ∧ UCp and since UCp is comprised of constraints, Ifp |=p
CBL[F f

p ∧ UCp; p, c].3

Part (a), Right-to-left: Assume Ifp |=p CBL[F f
p ∧ UCp; p, c]. By the definition of Ifp , I ∪ Ifp |=p

(C11). Thus by Theorem 8, I ∪ Ifp |=p CBL[F ; f, c] ↔ CBL[F f
p ; p, c]. From the assumption,

we have Ifp |=p CBL[F f
p ; p, c], and further I ∪ Ifp |=p CBL[F f

p ; p, c]. Consequently, I ∪ Ifp |=p
CBL[F ; f, c], and since the signature of Ifp does not contain f , we conclude I |=

p
CBL[F ; f, c].

Part (b), Left-to-right: Assume J |=
p

CBL[F f
p ∧ UCp; p, c]. Let I = Jp

f where Jp
f denotes the

partial interpretation of the signature of F obtained from J by replacing the set pJ with the
function f such that f I(ξ1, . . . , ξk) = ξk+1 for all tuples 〈ξ1, . . . , ξk, ξk+1〉 in pJ . This is a valid
definition of a function since we assume J |=

p
CBL[F f

p ∧ UCp; p, c], from which it follows that
J |=

p
UCp. Clearly, J = Ifp so it only remains to be shown that I |=

p
CBL[F ; f, c]. By the

definition of Jp
f , I ∪ J |=

p
(C11). Thus by Theorem 8, I ∪ J |=

p
CBL[F ; f, c]↔ CBL[F f

p ; p, c].
From the assumption, we have J |=

p
CBL[F f

p ; p, c], and further I ∪ J |=
p

CBL[F f
p ; p, c].

Consequently, I ∪ J |=
p

CBL[F ; f, c], and since the signature of J does not contain f , we
conclude I |=

p
CBL[F ; f, c].

Part (b), Right-to-left: Take any I such that J = Ifp and I |=
p

CBL[F ; f, c]. By the definition
of J = Ifp , I ∪ J |=

p
(C11). Thus by Theorem 8, I ∪ J |=

p
CBL[F ; f, c] ↔ CBL[F f

p ; p, c].
Since we assume I |=

p
CBL[F ; f, c], it is the case that I ∪ J |=

p
CBL[F ; f, c] and thus it must

be the case that I ∪ J |=
p

CBL[F f
p ; p, c]. Further, (C11) entails UCp, so I ∪ J |=

p
UCp. Since

the signature of I does not contain p, we conclude J |=
p

CBL[F f
p ; p, c] ∧ UCp and since UCp is

comprised of constraints, J |=
p

CBL[F f
p ∧ UCp; p, c].

Corollary 3 Let c be a set of intensional constants consisting of intensional function constants
f and intensional predicate constants, and let F be an c-plain sentence. (a) For any total inter-
pretation I of the signature of F , I |=

p
CBL[F ; c] iff Ifp |= SM[F f

p ∧ UCp; cfp]. (b) For any
total interpretation J of the signature of F f

p, J |= SM[F f
p ∧ UCp; cfp] iff J = Ifp for some total

interpretation I such that I |=
p

CBL[F ; c].

Proof. (a) First, by multiple applications of Corollary 2, it follows that for any total interpreta-
tion I of the signature of F , I |=

p
CBL[F ; c] iff Ifp |=p CBL[F f

p ∧ UCp; cfp]. Then the statement
follows from Theorem 5 since F f

p ∧ UCp is c-plain.
The proof of (b) is similar.

C.8 Proof of Theorem 9

Given a program Π, by ΠFOL we denote the FOL representation of Π.

3 The last step is justified by the theorem on constraints, similar to Theorem 3 from (Ferraris et al. 2011), which we omit
here.
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Lemma 14
Consider a signature σ and a set of constants c. Given an ASP{f} program Π of signature σ not
containing strong negation,

(a) For any partial interpretation I of signature σ that maps every constant in σ \ c to itself,
there is a consistent set S of seed literals such that I |=

p
ΠFOL iff S |=

b
Π.

(b) For any consistent set of seed literals S, there is a partial interpretation I such that I |=
p

ΠFOL iff S |=
b

Π.

Proof. Part (a): Given a partial interpretation I , let S be the set {f(v) = w : f(v)I = w} ∪
{p(v) : p(v)I = TRUE}. We note that this is a consistent set of seed literals since a partial
interpretation maps f(v) to at most one object constant.

We also note that by the definition of S, for any atomic sentenceA, we have I |=
p
A iff S |=

b
A.

Now, consider any rule r from Π. I |=
p
rFOL iff I |=

p
head(r)FOL or I 6|=

p
body(r)FOL. By the

previous observation, this is equivalent to S |=
b
head(r) or S 6|=

b
body(r) since body(r) is a

conjunction of atomic formulas. This is precisely the definition of S |=
b
r.

Part (b): Given a consistent set of seed literals S, let I be the partial interpretation defined as
follows:

• for every object constant v ∈ σ \ c, we have vI = v.
• for every predicate constant p ∈ c and every list of object constants v, we have p(v)I =

TRUE iff p(v) ∈ S.
• for every function constant f ∈ c and every list of object constants v, we have f(v)I = u

if S does not mention f(v), and f(v)I = w if f(v) = w is in S.

We note that the last bullet is well-defined since S is a consistent set of seed literals so that
there cannot be two distinct object constants a and b such that f(v) = a ∈ S and f(v) = b ∈ S.

We also note that by the definition of I , for any atomic sentence A, we have I |=
p
A iff

S |=
b
A. Now, consider any rule r from Π. S |=

b
r iff S |=

b
head(r) or S 6|=

b
body(r). By the

previous observation, this is equivalent to I |=
p
head(r)FOL or I 6|=

p
body(r)FOL since body(r)

is a conjunction of atomic formulas. This is precisely the definition of I |=
p
rFOL.

The proof of Lemma 14 tells us that a consistent set of seed literals can be identified with a
partial interpretation.

Lemma 15
For consistents sets of seed literals J and I of the same signature, J is a proper subset of I iff
J ≺c I (as defined in Section 2.3.2) when we view them as partial interpretations.

Proof. We first note that since consistent sets of literals map every object constant in σ \ c to
itself, the partial interpretation view does the same which corresponds to the first condition for
J ≺c I . The second condition of J ≺c I is pJ ⊆ pI for all predicate constants in c, which
corresponds exactly to the predicate part of J being a subset of the predicate part of I . Finally,
the third condition of J ≺c I is fJ(ξ) = u or fJ(ξ) = f I(ξ) corresponds to the function part
of J being a subset of the function part of I since we identify a partial interpretation mapping an
element to u to the absence of that element in the set.

Theorem 9 For any ASP{f} program Π with intensional constants c and any consistent set I
of seed literals, if Π has no strong negation, then I is a Balduccini answer set of Π iff I |=

p

CBL[Π; c].
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Proof. By definition and by using the equivalent reformulation presented and justified in Lemma 15
and Lemma 14, I is a Balduccini answer set of a program Π iff I |=

p
Π and for every partial in-

terpretation J such that J ≺c I , we have J 6|=
p

ΠI . This is equivalent to the reduct reformulation
of the Cabalar semantics. Further, this is equivalent to I |=

p
CBL[ΠFOL; c] by Theorem 2.

C.9 Proof of Theorem 10

Theorem 10 For any ASP{f} program Π with intensional constants c and any consistent set I
of seed literals, I is a Balduccini answer set of Π iff I is a Balduccini answer set of Π#.

Proof. First, we show that I |=
b
∼(f = g) iff I |=

b
(f = f) ∧ (g = g) ∧ ¬(f = g).

Left-to-right: Assume I |=
b
∼(f = g). By definition, I contains both f = c1 and g= c2 for some

object constants c1 and c2 such that c1 6= c2. Clearly, each of I |= f = f , I |= g = g and
I 6|= f = g holds.

Right-to-left: I |=
b

(f = f) ∧ (g = g) ∧ ¬(f = g). Since I |=
b
f = f and I |= g = g, it follows

that I contains f = c1 and I contains f = c2 for some c1 and c2. Further, since I |= ¬(f = g),
it must be that c1 6= c2, from which the claim follows.

From this it is not difficult to check that ΠI is equivalent to (Π#)I under partial satisfaction,
from which the claim follows.

C.10 Proof of Theorem 11

Theorem 11 For any sentence F in Clark normal form that is tight on c and any total inter-
pretation I , if I |= ∃xy(x 6= y), then I |=

p
CBL[F ; c] iff I |= SM[F ; c] iff I is a model of the

completion of F relative to c.

Proof. By Theorem 2 from (Bartholomew and Lee 2013), I is a model of the completion of F
relative to c iff I |= SM[F ; c]. Since a formula in Clark normal form that is tight on c is also
head-c-plain and is tight on c, I |= SM[F ; c] iff I |=

p
CBL[F ; c] by Theorem 6.
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