
Under consideration for publication in Theory and Practice of Logic Programming 1

On the Stable Model Semantics for Intensional
Functions

Michael Bartholomew and Joohyung Lee
School of Computing, Informatics, and Decision Systems Engineering

Arizona State University, Tempe, USA
(e-mail: {mjbartho,joolee}@asu.edu)

submitted 10 April 2013; revised 23 May 2013; accepted 23 June 2013

Abstract

Several extensions of the stable model semantics are available to describe “intensional” functions—functions
that can be described in terms of other functions and predicates by logic programs. Such functions are useful
for expressing inertia and default behaviors of systems, and can be exploited for alleviating the grounding
bottleneck involving functional fluents. However, the extensions were defined in different ways under dif-
ferent intuitions. In this paper we provide several reformulations of the extensions, and note that they are in
fact closely related to each other and coincide on large syntactic classes of logic programs.

KEYWORDS: Answer Set Programming, Stable Models, Intensional Functions

1 Introduction

Several extensions of the stable model semantics were proposed to allow “intensional” functions—
functions that can be described in terms of other functions and predicates by logic programs
(Cabalar 2011; Lifschitz 2012; Bartholomew and Lee 2012; Balduccini 2012b). Such functions
significantly enhance the modeling capability of the language of answer set programming by
providing natural representations of nonBoolean fluents, such as the location of an object, or the
level of a water tank. The following example demonstrates the ability to assign a default value to
a function, which is useful for expressing inertia and default behaviors of systems.

Example 1
The following program F describes the capacity of a water tank that has a leak but that can be
refilled to the maximum amount, say 10, with the action FillUp.

{Amount1 =x} ← Amount0 =x+1

Amount1 =10 ← FillUp .
(1)

Here Amount1 is an intensional function constant, and x is a variable ranging over nonnegative
integers. According to (Bartholomew and Lee 2013), the first rule is a choice rule standing for
(Amount1 =x)∨¬(Amount1 =x) ← Amount0 =x+1, which asserts that the amount decreases
by default. However, if FillUp action is executed (e.g., if we add FillUp as a fact), this behavior
is overridden, and the amount is set to the maximum value.

Recently, (Bartholomew and Lee 2013) showed that functional stable model semantics can be
used as a natural basis of combining answer set programming and satisfiability modulo theories.

2 M. Bartholomew and J. Lee

For instance, the paper showed that, if a program is “tight,” as is the case in the example above,
it can be turned into the input language of Satisfiability Modulo Theories (SMT) solvers, thereby
allowing us to apply efficient constraint solving methods in SMT to alleviate the grounding
bottleneck involving functional fluents. For example, program (1) can be turned into the SMT
instance (

(Amount0 =Amount1 + 1) ∨ (Amount1 =10 ∧ FillUp)
)

∧ (FillUp→ Amount1 = 10) .

Similarly, (Balduccini 2012a) reports the computational efficiency of a system that computes the
semantics of intensional functions defined in (Balduccini 2012b).

However, the existing semantics of intensional functions were defined in very different styles
under different intuitions, which obscures the relationships among them. Though the relationship
between the language of (Lifschitz 2012) and the language of (Bartholomew and Lee 2012) was
discussed in (Bartholomew and Lee 2012), their relationships to other functional stable model
semantics were left open. Roughly speaking, the languages in (Lifschitz 2012) and (Bartholomew
and Lee 2012) are defined in terms of second-order formulas, which express the nonmonotonicity
of the semantics by ensuring the uniqueness of function values. On the other hand, the language
in (Cabalar 2011) is defined in terms of a modification to equilibrium logic by allowing functions
to be partially defined, and applying a “minimality” condition on such functions. The idea behind
the language in (Balduccini 2012b) appears similar to the one in (Cabalar 2011), but the definition
looks very different. It is defined in terms of a modification to the notion of a reduct.

In this paper we provide several reformulations of the extensions, which reveal that these
semantics are in fact closely related to each other, and coincide on large syntactic classes of logic
programs. The relationships allow us to transfer some mathematical results established for one
language to another language. Additionally, an implementation of one language can be viewed
as an implementation of another language when restricting attention to one of these syntactic
classes.

Section 2 reviews the Bartholomew-Lee semantics from (Bartholomew and Lee 2012; Bartholomew
and Lee 2013) and the Cabalar semantics from (Cabalar 2011). Section 3 presents reformula-
tions of these definitions, and based on the result, Section 4 relates the two semantics. Further,
Section 5 shows how to reduce the Cabalar semantics to the first-order stable model seman-
tics from (Ferraris et al. 2011), and Section 6 shows how the Balduccini semantics (Balduccini
2012b) can be viewed as a special case of the Cabalar semantics.

2 Preliminaries

2.1 Review: Original Definition of Bartholomew-Lee Semantics in Terms of SOL

Formulas are built the same as in first-order logic. A signature consists of function constants
and predicate constants. Function constants of arity 0 are called object constants, and predicate
constants of arity 0 are called propositional constants.

Similar to circumscription, for predicate symbols (constants or variables) v and c, expres-
sion v ≤ c is defined as shorthand for ∀x(v(x)→ c(x)). Expression v = c is defined as
∀x(v(x)↔ c(x)) if v and c are predicate symbols, and ∀x(v(x) = c(x)) if they are func-
tion symbols. For lists of symbols v = (v1, . . . , vn) and c = (c1, . . . , cn), expression v ≤ c

is defined as (v1 ≤ c1) ∧ · · · ∧ (vn ≤ cn), and similarly, expression v = c is defined as
(v1 = c1)∧ · · · ∧ (vn = cn). Let c be a list of distinct predicate and function constants, and let ĉ

On the Stable Model Semantics for Intensional Functions 3

be a list of distinct predicate and function variables corresponding to c. Members of c are called
intensional constants. By cpred (cfunc , respectively) we mean the list of all predicate constants
(function constants, respectively) in c, and by ĉpred (ĉfunc , respectively) we mean the list of the
corresponding predicate variables (function variables, respectively) in ĉ.

For any first-order formula F , expression SM[F ; c] is defined as

F ∧ ¬∃ĉ(ĉ < c ∧ F ∗(ĉ)),

where ĉ < c is shorthand for (ĉpred ≤ cpred) ∧ ¬(ĉ = c), and F ∗(ĉ) is defined recursively as
follows.

• When F is an atomic formula, F ∗ is F (ĉ)∧F , where F (ĉ) is obtained from F by replac-
ing all (function and predicate) constants from c occurring in F with the corresponding
(function and predicate) variables from ĉ;

• (G ∧H)∗ = G∗ ∧H∗; (G ∨H)∗ = G∗ ∨H∗;
• (G→ H)∗ = (G∗ → H∗) ∧ (G→ H);
• (∀xG)∗ = ∀xG∗; (∃xG)∗ = ∃xG∗.

(We understand ¬F as shorthand for F → ⊥; and > as ¬⊥.)
When F is a sentence (formula with no free variables), the models of SM[F ; c] are called the

stable models of F relative to c. They are the models of F that are “stable” on c. This definition
of a stable model is a proper generalization of the one from (Ferraris et al. 2011), which views
logic programs as a special case of formulas.

We will often write the implication F → G in a rule form G ← F as in logic programs. We
often identify a program with a finite conjunction of universal closures of formulas.

Example 1 continued. Consider the formula F in Example 1 and an interpretation I that has the
set of nonnegative integers as the universe, interprets integers, arithmetic functions and compar-
ison operators in the standard way, and has FillUpI = FALSE, AmountI0 = 6, AmountI1 = 5. One
can check that I is a model of SM[F ; Amount1]. Consider another interpretation I1 that agrees
with I except that AmountI11 = 8. This is a model of F but not of SM[F ; Amount1]. Another
interpretation I2 that agrees with I except that FillUpI2 = TRUE, AmountI21 = 10 is a model of
F as well as a model of SM[F ; Amount1].

2.2 Review: Bartholomew-Lee Semantics in Terms of Grounding and Reduct

2.2.1 Infinitary Ground Formulas

Since the universe can be infinite, grounding a quantified sentence introduces infinite conjunc-
tions and disjunctions over the elements in the universe. Here we rely on the concept of grounding
relative to an interpretation from (Truszczynski 2012). The following is the definition of an infini-
tary ground formula, which is adapted from (Truszczynski 2012). One difference is that we do
not replace ground terms with their corresponding object names, leaving them unchanged during
grounding. This change is necessary in defining a reduct for functional stable model semantics.1

For each element ξ in the universe |I| of I , we introduce a new symbol ξ�, called an object
name. By σI we denote the signature obtained from σ by adding all object names ξ� as additional

1 Another difference is that grounding in (Truszczynski 2012) refers to “infinitary propositional formulas,” which can
be defined on any propositional signature. This generality is not essential for our purpose in this paper.

4 M. Bartholomew and J. Lee

object constants. We will identify an interpretation I of signature σ with its extension to σI

defined by I(ξ�) = ξ.2

We assume the primary connectives to be ⊥, {}∧, {}∨, and →. Propositional connectives
∧,∨,¬,> are considered as shorthands: F ∧ G as {F,G}∧; F ∨ G as {F,G}∨. ¬ and > are
defined as before.

LetA be the set of all ground atomic formulas of signature σI . The setsF0,F1, . . . are defined
recursively as follows:

• F0 = A ∪ {⊥};
• Fi+1(i ≥ 0) consists of expressions H∨ and H∧, for all subsets H of F0 ∪ . . . ∪ Fi, and

of the expressions F → G, where F,G ∈ F0 ∪ · · · ∪ Fi.

We define Linf
A =

⋃∞
i=0 Fi, and call elements of Linf

A infinitary ground formulas of σ w.r.t. I .
For any interpretation I of σ and any infinitary ground formula F w.r.t. I , the definition of

satisfaction, I |= F , is as follows:

• For atomic formulas, the definition of satisfaction is the same as in the standard first-order
logic;

• I |= H∨ if there is a formula G ∈ H such that I |= G;
• I |= H∧ if, for every formula G ∈ H, I |= G;
• I |= G→ H if I 6|= G or I |= H .

2.2.2 Bartholomew-Lee Semantics in Terms of Grounding and Reduct

Let F be any first-order sentence of a signature σ, and let I be an interpretation of σ. By grI [F]

we denote the infinitary ground formula w.r.t. I that is obtained from F by the following process:

• If F is an atomic formula, grI [F] is F ;
• grI [G�H] = grI [G]� grI [H] (� ∈ {∧,∨,→});
• grI [∃xG(x)] = {grI [G(ξ�)] | ξ ∈ |I|}∨; grI [∀xG(x)] = {grI [G(ξ�)] | ξ ∈ |I|}∧.

Example 1 continued. Consider again F in Example 1, and the same interpretation I . grI [F] is
the following set of formulas.

(Amount1 =0) ∨ ¬(Amount1 =0) ← Amount0 =0+1

(Amount1 =1) ∨ ¬(Amount1 =1) ← Amount0 =1+1

. . .

Amount1 =10 ← FillUp

For any two interpretations I , J of the same signature and any list c of distinct predicate and
function constants, we write J <c I if

• J and I have the same universe and agree on all constants not in c;
• pJ ⊆ pI for all predicate constants p in c; and
• J and I do not agree on c.

The reduct F I of an infinitary ground formula F relative to an interpretation I is defined as
follows:

2 For details, see (Lifschitz et al. 2008).

On the Stable Model Semantics for Intensional Functions 5

• For each atomic formula F , F I = ⊥ if I 6|= F and F I = F otherwise;
• (H∧)I = ⊥ if I 6|= H∧; otherwise (H∧)I = {GI | G ∈ H}∧;
• (H∨)I = ⊥ if I 6|= H∨; otherwise (H∨)I = {GI | G ∈ H}∨;
• (G→ H)I = ⊥ if I 6|= G→ H; otherwise (G→ H)I = GI → HI .

Theorem 1
Let F be a first-order sentence of signature σ and let c be a list of intensional constants. For any
interpretation I of σ, I |= SM[F ; c] iff

• I satisfies F , and
• every interpretation J such that J <c I does not satisfy (grI [F])I .

Example 1 continued. The reduct (grI [F])I is equivalent to

(Amount1 =5) ∨ ⊥ ← Amount0 =5+1. (2)

No interpretation that is different from I only on Amount1 satisfies the reduct. On the other hand,
the reduct (grI1 [F])I1 is equivalent to ⊥ ∨ ¬⊥ ← Amount0 = 5+1, and other interpretations
that are different from I1 only on Amount1 satisfy the reduct.

2.3 Review: Original Definition of the Cabalar Semantics

2.3.1 Partial Interpretation

We first define the notion of a partial interpretation. Given a first-order signature σ comprised of
function and predicate constants, a partial interpretation I of σ consists of

• a non-empty set |I|, called the universe of I;
• for every function constant f of arity n, a function f I from (|I|∪{u})n to |I|∪{u}, where
u is not in |I| (“u” stands for undefined);
• for every predicate constant p of arity n, a function pI from (|I|∪{u})n to {TRUE, FALSE}.

For each term f(t1, . . . , tn), we define

f(t1, . . . , tn)I =

{
u if tIi = u for some i ∈ {1, . . . , n};
f I(tI1, . . . , t

I
n) otherwise.

The satisfaction relation |=
p

between a partial interpretation I and a first-order formula F is the
same as the one for first-order logic except for the following base cases:

• For each atomic formula p(t1, . . . , tn),

p(t1, . . . , tn)I =

{
FALSE if tIi = u for some i ∈ {1, . . . , n};
pI(tI1, . . . , t

I
n) otherwise.

• For each atomic formula t1 = t2,

(t1 = t2)I =

{
TRUE if tI1 6= u, tI2 6= u, and tI1 = tI2;
FALSE otherwise.

We say that I |=
p
F if F I = TRUE.

Observe that under a partial interpretation, t = t is not necessarily true: I 6|=
p
t = t iff tI = u.

On the other hand, ¬(t1 = t2), also denoted by t1 6= t2, is true under I even when both tI1 and
tI2 are mapped to the same u.

6 M. Bartholomew and J. Lee

2.3.2 Functional Equilibrium Models by Cabalar

Given any two partial interpretations J and I of the same signature σ, and a set of constants c,
we write J �c I if

• J and I have the same universe and agree on all constants not in c;
• pJ ⊆ pI for all predicate constants in c; and
• fJ(ξ) = u or fJ(ξ) = f I(ξ) for all function constants in c and all lists ξ of elements in

the universe.

We write J ≺c I if J �c I but not I �c J . Note that J ≺c I is defined similar to J <c I

(Section 2.2.2) except for the treatment of functions.
A PHT-interpretation (“Partial HT-interpretation”) I of signature σ is a tuple 〈Ih, It〉 such

that Ih and It are partial interpretations of σ that have the same universe.
The satisfaction relation |=

pht
between a PHT-interpretation I, a world w ∈ {h, t} ordered by

h < t , and a first-order sentence F of the signature σ is defined recursively:

• If F is an atomic formula, I, w |=
pht

F if Iw |=
p
F ;

• I, w |=
pht

F ∧G if I, w |=
pht

F and I, w |=
pht

G;
• I, w |=

pht
F ∨G if I, w |=

pht
F or I, w |=

pht
G;

• I, w |=
pht

F → G if, for every world w′ such that w ≤ w′, I, w′ 6|=
pht

F or I, w′ |=
pht

G;

• I, w |=
pht
∀xF (x) if, for every ξ ∈ |I|, I, w |=

pht
F (ξ�);

• I, w |=
pht
∃xF (x) if, for some ξ ∈ |I|, I, w |=

pht
F (ξ�).

We say that an HT-interpretation I satisfies F , written as I |=
pht

F , if I, h |=
pht

F .
A PHT-interpretation I = 〈I, I〉 of signature σ is a partial equilibrium model of a sentence F

relative to c if

• 〈I, I〉 |=
pht

F , and
• for every partial interpretation J such that J ≺c I , we have 〈J, I〉 6|=

pht
F .

3 Reformulations

3.1 Cabalar Semantics in Terms of Grounding and Reduct

The Cabalar semantics can also be reformulated in terms of grounding and reduct. A theorem
similar to Theorem 1 can be stated for the Cabalar semantics.

Theorem 2
Let F be a first-order sentence of signature σ and let c be a list of intensional constants. For any
partial interpretation I of σ, 〈I, I〉 is a partial equilibrium model of F iff

• I |=
p
F , and

• for every partial interpretation J of σ such that J ≺c I , we have J 6|=
p
grI [F]I .

Example 1 continued. Consider the same F , I , and the reduct grI [F]I , which is equivalent
to (2). If we view I as a partial interpretation, there is only one partial interpretation J such that
J ≺c I , which agrees with I except AmountJ1 = u. Clearly, J does not satisfy the reduct. In
accordance with Theorem 2, 〈I, I〉 is a partial equilibrium model of F .

Interestingly, this reformulation of the Cabalar semantics is closely related to the language
ASP{f} (Balduccini 2012b). We discuss the details in Section 6.

On the Stable Model Semantics for Intensional Functions 7

Comparing the reformulation of the Cabalar semantics in Theorem 2 and the reformulation
of the Bartholomew-Lee semantics in Theorem 1 tells us that the reducts are defined in the
same way, whereas interpretations we consider for stability checking and the notions of satis-
faction are different. That is, if the intensional constants are function constants only, under the
Bartholomew-Lee semantics, the interpretations J we consider for stability checking are all other
classical interpretations that are different from I , while under the Cabalar semantics, they are par-
tial interpretations that are “smaller” than I . For instance, in Example 1, there are multiple such
Js for the Bartholomew-Lee semantics, while there is only one such J for the Cabalar semantics.

In Section 4, we present some syntactic classes of formulas on which the two semantics coin-
cide despite these differences.

3.2 Cabalar Semantics in Terms of Second-Order Logic

The Cabalar semantics can also be formulated in the style of second-order logic. We extend the
formulas to allow predicate and function variables as in the standard second-order logic, but
consider partial interpretations in place of classical interpretations. We define ĉ � c as

(ĉpred ≤ cpred) ∧ (ĉfunc ≤ cfunc) ,

where ĉpred ≤ cpred is defined as in Section 2.1, and ĉfunc ≤ cfunc is defined as the conjunction
of

∀x((f̂(x) 6= f̂(x)) ∨ (f̂(x) = f(x))) .

for all function constants f in cfunc and the corresponding function variables f̂ in ĉfunc. As we
explained earlier, the first disjunctive term is satisfiable under a partial interpretation, meaning
that f̂ is undefined on x; the second disjunctive term means that f̂ and f are both defined on x

and map to the same element in the universe. We define ĉ ≺ c as (ĉ � c) ∧ ¬(c � ĉ).
We reformulate the Cabalar semantics by using the expression CBL that looks similar to SM.

It is defined as:

CBL[F ; c] = F ∧ ¬∃ĉ(ĉ ≺ c ∧ F †(ĉ)) ,

where F †(ĉ) is defined the same as F ∗(ĉ) in Section 2.1 except for the base case:

• When F is an atomic formula, F †(ĉ) is F (ĉ) (as defined in Section 2.1). 3

The following theorem states the correctness of the reformulation.

Theorem 3
For any sentence F , a PHT-interpretation 〈I, I〉 is a partial equilibrium model of F relative to c

iff I |=
p

CBL[F ; c].

Note the similarity between this reformulation of the Cabalar semantics given in Theorem 3
and the definition of SM in Section 2.1. The differences are in the comparison operators ≺ vs.
<, and whether to consider partial interpretations or classical interpretations.

3 In fact, F ∗(ĉ) can be also used in place of F †(ĉ) for defining CBL[F ; c] as well, without affecting the models.

8 M. Bartholomew and J. Lee

3.3 Bartholomew-Lee Semantics in Terms of HT-Logic

The Bartholomew-Lee semantics can be reformulated in terms of a modification to equilibrium
logic, similar to the way the Cabalar semantics is defined in (Cabalar 2011), and is also reviewed
in Section 2.3

An FHT-interpretation (“Functional HT-interpretation”) I of signature σ is a tuple 〈Ih, It〉
such that Ih and It are classical interpretations of σ that have the same universe. The satisfaction
relation |=

fht
between an FHT-interpretation I, a world w ∈ {h, t} ordered by h < t, and a

first-order sentence of signature σ is defined in the same way as |=
pht

for PHT-interpretations in
Section 2.3 except for the base case:

• If F is an atomic formula, I, w |=
fht
F if, for every world w′ such that w ≤ w′, Iw′ |= F .

We say that FHT-interpretation I satisfies F , written as I |=
fht
F , if I, h |=

fht
F .

The following theorem asserts the correctness of the reformulation of the Bartholomew-Lee
semantics in terms of equilibrium logic style.

Theorem 4
Let F be a first-order sentence of signature σ and let c be a list of predicate and function con-
stants. For any interpretation I of σ, I |= SM[F ; c] iff

• 〈I, I〉 |=
fht
F , and

• for every interpretation J of σ such that J <c I , we have 〈J, I〉 6|=
fht
F .

4 Comparing Bartholomew-Lee Semantics and Cabalar Semantics

Neither semantics is stronger than the other. The following example presents a formula that has
a stable model under the Cabalar semantics, but not under the Bartholomew-Lee semantics.

Example 2
SM[f = g; f, g] has no models if the universe contains more than one element. Take any I such
that I |= f = g. The reduct of f = g relative to I is f = g itself, and there are other models of the
reduct. Since I is not the unique model of the reduct, I is not a (f, g)-stable model of f = g. On
the other hand, assuming that the universe is {1, 2, 3}, an interpretation I that assigns 1 to both
f and g satisfies CBL[f = g; f, g]. The reduct is the same as before, but any interpretation J
smaller than I maps either or both f and g to u, and hence does not satisfy the reduct. Similarly,
there are two other models of CBL[f = g; f, g] with the same universe.

On the other hand, in the following example, the formula has a stable model under the Bartholomew-
Lee semantics, but not under the Cabalar semantics.

Example 3
Let F be the formula f(1) = 1 ∧ f(2) = 1 ∧ (f(g) = 1 → g = 1), and I be an interpretation
such that the universe is {1, 2}, and 1I = 1, 2I = 2, f(1)I = 1, f(2)I = 1, gI = 1. One can
check that I is a model of SM[F ; f, g], but not a model of CBL[F ; f, g].

4.1 Coincidence on c-plain formulas

This section presents a syntactic class of formulas, called “c-plain,” on which the Bartholomew-
Lee semantics and the Cabalar semantics coincide when we consider “total” interpretations only.

On the Stable Model Semantics for Intensional Functions 9

A partial interpretation I is called total if I does not map any function constant to u. Obviously,
a total interpretation can be identified with the classical interpretation.

For any function constant f , a first-order formula F is called f -plain if each atomic formula
in F

• does not contain f , or
• is of the form f(t) = t1 where t is a list of terms not containing f , and t1 is a term not

containing f .

For example, f=1 is f -plain, but each of p(f), g(f) = 1, and 1=f is not f -plain.
For a list c of predicate and function constants, we say that F is c-plain if F is f -plain for

each function constant f in c. Roughly speaking, c-plain formulas do not allow the functions
in c to be nested in another predicate or function, and at most one function in c is allowed in
each atomic formula. For example, the formula in (1) in Example 1 is Amount1-plain; f = g

(Example 2) is not (f, g)-plain (because it is not g-plain), and neither is f(g) = 1 → g = 1

(Example 3).
The following theorem states that the two semantics coincide on c-plain formulas.

Theorem 5
For any c-plain sentence F of signature σ, any list c of intensional constants, and any total
interpretation I of σ satisfying ∃xy(x 6= y), I |= SM[F ; c] iff I |=

p
CBL[F ; c].

In accordance with the theorem, we already noted that the two semantics coincide on for-
mula (1). Examples 2 and 3 above demonstrate why the restriction to c-plain formulas is nec-
essary in Theorem 5. This theorem is useful in relating several mathematical results established
for the Bartholomew-Lee semantics to the Cabalar semantics as we will see in Section 5 and
Appendix B.

The requirement in Theorem 5 that every occurrence of every atomic formula be c-plain can
be relaxed if the formula is tight.4 An occurrence of a symbol or a subformula in a formula F
is called strictly positive in F if that occurrence is not in the antecedent of any implication in
F . We say that a formula is head-c-plain if every strictly positively occurring atomic formula is
c-plain. For instance, f(g)=1→ h=1 is head-(f, g, h)-plain, though it is not (f, g, h)-plain.

Theorem 6
For any head-c-plain sentence F of signature σ that is tight on c, and any total interpretation I
of σ satisfying ∃xy(x 6= y), I |= SM[F ; c] iff I |=

p
CBL[F ; c].

4.2 Different Behaviors for Nested Functions

Theorem 5 can be extended to non-c-plain formulas by first unfolding F , which, roughly speak-
ing, moves nested functions outside by introducing existential quantifiers and variables. The
process of unfolding F w.r.t. c, denoted by UFc(F), is formally defined as follows.

• If F is of the form p(t1, . . . , tn) (n ≥ 0) such that tk1
, . . . , tkj

are all the terms in t1, . . . , tn
that contain some members of c, then UFc(p(t1, . . . , tn)) is

∃x1 . . . xj
(
p(t1, . . . , tn)′′ ∧

∧
1≤i≤j

UFc(tki
= xi)

)

4 Tight formulas are defined in (Bartholomew and Lee 2013) and also reviewed in Appendix A.

10 M. Bartholomew and J. Lee

where p(t1, . . . , tn)′′ is obtained from p(t1, . . . , tn) by replacing each tki
with the variable

xi.
• If F is of the form f(t1, . . . , tn) = t0 (n ≥ 0) such that tk1

, . . . , tkj
are all the terms in

t0, . . . , tn that contain some members of c, then UFc(f(t1, . . . , tn) = t0) is

∃x1 . . . xj
(

(f(t1, . . . , tn) = t0)′′ ∧
∧

0≤i≤j

UFc(tki
= xi)

)
where (f(t1, . . . , tn) = t0)′′ is obtained from f(t1, . . . , tn) = t0 by replacing each tki

with the variable xi.
• UFc(F �G) is UFc(F)� UFc(G) where � ∈ {∧,∨,→}.
• UFc(QxF) is Qx UFc(F (x)) where Q ∈ {∀,∃}.

For example, UF(f,g)(f = g) is ∃xy(x = y ∧ f = x ∧ g = y).
It is clear that UFc(F) is equivalent to F under classical logic. Similarly, Theorem 7 below

shows that the Cabalar semantics preserves stable models when unfolding is applied. However,
this is not the case under the Bartholomew-Lee semantics.

Theorem 7
For any sentence F , any list c of constants, and any partial interpretation I , we have I |=

p

CBL[F ; c] iff I |=
p

CBL[UFc(F); c].

Example 4
Let F be f = g. Recall that UFc(F) is ∃xy(x = y ∧ f = x ∧ g = y). Let I1, I2, I3 be
interpretations whose universe is {1, 2, 3}, and each Ii maps f and g to i (1 ≤ i ≤ 3). Each of
them satisfies CBL[F ; f, g] and CBL[UF(f,g)(F); f, g], but as we observed, none of them is a
model of SM[F ; f, g].

However, since UFc(F) is c-plain, the following corollary follows from Theorems 5 and 7.

Corollary 1
For any sentence F , any list c of constants, and any total interpretation I satisfying ∃xy(x 6= y),
we have I |=

p
CBL[F ; c] iff I |=

p
CBL[UFc(F); c] iff I |= SM[UFc(F); c].

For example, SM[UF(f,g)(f = g); f, g] has the same models as CBL[f = g; f, g].

5 Relating the Cabalar Semantics to General Stable Models

Corollary 1 tells us that the results established for the Bartholomew-Lee semantics can be trans-
ferred to the Cabalar semantics as long as we are interested in total interpretations only. For
instance, (Bartholomew and Lee 2012) shows a method of eliminating intensional function con-
stants in favor of intensional predicate constants; (Bartholomew and Lee 2013) shows that, for
tight programs, the stable model semantics and completion coincide. These results can be ex-
tended to the Cabalar semantics as well by first rewriting the formula to be c-plain by applying
unfolding (Theorem 7), and then applying Corollary 1 since the two semantics coincide on c-
plain formulas.

Below we show how to turn formulas under the Cabalar semantics into formulas under the sta-
ble model semantics from (Ferraris et al. 2011). The method is similar to the one from (Bartholomew
and Lee 2012). This is done by eliminating intensional functions under the Cabalar semantics in
favor of intensional predicates.

On the Stable Model Semantics for Intensional Functions 11

Let F be an f -plain formula, where f is an intensional function constant. Formula F f
p is

obtained from F as follows:

• in the signature of F , replace f with a new intensional predicate constant p of arity n+ 1,
where n is the arity of f ;

• replace each subformula f(t) = t′ in F with p(t, t′).

Theorem 8
For any f -plain sentence F and any partial interpretation I , if I |=

p
∀xy(p(x, y) ↔ f(x) = y),

then I |=
p

CBL[F ; f, c] iff I |=
p

CBL[F f
p ; p, c].

By UCp, we denote the following formulas that enforce the partial functional image on the
predicate p:

∀xyz(y 6= z ∧ p(x, y) ∧ p(x, z)→ ⊥), (3)

where x is a n-tuple of variables, and all variables in x, y, and z are pairwise distinct. Note that
each formula is a constraint,5 which can only remove stable models when it is added.

The following corollary shows that there is a simple 1–1 correspondence between the models
of F and the models of F f

p . Recall that the signature of F f
p is obtained from the signature of

F by replacing f with p. For any interpretation I of the signature of F , by Ifp we denote the
interpretation of the signature of F f

p obtained from I by replacing the function f I with the set
pI that consists of the tuples

〈ξ1, . . . , ξn, f I(ξ1, . . . , ξn)〉
for all ξ1, . . . , ξn from the universe of I such that f I(ξ1, . . . , ξn) 6= u. The notations are straight-
forwardly extended to F f

p and Ifp where f and p are lists of function and predicate constants.

Corollary 2
Let F be an f -plain sentence. (a) For any partial interpretation I of the signature of F , I |=

p

CBL[F ; f, c] iff Ifp |=p CBL[F f
p ∧UCp; p, c]. (b) For any partial interpretation J of the signature

of F f
p , J |=

p
CBL[F f

p ∧ UCp; p, c] iff J = Ifp for some partial interpretation I such that I |=
p

CBL[F ; f, c].

Repeated applications of Corollary 2 tells us that all intensional functions under the Cabalar
semantics can be eliminated in favor of intensional predicates, which essentially reduces the
Cabalar semantics to the first-order stable model semantics defined in (Ferraris et al. 2011). In
the following cfp denotes the list of constants where every member of f in c is replaced with a
new predicate constant in p.

Corollary 3
Let c be a set of intensional constants consisting of intensional function constants f and inten-
sional predicate constants, and let F be an c-plain sentence. (a) For any total interpretation I of
the signature of F , I |=

p
CBL[F ; c] iff Ifp |= SM[F f

p ∧ UCp; cfp]. (b) For any total interpretation
J of the signature of F f

p, J |= SM[F f
p ∧UCp; cfp] iff J = Ifp for some total interpretation I such

that I |=
p

CBL[F ; c].

5 A rule with the empty head, or a formula that has no strictly positive occurrence of an atom (Ferraris et al. 2011).

12 M. Bartholomew and J. Lee

Corollary 3 generalizes Theorem 1 from (Cabalar 2011), which restricted F to be in the syntax
of “FLP rules.” The corollary is similar to Corollary 2 from (Bartholomew and Lee 2012), which
shows how to turn c-plain formulas under the Bartholomew-Lee semantics to formulas under
the first-order stable model semantics. On the other hand, since any formula under the Cabalar
semantics can be turned into a c-plain formula (Corollary 1), Corollary 3 can be extended to
arbitrary formulas.

6 Comparing Cabalar Semantics and Balduccini Semantics

Due to lack of space, we refer the reader to the online appendix for the review of the Balduccini
Semantics.

It turns out that the Balduccini semantics is closely related to the Cabalar semantics. This is
shown by reformulating the Balduccini semantics using the notion of partial interpretations and
partial satisfaction. We identify a consistent set of seed literals I with a partial interpretation that
maps all object constants in σ \ c to themselves. For example, for signature σ = {f, g, 1, 2}
where f, g ∈ c, we identify the consistent set of seed literals I = {f = 1} with the partial
interpretation I such that f I = 1, gI = u, 1I = 1, 2I = 2.

The following theorem states that, in the absence of strong negation, Balduccini semantics can
be viewed as a special, ground case of the Cabalar semantics.

Theorem 9
For any ASP{f} program Π with intensional constants c and any consistent set I of seed literals,
if Π contains no strong negation, then I is a Balduccini answer set of Π iff I |=

p
CBL[Π; c].

Theorem 9 can be extended to full ASP{f} programs that contain strong negation. Since the
language in (Cabalar 2011) does not allow strong negation, this requires us to eliminate strong
negation. It is well known that strong negation in front of standard atoms can be eliminated using
new atoms.

In order to eliminate strong negation in front of t-atoms, by Π# we denote the program ob-
tained from Π by replacing ∼(f=g) with (f=f)∧ (g=g)∧¬(f=g). As we noted earlier, this
formula is true iff f I and gI are defined, and have different values. This is the same understanding
as the construct f#g in (Cabalar 2011).

Theorem 10
For any ASP{f} program Π with intensional constants c and any consistent set I of seed literals,
I is a Balduccini answer set of Π iff I is a Balduccini answer set of Π#.

7 Conclusion

We presented several reformulations of functional stable models—in terms of second-order logic,
in terms of grounding and reduct, and in terms of variants of the logic of here-and-there. The
reformulations helped us compare them and identify the relationships between them. The func-
tional stable model semantics by Bartholomew and Lee is simpler as it does not need to rely on
the extra notion of partial satisfaction, but is limited to total interpretations only. On the other
hand, the Cabalar semantics and its special case, the Balduccini semantics, allow functions to
be undefined at the price of relying on a rather complicated non-standard definition of partial
satisfaction. Nevertheless, all three semantics coincide on large syntactic classes of formulas.

On the Stable Model Semantics for Intensional Functions 13

Acknowledgements: We are grateful to Pedro Cabalar and the anonymous referees for their
useful comments. This work was partially supported by the National Science Foundation under
Grant IIS-0916116 and by the South Korea IT R&D program MKE/KIAT 2010-TD-300404-001.

References

BALDUCCINI, M. 2012a. An answer set solver for non-Herbrand programs: Progress report. In ICLP
(Technical Communications). 49–60.

BALDUCCINI, M. 2012b. A ”conservative” approach to extending answer set programming with non-
Herbrand functions. In Correct Reasoning - Essays on Logic-Based AI in Honour of Vladimir Lifschitz.
24–39.

BARTHOLOMEW, M. AND LEE, J. 2012. Stable models of formulas with intensional functions. In Pro-
ceedings of International Conference on Principles of Knowledge Representation and Reasoning (KR).
2–12.

BARTHOLOMEW, M. AND LEE, J. 2013. Functional stable model semantics and answer set programming
modulo theories. In Proceedings of International Joint Conference on Artificial Intelligence (IJCAI). To
appear.

CABALAR, P. 2011. Functional answer set programming. TPLP 11, 2-3, 203–233.
FERRARIS, P., LEE, J., AND LIFSCHITZ, V. 2011. Stable models and circumscription. Artificial Intelli-

gence 175, 236–263.
LIFSCHITZ, V. 2012. Logic programs with intensional functions. In Proceedings of International Confer-

ence on Principles of Knowledge Representation and Reasoning (KR). 24–31.
LIFSCHITZ, V., MORGENSTERN, L., AND PLAISTED, D. 2008. Knowledge representation and classical

logic. In Handbook of Knowledge Representation, F. van Harmelen, V. Lifschitz, and B. Porter, Eds.
Elsevier, 3–88.

TRUSZCZYNSKI, M. 2012. Connecting first-order ASP and the logic FO(ID) through reducts. In Correct
Reasoning - Essays on Logic-Based AI in Honour of Vladimir Lifschitz. 543–559.

