
Recent Developments in Action Languages
Based on Extensions of Answer Set Programs

Joohyung Lee
School of Computing, Informatics and Decision Systems Engineering

Arizona State University, Tempe, USA

Abstract

Action languages are formalisms designed for describing ac-
tions and their effects. Many of these languages can be viewed
as high-level notations of answer set programs structured to
represent transition systems, and, as such, they are limited to
Boolean decision problems. We present recent developments
in action languages that are based on extensions of answer set
programs. A generalization of C+ called C+ modulo theories
is based on an extension of answer set programs to the first-
order level similar to the way satisfiability modulo theories
extends propositional satisfiability. The formalism can repre-
sent hybrid transition systems in which both continuous and
discrete changes co-exist, in an elaboration tolerant way. An-
other action language called pBC+ is based on a probabilistic
extension of answer set programs, and allows for probabilis-
tic reasoning about transition systems, as well as probabilistic
diagnosis for dynamic domains. These languages are imple-
mented using ASP, SMT, and Markov Logic solvers. 1

1 Action Languages
Action languages, such as A (Gelfond and Lifschitz 1993),
B (Gelfond and Lifschitz 1998), C (Giunchiglia and Lifschitz
1998), and C+ (Giunchiglia et al. 2004), are formalisms de-
signed for actions and their effects. The expressive possibil-
ity of action languages, such as indirect effects, triggered ac-
tions, and additive fluents, has been one of the main research
topics. Many of these languages can be viewed as high-level
notations of answer set programs structured to represent tran-
sition systems.

Among them, action language BC+ (Babb and Lee 2015) is
highly expressive and general enough to embed several pre-
vious action languages. Building upon language BC (Lee and
Meng 2013), language BC+ is a proper generalization of both
B and C+, so it can express Prolog-style recursive definitions
available in B as well as fluents whose behavior is described
by defaults other than inertia as in C+. Computational prob-
lems involving BC+ descriptions can be reduced to comput-
ing answer sets. This fact led to an implementation of BC+ by
modifying system CPLUS2ASP (Babb and Lee 2013), which
was originally designed to compute C+ using ASP solvers.

However, BC+, as well as many other action languages,
are essentially propositional as they are based on answer set

1This is a collaboration with Vladimir Lifschitz, Fangkai Yang,
Michael Bartholomew, Yunsong Meng, Joseph Babb, Yi Wang,
Samidh Talsania, and Nikil Loney.

programs, which restricts its applicability to deterministic and
discrete domains only.

This note describes two action languages recently intro-
duced to overcome the limitations of the propositional set-
ting, each of which based on different extensions of the stable
model semantics.

2 Action Language Modulo Theories
In (Lee and Meng 2013), action language C+ was ex-
tended to handle continuous changes based on the frame-
work of Answer Set Programming Modulo Theories (ASPMT)
(Bartholomew and Lee 2013).

2.1 Answer Set Programming Modulo Theories
ASPMT was designed for efficient computation of expressive
nonmonotonic first-order reasoning. It is a tight integration
of ASP with Satisfiability Modulo Theories (SMT), thereby
employing the expressiveness of the ASP modeling language
while leveraging efficient constraint/theory solving methods
available in SMT. Unlike the traditional stable model se-
mantics, it allows for the concept of “intensional” functions,
which is described by a logic program rather than pre-fixed.
Using SMT solving techniques involving functions, ASPMT
can be applied to domains containing real numbers and alle-
viates the “grounding explosion ” problem.

2.2 Action Language Modulo Theories
In (Lee and Meng 2013), we proposed a generalization of ac-
tion language C+ by defining it as a shorthand for ASPMT
theories. The language C+ modulo theories allows us to
achieve the advantages of both hybrid automata and action
languages, where the former provides an effective way to rep-
resent continuous changes, and the latter provides an elabo-
ration tolerant way to represent (discrete) transition systems.
In other words, the formalism gives us an elaboration toler-
ant way to represent hybrid transition systems. Unlike hybrid
automata, the structured representation of states allows for
expressing complex relations between fluents, such as recur-
sive definitions of fluents and indirect effects of actions, and
unlike the original C+, which is propositional, the transitions
described by the extended C+ are not limited to discrete ones
only; the advanced modeling capacity of action languages,
such as additive fluents, statically defined fluents, and action
attributes, can be achieved in the context of hybrid reasoning.
We implemented a prototype system CPLUS2ASPMT, which



allows for a succinct representation of hybrid transition sys-
tems in language C+ modulo theories that can be compiled
into the input languages of SMT solvers Z3 and DREAL. C+
modulo theories takes advantage of ongoing developments in
SMT. Based on the concept of ”Satisfiability Modulo Ordi-
nary Differential Equations (ODEs)” (Gao, Kong, and Clarke
2013), we embrace the concept into action language C+ by in-
troducing two new abbreviations of causal laws, one for rep-
resenting the evolution of continuous variables as specified by
ODEs and another for describing invariants that the continu-
ous variables must satisfy when they progress. The general
class of hybrid automata involving non-convex invariants can
be expressed in the extended C+ modulo ODE.

For example, the derivatives of differentiable fluent con-
stants for turning left are declared in the language of
CPLUS2ASPMT as follows:

derivative of x is cos(theta) if mode=turning_left.
derivative of y is sin(theta) if mode=turning_left
derivative of theta is tan(pi/18) if mode=turning_left.

Invariants for avoiding the collision with an obstacle are rep-
resented such as:

constraint x=X & y=Y ->> ((X-9)*(X-9) + Y*Y > 9).
always_t (x=X & y=Y ->> ((X-9)*(X-9) + Y*Y > 9)) if mode=V.

3 Probabilistic Extension of BC+
In (Lee and Wang 2018a), we introduced a probabilistic ex-
tension of action language BC+ based on the foundation of
LPMLN.

3.1 LPMLN: Combination of ASP + MLN
LPMLN is a probabilistic extension of answer set programs
with the concept of weighted rules, whose weight scheme is
adopted from that of Markov Logic (Richardson and Domin-
gos 2006). Like Markov Logic, not all LPMLN rules have to
be true but, roughly speaking, the more rules are true, the
larger weight is assigned to the corresponding stable model.

It is shown in (Lee and Wang 2016; Lee, Meng, and Wang
2015) that LPMLN is expressive enough to embed Markov
Logic and several other probabilistic logic languages, such
as ProbLog (De Raedt, Kimmig, and Toivonen 2007) and
Pearls’ Causal Models (Pearl 2000).

It is also shown in (Lee and Yang 2017; Lee and Wang
2016) that LPMLN can be reduced to ASP and Markov Logic.
This finding was leveraged to implement LPMLN using exist-
ing implementations of ASP and Markov Logic solvers.

3.2 pBC+
In (Lee and Wang 2018a), we presented a probabilistic exten-
sion of BC+, which we call pBC+. Just like BC+ is defined as
a high-level notation of answer set programs for describing
transition systems, pBC+ is defined as a high-level notation
of LPMLN programs. Language pBC+ inherits expressive log-
ical modeling capabilities of BC+ but also allows us to assign
a probability to a sequence of transitions.

In (Lee and Wang 2018a), we show how probabilistic rea-
soning about transition systems, such as prediction, postdic-
tion, and planning problems, can be modeled in pBC+ and
computed using an implementation of LPMLN. Further, we

show that it can be used for probabilistic abductive reason-
ing about dynamic domains, where the likelihood of the ab-
ductive explanation is derived from the parameters manually
specified or automatically learned from the data based on the
learning algorithm described in (Lee and Wang 2018b).

For example, the following causal laws describe that the
abnormality EnterFailed has 0.1 chance to occur when the
action Goto is executed:

caused {∼EnterFailed}ch if ∼EnterFailed
caused Pf EnterFailed = {t : 0.1, f : 0.9}
caused ab EnterFailed if > after pf EnterFailed ∧ Goto(r).

References
Babb, J., and Lee, J. 2013. Cplus2ASP: Computing action language
C+ in answer set programming. In Proceedings of International
Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR), 122–134.
Babb, J., and Lee, J. 2015. Action language BC+: Preliminary re-
port. In Proceedings of the AAAI Conference on Artificial Intelli-
gence (AAAI).
Bartholomew, M., and Lee, J. 2013. Functional stable model seman-
tics and answer set programming modulo theories. In Proceedings
of International Joint Conference on Artificial Intelligence (IJCAI).
De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007. ProbLog: A
probabilistic Prolog and its application in link discovery. In IJCAI,
volume 7, 2462–2467.
Gao, S.; Kong, S.; and Clarke, E. 2013. Satisfiability modulo ODEs.
arXiv preprint arXiv:1310.8278.
Gelfond, M., and Lifschitz, V. 1993. Representing action and change
by logic programs. Journal of Logic Programming 17:301–322.
Gelfond, M., and Lifschitz, V. 1998. Action languages. Electronic
Transactions on Artificial Intelligence 3:195–210.
Giunchiglia, E., and Lifschitz, V. 1998. An action language based
on causal explanation: Preliminary report. In Proceedings of AAAI,
623–630. AAAI Press.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and Turner, H.
2004. Nonmonotonic causal theories. Artificial Intelligence 153(1–
2):49–104.
Lee, J., and Meng, Y. 2013. Answer set programming modulo the-
ories and reasoning about continuous changes. In Proceedings of
International Joint Conference on Artificial Intelligence (IJCAI).
Lee, J., and Wang, Y. 2016. Weighted rules under the stable model
semantics. In Proceedings of International Conference on Princi-
ples of Knowledge Representation and Reasoning (KR), 145–154.
Lee, J., and Wang, Y. 2018a. A probabilistic extension of action
language BC+. Theory and Practice of Logic Programming. To
appear.
Lee, J., and Wang, Y. 2018b. Weight learning in a probabilistic
extension of answer set programs. In Proceedings of International
Conference on Principles of Knowledge Representation and Rea-
soning (KR). To appear.
Lee, J., and Yang, Z. 2017. LPMLN, weak constraints, and P-log.
In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), 1170–1177.
Lee, J.; Meng, Y.; and Wang, Y. 2015. Markov logic style weighted
rules under the stable model semantics. In Technical Communica-
tions of the 31st International Conference on Logic Programming.
Pearl, J. 2000. Causality: models, reasoning and inference, vol-
ume 29. Cambridge Univ Press.
Richardson, M., and Domingos, P. 2006. Markov logic networks.
Machine Learning 62(1-2):107–136.


