
A Logic Based Approach to Answering
Questions about Alternatives in DIY Domains

Yi Wang and Joohyung Lee
Arizona State University, Tempe, AZ, USA
{ywang485, joolee}@asu.edu

Doo Soon Kim
Bosch Research and Technology Center, Palo Alto, CA, USA

DooSoon.Kim@us.bosch.com

Abstract

Many question answering systems have primarily focused on
factoid questions. These systems require the answers to be
explicitly stored in a knowledge base (KB) but due to this re-
quirement, they fail to answer many questions for which the
answers cannot be pre-formulated. This paper presents a ques-
tion answering system which aims at answering non-factoid
questions in the DIY domain using logic-based reasoning.
Specifically, the system uses Answer Set Programming to de-
rive an answer by combining various types of knowledge such
as domain and commonsense knowledge. We showcase the
system by answering one specific type of questions — ques-
tions about alternatives. The evaluation result shows that our
logic-based reasoning together with the KB (constructed from
texts using Information Extraction) significantly improves the
user experience.

Introduction
Despite the popularity of DIY (Do-It-Yourself), DIY is not
an easy task due to one major problem: DIYers may have
many questions about a project, but in many cases, profes-
sionals who can assist the DIYers are unavailable. For exam-
ple, one might wonder about hypothetical questions such as
“Can I use a table saw instead of a jigsaw in step2” or “Is
it ok to put this DIY product outside?” These questions are
hard, especially for novice DIYers, because answering those
questions requires them to possess extensive domain knowl-
edge and experience. If a question answering (QA) system
can answer those questions and explain the reason, it will
greatly benefit the DIYers.

It is, however, challenging to develop a QA system for
DIYers. First, most recent QA systems have focused on fac-
toid questions, e.g., (Ferrucci et al. 2010; Waltinger et al.
2013). These factoid QA systems find an answer by retriev-
ing from their KB an answer closely matching the question,
and thus require all candidate answers to be explicitly stored
in the KB. However, for many DIY questions (such as the
above hypothetical questions), it is infeasible to enumerate
all possible questions in advance.

Another challenge for answering the non-factoid ques-
tions is that the system should not only provide an answer
but also explain the reason for the answer. For example, for

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a question “Can I use a table saw instead of a jigsaw in
step2?”, just answering “yes” or “no” is not helpful. Rather,
the system should deliver the related information, for exam-
ple, by saying “It is not recommended because step2 requires
curve cutting, which is not supported by a table saw”. This
explanation capability is not considered in most factoid QA
systems.

To address these challenges, we present a novel QA sys-
tem which uses Answer Set Programming (ASP) (Lifschitz
2008) to answer non-factoid questions on DIY projects.1 Our
system currently addresses one particular type of non-factoid
questions, questions about alternatives (e.g., “Can I use an
alternative tool/material instead of the suggested one under
a certain circumstance?”) but the general methodology can
also be applied to other types of non-factoid questions. Us-
ing ASP, our system encodes various types of knowledge and
constraints (domain knowledge, commonsense knowledge,
constraints from users, contexts and projects) and derives an
answer satisfying the question, the background knowledge
and the constraints. ASP is particularly useful for our task
because our KB includes many rules about commonsense
knowledge (e.g., “Normally, a power tool is dangerous to
kids”) which can be easily represented by ASP rules.

To evaluate our system, we performed a user study where
we compared our system against online search, a common
practice for information seeking. Our result shows that on-
line search is unsuitable for answering non-factoid DIY
questions; it takes too much time, and even many partici-
pants failed to find an answer. However, a majority of par-
ticipants are satisfied with our system because it promptly
presents an answer, and the explanation delivered by our sys-
tem is informative. ASP has been previously applied to other
QA systems (e.g., (Aditya et al. 2015)) to answer complex
questions but, to our knowledge, our system is the first to ap-
ply ASP to non-factoid DIY questions in order to derive an
answer under various types of DIY-related knowledge and
constraints.

The paper is organized as follows. After the review of
ASP, we give an overview of the whole framework, and then
introduce the ASP rules and facts that are used to answer the
questions about alternatives. Then, we present our evaluation
result. Finally, we discuss how to extend this framework to

1https://www.bosch-do-it.com/za/en/diy/knowledge/project-
guides/index.jsp



offer more advanced reasoning.

Background: Answer Set Programming
Answer Set Programming (ASP) is a declarative program-
ming paradigm that is suitable for the design and implemen-
tation of knowledge-intensive applications. It has emerged
from the interaction between two lines of research – non-
monotonic semantics of logic programs and application of
satisfiability solvers to search problems. The idea is to rep-
resent a search problem by a logic program whose intended
models, called “answer sets,” correspond to the solutions of
the problem, and then find these models using an answer set
solver, such as CLINGO and DLV.

The language of ASP is logic programs under the stable
model semantics (Gelfond and Lifschitz 1988), which allows
for elegant representation of several aspects of knowledge
such as causality, defaults, incomplete information, pref-
erence, and recursive definitions. What distinguishes ASP
from other nonmonotonic formalisms is the availability of
several efficient answer set solvers, which led to practical
nonmonotonic reasoning that can be applied to industrial
level applications.

In our framework, we apply answer set programming in
two phases — information extraction to populate knowledge
base and inference to derive an answer from the knowledge
bases. The following are the brief introduction of some of
the features of ASP that we found useful in our work. The
rules are written in the language of CLINGO v3.0.5. We refer
the reader to the CLINGO manual (http://potassco.
sourceforge.net) for their precise meaning.

Generate and Test Paradigm In ASP, one can easily
describe a set of “potential solutions” and use a set of
constraints to eliminate all “bad” solutions. For example,
the following program finds tools X to suggest by ruling out
expensive tools and unsafe tools:

3 {suggestedTool(X) : tool(X)} 5.
:- expensive(X), suggestedTool(X).
:- unsafe(X), suggestedTool(X).

The first rule is a cardinality constraint to generate answer
sets that contain 3 to 5 suggested tools. The next two rules,
which have the empty head, eliminate the answer sets among
them which contain expensive or unsafe tools.

Aggregates The availability of aggregates, such as
#count, #sum, #min, #max, in ASP allows one for rep-
resenting combinatorial choices succinctly. For example, the
following rule asserts that “the project PROJ is considered as
drilling-intensive if there are at least 5 drilling
steps”.

drilling_intensive(PROJ) :-
5{step(PROJ,ID,"drilling"):step_ID(ID)}, project(PROJ).

The following rule is another example, which estimates the
total time T needed for a project by summing up times T1
needed by each action ACT in the project:

time_estimation(PROJ,T) :- T = #sum[step(PROJ,ID,ACT):
time_needed(ACT,T1)=T1], project(PROJ).

Recursive Definition Another convenient feature of ASP
is being able to represent recursive definitions, such as tran-
sitive closure. For example, the following rules define the
relation descendent step as the transitive closure of the
relation substep.

descendent_step(ST1,ST2) :- substep(ST1,ST2).
descendent_step(ST1,ST2) :-

descendent_step(ST1,ST3), descendent_step(ST3,ST2).

System Overview
Figure 1 illustrates the overall QA system, where arrows in-
dicate the information flow. The core part of the system is
an ASP solver, which answers the questions based on the
relevant information from the knowledge base and the user
profile. The knowledge base contains a project knowledge
base and a domain knowledge base. The domain knowl-
edge base provides project-independent information, such
as attributes of tools, accessories, and materials. The project
knowledge base provides project-specific information, such
as tools and materials needed and steps to be performed on
a certain project. The user profile provides information on
the user who is asking the question, such as his/her DIY
skill level and age. Information on the specific project that
is being performed, along with the user profile, facilitates
context-aware question answering for the DIY domain. They
are integrated with the domain knowledge by a set of project
constraint generation rules. The domain knowledge base is
constructed by automatically extracting information from
web documents guided by an ontology manually created by
woodworking experts. The question is asked in natural lan-
guage, and a question interpreter converts the question into
a structured form that can be part of the input to the ASP
solver.

Answering Questions on Alternatives
In this section, we explain how the framework addresses a
specific type of questions — questions about alternatives.
These questions are about the possibility of using one ob-
ject to replace another object in performing a certain project.
An example of this type of questions is

Can I use a table saw instead of a jigsaw in the project
“armchair with stool”?

We call the object to be replaced “target object,” and the ob-
ject that replaces the target object “new object.” The answers
to this type of questions need to take into account the follow-
ing factors:
1. The basic function of target objects and new objects, for

example, “cutting” for saws, “sanding” for sanders.
2. Features that distinguish one type of objects from another

type of objects under the same category. For example, both
jigsaws and table saws are used for cutting, but jigsaws can
make curved cuts while table saws generally cannot.

3. The role that the target object plays in the specific project.
For example, a jigsaw can be used to cut curves in project
A but can be used to cut straight lines in project B.

4. Information about the user, such as the user’s age, the
user’s skill level, etc.



Figure 1: System Overview

5. Additional context information that may or may not be
specified by the user, such as a time constraint for the
project.

Among these aspects, the first and the second are pro-
vided by the domain knowledge base. The first is specified
by woodworking experts. The second is automatically con-
structed from documents in natural language, guided by at-
tribute schemas that are manually created by woodworking
experts. The third is automatically inferred from project de-
scriptions. The fourth and the fifth are specified by the user.
All the information mentioned here is converted into ASP
facts. With this information available, an ASP reasoner in-
fers constraints on the new object, answers the question by
checking whether these constraints are satisfied by the new
object, and outputs additional information about this replace-
ment that supports the answer.

Building the Knowledge Base
As mentioned before, among the five aspects that we take
into account to answer questions about alternatives, the sec-
ond one needs to be provided by the domain knowledge base.
The Information Extraction Module (IE Module) is respon-
sible for building this part of domain knowledge base. In this
section, we discuss how we perform the information extrac-
tion. Figure 2 illustrates the whole IE process.

Figure 2: Knowledge Base Construction Pipeline

Relevant Sentence Collecting The first step is to create

Figure 3: Proposition Extraction

a collection of sentences that potentially contains the infor-
mation we need. We collected about 2000 documents from
various websites including tool buying guides, woodworking
blogs, encyclopedia, etc. A dictionary of entities of interests
is defined, including 16 types of saws, 42 types of wood ma-
terial, 6 types of sanding tools, 10 types of fastening tools, 5
types of finishing tools and 5 types of measuring tools. We
use this dictionary to select the sentences where at least one
entity of interest appears from the corpus, and in this way
form the collection of relevant sentences.
Proposition Extraction Extraction from the text is per-
formed mainly via ASP reasoning. We run an ASP solver
on an ASP program which contains rules to extract useful
parts of a sentence to form an atomic proposition. For exam-
ple, from the sentence “Jigsaws are used to cut curves” we
extract the atomic proposition “cut curve(jigsaw).”

Figure 3 illustrates the process. The input is the depen-
dency parsing (De Marneffe et al. 2006) of the sentence, con-
verted into a set of ASP facts. The ASP program for proposi-
tion extraction contains various sentence patterns defined as
abstract dependency parsing, specifying which nodes in the
dependency parsing tree should be extracted. For the above
example, the sentence pattern (as shown in the middle box
in Figure 3) is “ARG is/are used to ExtV ExtN ,” where
ARG, ExtV and ExtN are to be extracted.

Sometimes the modifiers of an extracted token contain key
information as well and thus need to be extracted. To do this,
we first define what a modifier is:

modifying_relation("nmod").



modifying_relation("nmod:of").
...
modifies(MOD,TOK) :- dep(TOK,MOD,R), modifying_relation(R).

Then we write a rule saying “a modifier of an extracted token
is also extracted.”
extracted(MOD) :- extracted(TOK), modifies(MOD, TOK).

Note that this rule defines the concept “extracted” in terms of
itself. Handling such recursive definition is a unique feature
of ASP.
Normalization Having a set of keyword lists extracted
from the text, the next step is to decide for each list whether
the list contains any useful fact about the entity, and if
yes, we derive a KB instance from it, or discard it other-
wise. We do this by defining an attribute schema for each
type of entities. An attribute schema contains a set of at-
tributes along with their values. For example, we define that
cutting tools have the attribute “shape-of-cut”, whose
values could be “straight”, “curve”, “miter-cut”,
“bevel-cut”, etc. Note that in our schema, we allow an
attribute to have multiple values or no values.

To extract attribute values from extracted propositions,
we further define lexicons for each attribute value. For
example, the lexicons for the attribute value straight
of shape-of-cut are: “straight”, “rectangular”,
“stiff”, etc. We then simply detect if any of these lexicons
appears in the extracted proposition. If yes, we construct
an ASP fact of the form attr(X, "Shape-of-Cut",
"Straight").
Inferring attribute values via commonsense rules Since
some attribute values are not specified in the texts, those val-
ues were inferred using ASP rules such as ”If a tool is a
power tool, it is difficult to use.”

Attribute values inferred by these rules are used only when
there is no value extracted from the text. This is implemented
utilizing ASP’s feature of default reasoning. Take the rule
about power tool and difficulty of use as an example. We
first write ASP rules to define “Easy” and “Difficult”
as mutually exclusive values, and then we write:
% By default, power tools are difficult to use
{attr(X,"Difficulty","Difficult")} :- hasModifier(X, "power").

Inferring the Constraints
Having the domain knowledge base available, we can now
write ASP rules to infer constraints that the new object needs
to satisfy. Some examples of constraints inference rules are:
• Constraints from project if any lexicon for “curve” ap-

pears in the description of a step involving cutting, require
the cutting tools used for the project to have the feature
“Shape: Curve”:
step_type(P, ST, "Curve_Cutting") :-

step(P, ST, Act, Desc), step_type(P, ST, "Cutting"),
@meansCurveCutting(Desc) == 1.

req(P, "Cutting", "Shape:Curve") :-
step_type(P, ST, "Curve_Cutting"), project(P).

In the above code, “@meansCurveCutting(Desc)”
is an external Lua function call which returns 1 iff there
is any lexicon defined for curve-cutting appearing in the
string Desc.

• Constraints from DIYer “Kids-friendly” is defined as
“easy to use and safe”; If the user’s age is less than 18,
require tools to be kids-friendly.

hasFeature(X, "Inferred:NotHardToUse") :-
not attrVal(X, "Difficulty", "Difficult"), entity(X).

hasFeature(X,"Inferred:Kids-Friendly") :-
attrVal(X,"Safety","Safe"),
hasFeature(X,"Inferred:NotHardToUse"), entity(X).

req(P, X, "Inferred:Kids-Friendly") :-
user_age(AGE), AGE < 18, action(X),

• Constraints from user If the user specified a time con-
straint which is smaller than the estimated project finish-
ing time plus a time buffer, require tools to have high effi-
ciency.

req(P,X,"Efficiency:High") :-
user_time_budget(TH), total_time_needed(P,TM),
query(P,T1,T2), TH * 60 < TM + TB * 60,
time_buffer(TB), action(X).

Answering the Question
Having the domain knowledge base and the requirements on
the new object, we are ready to answer the question about al-
ternatives. We again use ASP rules to define what the answer
to the question is.

We first define the relations between entities and actions.
The ontology already specifies the corresponding actions of
tools, such as the relation hasAction2. The ontology also
specifies interchangeable actions, such as nailing and screw-
ing3. We define the relation hasDerivedAction in terms
of the relations hasAction and interchangeable. We
say an entity T has derived action Act if T has action Act,
or T has an action Act1 that is interchangeable with Act

hasDerivedAction(T,Act) :- hasAction(T,Act).
hasDerivedAction(T,Act) :-
hasAction(T,Act1),
interchangeable(Act, Act1).

Then we define when the replacement is not recom-
mended. The replacement is not recommended in the fol-
lowing two cases:
• The replacement of T1 by T2 is not recommended if T2

does not support the action that T1 has.

not_recommended(P,T1,T2) :- query(P,T1,T2),
hasDerivedAction(T1,Act), not hasDerivedAction(T2,Act).

• The replacement of T1 by T2 is not recommended if T2
supports all actions that the target entity has, but does not
support some features that are required by the project

not_recommended(P,T1,T2) :- query(P,T1,T2),
req(P,Act,Req), hasDerivedAction(T2, Act),
not hasFeature(T2, Req),

2For example, hasAction("Screwdriver",
"Screwing").

3We consider two actions as interchangeable actions if it is gen-
erally possible to replace one by the other. It does not mean it is
always ok to replace one by the other.



Otherwise, the replacement is possible.

possible(P,T1,T2) :- not not_recommended(P,T1,T2),
query(P, T1, T2).

Result
The final system consists of ∼ 800 ASP facts about entity
features (extracted from the text), ∼700 ASP facts converted
from the ontology, ∼ 8800 ASP facts converted from 44
project instructions and ∼100 ASP rules.

Table 1 shows four question answering examples to illus-
trate the system’s ability to perform context-aware question
answering.

Evaluation
To evaluate our system, we compared our system against on-
line search, a common practice for information seeking, on
41 questions about alternatives.4 To do this, we recruited
about 250 amateur DIYers through Amazon Mechanical
Turk,5 and for each question, we asked three participants to
find an answer using online search and report the answer,
the total time taken and the number of the webpages vis-
ited. If the time exceeded three minutes, we considered it
to fail. For our system, we did not measure the total time
taken since the answer was instantaneously found. Instead
we asked the two questions: (1) whether the answer exhib-
ited sufficient domain knowledge and (2) whether the answer
would be helpful for their potential DIY projects.

Our result shows that our system provides a much better
user experience. First, we find that 40% of the participants
failed to find an answer within three minutes and that the
average number of the websites visited by the participants
was three. This indicates that answering a non-factoid DIY
question using online search requires quite much time and
efforts. Fig 5 shows the result of our system. The feedback
from the participants is positive. 67% participants responded
that the answer provided by our system showed sufficient
domain knowledge, and 83% participants responded that the
answers would be helpful for their future DIY projects.

Figure 4: Results of the Survey

Extension: Incorporating Quantitative
Uncertainty in Answers

Our basic reasoning provides deterministic answers to ques-
tions about alternatives - an either-or “possible/recom-

4These questions were collected through a user study before the
development of the system. In the user study, we asked DIYers to
perform a DIY task while speaking aloud any question and then
recorded those questions.

5http://www.mturk.com

mended” answer and a comparison between the new object
and the target object where a list of Boolean-valued features
is shown. In a real-world setting, often it is more reasonable
to give an answer with a certainty degree (e.g., “The replace-
ment is mildly/strongly recommended”, etc.). This also ap-
plies to the comparison between two objects. Two objects
might have the same feature to different degrees. It is desir-
able if in the comparison we can say things like “A is way
more efficient than B,” “A is slightly less safe than B,” etc.
to describe the situation more precisely. Here we briefly il-
lustrate how this can be implemented in our framework using
ASP.

First, we define each constraint as a weighted sum of a
set of entity features (seen as 1-0 variables). We take “kids-
friendly” and “high-efficiency” for example:

contribute("Difficulty:Easy","Kids-Friendly",10).
contribute("Difficulty:Difficult","Kids-Friendly",-10).
contribute("Safety:Safe","Kid-Friendly",20).
contribute("Safety:Unsafe","Kids-Friendly",-50).
contribute("Efficiency:High","High-Efficiency",50).
contribute("Efficiency:Low","High-Efficiency",-50).

constraint_sat(TAM, CONSTR, X) :-
entity(TAM), constraint(CONSTR),
X = #sum[hasFeature(TAM,F):contribute(F,CONSTR,Y) = Y].

Then we define the certainty degree of recommendation as
the weighted sum of the degree to which all constraints are
satisfied:

all_constraint_sat(TAM,X) :- entity(TAM),
X = #sum[hasConstraint(CONSTR,W):

constraint_sat(TAM,CONSTR,Y) = Y*W].

Finally, we define the advantage and disadvantage of the
new object relative to the target object, as the difference in
the degrees to which each of the two objects satisfies each
constraint

pros(CONSTR,Z) :- query(P,TARGET_TAM,NEW_TAM),
constraint_sat(NEW_TAM,CONSTR,X),
constraint_sat(TARGET_TAM,CONSTR,Y), Z = X - Y, Z > 0.

As an example, suppose the user asks whether it is ok to
use jigsaw instead of hand saw in some project:

query("some-project", "hand-saw", "jigsaw").

And the two constraints “kids-friendly” and “high-
efficiency” are inferred for the project, with “kids-friendly”
considered much more important than “high-efficiency”:

hasConstraint("Kids-Friendly", 10).
hasConstraint("High-Efficiency", 1).

where 10 and 1 represent how important each of the con-
straints is. In real applications, these numbers can be derived
from the context. For example, the importance of “high-
efficiency” can be negatively correlated to the difference be-
tween time budget and estimated project finishing time; the
importance of “kids-friendly” can be negatively correlated to
the user’s age.

The domain knowledge base provides:

entity("jigsaw").
hasFeature("jigsaw", "Difficulty:Difficult").
hasFeature("jigsaw", "Safety:Unsafe").



Question Context Answer

Can I use table saw in-
stead of jigsaw?

Project:
bird house for balcony
and garden1

(where jigsaw is used
cut straight lines)

Possible.
Please be aware of the following differences between the two entities:
jigsaw:
”Shape:Curve” ”Shape:Circle” ”Portability:Portable/Stationary”
table-saw:
”Shape:Ripcut” ”Shape:Bevel-Cut” ”Shape:Miter-Cut” ”Portability:Stationary”

Project:
armchair with stool2

(where jigsaw is used
cut curves)

Not Recommended.
table-saw does not support ”Shape:Curve”.

Can I use nail gun
instead of screwdriver
in the project armchair
with stool?

User Age: Adult

Possible.
Please be aware of the following differences between the two entities:
screwdriver:
”Strength:High” ”Durability:High” ”Cost:High”
nail-gun:
”Safety:Unsafe” ”Strength:Medium” ”Durability:Medium” ”Cost:Medium”

User Age: Kid Not Recommended. nail-gun does not support ”Kids-Friendly”.

Can I hand sand the
surface instead of us-
ing multi-sander in the
project treasure chest3?

Time constraint: 5
hours

Possible.
Please be aware of the following differences between the two entities:
multi-sander:
”Quality:Precise” ”Kids-Friendly:No” ”Surface-Size:Large” ”Power-Source:Corded”
”Material:Wood” ”Shape:Straight” ”Quality:Medium” ”Portability:Portable/Stationary”
”Safety:Unsafe” ”Difficulty:Difficult” ”Efficiency:High”
hand sander:
”Efficiency:Low” ”Power-Source:Manual” ”Portability:Portable” ”Quality:Rough

Time constraint: 3 hours Not Recommended. hand sander does not support ”Efficiency:High”.
1 https://www.bosch-do-it.com/za/en/diy/knowledge/project-guides/birdhouse-for-balcony-and-garden-68609.jsp
2 https://www.bosch-do-it.com/za/en/diy/knowledge/project-guides/armchair-with-stool-68485.jsp
3 https://www.bosch-do-it.com/za/en/diy/knowledge/project-guides/treasure-chest-83813.jsp

Table 1: Showcase Examples of Question Answering

hasFeature("jigsaw", "Efficiency:High").
entity("hand-saw").
hasFeature("hand-saw", "Difficulty:Easy").
hasFeature("hand-saw", "Safety:Moderate").
hasFeature("hand-saw", "Efficiency:Low").

Combining all the above, the ASP solver returns

constraint_sat("hand-saw","High-Efficiency",-50)
constraint_sat("hand-saw","Kids-Friendly",10)
constraint_sat("jigsaw","High-Efficiency",50)
constraint_sat("jigsaw","Kids-Friendly",-60)
all_constraint_sat("hand-saw",50)
all_constraint_sat("jigsaw",-550)
recommendation_level("jigsaw",-550)
pros("High-Efficiency",100) cons("Kids-Friendly",70)

which can be interpreted as “It is strongly not recommended
to replace hand saw with jigsaw. Jigsaw is much more ef-
ficient than hand saw, but it is less kids-friendly than hand
saw”.

Conclusion
We presented a framework for non-factoid question answer-
ing in DIY domains. We took a logic-based approach to such
non-factoid question answering. We showed how a specific
type of questions — questions about alternatives was han-
dled in this framework, from constructing the knowledge
to the reasoning process involved in answering this type of
questions. We also discussed how more advanced reasoning
can be implemented in the framework. The evaluation result
suggests our approach is promising. The future work is to ex-

tend the framework to account for other types of hypothetical
reasoning in DIY domains.

Acknowledgments We are grateful to the anonymous ref-
erees for their useful comments on the draft of this paper.
This work was partially supported by the National Science
Foundation under Grants IIS-1319794 and IIS-1526301.

References
Aditya, S.; Baral, C.; Vo, N. H.; Lee, J.; et al. 2015. Rec-
ognizing social constructs from textual conversation. In
NAACL HLT 2015, 1293–1298.
De Marneffe, M.-C.; MacCartney, B.; Manning, C. D.; et al.
2006. Generating typed dependency parses from phrase
structure parses. In Proceedings of LREC, volume 6, 449–
454.
Ferrucci, D.; Brown, E.; Chu-Carroll, J.; Fan, J.; Gondek, D.;
Kalyanpur, A. A.; Lally, A.; et al. 2010. Building watson: An
overview of the DeepQA project. AI magazine 31(3):59–79.
Gelfond, M., and Lifschitz, V. 1988. The stable model se-
mantics for logic programming. In Proceedings of Inter-
national Logic Programming Conference and Symposium,
1070–1080. MIT Press.
Lifschitz, V. 2008. What is answer set programming? In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
1594–1597. MIT Press.
Waltinger, U.; Tecuci, D.; Olteanu, M.; Mocanu, V.; and Sul-
livan, S. 2013. USI answers: Natural language question an-
swering over (semi-) structured industry data. In IAAI.


