On Reductive Semantics of Aggregates
in Answer Set Programming

Joohyung Lee and Yunsong Meng

Computer Science and Engineering
Arizona State University, Tempe, AZ, USA
{joolee, Yunsong.Meng}@asu.edu

Abstract. Several proposals of the semantics of aggregates are based on
different extensions of the stable model semantics, which makes it diffi-
cult to compare them. In this note, building upon a reductive approach
to designing aggregates, we provide reformulations of some existing se-
mantics in terms of propositional formulas, which help us compare the
semantics and understand their properties in terms of their propositional
formula representations. We also present a generalization of semantics of
aggregates without involving grounding, and define loop formulas for
programs with aggregates guided by the reductive approach.

1 Introduction

Defining a reasonable semantics of aggregates under the stable model semantics
has turned out to be a non-trivial task. An obvious “reductive” approach to
understand an aggregate as shorthand for a nested expression [1] in the form
of disjunctions over conjunctions leads to unintuitive results. For instance, one
would expect {p(0),p(1)} to be the only answer set of the following program.

p(1) p(0) —sum{z : p(z)}) = 1.

Assuming that the domain is {0, 1}, one may try to identify sum{{z : p(z)}) =1
with the disjunction over two “solutions,”—one in which only p(1) is true, and
the other in which both p(0) and p(1) are true. However, the resulting program

p(1) p(0) < (p(0),p(1)) ; (not p(0),p(1))

has no answer sets. !

The difficulty led to several interesting extensions of the stable model seman-
tics to account for aggregates, such as an extended definition of the reduct [2],
an extension of Tp operator with “conditional satisfaction” [3], and an extension
of the standard approximating operator @p to @39 [4]. On the other hand, a
few reasonable “reductive” semantics of aggregates were also developed. In [4]
and [5], the authors defined translations of aggregates into nested expressions,

! Dropping negative literals in forming each conjunct does not work either. For in-
stance, consider p(1) <« suM{{z : p(x)}) # 1, which intuitively has no answer sets,
but its translation, assuming that the domain is {1}, results in p(1) « T.

2 Joohyung Lee and Yunsong Meng

which are somewhat complex than the naive approach above. In [6], instead of
translating into nested expressions, Ferraris proposed to identify an aggregate
with conjunctions of implications under his extension of the answer set seman-
tics for arbitrary propositional formulas. The extended semantics is essentially
a reformulation of the equilibrium logic [7], and was generalized to arbitrary
first-order formulas in [8].

While most semantics agree on monotone and anti-monotone aggregates,
they have subtle differences in understanding arbitrary aggregates. For example,
the following program IT;

p(2) «— not suM{{z : p(z)}) < 2
p(—=1) «— sum{{z : p(z)}) >0
p(1) < p(-1) .

has no answer sets according to [3,4], one answer set {p(—1),p(1)} according
to [2], and two answer sets {p(—1),p(1)} and {p(—1), p(1),p(2)} according to [6].

In this paper we make further developments on the reductive approach. We
note that the semantics by Pelov, Denecker and Bruynooghe [4] and the se-
mantics by Ferraris [6] are closely related to each other in terms of propositional
formula representations of aggregates, yielding a few interesting alternative char-
acterizations. Furthermore we show that the semantics by Faber, Leone and
Pfeifer [2] can also be reformulated in terms of propositional formulas. Such
uniform characterization helps us compare the semantics and understand their
properties by turning to their propositional formula representations. We define
loop formulas for programs with aggregates guided by the reductive approach;
such loop formulas contain aggregates, and when these aggregates are turned
into corresponding propositional formulas, the resulting formulas are the same
as the loop formulas as defined in [9] for the propositional theory corresponding
to the program with aggregates.

2 Background

2.1 Answer sets of First-Order Formulas

We review the definition of an answer set from [8]. Let p be a list of predicate
constants pi1,...,pn, and let u be a list of predicate variables uq,...,u,. By
u < p we denote the conjunction of the formulas Vx(u;(x) — p;(x)) for all
i =1,...n where x is a list of distinct object variables of the same length as the
arity of p;, and by u < p we denote (u < p) A =(p < u).

For any first-order sentence F, SM[F] stands for the second-order sentence

F A—=3u((u<p)AF*(u)), (1)
where p is the list pq, ..., p, of all predicate constants occurring in F', u is a list
U1, ..., u, of distinct predicate variables, and F*(u) is defined recursively:

- pi(tl,...,tm)* :ul(tl,,tm),
— (ti=t2)* = (t1 =t2); —1*=1;

On Reductive Semantics of Aggregates in Answer Set Programming 3

- (FOG)*=(F*®G*), where ® € {A,V};
—(F=G)=F" = G)N(F = G);
— (QxF)* = QzF*, where Q € {V,3}.

(There is no clause for negation here, —F is treated as shorthand for ' — 1.)

Let o(F) be the signature consisting of the object, function and predicate
constants occurring in F. According to [8], an interpretation of o (F') that satisfies
SMIF] is called a stable model of F. If F' contains at least one object constant,
an Herbrand stable model of F' is called an answer set of F'. The answer sets
of a logic program II are defined as the answer sets of the FOL-representation
of IT (i.e., the conjunction of the universal closure of implications corresponding
to the rules).

Ferraris et al. [8] shows that this definition, if restricted to the syntax of
traditional logic programs, is equivalent to the traditional definition of an answer
set based on grounding and the reduct [10], and, if restricted to the syntax of
arbitrary propositional formulas, is equivalent to the definition of an answer set
given by Ferraris [6].

2.2 Syntax of a Program with Aggregates

An aggregate function is any function that maps multisets of objects into num-
bers, such as count, sum, times, min and maz. For this paper we assume that all
numbers are integers. The domain of an aggregate function is defined as usual.
For instance, sum, times, min and maz are defined for multisets of numbers;
man and max do not allow the empty set in their domains.

An aggregate expression is of the form

oP{{x: F(x)}) = b (2)

where

OP is a symbol for an aggregate function op;

— x is a nonempty list of distinct object variables;

— F(x) is an arbitrary quantifier-free formula;

— » is a symbol for a binary relation over integers, such as <, >, <, >, =, #;
— b is an integer constant.

A rule (with aggregates) is an expression of the form
Ay ;... Ay~ Ey,...,En,not Epyq,...,not E, (3)

(I > 0;n>m > 0), where each A; is an atomic formula (possibly containing
equality) and each E; is an atomic formula or an aggregate expression. A program
(with aggregates) is a finite set of rules.

Throughout this paper, unless otherwise noted (e.g., Section 4.1), we assume
that the program contains no function constants of positive arity. We do not
consider symbols OP and > as part of the signature.

We say that an occurrence of a variable v in a rule (3) is bound if the
occurrence is in an aggregate expression (2) such that v is in x; otherwise it is

4 Joohyung Lee and Yunsong Meng

free. We say that v is free in the rule if some occurrence of v is free in it. Given a
program I, by o(IT) we mean the signature consisting of object and predicate
constants that occur in I1. By Ground(II) we denote the program without free
variables that is obtained from IT by replacing every free occurrence of variables
with every object constant from o(I7) in all possible ways.

2.3 Review: FLP Semantics

The FLP semantics [2] is based on an alternative definition of the reduct and the
notion of satisfaction extended to aggregate expressions. Let IT be a program
such that o(IT) contains at least one object constant.? We consider Herbrand
interpretations of o(IT) only. Consider any aggregate expression (2) occurring
in Ground(IT) and any Herbrand interpretation I of o(IT). Let St be the multiset
consisting of all ¢[1] (i.e., the first element of ¢) in the Herbrand universe where

— cis a list of object constants of o(II) whose length is the same as the length

of x, and
— I satisfies F(c).

A set I of ground atoms of o(I]) satisfies the aggregate expression if Sy is in the
domain of op, and op(Sy) = b. 3

The FLP reduct of IT relative to I is obtained from Ground(II) by removing
every rule whose body is not satisfied by I. Set I is an FLP answer set of II if
it is minimal among the sets of atoms that satisfy the FLP reduct of IT relative
to I. For example, in program II; (Section 1), the FLP reduct of II; relative
to {p(—1),p(1)} contains the last two rules only. Set {p(—1),p(1)} is minimal
among the sets of atoms that satisfy the reduct, and thus is an FLP answer set
of IT;. One can check that this is the only FLP answer set.

2.4 Review: Ferraris Semantics

The Ferraris semantics [6] can be extended to allow variables as follows.
Notation: Given a multiset of object constants {c1,...,¢, },
op{{c1,...,cn}) = b
if
— b is an integer constant,
— multiset {ecq,..., ¢y} is in the domain of op, and

— op({c1y ..., enl}) =0

opP({c1,...,cn}) # bif it is not the case that oP({cy,...,cn}) = b.

Let E = op({x : F(x)}) » b be an aggregate expression occurring in
Ground(IT), let Oz (E) be the set of all lists of object constants of o(II') whose
length is the same as the length of x , and let Cr7(E) be the set of all subsets C
of O (E) such that or({c[1] : c € C}) # b. For instance, in program IT; (Sec-
tion 1), for By = suM{{x : p(z)}) < 2, set Oy, (E1) is {—1,1,2}, and Cyy, (Ey)
is {{2},{1,2},{-1,1,2}}. Similarly, for E» = sum{{x : p(x)}) > 0, set Cr, (E2)
is {{—1}}.

2 The syntax in [2] requires F(x) to be a conjunction of atoms.
3 By an atom we mean a non-equality atomic formula of the form p(t1, ... tn).

On Reductive Semantics of Aggregates in Answer Set Programming 5

By Fer(E) we denote

A (ANFe— V F©). 4)

CeCp(E) c€C ceOn(E)\C

For instance, Fery, (E1) is
(p(2) = p(=1) Vp(1)) A (p(1) Ap(2) — p(=1)) A (p(=1) Ap(1) Ap(2) — L) .

By Fer(II) we denote the propositional formula obtained from Ground(IT)
by replacing every aggregate expression E in it by Fer 7 (E). The Ferraris answer
sets of IT are defined as the answer sets of Fer(II) in the sense of Section 2.1.
For example, the Ferraris answer sets of I are the answer sets of the following
formula Fer(IT;):*

()
This formula has two answer sets: {p(—1),p(1)} and {p(—1),p(1),p(2)}.

2.5 Review: SPT-PDB Semantics

Son and Pontelli [5] presented two equivalent definitions of aggregates, one in
terms of “unfolding” into nested expressions, and the other in terms of “condi-
tional satisfaction.” The latter notion was simplified by Son, Pontelli and Tu [3].
Lemma 6 from [5] shows that these definitions are equivalent to the definition
by Pelov, Denecker and Bruynooghe [4], which is in terms of translation into
nested expressions. Thus we group them together and review only the last one.’

Under the SPT-PDB semantics, an aggregate can be identified with a nested
expression in the form of disjunctions over conjunctions, but unlike the naive
attempt given in the introduction, it involves the notion of a “(maximal) local
power set.”

Given a set A of some sets, a pair (B,T) where B,T € A and B C T is
called a local power set (LPS) of A if every S such that B C S C T belongs to A
as well. A local power set is called mazimal if there is no other local power set
(B',T") of A such that BPC Band T C T".

The SPT-PDB semantics eliminates the negation in front of an aggregate ex-
pression using an equivalent transformation. Let Pos(II) be a program obtained
from IT by replacing not E; in each rule (3) where F; = oP{({x : F(x)}) = b
with oP({x : FI(x)}) < b (< is the symbol for the relation complementary to >).
Clearly, Pos(II) contains no negation in front of aggregate expressions. For in-
stance, the first rule of Pos(Il;) is

p(2) — sum({z : p(a)}) > 2

4 We underline the parts of a formula that correspond to aggregates.
5 We ignore some differences in the syntax, and allow disjunctions in the head.

6 Joohyung Lee and Yunsong Meng

Let E = orp{({x : F(x)}) = b be an aggregate expression occurring in
Ground(Pos(IT)), let HUp be the set of all ground atoms that can be con-
structed from o(II). Let Z;7(E) be the set of all Herbrand interpretations I of
o(IT) such that I = E (satisfaction as defined in Section 2.3). For instance, in
Example IT;, HUy, is {p(—1),p(1),p(2)}, and, for By = sum{{z : p(x)}) > 2,
I, (El) is {{p(2)}a {p(l)ap(2>}" {p(—l),p(l),p(Q)}}, and Zp7, (E2) is

{0, {p(D}, {p(2)}, {p(=1), p(D} {p(=1),p(2)}, {p(1), p(2)}, {p(=1), (1), p(2) } } .

The maximal local power sets of Zr7, (E;) are

{r(2)}{p(1),p(2)}), {p(1),p(2)}, {p(=1),p(1),p(2)}),

and the maximal local power sets of Zp, (E5) are

0,{p(1),p(2)}), {p(}{p(=1),p(1),p(2)}), {r(2)},{p(=1),p(1),p(2)}).
For any aggregate expression E occurring in Ground(Pos(IT)), by SPT-PDB ;(E)

we denote
\/ (AAr A ﬁA). (6)

(B,T) is a maximal LPS of Iy (E) A€B A€eHU g\T

For instance, SPT-PDBpz, (E1) is (p(2) A —p(=1)) V (p(1) A p(2)).
By SPT-PDB(IT) we denote the propositional formula obtained from Ground(Pos(IT))
by replacing all aggregate expressions E in it by SPT-PDB;(E). The SPT-PDB
answer sets of II are defined as the answer sets of SPT-PDB(II) in the sense
of Section 2.1. For example, 111 has no SPT-PDB answer sets, and neither does
the following formula SPT-PDB(I1;):

([(p(2) A =p(=1)) V (p(1) A p(2))] — p(2))

A ([zp(=1) vp(1) Vp(2)] = p(=1)) (7)
A (p(=1) = p(1)) .

3 Comparison of the Semantics of Aggregates

3.1 A Reformulation of Ferraris Semantics
The propositional formula representation of an aggregate according to the Fer-
raris semantics can be written in a more compact way by considering maximal
local power sets as in the SPT-PDB semantics.

For an aggregate expression that contains no free variables, by MLPS-Fer(E)

we denote
A (AFe)— '\ F(c)). (8)

(B,T) is a maximal LPS of C;7(E) ¢€B ceOn(E)\T

One can prove that formulas (4) and (8) are strongly equivalent [11] to each
other, which provides another characterization of Ferraris answer sets. We define
MLPS-Ferraris answer sets of II same as the Ferraris answer sets of II except
that we refer to (8) in place of (4). The following proposition follows from the
strong equivalence between (4) and (8).

On Reductive Semantics of Aggregates in Answer Set Programming 7

Proposition 1 The MLPS-Ferraris answer sets of Il are precisely the Ferraris
answer sets of 1I.

For example, in program II;, the maximal local power sets of @gl (E4) are
({2},{1,2}), ({1,2},{-1,1,2}). The maximal local power set of Cj, (E2) is
({—1},{-1}). Formula (5) is strongly equivalent to this shorter formula

(=[(p(2)=p(=1) A (p()AP(2) = L)] — p(2))
A ([p(=1)=p(1)vp(2)] — p(-1))
A (p(=1) — p(1)) .

3.2 A Reformulation of FLP Semantics

The FLP semantics can also be defined by reduction to propositional formulas.
For an aggregate expression E that contains no free variables, let Z;7(E) be the
set of all Herbrand interpretations I of o(IT) such that I & E (as defined in
Section 2.3). Clearly Z7(E) and Zy7(E) partition HU;. By FLP 7 (E) we denote

A (ANa—= \ 4a). 9)

I€Tn(E) Ael A€eHUp\I

As with the SPT-PDB semantics, before turning a program to the propositional
formula representation for the FLP semantics, we eliminate the negation in front
of an aggregate expression using an equivalent transformation. By FLP(II) we
denote the propositional formula obtained from Ground(Pos(II)) by replacing
all aggregate expressions F in it by FLP(E) (Recall the definition of Pos(IT)
in Section 2.5).

Proposition 2 For any program II, the FLP answer sets of II (Section 2.3)
are precisely the answer sets of FLP(II).

For example, in program 11, Tnl (ET) is {0, {p(=1)},{p())},{p(~1),p(1)},
{p(-1),p(2)}} and Z 7, (E>) is {{p(—1)}}, so that FLP(II;) is
((lp(=1)Vp(1)Vp(2)) A (p(=1) = p(1) Vp(2)) A (p(1) = p(=1)Vp(2))
Ap(=1) Ap(1) =p(2)) A (p(=1)Ap(2) = p(1))] — p(2))
A ([p(=1) —p(1)Vp(2)] — p(-1))
A (p(=1) = p(1)) .
Similar to (8), formula FLP(II) can also be simplified using the notion
of maximal local power sets, which provides yet another characterization of

the FLP semantics. We call the resulting propositional formula representation
MLPS-FLP(II).

Lemma 1. Formula (9) is strongly equivalent to
A (Aa- V 4) (10)
(B,T) is a mazimal LPS of I;;(E) A€B A€eHUp\T
For example, FLP(II;) has the same answer sets as the following MLPS-FLP(I1;):

([p(2) A (p(=1) = p(1))] = p(2)) A ([p(=1) = p(1) Vp(2)| = p(=1)) A (p(—l)*(li(ll))) :

8 Joohyung Lee and Yunsong Meng

3.3 A Reformulation of SPT-PDB Semantics

Consider the following formula modified from (9) by simply eliminating impli-
cations in favor of negations and disjunctions as in classical logic:

A (\/ﬁA\/ \/A). (12)

IeZ (E) A€l A€eHU\I

Formulas (12) and (9) are classically equivalent to each other, but not strongly
equivalent. However, interestingly, (12) is strongly equivalent to (6), which in
turn provides a simple reformulation of the SPT-PDB semantics, without in-
volving the notion of local power sets. We define modified FLP answer sets of IT
same as in Section 3.2 except that we refer to (12) in place of (9).

Proposition 3 For any program II, the modified FLP answer sets of II are
precisely the SPT-PDB answer sets of I1.

For instance, the SPT-PDB answer sets of II; are the same as the answer sets
of the following formula:

((lp(=1)Vp(1)Vp(2)) A (=p(=1) V(1) Vp(2)) A (=p(1) Vp(=1)Vp(2))
AEp(=1)V-p(1)Vp(2)) A (=p(=1)V-p(2)Vp(1))] — p(2))

A ([Ep(=1)vp(1)vp(2)] — p(-1))

A (p(=1) = p(1)) .

Similar to the Ferraris and the FLP semantics, considering maximal local

power sets can yield shorter propositional formula representation as the following
lemma, tells.

(13)

Lemma 2. Formula (12) is strongly equivalent to

A (V-av \ a). (14)

(B,T) is a mazimal LPS of Tz(E) A€B AeHUp\T

Again note the similarity between (14) and (10). They are classically equivalent
to each other, but not strongly equivalent.

3.4 Relationship between the Semantics

The characterizations of each semantics in terms of the uniform framework of
propositional formulas give new insights into their relationships. Note that for
any aggregate expression E, formulas SPT-PDB;(FE), FLP;(E), Ferp(E) are
classically equivalent to each other, but not strongly equivalent.

It is not difficult to check that for any aggregate expression E occurring in
Ground(Pos(II)), formula SPT-PDB;(E) entails FLP ;(E) under the logic of
Here-and-There, but not the other way around. Using this fact, we can prove
the following.

Proposition 4 [5, Theorem 2] Every SPT-PDB answer set of IT is an FLP
answer set of II.

On Reductive Semantics of Aggregates in Answer Set Programming 9

For program II;, its only FLP answer set is a Ferraris answer set. Indeed,
such relationship holds if the program is “semi-positive.” We call a program
semi-positive if, for every aggregate expression (2) occurring in it, F(x) is a
quantifier-free formula that contains no implications (this, in particular, means
that there are no negations since we treat -G as shorthand for G — 1). For
example, I, is semi-positive.

Proposition 5 For any semi-positive program II, every FLP answer set of II
is a Ferraris answer set of II.

However, the relationship does not hold for arbitrary programs. For instance,
the following non-semi-positive program

p(a) — couNT({z : ~—p(x) V q(2)}) # 1
q(b) — p(a)
p(a) < q(b)

has no Ferraris answer sets while it has only one FLP answer set {p(a), q(b)}.

The following proposition is a slight extension of Theorem 3 from [6], which
describes a class of programs whose FLP answer sets coincide with Ferraris
answer sets.

Proposition 6 For any semi-positive program II, the FLP answer sets of IT
are precisely the Ferraris answer sets of Pos(II).

4 Generalized Definition of Aggregates

4.1 Syntax and Semantics of Aggregate Formulas

In this section we provide a general definition of a stable model that applies
to arbitrary “aggregate formulas” in the style of the definition in Section 2.1,
by extending the notion F* to aggregate expressions in a way similar to other
connectives and using the extended notion of satisfaction as in the FLP semantics
(Section 2.3).

We allow the signature to contain any function constants of positive arity, and
allow b in aggregate expression (2) to be any term. We define aggregate formulas
as an extension of first-order formulas by treating aggregate expressions as a
base case in addition to (standard) atomic formulas (including equality) and
L (falsity). In other words, aggregate formulas are constructed from atomic
formulas and aggregate expressions using connectives and quantifiers as in first-
order logic. For instance,

(sum{{z i p(x)}) > 1V 3yq(y)) — r(z)

is an aggregate formula.

We say that an occurrence of a variable v in an aggregate formula H is bound
if the occurrence is in a part of H of the form {x : F(x)} where v is in x, or in a
part of H of the form QuG. Otherwise it is free. We say that v is free in H if H

10 Joohyung Lee and Yunsong Meng

contains a free occurrence of v. An aggregate sentence is an aggregate formula
with no free variables.

The definition of an interpretation is the same as in first-order logic. Consider
an interpretation I of a first-order signature ¢ that may contain any function
constants of positive arity. By o/l we mean the signature obtained from o by
adding distinct new object constants d*, called names, for all d in the universe
of I. We identify an interpretation I of o with its extension to ¢!/l defined by
I(d*) =d.

The notion of satisfaction in first-order logic is extended to aggregate sen-
tences, similar to the definition given in Section 2.3. The integer constants and
built-in symbols, such as 4+, —, <, > are evaluated in the standard way, and we
consider only those “standard” interpretations.® Let I be an interpretation of
signature o. Consider any aggregate expression (2) that has no free variables.
Let Sy be the multiset consisting of all d[1] in the universe of I where

— d* is a list of object names of o/l whose length is the same as the length
of x, and
— I satisfies F(d*).

An interpretation I satisfies the aggregate expression if Sy is in the domain of op,
and op(Sy) = bl.

For any aggregate sentence F', expression SM[F] stands for (1) where F™*(u)
is extended to aggregate expressions as

= (op{{x: F(x)}) = b)" = (oP({x: F"(x)}) = b) A (0P({x : F(x)}) = b).

By a stable model of F' we mean a model of SM[F| (under the extended
notion of satisfaction).

4.2 Programs with Aggregates as a Special Case

The AF-representation (“Aggregate Formula representation”) of (3) is the uni-
versal closure of the aggregate formula

El/\"'/\Em/_‘ m+1/\-~/\—|En—>A1\/"'\/Al. (15)

The AF-representation of II is the conjunction of the AF-representation of its
rules.

The stable models of I are defined as the stable models of the AF-representation
of II. The following proposition shows that this definition is a proper general-
ization of the Ferraris semantics.

Proposition 7 Let II be a program that contains no function constants of pos-
itive arity and let F' be its AF-representation. The Herbrand stable models of F
whose signature is o(II) are precisely the Ferraris answer sets of I1.

5 For instance, we assume that, when z or y is not an integer, z < y evaluates to false,
and = + y has an arbitrary value according to the interpretation.

On Reductive Semantics of Aggregates in Answer Set Programming 11

5 Loop Formulas for Programs with Aggregates

Let us identify rule (3) with
A« B,C,N (16)

where A = {A;,...,A;}, B is the set of all atoms (i.e., non-equality atomic for-

mulas) from {Ey, ..., By, }, Cis the set of all aggregate expressions from {E1, ..., E,,}

and N is the set of the remaining expressions in the body. We assume that the
rules contain no free variables and no function constants of positive arity and
that F'(x) in every aggregate expression (2) is a conjunction of atoms. Follow-
ing [12], for any aggregate expression E = oP({x : F(x)}) = b and any finite set
Y of ground atoms, formula NFESg(Y) is defined as the conjunction of

or({x : F(x)A [\ t#t})=b

p; () occurs in F(x)
p;(t/)€Y

and E. For instance, in Example ITy, formula NFESg,({p(—1),p(1)}) is
suM{z :p(z) Nx#—-1Az#1}) >0 A suM{{z :p(x)}) > 0.

For any finite set Y of expressions, by Y and YV we denote the conjunction
and, respectively, disjunction of the elements of Y. We define the external support
formula of Y for IT, denoted by ES (YY), as the disjunction of

B"A N\ NFESp(Y)AN"A =(A\Y)"
EeC

for all rules (3) in IT such that ANY # 0 and BNY = (. The (conjunctive)
aggregate loop formula of Y for IT is the aggregate formula

YN = ESp(Y) . (17)

This definition extends the definition of a loop formula given in [13], which is
limited to programs with monotone aggregates.
For instance, if Y is {p(—1),p(1)}, the loop formula of Y for II; is

p(—=1) Ap(l) = (suM{{z : p(x) Nz£—-1Ax#1}) > 0) Asum{{z : p(z)}) >0 .

The PL representation of (17) is the propositional formula obtained from (17)
by replacing all occurrences of aggregate expressions E in it with MLPS-Fer(E).
The Ferraris dependency graph of II is the directed graph such that

— its vertices are the ground atoms of o (IT);
— for every rule (16) in Ground(II), it has edges from each element of A to p(t)
e if p(t) is an element of B, or
o if there are an aggregate expression (2) in C, a maximal local power
set (B',T) of Crz((2)) and an element ¢ in Op((2)) \ T such that p(t)
belongs to F(c).

12 Joohyung Lee and Yunsong Meng

It is not difficult to check that the Ferraris dependency graph of IT according
to this definition is the same as the dependency graph of the propositional for-
mula MLPS-Fer(II) according to [9]. A loop is a nonempty set L of ground
atoms of o(II) such that the subgraph of the dependency graph of IT induced
by L is strongly connected. Again, L is a loop of IT according to this definition iff
it is a loop of MLPS-Fer(II) according to [9].” For example, II; has four loops:

{p(=1}, {p(D)}, {p(2)}, {p(=1),p(1)}.

Proposition 8 For any set X of ground atoms of o(II) that satisfies I, the
following conditions are equivalent to each other.

(a) X is a Ferraris answer set of II ;

(b) for every loop Y of II, X satisfies the aggregate loop formula of Y for II;

(c) for every loop Y of II, X satisfies the PL representation of the aggregate
loop formula of Y for II;

(d) for every loop Y of MLPS-Fer(II) according to [9], X satisfies the loop
formula of Y for MLPS-Fer(II) according to [9].

This result can be extended to the general case when F(x) in an aggregate
expression (2) is an arbitrary quantifier-free formula, by using the notion of
NFESp that is defined in [12]. The definition of external support formula above
is closely related to the definition of unfounded sets under the FLP semantics
given in [14]. Indeed, one can define loop formulas and loops under the FLP
semantics in a similar way based on the reductive approach.

You and Liu [15] presented the definition of loop formulas under the SPT-
PDB semantics. We note that a set of ground atoms is a loop of II according to
their definition iff it is a loop of SPT-PDB(II) according to [9]. The same can
be said about loop formulas.

6 Conclusion

The paper presented several reformulations of the semantics of aggregates in
terms of propositional formulas. The resulting formulas are classically equivalent
to each other but not strongly equivalent, which results in different semantics.
The reformulations give us insights into each of the semantics in terms of the
underlying general language. Guided by the reduction, we defined the loop for-
mulas of a program with aggregates, which result in the same as loop formulas
of the corresponding propositional formula representation.

The reductive approach led us to the general semantics of aggregates pre-
sented in Section 4, which extends the definition of a stable model of a first-order
formula to an aggregate formula, using a notion of satisfaction extended from
the one used in the FLP semantics. The new semantics is more general than that
of RASPL-1 [16] in that it allows arbitrary aggregates and non-Herbrand stable
models, along with built-in functions. On the other hand, it is not fully reductive;
it requires the notion of satisfaction be extended to aggregate expressions, while

" Note that Fer(IT) may contain redundant loops not present in MLPS-Fer(IT). For
example, consider p(1) — sum{{z : p(z)}) > 1 p(—1) —p(1) .

On Reductive Semantics of Aggregates in Answer Set Programming 13

a counting aggregate expression in RASPL-1 was defined as an abbreviation for
a first-order formula.

Acknowledgements We are grateful to Vladimir Lifschitz and Tran Cao
Son for helpful discussions and to the anonymous referees for their useful com-
ments on this paper. This work was partially supported by the National Science
Foundation under Grant IIS-0839821.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

Lifschitz, V., Tang, L.R., Turner, H.: Nested expressions in logic programs. Annals
of Mathematics and Artificial Intelligence 25 (1999) 369-389

Faber, W., Leone, N., Pfeifer, G.: Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. In: Proc. European Conference on Logics in
Artificial Intelligence (JELIA). (2004)

Son, T.C., Pontelli, E., Tu, P.H.: Answer sets for logic programs with arbitrary
abstract constraint atoms. J. Artif. Intell. Res. (JAIR) 29 (2007) 353-389

Pelov, N., Denecker, M., Bruynooghe, M.: Translation of aggregate programs to
normal logic programs. In: Proc. Answer Set Programming. (2003)

Son, T.C., Pontelli, E.: A constructive semantic characterization of aggregates in
answer set programming. TPLP 7(3) (2007) 355-375

Ferraris, P.: Answer sets for propositional theories. In: Proc. International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR). (2005)
119-131

Pearce, D.: A new logical characterization of stable models and answer sets. In Dix,
J., Pereira, L., Przymusinski, T., eds.: Non-Monotonic Extensions of Logic Pro-
gramming (Lecture Notes in Artificial Intelligence 1216), Springer-Verlag (1997)
57-70

Ferraris, P., Lee, J., Lifschitz, V.: A new perspective on stable models. In: Proc. In-
ternational Joint Conference on Artificial Intelligence (IJCAI). (2007) 372-379
Ferraris, P., Lee, J., Lifschitz, V.: A generalization of the Lin-Zhao theorem. Annals
of Mathematics and Artificial Intelligence 47 (2006) 79-101

Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In
Kowalski, R., Bowen, K., eds.: Proceedings of International Logic Programming
Conference and Symposium, MIT Press (1988) 1070-1080

Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM
Transactions on Computational Logic 2 (2001) 526-541

Lee, J., Meng, Y.: On loop formulas with variables. In: Proc. International Con-
ference on Knowledge Representation and Reasoning (KR). (2008) 444-453

Liu, L., Truszczynski, M.: Properties and applications of programs with monotone
and convex constraints. J. Artif. Intell. Res. (JAIR) 27 (2006) 299-334

Faber, W.: Unfounded sets for disjunctive logic programs with arbitrary aggregates.
In: Proc. International Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR). (2005) 40-52

You, J.H., Liu, G.: Loop formulas for logic programs with arbitrary constraint
atoms. In: Proc. AAATI Conference on Artificial Intelligence (AAAT). (2008) 584—
589

Lee, J., Lifschitz, V., Palla, R.: A reductive semantics for counting and choice
in answer set programming. In: Proc. AAAI Conference on Artificial Intelligence
(AAAT). (2008) 472-479

