
A Reductive Semantics for Counting and Choice
in Answer Set Programming

Joohyung Lee1 Vladimir Lifschitz 2 Ravi Palla1

1 Computer Science and Engineering 2 Department of Computer Sciences
School of Computing and Informatics University of Texas at Austin

Arizona State University 1 University Station C0500
Tempe, AZ 85281, USA Austin, TX 78712, USA

{joolee, Ravi.Palla}@asu.edu vl@cs.utexas.edu

Abstract

In a recent paper, Ferraris, Lee and Lifschitz conjectured that
the concept of a stable model of a first-order formula can be
used to treat some answer set programming expressions as
abbreviations. We follow up on that suggestion and introduce
an answer set programming language that defines the mean-
ing of counting and choice by reducing these constructs to
first-order formulas. For the new language, the concept of a
safe program is defined, and its semantic role is investigated.
We compare the new language with the concept of a disjunc-
tive program with aggregates introduced by Faber, Leone and
Pfeifer, and discuss the possibility of implementing a frag-
ment of the language by translating it into the input language
of the answer set solverDLV . The language is also compared
with cardinality constraint programs defined by Syrjänen.

Introduction

In the stable model semantics (Gelfond and Lifschitz 1988),
a logic program with variables is viewed as shorthand for
the set of all ground instances of its rules. In the existing
proposals on extending this semantics to more general pro-
grams, variables are treated, for the most part, in the same
way, although the process of grounding often becomes more
complicated. For instance, the semantics of disjunctive pro-
grams with aggregates from (Faberet al. 2004) divides this
operation into two parts—a “global substitution” and a “lo-
cal substitution.”

The definition of a stable model for first-order formulas
proposed in (Ferrariset al. 2007) and reviewed in the next
section is an exception: it does not refer to grounding. In-
stead, it employs a syntactic transformation of formulas with
variables that is similar to circumscription (McCarthy 1980).
As part of motivation for their work, the authors talk about
the possibility of treating choice rules and cardinality con-
straints with variables1 as abbreviations for first-order for-

Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1These two constructs play an important part in the input lan-
guage ofLPARSE (http://www.tcs.hut.fi/Software/
smodels/lparse.ps.gz)—the front-end ofSMODELS and
several other answer set solvers.

mulas.2 For instance, the choice rule

{q(x)} ← p(x)

(“for any element ofp decide arbitrarily whether or not to
include it inq”) can be thought of as an abbreviation for the
formula

∀x(p(x)→ (q(x) ∨ ¬q(x))). (1)

Alternatively, this choice rule can be treated as shorthandfor

∀x((p(x) ∧ ¬¬q(x))→ q(x)). (2)

(Since formulas (1) and (2) are logically valid, the models
of a formula that includes (1) or (2) as a conjunctive term
will not change if we drop that term. But thestablemodels
of the formula can be affected by such a transformation.3 In
this sense, (1) and (2) are nontrivial.) As another example,
consider the cardinality constraint

1 {¬q(x) : p(x)}

(“there exists at least one element ofp that doesn’t belong
to q”). In the spirit of the approach outlined in (Ferrariset al.
2007), this constraint in the body of a rule can be identified
with the formula

∃x(¬q(x) ∧ p(x)).

We follow up on that suggestion and introduce here an
answer set programming language that defines the mean-
ing of counting and choice by reducing these constructs to
first-order formulas. The language is called RASPL-1, for
Reductive Answer Set Programming Language, version 1.
(In future versions, this language will be extended by aggre-
gates other than counting.) We discusssafety, a condition

2This idea generalizes the approach to propositional choice
rules and aggregates investigated in (Ferraris and Lifschitz 2005)
and (Ferraris 2005, Section 4).

3 The class of “strongly equivalent” transformations, whichdo
not change the stable models of a first-order formula, is studied
in (Lifschitz et al. 2007). It includes all transformations that are
sanctioned by intuitionistic logic, and many others. For instance,
formulas (1) and (2) are strongly equivalent to each other, although
they are not equivalent in intuitionistic logic. Each step involved
in the standard process of converting a formula to prenex form is a
strongly equivalent transformation (Lee and Palla 2007), although
some of these steps are not acceptable intuitionistically.

that answer set solvers usually impose on their input (Leone
et al. 2006, Section 2.1). Our goal is to extend that con-
cept to RASPL-1 (and to first-order formulas in general, to
pave the way for future work on RASPL-2) and to investi-
gate its semantic role. We compare RASPL-1 with the pro-
posal from (Faberet al. 2004) mentioned above, and use the
result of this analysis to discuss the possibility of implement-
ing a fragment of RASPL-1 by translating it into the input
language of the answer set solverDLV . Finally, RASPL-1
is related to the semantics of cardinality constraint programs
from (Syrjänen 2004).

Answer Sets of a First-Order Formula
The definition of the “stable model operator” SM in (Ferraris
et al. 2007) uses notation that was introduced in (Lifschitz
1985) for the purpose of defining parallel circumscription,
and we begin with a review of that notation. Letp be a
list of distinct predicate constantsp1, . . . , pn, and letu be
a list of distinct predicate variablesu1, . . . , un of the same
length asp. By u = p we denote the conjunction of the
formulas∀x(ui(x) ↔ pi(x)), wherex is a list of distinct
object variables of the same arity as the length ofpi, for all
i = 1, . . . n. By u ≤ p we denote the conjunction of the
formulas∀x(ui(x)→ pi(x)) for all i = 1, . . . n, andu < p

stands for(u ≤ p) ∧ ¬(u = p).
For any first-order sentenceF , SM[F] stands for the

second-order sentence

F ∧ ¬∃u((u < p) ∧ F ∗(u)),

wherep is the listp1, . . . , pn of all predicate constants oc-
curring inF , u is a listu1, . . . , un of distinct predicate vari-
ables, andF ∗(u) is defined recursively:

• pi(t1, . . . , tm)∗ = ui(t1, . . . , tm);

• (t1 = t2)
∗ = (t1 = t2);

• ⊥∗ = ⊥;

• (F ∧G)∗ = F ∗ ∧G∗;

• (F ∨G)∗ = F ∗ ∨G∗;

• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);

• (∀xF)∗ = ∀xF ∗;

• (∃xF)∗ = ∃xF ∗.

(There is no clause for negation here, because we treat¬F
as shorthand forF → ⊥.) According to (Ferrariset al.
2007), an interpretation of the signatureσ(F) consisting of
the object, function and predicate constants occurring inF
is astable modelof F if it satisfies SM[F].4

Note that the operatorF 7→ F ∗(u) replaces each predi-
cate constant with the corresponding predicate variable, and

4The definition of a stable model in that paper is actually more
general, because it allows the underlying signature to be a superset
of σ(F). If this signature contains predicate constants that do not
occur inF then it would be reasonable to require in the definition of
a stable model that the interpretations of these predicate constants
be identically false. The absence of this condition in (Ferraris et
al. 2007) is an oversight; without it, the assertion of Proposition 1
from that paper is incorrect.

that it commutes with all propositional connectives except
implication and with both quantifiers. Consequently, for any
formulaF that does not contain implication (and negation),
F ∗(u) is simply the result of substitutingu for p in F , so
that SM[F] is, for suchF , the result of circumscribing all
predicate constants inF in parallel.

The terms “stable model” and “answer set” are often used
in the literature interchangeably. In the context of this dis-
cussion of the use of SM in answer set programming, it is
convenient to distinguish between them as follows: by an
answer setof a first-order sentenceF that contains at least
one object constant we will understand an Herbrand5 inter-
pretation ofσ(F) that satisfies SM[F].

Example 1 If F is

p(a) ∧ q(b) ∧ ∀x((p(x) ∧ ¬q(x))→ r(x)) (3)

then SM[F] is equivalent to

∀x(p(x)↔ x = a) ∧ ∀x(q(x)↔ x = b)
∧∀x(r(x) ↔ (p(x) ∧ ¬q(x)))

(see (Ferrariset al. 2007), Example 3).6 Consequently, the
only answer set of (3) is

{p(a), q(b), r(a)}. (4)

Example 2 If F is the conjunction of (1) and

p(a) ∧ p(b) (5)

then SM[F] is equivalent to

∀x(p(x)↔ (x = a∨x = b))∧∀x(q(x) → (x = a∨x = b))

(see (Ferrariset al. 2007), Example 4). Consequently, the
answer sets of this conjunction are

{p(a), p(b)}, {p(a), p(b), q(a)},
{p(a), p(b), q(b)}, {p(a), p(b), q(a), q(b)}.

(6)

The conjunction of (2) and (5) has the same answer sets.

For any sentencesF andG, SM[F ∧¬G] is equivalent to
SM[F]∧¬G. (This is immediate from (Ferrariset al. 2007,
Proposition 2).) Consequently the answer sets ofF ∧ ¬G
can be characterized as the answer sets ofF that satisfy¬G.

Example 3 As discussed above, the answer sets of the con-
junction of (2) and (5) are sets (6). If we append the formula

¬¬∃xy(q(x) ∧ q(y) ∧ x 6= y) (7)

to that conjunction as an additional term, the resulting for-
mula will have one answer set

{p(a), p(b), q(a), q(b)} (8)

—the only set from list (6) that satisfies (7).

In the next section we will see how Examples 1–3 can be
expressed in the syntax of RASPL-1.

5Recall that anHerbrand interpretationof a signatureσ (con-
taining at least one object constant) is an interpretation of σ such
that its universe is the set of all ground terms ofσ, and every ground
term represents itself. An Herbrand interpretation can be identified
with the set of ground atoms (not containing equality) to which it
assigns the valuetrue.

6This fact can be established, for instance, using the results
from (Ferrariset al. 2007) that relate SM to completion.

Definition of RASPL-1
Syntax
In RASPL-1, aterm is an object constant or an object vari-
able (so that there are no function constants of positive ar-
ity). An atomis an expression of the formP (t1, . . . , tn) or
t1 = t2, whereP is ann-ary predicate constant and eachti
is a term.

An aggregate expressionis an expression of the form

b {x : F1, . . . , Fk} (9)

(k ≥ 1), whereb is a positive integer (“the bound”),x is
a list of variables (possibly empty), and eachFi is an atom
possibly preceded bynot. This expression reads: there are
at leastb values ofx such thatF1, . . . , Fk.

A rule is an expression of the form

A1 ; . . . ; Al ← E1, . . . , Em, notEm+1, . . . , notEn (10)

(l ≥ 0; n ≥ m ≥ 0), where eachAi is an atom, and eachEi

is an aggregate expression. Aprogramis a list of rules.

Semantics
The semantics of RASPL-1 is defined by a procedure that
turns every aggregate, every rule, and every program into a
formula of first-order logic, called itsFOL-representation.
Two notational conventions are used in the definition of this
procedure. First, we identify the logical connectives∧, ∨
and¬ with their counterparts used in RASPL-1 programs—
the comma, the semicolon, andnot. This convention allows
us to treat the listF1, . . . , Fk in (9) as a conjunction of lit-
erals. Second, for any lists of variablesx = (x1, . . . , xn)
andy = (y1, . . . , yn) of the same length,x = y stands for
x1 = y1 ∧ · · · ∧ xn = yn.

The FOL-representation of an aggregate expression
b {x : F (x)} is the formula

∃x1 · · ·xb





∧

1≤i≤b

F (xi) ∧
∧

1≤i<j≤b

¬(xi = x
j)



 (11)

wherex1, . . .xb are lists of new variables of the same length
asx.

The FOL-representation of a RASPL-1 rule
Head← Body is the universal closure of the implica-
tion Body→ Headwith each aggregate expression inBody
replaced by its FOL-representation.

The FOL-representation of a RASPL-1 program is the
conjunction of the FOL-representations of its rules.

For any RASPL-1 programΠ containing at least one ob-
ject constant, ananswer setof Π is an answer set of the
FOL-representation ofΠ, as defined in the previous section.

Abbreviations and Examples
If an aggregate expressionEi in (10) has the form1{: A},
whereA is an atom (so that the list of variables in front of
the semicolon is empty) then we will write it asA. This con-
vention is consistent with the semantics of aggregate expres-
sions defined above, in the sense that the FOL-representation

of 1{: A} is A. It allows us to view any traditional disjunc-
tive rule, with atoms and negated atoms in the body, as a rule
of RASPL-1.

Example 1 (continued) The FOL-representation of the pro-
gram

p(a)
q(b)
r(x)← p(x), not q(x)

is formula (3). Consequently, the only answer set of this
program is (4).

If an aggregate expressionEi in (10) with i > m has the
form 1{: not A} then we will write it asnot A. This con-
vention is consistent with the semantics of aggregate expres-
sions as well, and it allows us to include “double negations”
not notA in the body of a RASPL-1 rule.

An expression of the form

{A} ← E1, . . . , Em, notEm+1, . . . , notEn

whereA is an atom, stands for

A← E1, . . . , Em, notEm+1, . . . , notEn, not notA.

Example 2 (continued) The FOL-representation of the pro-
gram

p(a)
p(b)
{q(x)} ← p(x)

is the conjunction of formulas (5) and (2). Consequently, the
answer sets of this program are sets (6).

If Ei in (10) with i > m is

b {x : F (x)}

then the termnotEi can be written as

{x : F (x)} b− 1

(“there are at mostb− 1 values ofx such thatF (x)”).

Example 3 (continued) The expression{x : q(x)} 1
is shorthand fornot 2 {x : q(x)}, so that its FOL-
representation is¬∃xy(q(x)∧q(y)∧x 6= y). Consequently,
the FOL-representation of the program

p(a)
p(b)
{q(x)} ← p(x)
← {x : q(x)} 1

is the conjunction of formulas (5), (2) and (7). The only
answer set of this program is (8).

Programming in RASPL-1
The idea of answer set programming is to reduce a given
search problem to the problem of finding an answer set, and
then use an answer set solver to generate a solution. To il-
lustrate the use of RASPL-1 for search, we consider here a
classical search problem, finding a large clique in a graph,
and show how to encode it in RASPL-1.

Consider the finite graph with a setV of vertices and with
edges{ai, bi} (i ∈ I). We want to find a clique of cardi-
nality≥ n in this graph or determine that such a clique does
not exist. This problem can be represented by the following
program:

vertex(a) (a ∈ V),
edge(ai, bi) (i ∈ I),
{in(x)} ← vertex(x)
← in(x), in(y), not edge(x, y), notx = y
← {x : in(x)}n− 1.

(12)
To see why the answer sets of this program correspond to
cliques of cardinality≥ n, let’s begin with the rules in the
first three lines. This part of the program is similar to Exam-
ple 2. Its answer sets are the sets consisting of

• the atomsvertex(a) for all a ∈ V ,

• the atomsedge(ai, bi) for all i ∈ I,

• the atomsin(a) for all a from some subsetW of V .

Thus the answer sets of the first three lines of (12) are in
a 1–1 correspondence with arbitrary setsW of vertices of
the graph. The first of the two constraints in (12) eliminates
the setsW that are not cliques, and the second constraint
eliminates the sets that contain fewer thann vertices.

Safe Formulas and Rules
Herbrand Models of an Extended Signature
Recall that the answer sets of a sentenceF are defined as the
Herbrand interpretations of the signatureσ(F), consisting of
the nonlogical constants that occur inF , that satisfy SM[F].
What if we extendσ(F) by some object constants that do
not occur inF , and consider the Herbrand interpretations of
the extended signature that satisfy SM[F] — will such inter-
pretations, viewed as sets of ground atoms, be identical to
the answer sets ofF? Generally, the answer to this question
is no. For instance, letF be the formula

p(a) ∧ ∀xy(p(x)→ p(y)), (13)

corresponding to the RASPL-1 program

p(a)
p(y)← p(x).

(14)

The only answer set ofF is {p(a)}; on the other hand, the
only Herbrand model of the extended signature{a, b} that
satisfies SM[F] is a different set,{p(a), p(b)}.

Dependence of the meaning of a program on the presence
of “irrelevant” object constants in the signature, such asb
in the example above, may be considered unintuitive. Be-
sides, generating answer sets for programs like this presents
additional computational difficulties. For these reasons,of
interest are syntactic conditions that eliminate “bad” formu-
las and programs, such as (13) and (14).

Safe Formulas
The definition of a safe sentence below is restricted to sen-
tences in prenex form

Q1x1 · · ·QnxnM (15)

(eachQi is ∀ or ∃; x1, . . . , xn are distinct variables; the ma-
trix M is a quantifier-free formula). This is not an essential
limitation, because the usual process of converting formu-
las to prenex form is a strongly equivalent transformation
(see Footnote 3). Furthermore, we assume that (15) does not
contain function constants of arity> 0. (This condition is
satisfied for FOL-representations of RASPL-1 programs.)

As a preliminary step, we assign to every quantifier-free
formula F without function constants of arity> 0 a set
RV(F) of its restricted variables, as follows:7

• For an atomic formulaF ,

– if F is an equality between two variables then
RV(F) = ∅;

– otherwise,RV(F) is the set of all variables occurring
in F ;

• RV(⊥) = ∅;

• RV(F ∧G) = RV(F) ∪ RV(G);

• RV(F ∨G) = RV(F) ∩ RV(G);

• RV(F → G) = ∅.

For instance,x is restricted in the formulap(x) ∧ ¬q(x, y),
andy is not.

A sentence (15) issafeif every occurrence of every vari-
ablexi in M is contained in an occurrence of a subformula
F → G that satisfies two conditions:

• the occurrence ofF → G is positive8 if Qi is ∀, and
negative ifQi is ∃;

• xi ∈ RV(F).

For instance, formulas (1) and (2), as well as the prenex
form

∀x(p(a) ∧ q(b) ∧ ((p(x) ∧ ¬q(x))→ r(x)))

of (3), are safe: in each case,x is restricted in the antecedent
of the implication. The prenex form of (7) is

∃xy¬¬(q(x) ∧ q(y) ∧ x 6= y);

this formula is safe also. Indeed, this expression is shorthand
for

∃xy(((q(x) ∧ q(y) ∧ x 6= y)→ ⊥)→ ⊥),

and x, y are restricted in the antecedent of

(q(x) ∧ q(y) ∧ x 6= y)→ ⊥.

(Note that dropping the double negation in (7), which is not
a strongly equivalent transformation, would produce an un-
safe formula.)

Consider, on the other hand, the prenex form of (13):

∀xy(p(a) ∧ (p(x)→ p(y))).

This sentence is unsafe, because the only implication con-
taining the occurrence ofy in the matrix isp(x) → p(y),
andy is not restricted in its antecedent.

7Some parts of this definition are similar to clauses of Defini-
tion 16 from (Topor and Sonenberg 1988).

8The occurrence of one formula in another ispositive if the
number of implications containing that occurrence in the an-
tecedent is even, andnegativeotherwise.

The safety of a sentence does indeed imply that its mean-
ing does not depend on the presence of irrelevant object con-
stants in the signature:

Proposition 1 For any safe sentenceF containing at least
one object constant and any signatureσ obtained by adding
object constants toσ(F), an Herbrand interpretation ofσ
satisfiesSM[F] iff it is an answer set ofF .

Safe Rules
Our next goal is to adapt the theorem on safe sentences
stated above to the syntax of RASPL-1.

We say that an aggregate expressionb{x : F} is allowed
if every member ofx is restricted inF . For instance,2{x :
p(x, y)} is allowed;2{x : p(y)} and2{x : not p(x, y)} are
not allowed.

We say that a variablev is restrictedin an aggregate ex-
pressionb{x : F} if v is restricted inF and does not belong
to x. For instance,y is restricted in2{x : p(x, y)} and in
2{x : p(y)}, but is not restricted in2{x : notp(x, y)}.

A variablev is free in a rule (10) if

• v occurs in the headA1 ; . . . ; Al of the rule, or

• the bodyE1, . . . , notEn of the rule contains an aggregate
expressionb{x : F} such thatv occurs inF and does not
belong tox.

A rule (10) issafeif

• each aggregate expression in its body is allowed, and

• each of its free variables is restricted in one of the aggre-
gate expressionsE1, . . . , Em.

A RASPL-1 program issafeif each of its rules is safe. For
instance, program (14) is not safe, becausey is not restricted
in the body of the second rule.

Proposition 2 Let Π be a safe RASPL-1 program contain-
ing at least one object constant, and letF be its FOL-
representation. For any signatureσ obtained by adding ob-
ject constants toσ(F), an Herbrand interpretation ofσ sat-
isfiesSM[F] iff it is an answer set ofΠ.

The proof of this proposition is based on the fact that con-
verting the FOL-representation of a safe program to prenex
form gives a safe sentence.

Comparison with the Semantics of Counting
According to Faber, Leone and Pfeifer

The approach to the semantics of aggregates proposed in
(Faberet al. 2004) is attractive because it does not produce
the same unintuitive results as its predecessors in applica-
tion to nonmonotonic aggregates, such as sums of families
of numbers that can be both positive and negative.9 This
success is achieved using an ingenious modification of the
original definition of the reduct from (Gelfond and Lifschitz
1988). The reduct of a program according to (Faberet al.
2004) is generated by dropping some of the rules, but the
rules that are not dropped remain intact. They are not “re-
duced” in any way even when they contain negation, as done
in the 1988 definition.

9See, for instance, (Ferraris and Lifschitz 2005, Footnote 6).

The language RASPL-1 is less expressive than the lan-
guage introduced by Faberet al. in the sense that it incorpo-
rates only one aggregate, counting. But in another sense it
is more expressive:Fi in an aggregate expression (9) can
be a negated atom, which is not allowed by Faberet al.
The two languages have a significant common part (modulo
some syntactic details),10 and we will talk about it using the
following terminology. An aggregate expression (9) ispos-
itive if eachFi is an atom. If each aggregate expression in
a rule is positive then we say that the rule issemi-positive,
and similarly for programs. Thus a semi-positive program
does not have negations inside aggregate expressions, but a
negation may occur in front of an aggregate expression in
the body of a rule.

The approach of (Faberet al. 2004) can be adapted to the
semi-positive fragment of RASPL-1 as follows. LetΠ be a
program without free variables, and letS be a set of ground
atoms not containing equality. Thereductof Π with respect
to S is obtained fromΠ by dropping all rulesr such thatS
does not satisfy the FOL-representation of the body ofr.
About a semi-positive programΠ without free variables we
say thatS is an answer set ofΠ in the sense of Faber, Leone
and Pfeiferif S is minimal among the sets satisfying (as
Herbrand models) the FOL-representation of the reduct ofΠ
with respect toS. Finally, to extend this definition to semi-
positive programs with free variables, we define the answer
sets of such a programΠ to be the answer sets of the program
obtained fromΠ by replacing each rule with all its “closed
instances”—the rules obtained from it by substituting object
constants for free variables in all possible ways.

This semantics is equivalent to the semantics of RASPL-1
when the latter is restricted to semi-positive programs:

Proposition 3 The answer sets of any semi-positive pro-
gram are identical to its answer sets in the sense of Faber,
Leone and Pfeifer.

The requirement that a program be semi-positive is im-
portant, because “choice rules,” such as the rule

{q(x)} ← p(x)

from Example 2, are not semi-positive. Recall that this is
shorthand for a rule containing a nonpositive aggregate ex-
pression:

q(x)← p(x), not 1 {: not q(x)}. (16)

Actually, choice rules cannot be simulated by semi-positive

10In the syntax of (Faberet al. 2004),b {x : F} is written as
#count{x : F} ≥ b. Incidentally, their language allows us also
to write #count{x : F} ≤ b. The behavior of this expression is
usually similar to the behavior of{x : F} b in RASPL-1, but in
some contexts properties of≤ b seem unintuitive. For instance,
the one-rule programp(a)← not #count{x : p(x)} ≤ 0 has one
answer set—empty, although “unfolding” this rule

p(a)← not q
q ← #count{x : p(x)} ≤ 0

produces a program with two answer sets,{q} and{p(a)}.

rules without introducing auxiliary predicates.11 For in-
stance, the third line of the clique program (12) cannot be
simulated by semi-positive rules. From the perspective of
answer set programming, the availability of choice rules is
the main advantage of RASPL-1 in comparison with the lan-
guage from (Faberet al. 2004).12

The definition of an answer set in the sense of Faber,
Leone and Pfeifer can be extended to arbitrary RASPL-1
programs in an obvious way, but without the assumption that
the program is semi-positive the assertion of Proposition 3
would be invalid. Indeed, the set of closed instances

q(c)← p(c), not 1 {: not q(c)}

of rule (16) has essentially the same reduct with respect to
anyS as the set of trivial rulesq(c)← p(c), q(c).

A large subset of the language defined in (Faberet al.
2004) is implemented in the answer set solverDLV .13 Propo-
sition 3 above shows that in some cases it is possible to com-
pute the answer sets of a RASPL-1 program simply by run-
ning DLV . What are limitations of this method? Here are
some preliminary considerations.

The safety condition imposed byDLV on its input is more
stringent than safety defined in the previous section. For
instance, the RASPL-1 rule

p(x)← 2 {y : q(x, y)} (17)

is safe, but the corresponding rule in the syntax ofDLV
causes this system to produce the error messageRule is
not safe.

There is a process, however, that allows us to circum-
vent this problem, and it has been implemented by theDLV
group.14 Any safe RASPL-1 rule can be turned into a
strongly equivalent rule that is “DLV -safe” by appending ap-
propriate atoms to its body. For instance, the rule

p(x)← 2 {y : q(x, y)}, q(x, z)

is strongly equivalent to (17) and does not create any prob-
lems forDLV .

What about the RASPL-1 rules that are not semi-positive?
It appears that they can be always translated into the lan-
guage ofDLV at the price of introducing auxiliary predicates.
For instance, rule (16) can be replaced by

q(x)← p(x), not 1 {: aux(x)}
aux(x)← p(x), not q(x).

On these grounds, we expect thatDLV can serve as the
basis for the implementation of a large subset of RASPL-1.

11The reason is that any semi-positive program has the anti-chain
property: one of its answer sets cannot be a proper subset of an-
other. The use of auxiliary predicates is discussed below.

12The semantics of programs with aggregates without variables
that was proposed in (Ferraris 2005, Section 4) has similar advan-
tages.

13http://www.dbai.tuwien.ac.at/proj/dlv/
14Nicola Leone, personal communication, December 7, 2007.

Comparison with the Semantics of Cardinality
Constraints According to Syrjänen

Cardinality constraints in the sense of (Syrjänen 2004) may
involve “conditional literals.” A conditional literal hasthe
form

x . L : A (18)

wherex is a list of variables,L is a literal, andA is an atom.
“Intuitively, L : A can be seen as a conjunction that is eval-
uated in two phases: firstA is checked, and if it is true, then
the truth value ofL determines the truth value of the whole
construct” (Syrjänen 2004, Section 2).

Thus intuitively (18) is somewhat similar to the RASPL-1
expression{x : L, A}. We will now show how the idea
behind the semantics from (Syrjänen 2004) can be adapted
to a fragment of RASPL-1 as follows.

Answer Sets According to Syrj̈anen
We say that an aggregate expression (9) isshortif

(i) b = k = 1, x is empty, andF1 is an atom (recall
that we have agreed to identify this aggregate expression
with F1), or

(ii) k = 2, andF2 is an atom.

In other words, short aggregate expressions are atoms and
expressions of the formb {x : L, A}, whereL is a literal
and A is an atom. A RASPL-1 program isregular if it
doesn’t contain equality and, in each of its rules (10),l = 1
and the aggregate expressionsE1, . . . , En are short.

For example, the clique program (12) is not regular be-
cause of its last rule: the expression{x : in(x)} in the body
corresponds to (9) withk = 1 and non-emptyx. We can
make the program regular by replacing that expression with
{x : in(x), vertex(x)}.

We will define, for any regular programΠ without free
variables and any setS of ground atoms not containing
equality, thereduct ofΠ with respect toS (“reduct in the
sense of Syrjänen,” if we want to distinguish it from the
reduct in the sense of Faber, Leone and Pfeifer introduced
above). The reduct ofΠ with respect toS, as we will see, is
a set of formulas, and it will be denoted byΠS .

The definition uses the following notation: for any ground
atomA,

A ?S =

{

>, if A ∈ S,

⊥, otherwise;

(notA) ?S = ¬(A ?S).

The reducts of short aggregate expressions without free vari-
ables,15 and of their negations, are defined as follows. For
expressions of type (i),AS is A; (not A)S is (not A) ?S.
For expressions of type (ii),(b {x : L(x), A(x)})S stands
for

∨

C ⊆{c : A(c) ∈ S}

|C| = b

∧

c∈C

L(c)S ,

15The free variablesof an aggregate expression (9) are the vari-
ables that occur in this expression but do not belong tox.

wherec ranges over all tuples of object constants of the same
length asx; (not b {x : L(x), A(x)})S stands for

¬
∨

C⊆{c : A(c) ∈ S}

|C| = b

∧

c∈C

(L(c) ?S).

Finally, the reductΠS of a regular programΠ without free
variables is the set of formulas

ES
1 ∧ · · · ∧ES

m ∧ (notEm+1)
S ∧ · · · ∧ (notEn)S → A

corresponding to the rules

A← E1, . . . , Em, notEm+1, . . . , notEn

of Π.
It is clear thatΠS consists of implications such that the

consequent of every implication is a ground atom, and the
antecedent of every implication is a propositional combina-
tion of ground atoms; furthermore, all occurrences of ground
atoms in the antecedents are positive. (There may be nega-
tions in the antecedents, but they are only applied to proposi-
tional combinations of the 0-place connectives>,⊥.) Con-
sequently,ΠS is equivalent to a set of definite clauses,
and has a unique minimal Herbrand model. If this model
equalsS then we say thatS is an answer set ofΠ in the
sense of Syrjänen.

Let us check, for instance, that the set

{p(a), q(a), r(b)} (19)

is an answer set of the program

p(a)
q(a)
r(b)← 1 {x : p(x), q(x)}

(20)

in the sense of Syrjänen. The reduct of (20) with respect
to (19) is

p(a) ∧ q(a) ∧ (p(a)→ r(b)). (21)

The minimal Herbrand model of this formula is (19).
To extend the definition of an answer set in the sense of

Syrjänen to regular programs with free variables, we replace
rules with their closed instances.

The definition above follows the method of (Syrjänen
2004) very closely, although we use different terminology
and notation. The most essential difference is that our con-
dition |C| = b refers to the number oftuplesc, rather than
the number ofliterals L(c). These numbers can differ if
some of the variablesx do not actually occur inL(x).

Conditional Literals vs. Conjunctions
The quote from (Syrjänen 2004, Section 2) at the begin-
ning of this section suggests thatL and A in a cardinal-
ity constraint (18) are treated somewhat asymmetrically in
Syrjänen’s semantics even whenL is an atom. For in-
stance, if we replacep(x), q(x) in the last rule of (20) with
q(x), p(x) then the reduct of the program will change: the
last conjunctive term of (21) will turn intoq(a)→ r(b).

On the other hand, the meaning ofF1, . . . , Fk in our ag-
gregate expression (9) is invariant with respect to changing

the order of the conjunctive terms, just as in classical logic.
Because of this difference, it is not surprising that the an-
swer sets of a regular program in the sense of Syrjänen are
not necessarily identical to its answer sets in the sense of
RASPL-1. The program

p(a)
q(a)← 1 {x : p(x), q(x)}

(22)

is an example. According to the semantics of RASPL-1, its
only answer set is{p(a)}; according to Syrjänen, its answer
sets are{p(a)} and{p(a), q(a)}. Program (22) illustrates
the difference between conditional literals and conjunctions.

The treatment of the atomA in a conditional literal (18)
can be reflected in our reductive approach by inserting
two negations in front ofA, as follows. In the FOL-
representation of a regular programΠ, each aggregate ex-
pression of the formb {x : L(x), A(x)} is represented by
the subformula

∃x1 · · ·xb





∧

1≤i≤b

(L(xi) ∧A(xi)) ∧
∧

1≤i<j≤b

¬(xi = x
j)



 .

The result of inserting¬¬ in front of everyA(xi) in ev-
ery such subformula will be called themodified FOL-
representationof Π. For instance, the FOL-representation
of program (22) is

p(a) ∧ (∃x(p(x) ∧ q(x))→ q(a)),

and the modified FOL-representation of this program is

p(a) ∧ (∃x(p(x) ∧ ¬¬q(x))→ q(a)).

Proposition 4 For any regular programΠ, the answer sets
of Π in the sense of Syrjänen are identical to the answer sets
of the modified FOL-representation ofΠ.

Strongly Regular Programs
Example (22) shows that the assertion of Proposition 4 will
become incorrect if we drop the word “modified.” Under
some conditions, however, inserting double negations in the
FOL-representation of a regular program as described above
has no effect on the answer sets.

The predicate dependency graphof a RASPL-1 pro-
gramΠ is the directed graph such that

• its vertices are the predicate constants occurring inΠ, and

• it has an edge from a vertexp to a vertexq if there is a
rule (10) inΠ such thatp occurs in its headA1; . . . ; Al,
andq occurs positively (i.e., not preceded bynot) in one
of the aggregate expressionsE1, . . . , Em.16

A regular programΠ is strongly regularif, for every aggre-
gate expression of the formb {x : L, A} occurring as one of
E1, . . . , Em in a rule (10) ofΠ, there is no path in the pred-
icate dependency graph ofΠ from the predicate constant
in A to the predicate constant in the head of the rule. For

16This is essentially a special case of the definition of the predi-
cate dependency graph of a first-order formula from (Ferrariset al.
2007, Section 5.3).

instance, the predicate dependency graph of program (20)
has two edges, fromr to p and fromr to q; this program
is strongly regular, becauser is not reachable fromq in this
graph. The predicate dependency graph of (22) has the edges
from q to p and fromq to q; this program is not strongly reg-
ular, becauseq is reachable fromq.

Proposition 5 The answer sets of any strongly regular pro-
gram are identical to its answer sets in the sense of Syrjänen.

From the practical point of view, the condition defining
strongly regular programs, like the safety condition, is very
general. A program for which it is violated, such as (22),
would causeLPARSE to produce an error message.

Conclusion
The language RASPL-1, proposed in this note, combines
useful constructs available in the best known implemented
answer programming languages: choice rules (LPARSE) and
counting (DLV). Its definition in terms of the syntactic oper-
ator SM exemplifies the reductive approach to the semantics
of answer set programming languages with variables, which
does not rely on grounding. We hope that the simplicity
of such definitions will facilitate proving the correctnessof
programs written in RASPL-1 and similar languages.

We plan to extend this work in several directions: extend
RASPL-1 by aggregates other than counting and by other
useful features; implement an extension of RASPL-1 on
top of DLV ; conduct experiments with the use of RASPL-1
and its extensions for solving knowledge representation and
search problems.

Acknowledgements
Many thanks to Selim Erdoğan, Paolo Ferraris, Michael Gel-
fond, Yuliya Lierler and David Pearce for useful discussions
related to the topic of this paper. The first and the third au-
thors were partially supported by the DTO AQUAINT pro-
gram. The second author was partially supported by the Na-
tional Science Foundation under Grant IIS-0712113.

References
Wolfgang Faber, Nicola Leone, and Gerard Pfeifer.
Recursive aggregates in disjunctive logic pro-
grams: Semantics and complexity. InProceed-
ings of European Conference on Logics in Artifi-
cial Intelligence (JELIA), 2004. Revised version:
http://www.wfaber.com/research/papers/jelia2004.pdf.

Paolo Ferraris and Vladimir Lifschitz. Weight constraints
as nested expressions.Theory and Practice of Logic Pro-
gramming, 5:45–74, 2005.

Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. A
new perspective on stable models. InProceedings of In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), pages 372–379, 2007.
Paolo Ferraris. Answer sets for propositional theories.
In Proceedings of International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR), pages
119–131, 2005.

Michael Gelfond and Vladimir Lifschitz. The stable model
semantics for logic programming. In Robert Kowalski
and Kenneth Bowen, editors,Proceedings of International
Logic Programming Conference and Symposium, pages
1070–1080. MIT Press, 1988.
Joohyung Lee and Ravi Palla. Yet another proof of
the strong equivalence between propositional theories and
logic programs. InWorking Notes of the Workshop on Cor-
respondence and Equivalence for Nonmonotonic Theories,
2007.
Nicola Leone, Wolfgang Faber, Gerald Pfeifer, Thomas
Eiter, Georg Gottlob, Simona Perri, and Francesco Scar-
cello. The DLV system for knowledge representation and
reasoning. ACM Transactions on Computational Logic,
7(3):499–562, 2006.
Vladimir Lifschitz, David Pearce, and Agustin Valverde. A
characterization of strong equivalence for logic programs
with variables. InProcedings of International Conference
on Logic Programming and Nonmonotonic Reasoning (LP-
NMR), 2007.
Vladimir Lifschitz. Computing circumscription. InPro-
ceedings of International Joint Conference on Artificial In-
telligence (IJCAI), pages 121–127, 1985.
John McCarthy. Circumscription—a form of non-mono-
tonic reasoning.Artificial Intelligence, 13:27–39,171–172,
1980.
Tommi Syrjänen. Cardinality constraint programs. InPro-
ceedings of European Conference on Logics in Artificial
Intelligence (JELIA), pages 187–199, 2004.
R. W. Topor and E. A. Sonenberg. On domain independent
databases. In Jack Minker, editor,Foundations of Deduc-
tive Databases and Logic Programming, pages 217–240.
Morgan Kaufmann, San Mateo, CA, 1988.

