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Abstract

In a recent paper, Ferraris, Lee and Lifschitz conjectuned t

the concept of a stable model of a first-order formula can be
used to treat some answer set programming expressions as
abbreviations. We follow up on that suggestion and intreduc
an answer set programming language that defines the mean-
ing of counting and choice by reducing these constructs to
first-order formulas. For the new language, the concept of a
safe program is defined, and its semantic role is investigate
We compare the new language with the concept of a disjunc-
tive program with aggregates introduced by Faber, Leone and
Pfeifer, and discuss the possibility of implementing a frag
ment of the language by translating it into the input languag

of the answer set solverLv. The language is also compared
with cardinality constraint programs defined by Syrjanen.

Introduction

In the stable model semantics (Gelfond and Lifschitz 1988),
a logic program with variables is viewed as shorthand for
the set of all ground instances of its rules. In the existing
proposals on extending this semantics to more general pro-
grams, variables are treated, for the most part, in the same
way, although the process of grounding often becomes more
complicated. For instance, the semantics of disjunctiee pr
grams with aggregates from (Fatetral. 2004) divides this
operation into two parts—a “global substitution” and a “lo-
cal substitution.”

The definition of a stable model for first-order formulas
proposed in (Ferrarist al. 2007) and reviewed in the next
section is an exception: it does not refer to grounding. In-
stead, it employs a syntactic transformation of formulab wi
variables that is similar to circumscription (McCarthy 098
As part of motivation for their work, the authors talk about
the possibility of treating choice rules and cardinalityneo
straints with variablésas abbreviations for first-order for-
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mulas? For instance, the choice rule

{g(2)} < p(2)

(“for any element ofp decide arbitrarily whether or not to
include it in¢") can be thought of as an abbreviation for the

formula
Va(p(z) — (q(z) V —q(2))). 1)
Alternatively, this choice rule can be treated as shorttiand

Va((p(x) A —=q(x)) — q(z)). )

(Since formulas (1) and (2) are logically valid, the models
of a formula that includes (1) or (2) as a conjunctive term
will not change if we drop that term. But tregablemodels

of the formula can be affected by such a transformatiom.
this sense, (1) and (2) are nontrivial.) As another example,
consider the cardinality constraint

1{=q(2) : p(z)}

(“there exists at least one elementyothat doesn’t belong
to¢"). In the spirit of the approach outlined in (Ferragisal.
2007), this constraint in the body of a rule can be identified
with the formula

Jz(=q(z) A p(7)).

We follow up on that suggestion and introduce here an
answer set programming language that defines the mean-
ing of counting and choice by reducing these constructs to
first-order formulas. The language is called RASPL-1, for
Reductive Answer Set Programming Language, version 1.
(In future versions, this language will be extended by aggre
gates other than counting.) We discissgety a condition

This idea generalizes the approach to propositional choice
rules and aggregates investigated in (Ferraris and Lis@ti05)
and (Ferraris 2005, Section 4).

3 The class of “strongly equivalent” transformations, whitth
not change the stable models of a first-order formula, isietud
in (Lifschitz et al. 2007). It includes all transformations that are
sanctioned by intuitionistic logic, and many others. Fatamce,
formulas (1) and (2) are strongly equivalent to each othémagh
they are not equivalent in intuitionistic logic. Each stepdlved
in the standard process of converting a formula to prenex fera
strongly equivalent transformation (Lee and Palla 200hoagh
some of these steps are not acceptable intuitionistically.



that answer set solvers usually impose on their input (Leone that it commutes with all propositional connectives except

et al. 2006, Section 2.1). Our goal is to extend that con-
cept to RASPL-1 (and to first-order formulas in general, to
pave the way for future work on RASPL-2) and to investi-
gate its semantic role. We compare RASPL-1 with the pro-
posal from (Fabeet al. 2004) mentioned above, and use the
result of this analysis to discuss the possibility of impés

ing a fragment of RASPL-1 by translating it into the input
language of the answer set sohmtv. Finally, RASPL-1

is related to the semantics of cardinality constraint paots
from (Syrjanen 2004).

Answer Sets of a First-Order Formula

The definition of the “stable model operator” SM in (Ferraris
et al. 2007) uses notation that was introduced in (Lifschitz
1985) for the purpose of defining parallel circumscription,
and we begin with a review of that notation. Lgtbe a
list of distinct predicate constants, ..., p,, and letu be
a list of distinct predicate variables, . .. , u,, of the same
length asp. By u = p we denote the conjunction of the
formulasvx(u;(x) < p;(x)), wherex is a list of distinct
object variables of the same arity as the length;ofor all
i =1,...n. Byu < p we denote the conjunction of the
formulasvx(u;(x) — p;(x)) foralli =1,...n,andu < p
stands fo(u < p) A =(u = p).

For any first-order sentencg, SM[F] stands for the
second-order sentence

F A-Ju((u < p)AF*(u)),

wherep is the listp,, ..., p, of all predicate constants oc-
curringinF', uis alistuy, . .., u, of distinct predicate vari-
ables, and”*(u) is defined recursively:

o pi(tr, . tm) = ui(ts, ... tm);

o (t1=t2)* = (t1=t2);

o |*=1;

o (FAG)* = F* NG*;

° (F\/G) = F* v G*;

o (F=G) = (F* = G*) A (F - G
° (Va:F) =V F™,

o (JzF)* = JxF*.

(There is no clause for negation here, because we trEat
as shorthand fo" — 1.) According to (Ferrarist al.
2007), an interpretation of the signaturéF’) consisting of
the object, function and predicate constants occurring in
is astable modedf F if it satisfies SMF].#

Note that the operataf' — F*(u) replaces each predi-
cate constant with the corresponding predicate variahkd, a

“The definition of a stable model in that paper is actually more
general, because it allows the underlying signature to lsperset
of o(F). If this signature contains predicate constants that do not
occur inF' then it would be reasonable to require in the definition of
a stable model that the interpretations of these predicatstants
be identically false. The absence of this condition in (&esret
al. 2007) is an oversight; without it, the assertion of Proposit
from that paper is incorrect.

implication and with both quantifiers. Consequently, foy an
formula F' that does not contain implication (and negation),
F*(u) is simply the result of substituting for p in F, so
that SMF] is, for suchF, the result of circumscribing all
predicate constants iR in parallel.

The terms “stable model” and “answer set” are often used
in the literature interchangeably. In the context of this-di
cussion of the use of SM in answer set programming, it is
convenient to distinguish between them as follows: by an
answer seof a first-order sentencg that contains at least
one object constant we will understand an Herbpanter-
pretation ofs (F') that satisfies SNF].

Example 1 If F'is
p(a) A q(b) AVa((p(z) A =q(z)) — 7(2))
then SMF] is equivalent to
Ve(p(x) < = a) AVx(g(x) <z =10)
AV (r(z) < (p(z) A ~q(2)))

(see (Ferrarigt al. 2007), Example 3§. Consequently, the
only answer set of (3) is

®3)

{p(a), q(b), r(a)} 4)
Example 2 If F' is the conjunction of (1) and
p(a) A p(b) (5)

then SMF] is equivalent to
Vz(p(x) < (x = aVe = b))AVz(q(z) — (x = aVz = b))

(see (Ferrarigt al. 2007), Example 4). Consequently, the
answer sets of this conjunction are

{p(a), p(0)}, {p(a), p(b), q(a)}, (©)
{p(a), p(b), q(0)}, {p(a), p(b), q(a), q(b)}.
The conjunction of (2) and (5) has the same answer sets.
For any sentence8 andG, SM[F' A =G] is equivalent to
SM[F] A =G. (This is immediate from (Ferraret al. 2007,

Proposition 2).) Consequently the answer set$'of -G
can be characterized as the answer sefs thiat satisfy-G.

Example 3 As discussed above, the answer sets of the con-
junction of (2) and (5) are sets (6). If we append the formula
—~dwy(q(z) Aay) Az # y) @)

to that conjunction as an additional term, the resulting for
mula will have one answer set

{p(a), p(b), a(a), q(b)}
—the only set from list (6) that satisfies (7).

In the next section we will see how Examples 1-3 can be
expressed in the syntax of RASPL-1.

(8)

SRecall that anHerbrand interpretatioof a signatures (con-
taining at least one object constant) is an interpretatfom such
that its universe is the set of all ground termspénd every ground
term represents itself. An Herbrand interpretation cardbetified
with the set of ground atoms (not containing equality) tochhit
assigns the valugue

5This fact can be established, for instance, using the eesult
from (Ferrariset al. 2007) that relate SM to completion.



Definition of RASPL-1

Syntax

In RASPL-1, atermis an object constant or an object vari-
able (so that there are no function constants of positive ar-
ity). An atomis an expression of the forfi(¢4, .. .,t,) or
t; = to, whereP is ann-ary predicate constant and eagh
is a term.

An aggregate expressiaan expression of the form

b{x: Fi,..., Fy} 9)

(k > 1), whereb is a positive integer (“the bound” is
a list of variables (possibly empty), and eakhis an atom
possibly preceded byot This expression reads: there are
at least) values ofx such thatfy, . . ., Fy.

A ruleis an expression of the form

Al;...; Al(_ El,...

(I > 0; n > m > 0), where each; is an atom, and each;
is an aggregate expressionpfogranis a list of rules.

y Em,NOtEpyq, ..., N0t E, (10)

Semantics
The semantics of RASPL-1 is defined by a procedure that

of 1{: A} is A. It allows us to view any traditional disjunc-
tive rule, with atoms and negated atoms in the body, as a rule
of RASPL-1.

Example 1 (continued) The FOL-representation of the pro-
gram

p(a)

q(b)

r(z) < p(x),notq(x)
is formula (3). Consequently, the only answer set of this
program is (4).

If an aggregate expressidty in (10) withi > m has the
form 1{: not A} then we will write it asnot A. This con-
vention is consistent with the semantics of aggregate sxpre
sions as well, and it allows us to include “double negations”
not notA in the body of a RASPL-1 rule.

An expression of the form

turns every aggregate, every rule, and every program into a Example 2 (continued) The FOL-representation of the pro-

formula of first-order logic, called it§OL-representatian
Two notational conventions are used in the definition of this
procedure. First, we identify the logical connectivesv
and— with their counterparts used in RASPL-1 programs—
the comma, the semicolon, andt This convention allows
us to treat the list, . .., Fj in (9) as a conjunction of lit-
erals. Second, for any lists of variables= (x1,...,z,)
andy = (y1,...,y,) of the same lengthx = y stands for
T =Y1 N NTp = Yn.

The FOL-representation of an aggregate expression
b{x: F(x)} is the formula

Ixl...x?b

/\ F)A =x)| (@11)

1<i<b

A

1<i<j<b

wherex!, ... x? are lists of new variables of the same length
asx.

The FOL-representation of a RASPL-1 rule
Head— Body is the universal closure of the implica-
tion Body — Headwith each aggregate expressionBody
replaced by its FOL-representation.

The FOL-representation of a RASPL-1 program is the
conjunction of the FOL-representations of its rules.

For any RASPL-1 prograrfi containing at least one ob-
ject constant, amnswer sebf II is an answer set of the
FOL-representation dfl, as defined in the previous section.

Abbreviations and Examples

If an aggregate expressidt} in (10) has the formi{: A},
where A is an atom (so that the list of variables in front of
the semicolon is empty) then we will write it as This con-
vention is consistent with the semantics of aggregate expre
sions defined above, in the sense that the FOL-represantatio

{A} —« Ei,...,Ey,n0tE41,...,N0tE,
whereA is an atom, stands for
A— FEy,...,Ep,notE,1,...,notE,, not notA.
gram
p(a)
p(b)
{a(2)} < p(z)

is the conjunction of formulas (5) and (2). Consequently, th
answer sets of this program are sets (6).

If E;in (10)withi > mis
b{x: F(x)}
then the terrmot E; can be written as
{x: F(x)}b-1
(“there are at modi — 1 values ofx such thatF'(x)”).

Example 3 (continued) The expressioz : ¢(z)}1
is shorthand fornot 2 {x q(x)}, so that its FOL-
representation is3zy(q(z) Aq(y) Az # y). Consequently,
the FOL-representation of the program

p(a)
p(b)
{q(z)} « p(x)
—{z:qx)}1

is the conjunction of formulas (5), (2) and (7). The only
answer set of this program is (8).

Programming in RASPL-1

The idea of answer set programming is to reduce a given
search problem to the problem of finding an answer set, and
then use an answer set solver to generate a solution. To il-
lustrate the use of RASPL-1 for search, we consider here a
classical search problem, finding a large clique in a graph,
and show how to encode it in RASPL-1.



Consider the finite graph with a sitof vertices and with
edges{a;,b;} (i € I). We want to find a clique of cardi-
nality > n in this graph or determine that such a cliqgue does
not exist. This problem can be represented by the following
program:

vertexa) (aeV),
edgéa;, b;) (iel),
{in(z)} « vertexXx)
—in(x), in(y), not edgéz, y), notz =y
—{z:in(x)}n-1.

(12)

To see why the answer sets of this program correspond to

cligues of cardinality> n, let's begin with the rules in the
first three lines. This part of the program is similar to Exam-
ple 2. Its answer sets are the sets consisting of

e the atomsrertexa) foralla € V,
e the atomsdgéa;,b;) foralli € I,
e the atomsn(a) for all a from some subsét” of V.

Thus the answer sets of the first three lines of (12) are in
a 1-1 correspondence with arbitrary s#tsof vertices of
the graph. The first of the two constraints in (12) eliminates
the setsiV that are not cliques, and the second constraint
eliminates the sets that contain fewer thavertices.

Safe Formulas and Rules

Herbrand Models of an Extended Signature

Recall that the answer sets of a senteAc@e defined as the
Herbrand interpretations of the signatui@’), consisting of

the nonlogical constants that occurfih that satisfy SNIF).
What if we extends(F') by some object constants that do
not occur inF’, and consider the Herbrand interpretations of
the extended signature that satisfy \— will such inter-
pretations, viewed as sets of ground atoms, be identical to
the answer sets df? Generally, the answer to this question
is no. For instance, lef’ be the formula

p(a) AVzy(p(z) — p(y)), (13)
corresponding to the RASPL-1 program
p(a)
ply) — plz). 5

The only answer set af is {p(a)}; on the other hand, the
only Herbrand model of the extended signat{iaed} that
satisfies SNIF] is a different set{p(a), p(b)}.

(eachQ; isVor3; xy,...,z, are distinct variables; the ma-
trix M is a quantifier-free formula). This is not an essential
limitation, because the usual process of converting formu-
las to prenex form is a strongly equivalent transformation
(see Footnote 3). Furthermore, we assume that (15) does not
contain function constants of arity 0. (This condition is
satisfied for FOL-representations of RASPL-1 programs.)

As a preliminary step, we assign to every quantifier-free
formula F' without function constants of arity- 0 a set
RV(F) of its restricted variabless follows:’

For an atomic formuld”,

—if F is an equality between two variables then
RV(F) = (;

— otherwise,RV(F) is the set of all variables occurring
in F,

RV(L) =0;

RV(F A G) = RV(F) URV(G);

RV(F Vv G) = RV(F) NRV(G);

RV(F — G) =0.

For instanceg is restricted in the formula(z) A —q(x, y),

andy is not.
A sentence (15) isafeif every occurrence of every vari-

ablez; in M is contained in an occurrence of a subformula
F — @ that satisfies two conditions:

e the occurrence of — G is positivé if Q; is vV, and
negative ifQ; is 3;
e I, € RV(F)

For instance, formulas (1) and (2), as well as the prenex
form

Va(p(a) A q(b) A ((p(x) A —q(z)) — r(x)))
of (3), are safe: in each caseis restricted in the antecedent
of the implication. The prenex form of (7) is
Fzy==(q(x) A q(y) Az # y);

this formulais safe also. Indeed, this expression is shach
for

oy (((q(z) Aaly) N #y) — L) — 1),
and z, y are restricted in the antecedent of
(q(z) Na(y) N #y) — L.

(Note that dropping the double negation in (7), which is not
a strongly equivalent transformation, would produce an un-

Dependence of the meaning of a program on the presencegafe formula.)

of “irrelevant” object constants in the signature, suchas
in the example above, may be considered unintuitive. Be-
sides, generating answer sets for programs like this presen
additional computational difficulties. For these reasafs,
interest are syntactic conditions that eliminate “bad#iar

las and programs, such as (13) and (14).

Safe Formulas
The definition of a safe sentence below is restricted to sen-
tences in prenex form

Q1z1 - Qurn M (15)

Consider, on the other hand, the prenex form of (13):

Vay(p(a) A (p(z) — p(y))).

This sentence is unsafe, because the only implication con-
taining the occurrence af in the matrix isp(z) — p(y),
andy is not restricted in its antecedent.

"Some parts of this definition are similar to clauses of Defini-
tion 16 from (Topor and Sonenberg 1988).

8The occurrence of one formula in anotherpasitive if the
number of implications containing that occurrence in the an
tecedent is even, antegativeotherwise.



The safety of a sentence does indeed imply that its mean- The language RASPL-1 is less expressive than the lan-
ing does not depend on the presence of irrelevant object con- guage introduced by Fabet al. in the sense that it incorpo-
stants in the signature: rates only one aggregate, counting. But in another sense it
is more expressivel; in an aggregate expression (9) can
be a negated atom, which is not allowed by Fabeal.

The two languages have a significant common part (modulo
some syntactic details)? and we will talk about it using the
following terminology. An aggregate expression (9piss-

Safe Rules itive if each F; is an atom. If each aggregate expression in

a rule is positive then we say that the rulesemi-positive

and similarly for programs. Thus a semi-positive program
does not have negations inside aggregate expressions, but a
negation may occur in front of an aggregate expression in
the body of a rule.

The approach of (Fabet al. 2004) can be adapted to the
semi-positive fragment of RASPL-1 as follows. Léthe a
program without free variables, and Igte a set of ground
atoms not containing equality. Thieductof IT with respect
to S is obtained froniI by dropping all rules: such thatS
does not satisfy the FOL-representation of the body-.of
About a semi-positive prograi without free variables we

Proposition 1 For any safe sentencl containing at least
one object constant and any signaturebtained by adding
object constants to(F'), an Herbrand interpretation of
satisfiesSM[F] iff it is an answer set of .

Our next goal is to adapt the theorem on safe sentences
stated above to the syntax of RASPL-1.

We say that an aggregate expresdifr : F'} is allowed
if every member ok is restricted inF'. For instance2{x :
p(x,y)} is allowed;2{z : p(y)} and2{zx : notp(x,y)} are
not allowed.

We say that a variable is restrictedn an aggregate ex-
pressiorb{x : F'} if v is restricted inF" and does not belong
to x. For instancey is restricted in2{z : p(z,y)} and in
2{x : p(y)}, butis not restricted i2{x : notp(x,y)}.

A variablev is freein a rule (10) if

e voccursinthe head, ;...; A, ofthe rule, or say thatS is an answer set df in the sense of Faber, Leone

e the bodyFE,, ..., notE, ofthe rule contains an aggregate and Pfeiferif S is minimal among the sets satisfying (as
expressiom{x : F'} such thaw occurs inF’ and does not Herbrand models) the FOL-representation of the reduli of
belong tox. with respect taS. Finally, to extend this definition to semi-
A rule (10) issafeif positive programs with free variables, we define the answer

L . sets of such a prografhto be the answer sets of the program
e each aggregate expression in its body is allowed, and obtained fromiI by replacing each rule with all its “closed
e each of its free variables is restricted in one of the aggre- instances’—the rules obtained from it by substituting obje
gate expressionBy, ..., F,,. constants for free variables in all possible ways.

A RASPL-1 program isafeif each of its rules is safe. For This semantics is equivalent to the semantics of RASPL-1
instance, program (14) is not safe, becayigenot restricted when the latter is restricted to semi-positive programs:

in the body of the second rule. Proposition 3 The answer sets of any semi-positive pro-
Proposition 2 LetII be a safe RASPL-1 program contain- gram are identical to its answer sets in the sense of Faber,
ing at least one object constant, and It be its FOL- Leone and Pfeifer.

representation. For any signatuteobtained by adding ob-
ject constants te (F'), an Herbrand interpretation of sat-
isfiesSM[F] iff it is an answer set ofl.

The requirement that a program be semi-positive is im-
portant, because “choice rules,” such as the rule

The proof of this proposition is based on the fact that con- {q(z)} « p(x)
verting the FOL-representation of a safe program to prenex ) - o
form gives a safe sentence. from Example 2, are not semi-positive. Recall that this is
shorthand for a rule containing a nonpositive aggregate ex-
Comparison with the Semantics of Counting pression:
According to Faber, Leone and Pfeifer q(z) « p(z),not1 {: notq(z)}. (16)

The approach to the semantics of aggregates proposed in ) ) ) .
(Faberet al. 2004) is attractive because it does not produce Actually, choice rules cannot be simulated by semi-pasitiv
the same unintuitive results as its predecessors in applica ———— o

tion to nonmonotonic aggregates, such as sums of families ~ N the syntax of (Fabeet al. 2004),b{x : F'} is written as
of numbers that can be both positive and negativehis #countx : F} > b. Incidentally, their language allows us also
success is achieved using an ingenious modification of the ' Write #count{x : 7} < b. The behavior of this expression is

L N . . usually similar to the behavior ofx : F'} b in RASPL-1, but in
original definition of the reduct from (Gelfond and Lifschit some contexts properties sf b Zﬁeem u%intuitive. For instance,

1988).. The reduct of a program according to (Fadteal. the one-rule program(a) « not#count{z : p(z)} < 0 has one
2004) is generated by dropping some of the rules, but the answer set—empty, although “unfolding” this rule

rules that are not dropped remain intact. They are not “re-
duced” in any way even when they contain negation, as done p(a) < notq
in the 1988 definition. q «— #counf{z : p(z)} <0

°See, for instance, (Ferraris and Lifschitz 2005, Footnjte 6 produces a program with two answer seig} and{p(a)}.



rules without introducing auxiliary predicatés. For in-
stance, the third line of the clique program (12) cannot be
simulated by semi-positive rules. From the perspective of
answer set programming, the availability of choice rules is
the main advantage of RASPL-1 in comparison with the lan-
guage from (Fabegt al. 2004)*?

The definition of an answer set in the sense of Faber,
Leone and Pfeifer can be extended to arbitrary RASPL-1
programs in an obvious way, but without the assumption that
the program is semi-positive the assertion of Proposition 3
would be invalid. Indeed, the set of closed instances

q(c) < p(c),not1 {: notg(c)}

of rule (16) has essentially the same reduct with respect to
any.S as the set of trivial ruleg(c) < p(c), ¢(c).

A large subset of the language defined in (Fatteal.
2004) is implemented in the answer set solver .13 Propo-

sition 3 above shows that in some cases it is possible to com-
pute the answer sets of a RASPL-1 program simply by run-

ning bLv. What are limitations of this method? Here are
some preliminary considerations.

The safety condition imposed IpLv on its input is more
stringent than safety defined in the previous section. Fo
instance, the RASPL-1 rule

p(x) — 2{y : q(z,y)} 17)
is safe, but the corresponding rule in the syntaxpaf/
causes this system to produce the error mesBage i s
not safe.

There is a process, however, that allows us to circum-
vent this problem, and it has been implemented bytthe
group* Any safe RASPL-1 rule can be turned into a
strongly equivalent rule that iD1Lv-safe” by appending ap-
propriate atoms to its body. For instance, the rule

p(x) —2{y : q(z,y)}, q(x, 2)

is strongly equivalent to (17) and does not create any prob-
lems forpLv.

What about the RASPL-1 rules that are not semi-positive?
It appears that they can be always translated into the lan-
guage obLv atthe price of introducing auxiliary predicates.
For instance, rule (16) can be replaced by

q(z) < p(z),notl {: aux(z)}
auxz) < p(z),notq(z).

On these grounds, we expect tltatv can serve as the
basis for the implementation of a large subset of RASPL-1.

1The reason is that any semi-positive program has the aatirch
property: one of its answer sets cannot be a proper subsek of a
other. The use of auxiliary predicates is discussed below.

12The semantics of programs with aggregates without vasable
that was proposed in (Ferraris 2005, Section 4) has sintbeara
tages.

Bhtt p: // www. dbai . t uwi en. ac. at/ proj/dl v/

Nicola Leone, personal communication, December 7, 2007.

Comparison with the Semantics of Cardinality
Constraints According to Syrjanen

Cardinality constraints in the sense of (Syrjanen 2004) ma
involve “conditional literals.” A conditional literal hathe
form

x.L:A (18)
wherex is a list of variables[. is a literal, andA4 is an atom.
“Intuitively, L : A can be seen as a conjunction that is eval-
uated in two phases: firgt is checked, and if it is true, then
the truth value of. determines the truth value of the whole
construct” (Syrjanen 2004, Section 2).

Thus intuitively (18) is somewhat similar to the RASPL-1
expression{x : L, A}. We will now show how the idea
behind the semantics from (Syrjanen 2004) can be adapted
to a fragment of RASPL-1 as follows.

Answer Sets According to Syrinen
We say that an aggregate expression ($hisrtif

b = k = 1, x is empty, andF; is an atom (recall
that we have agreed to identify this aggregate expression
with F7), or

I(ii) k = 2, andF3 is an atom.

In other words, short aggregate expressions are atoms and
expressions of the fora{x : L, A}, whereL is a literal
and A is an atom. A RASPL-1 program igegularif it
doesn’t contain equality and, in each of its rules (16}, 1

and the aggregate expressidnis . . . , F,, are short.

For example, the clique program (12) is not regular be-
cause of its last rule: the expressifn: in(x)} in the body
corresponds to (9) witk = 1 and non-emptx. We can
make the program regular by replacing that expression with
{z :in(x), verteXx)}.

We will define, for any regular prograid without free
variables and any sef of ground atoms not containing
equality, thereduct ofIl with respect taS (“reduct in the
sense of Syrjanen,” if we want to distinguish it from the
reduct in the sense of Faber, Leone and Pfeifer introduced
above). The reduct difl with respect taS, as we will see, is
a set of formulas, and it will be denoted biy’.

The definition uses the following notation: for any ground
atomA,

T, fAeS
‘? — ) )
ATS {L, otherwise
(notA4)?S = —(A?S).

The reducts of short aggregate expressions without frée var
ables!® and of their negations, are defined as follows. For
expressions of type (i)4° is A; (not A)° is (not A)? S.

For expressions of type (i) {x : L(x), A(x)})° stands

for
V N L(©)*,

CC{c: A(c) € S} ¢€C
|ICl=0b

5The free variable®f an aggregate expression (9) are the vari-
ables that occur in this expression but do not belong to



wherec ranges over all tuples of object constants of the same
length ax; (notb {x : L(x), A(x)})” stands for

\ N (L(c)?9).

CC{c: Alc) € S} ¢€C
ICl =0

-

Finally, the reductI® of a regular prograrfl without free
variables is the set of formulas

ESN---ANE3 AMMOtE,, 1)° A---A(NOtE,)Y — A

corresponding to the rules

A— Fy,...,Ep,notE,1,...,n0tE,

of II.

It is clear thatlT® consists of implications such that the
consequent of every implication is a ground atom, and the
antecedent of every implication is a propositional combina
tion of ground atoms; furthermore, all occurrences of gtbun

atoms in the antecedents are positive. (There may be nega-

tions in the antecedents, but they are only applied to piepos
tional combinations of the 0-place connectiviesLl.) Con-
sequently,IT° is equivalent to a set of definite clauses,
and has a unique minimal Herbrand model. If this model
equalsS then we say thab' is an answer set ofl in the
sense of Syrjanen

Let us check, for instance, that the set

{p(a),q(a),r(0)} (19)
is an answer set of the program
p(a)
q(a) (20)

r(b) — {z: p(z), q(x)}

in the sense of Syrjanen. The reduct of (20) with respect
to (19) is

p(a) A qa) A (p(a) — (b)) (21)
The minimal Herbrand model of this formula is (19).

To extend the definition of an answer set in the sense of
Syrjanen to regular programs with free variables, we @pla
rules with their closed instances.

The definition above follows the method of (Syrjanen
2004) very closely, although we use different terminology
and notation. The most essential difference is that our con-
dition |C| = b refers to the number dliplesc, rather than
the number ofliterals L(c). These numbers can differ if
some of the variablesdo not actually occur if.(x).

Conditional Literals vs. Conjunctions

The quote from (Syrjanen 2004, Section 2) at the begin-
ning of this section suggests thatand A in a cardinal-
ity constraint (18) are treated somewhat asymmetrically in
Syrjanen’s semantics even wheénis an atom. For in-
stance, if we replacg(z), ¢(x) in the last rule of (20) with
q(x), p(x) then the reduct of the program will change: the
last conjunctive term of (21) will turn intg(a) — r(b).

On the other hand, the meaning B, . . ., F}, in our ag-
gregate expression (9) is invariant with respect to changin

the order of the conjunctive terms, just as in classicaldogi
Because of this difference, it is not surprising that the an-
swer sets of a regular program in the sense of Syrjanen are
not necessarily identical to its answer sets in the sense of
RASPL-1. The program

p(a)
q(a) — 1{z : p(x),q(z)}

is an example. According to the semantics of RASPL-1, its
only answer set i$p(a)}; according to Syrjanen, its answer
sets are{p(a)} and{p(a),q(a)}. Program (22) illustrates
the difference between conditional literals and conjlomi

The treatment of the atom in a conditional literal (18)
can be reflected in our reductive approach by inserting
two negations in front of4, as follows. In the FOL-
representation of a regular progrdiy each aggregate ex-
pression of the formb {x : L(x), A(x)} is represented by
the subformula

(22)

Xln-.xb

L

N\ CE)AAE)A N - =x7)

1<i<b 1<i<j<b

The result of inserting-— in front of every A(x?) in ev-
ery such subformula will be called thmodified FOL-
representatioof I1. For instance, the FOL-representation
of program (22) is

p(a) A (Fz(p(z) A q(x)) — q(a)),
and the modified FOL-representation of this program is

p(a) A (3z(p(x) A ==q(x)) — q(a)).

Proposition 4 For any regular progranil, the answer sets
of IT in the sense of Syapen are identical to the answer sets
of the modified FOL-representation df

Strongly Regular Programs

Example (22) shows that the assertion of Proposition 4 will
become incorrect if we drop the word “modified.” Under
some conditions, however, inserting double negationsen th
FOL-representation of a regular program as described above
has no effect on the answer sets.

The predicate dependency gramfi a RASPL-1 pro-
gramlIl is the directed graph such that

e its vertices are the predicate constants occurririg,iand

e it has an edge from a vertexto a vertexq if there is a
rule (10) inII such thatp occurs in its headl;...; A,
andq occurs positively (i.e., not preceded bgt) in one
of the aggregate expressions, .. ., E£,,.1%

A regular progranil is strongly regulaif, for every aggre-
gate expression of the forin{x : L, A} occurring as one of
FEy, ..., Eyinarule (10) offl, there is no path in the pred-
icate dependency graph of from the predicate constant
in A to the predicate constant in the head of the rule. For

®This is essentially a special case of the definition of thelipre

cate dependency graph of a first-order formula from (Feredral.
2007, Section 5.3).



instance, the predicate dependency graph of program (20) Michael Gelfond and Vladimir Lifschitz. The stable model

has two edges, from to p and fromr to ¢; this program
is strongly regular, becausds not reachable from in this

semantics for logic programming. In Robert Kowalski
and Kenneth Bowen, editorBroceedings of International

graph. The predicate dependency graph of (22) has the edges Logic Programming Conference and Symposiypages

from ¢ to p and fromg to ¢; this program is not strongly reg-
ular, because is reachable frong.

Proposition 5 The answer sets of any strongly regular pro-
gram are identical to its answer sets in the sense of®e.

From the practical point of view, the condition defining
strongly regular programs, like the safety condition, isyve
general. A program for which it is violated, such as (22),
would causa PARSEt0 produce an error message.

Conclusion

The language RASPL-1, proposed in this note, combines
useful constructs available in the best known implemented
answer programming languages: choice rul®a&sEe) and
counting oLV). Its definition in terms of the syntactic oper-
ator SM exemplifies the reductive approach to the semantics
of answer set programming languages with variables, which
does not rely on grounding. We hope that the simplicity
of such definitions will facilitate proving the correctnexs
programs written in RASPL-1 and similar languages.

We plan to extend this work in several directions: extend
RASPL-1 by aggregates other than counting and by other
useful features; implement an extension of RASPL-1 on
top of DLv; conduct experiments with the use of RASPL-1
and its extensions for solving knowledge representatiah an
search problems.
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