
A Decidable Class of Groundable Formulas
in the General Theory of Stable Models

Michael Bartholomew and Joohyung Lee
School of Computing, Informatics and Decision System Engineering

Arizona State University, Tempe, AZ, USA
{mjbartho, joolee}@asu.edu

Abstract

We present a decidable class of first-order formulas in the
general theory of stable models that can be instantiated even
in the presence of function constants. The notion of an
argument-restricted formula presented here is a natural gen-
eralization of both the notion of an argument-restricted pro-
gram and the notion of a semi-safe sentence that have been
studied in different contexts. Based on this new notion, we
extend the notion of safety defined by Cabalar, Pearce and
Valverde to arbitrary formulas that allow function constants,
and apply the result to RASPL-1 programs and programs with
arbitrary aggregates, ensuring finite groundability of those
programs in the presence of function constants. We also show
that under a certain syntactic condition, argument-restricted
formulas can be turned into argument-restricted programs.

Introduction
Grounding is a widely used approach that allows us to iden-
tify the Herbrand models1 of a first-order signature with the
models of the corresponding propositional signature. For in-
stance, assuming the signature {p/1, q/1, a, b}, grounding
turns

p(a) ∧ q(b) ∧ ∀x(p(x)→ q(x)) (1)

into

p(a) ∧ q(b) ∧ (p(a)→ q(a)) ∧ (p(b)→ q(b)) (2)

by replacing the universal quantification with multiple con-
junctions in which x ranges over the Herbrand universe
{a, b}. The Herbrand models of (1) are the same as the
Herbrand models of (2). Containing no variables, for-
mula (2) can also be viewed as a propositional formula of
the signature {p(a), p(b), q(a), q(b)} (i.e., “p(a)” is an atom
in propositional logic). The (propositional) models of the
propositional signature can be identified with the Herbrand
models of the first-order signature.

Copyright c© 2010, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Recall that an Herbrand interpretation of a signature σ (con-
taining at least one object constant) is an interpretation of σ such
that its universe is the set of all ground terms of σ, and every ground
term represents itself. An Herbrand interpretation can be identified
with the set of ground atoms (not containing equality) to which it
assigns the value true.

However, this approach does not work in the presence of
arbitrary function constants. For instance, one cannot turn

p(a) ∧ q(b) ∧ ∀x(p(x)→ q(f(x))) (3)
into multiple conjunctions over the Her-
brand universe because the universe is infinite:
{a, b, f(a), f(b), f(f(a)), f(f(b)), . . . }.

On the other hand, in answer set programming, where
rules are used instead of formulas, function constants are
allowed to some degree. In order to ensure finite ground-
ing, answer set solvers impose syntactic conditions on
the input languages, such as ω-restricted (Syrjänen 2001;
2004), λ-restricted (Gebser et al. 2007b), or finite domain
programs (Calimeri et al. 2008). Recently Lierler and
Lifschitz [2009] defined the most general decidable class
of finitely groundable programs, called argument-restricted
programs, that covers the syntactic conditions above.

In this paper, we extend the notion of an argument-
restricted program to the syntax of an arbitrary formula,
whose stable models are defined in (Ferraris et al. 2007;
2010). Unlike in first-order logic, argument-restricted for-
mulas under the stable model semantics can be grounded
even in the presence of function constants. For instance, for-
mula (3) is argument-restricted, and the results of this paper
tell us that the Herbrand stable models of formula (3) can be
identified with the Herbrand stable models of
p(a) ∧ q(b) ∧ (p(a)→ q(f(a))) ∧ (p(b)→ q(f(b))). (4)

It turns out that the notion of an argument-restricted formula
can also be viewed as an extension of semi-safety, which is
defined in (Lee et al. 2009; Cabalar et al. 2009) for formulas
containing no function constants other than object constants.
Based on this new notion, we show that the notion of safety
that was generalized to arbitrary formulas (Lee et al. 2008b;
Cabalar et al. 2009) can be further generalized to allow
function constants.

We apply the results to justify finite groundability of pro-
grams that contain aggregates, whose semantics are as given
in (Lee et al. 2008a) and (Faber et al. 2004). Lee et al.
[2008a] showed that the meaning of choice rules and count-
ing aggregates in answer set programming can be under-
stood by identifying these constructs as shorthand for first-
order formulas under the stable model semantics. For in-
stance, the “FOL-representation” of the RASPL-1 rule

s← {x : p(x)} 1 (5)



is the formula

¬∃xy(p(x) ∧ p(y) ∧ x 6= y)→ s. (6)

The counterpart of (5) in the language defined in (Faber et
al. 2004) is

s← #count{x : p(x)} ≤ 1. (7)

In that language, the meaning of #count{x : p(x)} ≤ 1 is
understood by instantiating the expression {x : p(x)} over
the Herbrand universe, and then applying an interpretation
on the ground set. Obviously this process results in an infi-
nite ground set once the program contains function constants
of positive arity as in the following:

p(f(x))← q(x)
q(x)← p(x), r(x)
p(a) r(a) r(f(a))
s← #count{x : p(x)} ≤ 1

(8)

This program cannot be handled by DLV, which im-
plements a large subset of the language defined
in (Faber et al. 2004). On the other hand, the re-
cent system DLV-COMPLEX, an extension of DLV
with function constants, returns one answer set
{p(a), p(f(a)), p(f(f(a))), q(a), q(f(a)), r(a), r(f(a))}
for the program above. While the system is based on
the theory from (Calimeri et al. 2008) that ensures finite
groundability of an answer set program, that paper does not
consider aggregates. To the best of our knowledge, no justi-
fication has been provided regarding finite groundability of
programs such as (8).

We also show that under a certain syntactic condition,
argument-restricted formulas can be turned into argument-
restricted programs. This may be of interest in applications
of system F2LP (Lee and Palla 2009), which computes an-
swer sets of arbitrary formulas under certain conditions, by
reducing formulas to logic programs.

The rest of the paper is organized as follows. In the next
section, we review the definitions of argument-restricted
programs, answer sets of first-order formulas, and semi-
safety and safety in the absence of function constants. In
Section “Argument-Restricted Formulas,” we present the
definition of argument-restricted formulas, and show that
such formulas have the small predicate property. We ex-
tend the notion of safety to allow function constants by
taking into account argument-restrictedness; we show that
safe sentences can be grounded w.r.t. a finite domain,
and their answer sets are not affected by enlarging the do-
main. In Section “Deciding Argument-Restricted Formu-
las,” we show that the class of argument-restricted for-
mulas is decidable. In the next three sections, we apply
the concept of argument-restricted formulas and safety to
RASPL-1 programs and FLP programs, and extend the no-
tion of argument-restrictedness and safety to allow exten-
sional predicates. In the last two sections, we show that un-
der a certain condition, argument-restricted formulas can be
turned into argument-restricted programs and how the sim-
ilar results hold for λ-restricted formulas, an extension of
λ-restricted programs.

Preliminaries
A signature consists of function constants and predicate
constants. Function constants of arity 0 are called object
constants.

We distinguish between atoms and atomic formulas as fol-
lows: an atom of a signature σ is an n-ary predicate constant
followed by a list of n terms; atomic formulas of σ are atoms
of σ, equalities between terms of σ, and the 0-place connec-
tive ⊥.

Review: Argument-Restricted Programs
A program considered in (Lierler and Lifschitz 2009) is a
finite list of rules of the form

A1; . . . ;Ak ← Ak+1, . . . , Am, not Am+1, . . . , not An,
(9)

(0 ≤ k ≤ m ≤ n), where each Ai is an atom, possibly
containing function constants of positive arity. A program is
called safe if every variable occurring in a rule of Π occurs
also in the positive body of that rule.

We follow the terminology and the notations used
in (Lierler and Lifschitz 2009). Given an atom p(t1, . . . , tn),
expression p(t1, . . . , tn)0 represents its predicate constant p,
and p(t1, . . . , tn)i, where 1 ≤ i ≤ n, represents its argu-
ment term ti. As in (Calimeri et al. 2008), an argument
is an expression of the form p[i], where i is one of the argu-
ment positions 1, . . . , n. The depth of a variable x in a term t
that contains x, denoted by d(x, t), is defined recursively as
follows:
d(x, t) ={

0, if t is x;
1 + max({d(x, ti) | ti contains x}), if t is f(t1, . . . , tn).

An argument ranking for Π is a function α from argu-
ments to integers such that, for every rule R of Π, every
atom A occurring in the head of R, and every variable x
occurring in an argument term Ai, the positive body of R
contains an atom B such that x occurs in an argument term
Bj satisfying

α(A0[i])− d(x,Ai) ≥ α(B0[j])− d(x,Bj). (10)

A program is called argument-restricted if it is safe and
has an argument ranking.

Review: Answer Sets of First-Order Formulas
This review follows (Ferraris et al. 2010), a journal version
of (Ferraris et al. 2007), which is based on the stable model
operator with the intensional predicates p, denoted by SMp.
Let p be a list of distinct predicate constants p1, . . . , pn, and
let u be a list of distinct predicate variables u1, . . . , un of
the same length as p. By u = p we denote the conjunction
of the formulas ∀x(ui(x) ↔ pi(x)), where x is a list of
distinct object variables of the same arity as the length of pi,
for all i = 1, . . . n. By u ≤ p we denote the conjunction
of the formulas ∀x(ui(x)→ pi(x)) for all i = 1, . . . n, and
u < p stands for (u ≤ p) ∧ ¬(u = p).

For any first-order formula F , SMp[F ] stands for the
second-order formula

F ∧ ¬∃u((u < p) ∧ F ∗(u)), (11)



where F ∗(u) is defined recursively:2

• pi(t)∗ = ui(t) for any tuple t of terms;

• F ∗ = F for any atomic formula F that does not contain
members of p;3

• (F ∧G)∗ = F ∗ ∧G∗;
• (F ∨G)∗ = F ∗ ∨G∗;
• (F → G)∗ = (F ∗ → G∗) ∧ (F → G);

• (∀xF )∗ = ∀xF ∗;
• (∃xF )∗ = ∃xF ∗.

For any sentence F , a p-stable model of F is an interpre-
tation of the underlying signature that satisfies SMp[F ]. In
this paper we will often omit the subscript p when it is the
list of all predicate constants occurring in F .

The answer sets are defined as follows. By σ(F ) we de-
note the signature consisting of object, function and pred-
icate constants occurring in F . For any sentence F that
contains at least one object constant, we define the answer
sets of F as the Herbrand interpretations of σ(F ) that satisfy
SM[F ]. Ferraris et al. [2010] shows that this definition of
an answer set coincides with the usual definition of an an-
swer set, which is given in terms of grounding and reduct
when F can be identified with a logic program.

Review: Semi-Safety and Safety in the Absence of
Function Symbols
The concept of safety was extended to first-order formulas
in (Lee et al. 2008a) and was further generalized in (Cabalar
et al. 2009), but the work there does not consider function
constants of positive arity. This section reviews some def-
initions from (Cabalar et al. 2009) in a slightly modified
form.4

We assume that the signature contains no function con-
stants of positive arity. To every quantifier-free formula F ,
we assign a set RV(F ) of its restricted variables as follows:

• For an atomic formula F ,

– if F is an equality between two variables, then
RV(F ) = ∅;

– otherwise, RV(F ) is the set of all variables occurring
in F ;

• RV(⊥) = ∅;
• RV(F ∧G) = RV(F ) ∪ RV(G);

• RV(F ∨G) = RV(F ) ∩ RV(G);

• RV(F → G) = ∅.
Recall that the occurrence of one formula in another is

called positive if the number of implications containing that
occurrence in the antecedent is even, and negative otherwise.
We say that an occurrence of a subformula or a variable in
a formula F is strictly positive if that occurrence is not in

2We treat ¬F as shorthand for F → ⊥.
3This includes the case when F is ⊥.
4This reformulation is described in the unpublished draft (Lee

et al. 2009).

the antecedent of any implication. For example, in (6), the
occurrences of p(x) and p(y) are positive, but not strictly
positive; the occurrence of s is strictly positive.

Consider a sentence F in prenex form:

Q1x1 · · ·QnxnM (12)

(each Qi is ∀ or ∃; x1, . . . , xn are distinct variables; the ma-
trix M is quantifier-free). It is shown that every first-order
formula under the stable model semantics can be turned into
prenex form (Lee and Palla 2007, Theorem 2). We say that
F is semi-safe if every strictly positive occurrence of ev-
ery variable xi belongs to a subformula G → H where xi
belongs to RV(G). If a sentence has no strictly positive oc-
currence of a variable, it is clearly semi-safe. The FOL-
representation of (9) is semi-safe if every variable occurring
in the head of a rule occurs also in the positive body of that
rule. Thus the notion of semi-safety, applied to a logic pro-
gram, is weaker than the notion of safety.

Proposition 1 below shows that all stable models of a
semi-safe sentence have the small predicate property: the
relation represented by any of its predicate constants pi can
hold for a tuple of arguments only if each member of the tu-
ple is represented by an object constant occurring in F . To
make this idea precise, we will use the following notation:
For any finite set c of object constants, inc(x) stands for the
formula ∨

c∈c
x = c.

The small predicate property can be expressed by the con-
junction of the sentences

∀v1, . . . , vn

(
p(v1, . . . , vn)→

∧
i=1,...,n

inc(vi)
)

for all predicate constants p occurring in F ,
where v1, . . . , vn are distinct variables. We denote
this sentence by SPPc. By c(F ) we denote the set of all
object constants occurring in F .

Proposition 1 (Lee et al. 2009) For any semi-safe sen-
tence F , formula SM[F ] entails SPPc(F ).

For instance, in application to the prenex form of (1),
which is semi-safe, this proposition asserts that SM[(1)] en-
tails

∀x(p(x)→ x = a ∨ x = b) ∧ ∀x(q(x)→ x = a ∨ x = b).

Cabalar et al. [2009] generalized the definition of safety
from (Lee et al. 2008b) as follows. They consider the fol-
lowing transformations:
• ¬⊥ 7→ >, ¬> 7→ ⊥,
• ⊥∧F 7→ ⊥, F∧⊥ 7→ ⊥, >∧F 7→ F , F∧> 7→ F ,
• ⊥∨F 7→ F , F∨⊥ 7→ F , >∨F 7→ >, F∨> 7→ >,
• ⊥→F 7→ >, F→> 7→ >, >→F 7→ F .

We say that a variable x is positively weakly restricted in
a formula G if the formula obtained from G by
• first replacing every atomic formula A in it such that x

belongs to RV(A) by ⊥,



• and then applying the transformations above

is >. Similarly, we say that x is negatively weakly restricted
in G if the formula obtained from G by the same procedure
is ⊥.

A semi-safe sentence (12) is called safe if, for every oc-
currence of a variable xi in (12),

(a) if Qi is ∀, then the occurrence belongs to

– a positive subformula of (12) in which xi is positively
weakly restricted, or

– a negative subformula of (12) in which xi is negatively
weakly restricted;

(b) if Qi is ∃, then the occurrence belongs to

– a negative subformula of (12) in which xi is positively
weakly restricted, or

– a positive subformula of (12) in which xi is negatively
weakly restricted.

This definition generalizes the definition of safety for
logic programs. The prenex form of (6)

∃xy(¬(p(x) ∧ p(y) ∧ x 6= y)→ s) (13)

is safe because the antecedent of the implication is a nega-
tive subformula in which both x and y are positively weakly
restricted in it. (Or p(x) ∧ p(y) ∧ x 6= y can be taken as a
positive subformula in which x and y are negatively weakly
restricted.) Formula ∃x∀y((p(x) → q(y)) → r) is safe be-
cause, for x, p(x) can be taken as a positive subformula, and,
for y, q(y) can be taken as a negative subformula. Formula
∃x(¬p(x)→ q) is safe, while ∀x(¬p(x)→ q) is semi-safe,
but not safe.

Argument-Restricted Formulas
We extend the notion of argument-restricted programs to ar-
bitrary formulas as follows. We visualize any term t as a
rooted tree, with object constants and variables as leaves,
and function constants of positive arity as internal nodes.
The height h(t) of a term t is the height of the corresponding
tree. Let F be a quantifier-free formula (possibly containing
function constants of positive arity) and let α be a function
from arguments to integers. Function lbα(x, F ) maps a vari-
able and a formula to an integer or ω, defined as follows:

• lbα(x, p(t1, . . . , tn)) =
min({α(p[i])− d(x, ti) | ti contains x} ∪ {ω});

• When F is t1 = t2, if t1 is x and t2 is a ground term, then
lbα(x, F ) is h(t2); Similar if t2 is x and t1 is a ground
term; otherwise lbα(x, F ) is ω;

• lbα(x,⊥) = ω;

• lbα(x,G ∧H) = min({lbα(x,G), lbα(x,H)});

• lbα(x,G ∨H) = max({lbα(x,G), lbα(x,H)});

• lbα(x,G→ H) = ω.

An argument ranking for F is a function α from argu-
ments to integers such that, for every atom A occurring
strictly positively in F and every variable x occurring in an

argument term Ai, the occurrence of A is in a subformula
G→ H such that

α(A0[i])− d(x,Ai) ≥ lbα(x,G). (14)

An argument ranking for a sentence in prenex form is de-
fined as an argument ranking for its matrix. We say that the
sentence (12) is argument-restricted if it has an argument
ranking.

For example, the prenex form of formula (3) is argument-
restricted. We can take α(p[1]) = 0, α(q[1]) = 1. Formula

∀x(p(a) ∧ (p(f(x)) ∨ p(x)→ p(f(x))))

is not argument-restricted because for any function α,

α(p[1])− d(x, f(x)) = α(p[1])− 1
< lbα(x, p(f(x)) ∨ p(x)) = α(p[1]).

On the other hand,

∀x(p(a, f(a)) ∧ (p(x, f(x)) ∨ p(f(x), x)→ p(x, f(x))))
(15)

is argument-restricted. Take α(p[1]) = α(p[2]) = 1. For-
mula

∀xy(p(x) ∧ y=f(x)→ p(y)) (16)

is not argument-restricted, while

∀xy(p(x) ∧ q(y, f(x))→ p(y)) (17)

is argument-restricted. Take α(p[1]) = α(q[1]) = 0,
α(q[2]) = 1.

The small predicate property can be extended to
argument-restricted sentences as follows. For any finite set
f of function constants (including object constants) and any
integer m, by gtmf we denote the set of ground terms of
height up to m which can be constructed from function con-
stants in f . By inmf (x) we denote the formula∨

c∈gtmf

x = c.

For any formula F and any mapping α from arguments to
nonnegative integers, by SPPαf we denote the conjunction of
the sentences

∀v1 . . . vn

(
p(v1, . . . , vn)→

∧
i=1,...,n

in
α(p[i])
f (vi)

)
for all predicate constants p occurring in F . Clearly this is a
proper generalization of SPPc in the previous section.

Intuitively, the small predicate property tells that the ex-
tent of a predicate is named by a finite set of ground terms
that can be constructed from function constants in f whose
maximum height is given by α. We will show that argument-
restrictedness is a syntactic condition that ensures the small
predicate property.

We consider the following axiom set the relaxed unique
name assumption (RUNA) for signature σ.

∀x1 . . . xny1 . . . yn(f(x1, . . . , xn) = f(y1, . . . , yn)
→ (x1 = y1 ∧ . . . ∧ xn = yn))

(18)



for all function constants f of arity > 0;

∀x1 . . . xmy1 . . . yn(f(x1, . . . , xm) 6= g(y1, . . . , yn))
(19)

for all pairs of distinct function constants f , g except for the
pair in which both f and g have arity 0. In other words,
the assumption is slightly weaker than the standard unique
name assumption in that object constants are not assumed to
be distinct from each other.

We say that an argument ranking α is strict if
α(A0[i]) ≥ h(Ai) for every strictly positive occurrence of
an atom A and any of its argument position i. The following
theorem tells that any argument-restricted sentence has the
small predicate property. By f(F ) we denote the set of all
function constants occurring in F .

Theorem 1 For any argument-restricted sentence F and
any strict argument ranking for F , under the relaxed unique
name assumption, formula SM[F ] entails SPP α

f(F ).

For instance, under the relaxed unique name assumption
SM[(3)] entails

∀x(p(x)→ (x = a ∨ x = b)),

and

∀x(q(x)→ (x = a ∨ x = b ∨ x = f(a) ∨ x = f(b)).

with α(p[1]) = 0, α(q[1]) = 1.
Theorem 1 becomes incorrect if we drop the relaxed

unique name assumption. For example, take

F = p(0) ∧ ∀x(p(f(x))→ p(x)),

which is argument-restricted (take α(p[1]) = 1). However,
consider a model I of SM[F ] such that the universe is the set
of integers, f I(m) = m + 1, pI = {0,−1,−2, . . . }. The
model I satisfies SM[F ] but not SPPαf .

Note that the notion of an argument-restricted program
in (Lierler and Lifschitz 2009) requires that the program
be safe, while the notion of an argument-restricted formula
above does not.

Proposition 2 Let Π be a program and F a prenex form of
the FOL representation of Π. Π is argument-restricted in
the sense of (Lierler and Lifschitz 2009) iff F is argument-
restricted (in our sense) and safe.

The notion of an argument-restricted formula is also an
extension of semi-safety with function constants.

Proposition 3 For any sentence F in prenex form that con-
tains no function constants of positive arity, F is semi-safe
according to (Lee et al. 2009) iff it is argument-restricted.

The proof of the proposition uses the following lemma
that describes the relationship between the notions RV and
lbα.

Lemma 1 For any quantifier-free formula F without func-
tion constant of positive arity and any mapping α from ar-
guments to integers,

x ∈ RV(F ) iff lbα(x, F ) 6= ω.

However, the small predicate property alone is not enough
to ensure the domain independence of answer sets.

∀x(¬q(x)→ p) ∧ q(a)

is semi-safe, and thus argument-restricted. The answer set
is {q(a)} if the Herbrand universe is {a}; the answer set is
{p, q(a)} if the Herbrand universe is any proper superset of
{a} (e.g., {a, b}). It is not difficult to see that, due to the
small predicate property, any semi-safe sentence has at most
two kinds of answer sets depending on the underlying signa-
ture, be it σ(F ) or any of its strict superset. In the absence
of function constants of positive arity, it is known that, if
we further require the sentence to be safe (Lee et al. 2008a;
Cabalar et al. 2009), then such distinction between the un-
derlying signature disappears: answer sets are not affected
by the underlying signature.

The definition of safety in the previous section can be
applied in the presence of function constants. The only
changes required are
• in the definitions of positively (negatively, resp.) weakly

restricted variables, to replace “x belongs to RV(A)” by
“lbα(x,A) 6= ω”.

• replace “semi-safe sentence” with “argument-restricted
sentence.”
For any safe sentence F (in prenex form; possibly con-

taining function constants of positive arity), and any strict
argument ranking α for F , the result of its grounding is
the ground formula Groundαf [F ] defined as follows. If F
is quantifier-free, then Groundαf [F ] = F . Otherwise

Groundαf [∀xF (x)] =
∧

c∈gtmf

Groundαf [F (c)],

Groundαf [∃xF (x)] =
∨

c∈gtmf

Groundαf [F (c)],

where m is

max({lbα(x,A) | A is an atomic formula occurring in F (x)
such that lbα(x,A) 6= ω} ∪ {0}).

For example, for formula (3) with α(p[1]) = 0,
α(q[1]) = 1, Groundα{a,b,f}[(3)] is (4). For formula (15)
with α(p[1]) = α(p[2]) = 1, formula Groundα{a,f}[(15)]
is

p(a, f(a)) ∧ (p(a, f(a)) ∨ p(f(a), a)→ p(a, f(a))).

In the rest of the section, we present generalizations of the
theorems from (Lee et al. 2009). We assume that F is a safe
sentence, α is a strict argument for the matrix of F and f
is a finite set of function constants that contains at least one
object constant and f(F ).

As in (Lifschitz et al. 2007), by INT= we denote intu-
itionistic predicate logic with equality, and DE stands for the
decidable equality axiom.

x = y ∨ x 6= y (20)

The provability of a sentence F ↔ G in this system implies
that SM[F ] is equivalent to SM[G] (Lifschitz et al. 2007).



Proposition 4
Groundαf [F ]↔ F

is derivable from SPPαf in INT= + DE + RUNA.
Using Proposition 4 we can prove that the variable-free

formula obtained by grounding a safe sentence F has the
same stable models as F .
Theorem 2 Under the relaxed unique name assumption,
SM[Groundαf [F ]] is equivalent to SM[F ].

In general, the second-order definition of a stable model
cannot be expressed in first-order logic. The following theo-
rem shows, however, that in the case of a safe sentence, sta-
ble models can be characterized by a very simple first-order
formula, almost variable-free:
Theorem 3 There exists a variable-free formula G such
that SM[F ] is equivalent to G ∧ SPP α

f(F ) under the relaxed
unique name assumption.

The safety of a sentence does indeed imply that its mean-
ing does not depend on the presence of irrelevant object con-
stants in the signature:
Theorem 4 If F contains at least one object constant, and
σ is a signature obtained from σ(F ) by adding function con-
stants, then an Herbrand interpretation of σ satisfies SM[F ]
iff it is an answer set of Groundαf(F )[F ].

Deciding Argument-Restricted Formulas
The algorithm described in (Lierler and Lifschitz 2009) can
be extended to argument-restricted formulas in a straight-
forward way. Let F be a formula (12). Similar to (Lierler
and Lifschitz 2009), we define the operator Ω on the set U
of functions from arguments to nonnegative integers by the
formula
Ω(α)(p[i]) = max({min({d(x,Ai) + lbα(x,G) | G→ H}

∪{ω}) | A, x} ∪ {0})
where
• A and x range over atoms and variables such thatA occurs

strictly positively in F , A0 = p, and x occurs in Ai;
• given such A and x, formula G→ H ranges over subfor-

mulas of F such that the occurrence of A is in G→ H .
It is easy to check that α ∈ U is an argument ranking for the
matrix of F iff α ≥ Ω(α).

The operator Ω is monotone, so that the same argument
in (Lierler and Lifschitz 2009) applies to this extension. If
F is argument-restricted, then the set of nonnegative argu-
ment rankings has the least element αmin = Ωi(0) for the
smallest i such that Ωi+1(0) = Ωi(0).5 On the other hand,
for any argument-restricted formula F , all values of αmin do
not exceed the product M of two numbers: the total number
of arguments and the largest of the numbers d(x, t) for the
terms t occurring strictly positively in F and for the vari-
ables x occurring in t.

We can use the polynomial time algorithm given in (Lier-
ler and Lifschitz 2009) with the extended definition of Ω to
determine whether F is argument-restricted by iterating on
0 until

50 denotes a function that maps every argument positions to 0.

• Ωi+1(0) = Ωi(0) (αmin is found), or

• one of the values of Ωi(0) exceedsM (F is not argument-
restricted).

Applying to RASPL-1 programs
(Lee et al. 2008a) defines the semantics of a program with
choice and counting in terms of reduction to the general the-
ory of stable models. That paper assumes that the signature
does not contain function constants of positive arity, but here
we remove that restriction.

A cardinality expression is an expression of the form

b {x : F (x)} (21)

where b is a positive integer (“the bound”), x is a list of vari-
ables (possibly empty), and F (x) is a conjunction of literals
(possibly containing variables other than x). This expression
reads: there are at least b values of x such that F (x).

A RASPL-1 rule is an expression of the form

A1 ; . . . ; Al ← E1, . . . , Em, not Em+1, . . . , not En (22)

(l ≥ 0; n ≥ m ≥ 0), where each Ai is an atom, and each Ei
is a cardinality expression. A RASPL-1 program is a finite
list of rules.

The semantics of a RASPL-1 program is defined by turn-
ing it into a first-order sentence (FOL-representation) and
applying the definition of an answer set for a first-order
sentence. The FOL-representation of cardinality expression
(21) is the formula

∃x1 · · ·xb
 ∧

1≤i≤b

F (xi) ∧
∧

1≤i<j≤b

¬(xi = xj)

 (23)

where x1, . . .xb are lists of new variables of the same length
as x. An expression 1{: A}, where A is an atom, can be
identified with A.

The FOL-representation of a RASPL-1 rule
Head← Body is the universal closure of the implica-
tion Body→ Head with each cardinality expression in
Body replaced by its FOL-representation. The FOL-
representation of a RASPL-1 program is the conjunction of
the FOL-representations of its rules.

For any RASPL-1 program Π containing at least one ob-
ject constant, the answer sets of Π are defined as the answer
sets of the FOL-representation of Π, as defined earlier.

A variable v is free in a rule (22) if

• v occurs in the head A1 ; . . . ; Al of the rule, or

• the body E1, . . . , not En of the rule contains a cardinality
expression b{x : F (x)} such that v occurs in F and does
not belong to x.

In the following we assume that every free variable is dis-
tinct from variables x occurring in (21) by possibly renam-
ing the variables.

An argument ranking for Π is a function α from argu-
ments to integers such that, for every rule R of Π, every
atom A occurring in the head of R, and every variable v



occurring in an argument term Ai, the positive body of R
contains a cardinality expression b{x : F (x)} such that

α(A0[i])− d(v,Ai) ≥ lbα(v, F (x)).

A program is called argument-restricted if it has an argu-
ment ranking.

The safety condition for RASPL-1 programs defined
in (Lee et al. 2008a) can be extended to allow function
constants as follows. Given an argument ranking α, we
say that a cardinality expression b{x : F (x)} is allowed
if, for every member x of x, lbα(x, F ) 6= ω. For instance,
2{x : p(f(x), y)} is allowed; 2{x : not p(f(x), y)} is not
allowed.

A RASPL-1 program is safe if it has an argument rank-
ing α and, for each rule (22) in it,
• each cardinality expression in its body is allowed, and
• for each of its free variables v, there is a cardinality

expression b{x : F (x)} among E1, . . . , Em such that
lbα(v, F ) 6= ω.
The following proposition follows from Theorem 4 since

RASPL-1 programs are shorthand for first-order formulas.
Proposition 5 Let Π be a safe RASPL-1 program (allowing
function constants of positive arity) containing at least one
object constant, let F be its FOL-representation, and let α
be a strict argument ranking for F . For any signature σ
obtained by adding any function constants to σ(F ), an Her-
brand interpretation of σ satisfies SM[F ] iff it is an answer
set of Groundαf(F )[F ].

For example, program (8) (assuming the last rule is writ-
ten in the syntax of RASPL-1) is safe, and can be equiva-
lently rewritten as a ground formula under the stable model
semantics.

Applying to FLP-Aggregates
An FLP-aggregate expression is of the form

OP〈{x : F (x)}〉 � b (24)

where
• OP is a symbol for an aggregate function, such as SUM,

COUNT;
• x is a nonempty list of distinct object variables;
• F (x) is a quantifier-free formula;
• � is a symbol for a binary relation over integers, such as
≤, ≥, <, >, =, 6=;

• b is an integer constant.
An FLP-rule is an expression of the form

A1; . . . ;Al ← E1, . . . , Em, not Em+1, . . . , not En (25)

(l ≥ 0; n ≥ m ≥ 0), where each Ai is an atom and each
Ei is an atom or an FLP-aggregate expression. An FLP-
program is a finite list of rules.

The definition of an argument ranking for an FLP pro-
gram is the same as that for a program whose rules have the
form (9). The definitions of “allowed expressions” and “free
variables” for FLP programs are defined similar to those for
RASPL-1 programs.

According to (Faber et al. 2004), a rule (25) is safe if

• each FLP-aggregate expression in its body is allowed, and

• for each of its free variables v, there is an atom Ei (i =
1, . . . ,m) that contains v.

Again we assume that every free variable is distinct from
variables x in (24) by possibly renaming the variables. For
any argument-restricted FLP-program Π, any strict argu-
ment ranking α for Π and any finite set f of function con-
stants, ground FLP program Groundαf [Π] is defined as fol-
lows:

• replace every free occurrence of a variable x with a
ground term from gtmf where m is

max({lbα(x,A) | A is an atomic formula occurring in Π
such that lbα(x,A) 6= ω} ∪ {0});

• replace every occurrence of OP〈{x : F (x)}〉 � b in the
resulting program with OP〈S〉 � b where S is the set of
all ground instantiations of x : F (x) w.r.t. gtmf where m
is

max({lbα(x,A) | x is in x and A is an atomic formula
occurring in F (x) such that lbα(x,A) 6= ω} ∪ {0}).

In the following proposition, the definition of an answer
set refers to the one in (Faber et al. 2004). By σ(Π) we
denote the signature consisting of object, function and pred-
icate constants occurring in Π. By f(Π) we denote the set of
all function constants occurring in Π.

Proposition 6 Let Π be a safe FLP program containing at
least one object constant, let α be a strict argument rank-
ing for Π. For any signature σ obtained by adding func-
tion constants to σ(Π), a ground set of atoms of σ is an an-
swer set of Π iff it is an answer set of ground FLP program
Groundαf(Π)[Π].

For example, program (8) is safe, and grounding the last
rule of (8) yields

s← #count{a :p(a), f(a) :p(f(a)), f(f(a)) :p(f(f(a))),
a :q(a), f(a) :q(f(a)), a :r(a), f(a) :r(f(a))} ≤ 1

with α(p[1]) = 2, α(q[1]) = 1, α(r[1]) = 1.
The following is another safe program in the syntax of the

DLV-COMPLEX language.

string(cons(a, cons(b, cons(a, cons(c, nil))))).
letter(a). letter(b). letter(c). letter(d).
tail(X) :- string(X).
tail(Y) :- tail(cons(X,Y)), letter(X).
containsTwo(X):- #count{Y: tail(cons(X,Y))}>=2,

letter(X).

The program has only one answer set. For the string
“[a,b,a,c]”, tail(X) belongs to the answer set if X is
the tail of the string. containsTwo(X) belongs to
the answer set if letter X occurs at least twice in the
string. The answer set returned by DLV-COMPLEX contains
containsTwo(a).



Allowing Extensional Predicates
We defined the notion of an argument-restricted formula
only in the case when the intensional predicates p in
SMp[F ] are all the predicates occurring in F . The notion
can be extended to the general case, in which intensional
predicates p are any subset of the predicates in the signa-
ture, by only modifying the first clause of the definition of
lbα(x, F ) as

lbα(x, p(t1, . . . , tn)) =
min({α(p[i])− d(x, ti) | ti contains x} ∪ {ω})

if p is intensional;
ω otherwise.

For example, similar to (16), formula (17) becomes non-
argument-restricted if q is regarded as extensional.

The definition of safety in the general case remains the
same as in the case when all predicate constants are regarded
intensional.

Theorems 1–4 can be extended to allow extensional pred-
icates by allowing p to be any subset of the predicate con-
stants in the signature, and by replacing SM[F ] in the state-
ments with SMp[F ].

Reducing Argument-Restricted Formulas to
Argument-Restricted Programs

System F2LP (Lee and Palla 2009) turns a first-order formula
into a program whose rules have the form

A1 ; . . . ; Ak ← Ak+1, . . . , Am, not Am+1, . . . , not An,
not not An+1, . . . , not not Ap

(26)
(0 ≤ k ≤ m ≤ n ≤ p), where each Ai is an atomic
formula. The definition of an argument-restricted pro-
gram from (Lierler and Lifschitz 2009) can be extended
to this syntax as follows: A program whose rules have
the form (26) is called argument-restricted if its FOL-
representation is argument-restricted.

Is it possible to turn argument-restricted formulas into
such argument-restricted programs? This is an important
question in applications of system F2LP. A part of the
transformation that is implemented in F2LP follows the one
from (Cabalar et al. 2005) in order to turn a quantifier-free
formula into a set of rules. However, this transformation
does not preserve argument-restrictedness: among the trans-
formation rules defined in (Cabalar et al. 2005), only one
rule (L5) does not preserve it. For instance, given

∀x((p(x)→ r(f(x)))
∧((p(x)→ q(x)) ∧ r(x)→ s(x))), (27)

F2LP applies the rule (L5) to turn it into the following pro-
gram

r(f(x)) ← p(x)
s(x) ← not p(x), r(x)
s(x) ← q(x), r(x)

p(x) ; s(x) ← r(x), not not q(x),

which is finitely groundable, but not argument-restricted.

A reduction that preserves argument-restrictedness is pos-
sible under a certain syntactic condition. We call a formula
singular if every subformula G → H that occurs in the an-
tecedent of another implication is contained in a formula that
has no strictly positive occurrence of predicate constants.
Formula (27) is not singular because of p(x)→ q(x).

Proposition 7 Every singular argument-restricted
quantifier-free formula is strongly equivalent to an
argument-restricted program.

It remains an open question if the restriction that formula
be singular can be removed from the statement.

Extending λ-restricted Programs to Formulas
Currently, there is no implementation of argument-restricted
programs. On the other hand, the input language of GRINGO
is assumed to be λ-restricted, which is a stronger notion
than argument-restrictedness. Similar to the generalization
of argument-restricted programs to argument-restricted for-
mulas, we generalize the notion of λ-restricted programs to
λ-restricted formulas, and show that the latter can be re-
duced to the former under some condition. This justifies
the use of F2LP for computing answer sets of λ-restricted
formulas.

According to (Gebser et al. 2007b), a λ-ranking for a
program Π is a function α from predicate constants of σ(Π)
to integers such that for every rule r of Π and every variable
x occurring in r, there is an atom B in the positive body of
r such that B contains x and

α(A0) > α(B0).

We say that a program is λ-restricted if the program has a
λ-ranking.

This concept can be extended to formulas similar to the
definition of argument-restricted formulas as follows. Let
α be a function from predicate constants of σ(Π) to inte-
gers. For a quantifier-free formula F , function lb′α(x, F ) is
defined recursively:
• lb′α(x, p(t1, . . . , tn)) = α(p);
• lb′α(x, t1 = t2) = ω;
• lb′α(x,⊥) = ω;
• lb′α(x,G ∧H) = min({lb′α(x,G), lb′α(x,H)});
• lb′α(x,G ∨H) = max({lb′α(x,G), lb′α(x,H)});
• lb′α(x,G→ H) = ω.
α is called a λ ranking for F if every strictly positive oc-
currence of every variable x in an atom A is contained in a
subformula G→ H such that

α(A0) > lb′α(x,G).

We say that prenex formula (12) is λ-restricted if G has a
λ-ranking. This definition is similar to argument-restricted
formulas, but does not take into account the depth of a vari-
able in a predicate. It is easy to check that every λ-restricted
formula is argument-restricted. Also this definition reduces
to the definition from (Gebser et al. 2007b) when it is ap-
plied to logic programs.



Proposition 8 Let Π be a program and F a prenex form of
the FOL representation of Π. Π is λ-restricted in the sense
of (Gebser et al. 2007b) iff F is λ-restricted (in our sense).

It is clear from the definitions that every λ-restricted for-
mula is argument-restricted. Similar to Proposition 7, the
following holds.

Proposition 9 Every singular λ-restricted quantifier-free
formula is strongly equivalent to a λ-restricted program.

Conclusion
We have presented a decidable class of the general language
of stable models that can be instantiated even in the pres-
ence of function constants. The notion naturally extends
the notion of an argument-restricted program and the no-
tion of a semi-safe sentence that have been studied in dif-
ferent contexts. We view argument-restrictedness, as well
as λ-restrictedness and other similar definitions as syntac-
tic conditions to ensure the small predicate property, which
says that the extent of a predicate can be represented by a fi-
nite set of ground terms. Under the small predicate property,
safety condition can be imposed to ensure that grounding
relative to any domain does not affect the answer sets. This
definition of safety is a generalization of the definition of
safety from (Cabalar et al. 2009).

Based on this, we presented a syntactic condition under
which RASPL-1 programs and FLP programs can be finitely
instantiated. We expect that the notions introduced in the
paper will be useful for clarifying other important constructs
in ASP.

Acknowledgements
We are grateful to Yuliya Lierler, Vladimir Lifschitz, Yun-
song Meng, Ravi Palla and anonymous referees for their use-
ful comments and discussions related to this paper. Some
theorems in this paper are natural generalizations of the the-
orems reported in (Lee et al. 2009), the joint work by the
second author, Vladimir Lifschiz and Ravi Palla. Ravi also
contributed to Proposition 7. This work was partially sup-
ported by the National Science Foundation under Grant IIS-
0916116 and by the IARPA SCIL program.

References
Pedro Cabalar, David Pearce, and Agustin Valverde. Re-
ducing propositional theories in equilibrium logic to logic
programs. In Proceedings of Portuguese Conference on
Artificial Intelligence (EPIA), pages 4–17, 2005.
Pedro Cabalar, David Pearce, and Agustin Valverde. A re-
vised concept of safety for general answer set programs.
In Proceedings of International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR), pages
58–70, 2009.
Francesco Calimeri, Susanna Cozza, Giovambattista Ianni,
and Nicola Leone. Computable functions in ASP: theory
and implementation. In Proceedings of International Con-
ference on Logic Programming (ICLP), pages 407–424,
2008.

Wolfgang Faber, Nicola Leone, and Gerald Pfeifer. Recur-
sive aggregates in disjunctive logic programs: Semantics
and complexity. In Proceedings of European Conference
on Logics in Artificial Intelligence (JELIA), 2004.
Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. A
new perspective on stable models. In Proceedings of In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI), pages 372–379, 2007.
Paolo Ferraris, Joohyung Lee, and Vladimir Lifschitz. Sta-
ble models and circumscription. Artificial Intelligence,
2010. To appear.
Martin Gebser, Torsten Schaub, and Sven Thiele. Gringo:
A new grounder for answer set programming. In Chitta
Baral, Gerhard Brewka, and John S. Schlipf, editors, LP-
NMR, volume 4483 of Lecture Notes in Computer Science,
pages 266–271. Springer, 2007.
Joohyung Lee and Ravi Palla. Yet another proof of
the strong equivalence between propositional theories and
logic programs. In Working Notes of the Workshop on Cor-
respondence and Equivalence for Nonmonotonic Theories,
2007.
Joohyung Lee and Ravi Palla. System F2LP – computing
answer sets of first-order formulas. In Procedings of In-
ternational Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR), pages 515–521, 2009.
Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. A re-
ductive semantics for counting and choice in answer set
programming. In Proceedings of the AAAI Conference on
Artificial Intelligence (AAAI), pages 472–479, 2008.
Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. Safe
formulas in the general theory of stable models (prelimi-
nary report). In Proceedings of International Conference
on Logic Programming (ICLP), pages 672–676, 2008.
Joohyung Lee, Vladimir Lifschitz, and Ravi Palla. Safe
formulas in the general theory of stable models.6 Unpub-
lished Draft, 2009.
Yuliya Lierler and Vladimir Lifschitz. One more decidable
class of finitely ground programs. In Patricia M. Hill and
David Scott Warren, editors, ICLP, volume 5649 of Lec-
ture Notes in Computer Science, pages 489–493. Springer,
2009.
Vladimir Lifschitz, David Pearce, and Agustin Valverde. A
characterization of strong equivalence for logic programs
with variables. In Procedings of International Conference
on Logic Programming and Nonmonotonic Reasoning (LP-
NMR), 2007.
Tommi Syrjänen. Omega-restricted logic programs. In
Proceedings of International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning, pages 267–279,
2001.
Tommi Syrjänen. Cardinality constraint programs. In Pro-
ceedings of European Conference on Logics in Artificial
Intelligence (JELIA), pages 187–199, 2004.

6http://peace.eas.asu.edu/joolee/papers/safety.pdf .


